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Quantification of within-sample 
genetic heterogeneity from SNP-
array data
Pierre Martinez1,2, Christopher Kimberley2, Nicolai J. BirkBak3, Andrea Marquard  3, Zoltan 
Szallasi3,4 & Trevor A. Graham  2

Intra-tumour genetic heterogeneity (ITH) fosters drug resistance and is a critical hurdle to clinical 
treatment. ITH can be well-measured using multi-region sampling but this is costly and challenging to 
implement. There is therefore a need for tools to estimate ITH in individual samples, using standard 
genomic data such as SNP-arrays, that could be implemented routinely. We designed two novel 
scores S and R, respectively based on the Shannon diversity index and Ripley’s L statistic of spatial 
homogeneity, to quantify ITH in single SNP-array samples. We created in-silico and in-vitro mixtures 
of tumour clones, in which diversity was known for benchmarking purposes. We found significant but 
highly-variable associations of our scores with diversity in-silico (p < 0.001) and moderate associations 
in–vitro (p = 0.015 and p = 0.085). Our scores were also correlated to previous ITH estimates from 
sequencing data but heterogeneity in the fraction of tumour cells present across samples hampered 
accurate quantification. The prognostic potential of both scores was moderate but significantly 
predictive of survival in several tumour types (corrected p = 0.03). Our work thus shows how individual 
SNP-arrays reveal intra-sample clonal diversity with moderate accuracy.

Cancer is a disease in which malignant cells evolve from normal cells within a multicellular organism. 
Technological advances such as next generation sequencing or single nucleotide polymorphism (SNP) arrays 
have revealed the (epi)genetic mutations involved in malignant transformation, and highlighted the array of 
(epi)mutations involved in carcinogenesis1, 2. Because tumorigenesis and subsequent cancer development fol-
low an evolutionary process3, the continuous evolution of malignant cell populations will inevitably give rise to 
intra-tumour heterogeneity (ITH)4. ITH has been documented in different tumour types using various exper-
imental techniques and designs5–7. Its clinical implications are multiple: diversity fosters resistance via (epi)
genetic alterations present in subpopulations (or “subclones”), standard single-biopsy sampling will incompletely 
describe tumours, and biomarkers based on them may therefore lack precision to guide therapeutic decisions8, 9.

To date, multiple methods have been developed to reconstruct the clonal structures of tumours10–12, while 
others have focused solely on quantifying the degree of ITH in various data types13–16; these methods often rely 
on obtaining multiple samples from each tumour. Multi-region studies present prohibitive logistic difficulties, 
both in terms of access to multiple tumour samples from patients and in the increased costs and complexity of 
data analysis. Moreover, there is a wealth of publicly available genomic data derived from a single sample per 
tumour17, 18. There is therefore a need for methods to accurately measure the heterogeneity of a tumour from a 
single sample.

Quantification of ITH is a proxy for the evolvability of a tumour. A more diverse tumour is more likely to 
contain cells that are pre-adapted to a new selective pressure (e.g. chemotherapy). Indeed, recent studies designed 
different ways to measure ITH and reported it was positively associated with poorer survival. Mengelbier et al. 
used the presence of subclonal alterations from SNP array data in paediatric cancer19, while other groups inferred 
ITH from paired sequencing and SNP-array data in pan-cancer analyses20, 21. Mroz et al. developed a statistic 
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based on the deviation in mutant allele frequencies from single-sample sequencing data, which was linked to 
poor outcome in head & neck cancers22. Using imaging, and therefore phenotypic rather than genetic data, Yuan 
et al. measured the cellular heterogeneity of tissue sections and integrated it in a prognostic tool for ER- breast 
cancers23. However, there are no standards yet for ITH metrics and it is not clear how resilient the proposed meas-
ures are to differences in sample quality and technical noise. Importantly for this study, SNP arrays (and more 
recently low-pass whole genome sequencing to study copy-number variation24) remain a robust, cost-efficient 
way to obtain genomic data routinely and large cohorts analysed using this technology are publicly available. Yet, 
no method exists to quantify ITH in single SNP array samples.

Here we derived two methods to quantify ITH from individual SNP-array cancer samples and assessed their 
accuracy and usefulness. We first used publicly available data to generate synthetic copy number profiles, and 
used these profiles to generate in silico mixtures of related (sub)clones upon which we assess the performance 
of the ITH measures and also their sensitivity to variations in cellularity. We next created in vitro mixtures of 
clonally derived cell lines to further assess the performance of the ITH scores on real SNP-array data. We finally 
compared our scores to an existing method before investigating their prognostic potential in vivo in over 5,000 
clinical samples across 16 cancer types.

Results
Novel diversity scores. We designed two scores to estimate genetic diversity from single-sample SNP array 
data. They are based on the standard logR ratios (hereafter abbreviated to logR) and B allele frequencies (BAF). 
logR ratios are the log2 of the ratio between the observed copy number (CN) to the expected CN (2 copies in 
a normal diploid genome). BAF indicate the ratio of an allele arbitrarily defined as ‘B’ allele to the ‘A’ allele for 
known single nucleotide polymorphisms (SNP). BAF are mirrored the 0.5 axis to mediate the arbitrary A and B 
allele definition for gain and loss events spanning multiple SNP locations.

Shannon diversity-based score: S. Segments with identical CN are expected to have the same logR value, and 
thus the distribution of logR values should contain multiple ‘peaks’ each corresponding to a different CN value. 
Subclonal CN alterations are expected to create outliers outside these peaks and thus lead to a higher entropy 
of the logR distribution. To calculate the entropy of the distribution, segmented logR values are grouped into 
n equally sized bins spanning the entire distributions of logR values. The bin size is therefore (max(logR) − 
min(logR))/n and the lowest bin starts at the minimum logR value observed in the sample. The default number of 
bins was set to 10. Each segment is assigned to a bin and the diversity score is given by the calculation using the 
vegan R package25. The Shannon diversity index S is calculated from the proportion of segments whose logR value 
fall into bin i denoted by pi as given by formula (1).

∑= − ×pi piS ln( )
(1)i

n

Ripley’s L-based score: R. As for the S score, segments with the same allele-specific CN are expected to cluster 
together in a 2-dimensional space whose axes are the logR and BAF values. Subclonal events will create outliers 
deviating from the clusters corresponding to the clonal BAF/logR values. Ripley’s L score quantifies how ran-
domly a set of points are distributed across a space: subclonal events will create more isolated points in BAF/logR 
space and thus lower the value. To limit the search space to segments that are very close in space, as expected 
when segments have the same CN, the default maximum radius of the Ripley’s L statistic was thus set to 0.05. 
Segmented logR and BAF values from the sample were both linearly normalised to range from 0 to 1, each seg-
ment corresponded to a point on a two-dimensional plane of which the normalised logR and BAF were the axes. 
Ripley’s K-function K(r) is a measure of deviation from spatial homogeneity (points are randomly distributed 
across the space) and the L-function L(r) is its variance stabilised transformation for a given radius r. Their for-
mulas are given in (2) and (3).
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where λ is the area of the window, n the number of points, dij is the euclidean distance between points i and j and 
eij is the isotropic edge correction weight. The sum is taken over all ordered pairs of points i and j and I(dij <  = r) 
is an indicator that equals 1 if dij is less than or equal to r. We used the spatstat R package26 to calculate the differ-
ence between the reported L(r) values and the theoretical expected values for all radiuses from 0 to a maximum 
radius rmax in 0.001 increments. R, the sum of all the differences, was taken as the diversity index. Note that spatial 
homogeneity is expected when points are located at random on the plane, a lower R value is therefore expected 
as genetic diversity increases.

Both measures rely on the use of segmented SNP-array data but do not require estimation of absolute (or allele 
specific) CNs. They however both suffer from the fact that samples with more extreme CNs will have broader 
logR distributions and more variable BAFs, regardless of the cellularity of each alteration. Each measure is inde-
pendently calculated on a per sample basis. To limit the influence of the less reliable shorter segments, only 
segments of 100 probes or more are taken into account when computing diversity measures. Finally, both scores 
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include normalisation steps for the logR and BAF values, in an attempt to minimise the influence of different 
levels of cellularity.

Synthetic copy number profiles and in-silico mixtures. We investigated the relevance of the two pro-
posed genetic diversity scores; 1) a measure based on the Shannon diversity of logR values referred to as the S 
score, and 2) a measure based on the Ripley’s L statistic of spatial homogeneity based on logR and BAF values, 
referred to as the R score (Fig. 1). We first generated in silico datasets from publicly available SNP array data on 16 
sets from The Cancer Genome Atlas (TCGA) corresponding to different cancer types. We generated 10 “clonal” 
CN profiles per set, taking into account the distributions of ploidy and percentage of altered genome in each set. 
An additional 4 “subclonal” profiles were derived from each clonal profile based on an expected divergence of 
15% ± 5% of the genome (see Methods). The median percentage of genome altered of the synthetic mixtures and 
TCGA data were correlated on a per-cancer type basis (R2 = 0.90, p < 0.001, Fig. 2a,b), indicating that we had 
generated set of synthetic profiles resembling publicly available cancer data. A total of 707,200 mixtures were 
generated in-silico using different combinations of clonal and subclonal profiles at 4 different levels of cellularity 
(percentage of tumour cells in a sample): 20%, 40%, 60% and 80%. The Shannon diversity index of the clonal com-
position of each mixture was utilised to quantify the heterogeneity of each mixture (“true diversity” hereafter).

Correlation between diversity scores and expected heterogeneity in in-silico clonal mix-
tures. We compared the true diversity of in-silico mixtures (quantified using the Shannon diversity index), 
to the S and R diversity scores calculated on each mixture. At high cellularity (80%), the median S and R were 
respectively highly correlated and anti-correlated to the median Shannon diversity index of each mixture respec-
tively (R2 = 0.95 and R2 = 0.99; both p < 0.001; Fig. 2c,d). However, the variability at each expected level of in-vitro 
diversity was high, meaning confident identification high diversity samples from low diversity ones was chal-
lenging despite the correlation. Indeed, the fit of all points rather than of the medians were poor although the 
(anti-)correlation was highly significant (R2 = 0.01, p < 2e−16 in both cases). Notably the R score displayed a more 
pronounced slope with lesser variability than the S score.

Within the in-silico mixtures, the percentage of genome altered (see Methods) was highly correlated to the S 
score and anti-correlated to the R score (p < 0.001, Supplementary Figure 2). However, the median percentage 
of genome altered was not correlated to the true Shannon diversity of the in-silico mixtures (R2 = 0.21, p = 0.07, 
Supplementary Figure 3). Our synthetic dataset analysis therefore suggests that the overall level of genetic altera-
tions present in the genome is an inadequate way of assessing the clonal diversity of a tumour from a single SNP 
array sample.

Influence of heterogeneity in sample cellularity in in-silico clonal mixtures. We next consid-
ered the effect of cellularity on our diversity measures. When looking at low cellularity mixtures (cellularity, or 
cancer cell fraction = 0.2), the median S and R scores were still significantly correlated with the true diversity 
(R2 = 0.87 and R2 = 0.92 respectively; both p < 0.001; Supplementary Figure 4). The fit and slopes were lower than 
in high cellularity samples in both cases, indicating that quantifying diversity in lower cellularity samples is more 
challenging.

Figure 1. Single-sample SNP array diversity measures. TCGA breast cancer sample TCGA-A2-A0D44 was 
used as an example, only segments with length >100 probes are analysed. Normalisation was performed so 
that both logR and mBAF values would range from 0 to 1. (a) Segmented logR and mirrored B allele frequency 
(mBAF) data. (b) 10-bin histogram of normalised logR values. (c) 2D plot of all segments. Circle are centred on 
the logR and mBAF values of each segment, their sizes are proportional to segment length. Colours indicate the 
total copy number of each segment, as reported by ASCAT.
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Furthermore, varying levels of cellularity are expected within real clinical cohorts, which could prove prob-
lematic if the scores are highly dependent on sample cellularity. Indeed, we observed that the R score was strongly 
affected by different levels of sample cellularity (Fig. 3a,b). We used Area Under the Curve (AUC) analysis on a 
per-set basis to assess the power to predict whether a mixture of any cellularity was monoclonal (1 clone only) 
or polyclonal (2 clones or more). When analysing samples of identical cellularity, the R score was a powerful 
predictor with the median AUC ranging between 0.70 and 0.81, while the S score AUC ranged from 0.61 to 0.72 
(Fig. 3c). However, when samples with different cellularity levels were included, the performance of both scores 
were comparable (p = 0.85, paired t-test), with the S and R scores respectively achieving a median AUC of 0.68 
and 0.67. These data indicate the confounding influence of cellularity on ITH quantification. The percentage of 
genome altered, was not found to bear any predictive value in our synthetic data (median AUC of 0.51). We how-
ever note that this dataset assumed perfect detection of CNAs rounded to the closest integer, while this could in 
practice affect genotype prediction.

In-vitro cellular evolution and isogenic clonal mixtures. Two rounds of single cell cloning were used 
to generate twelve isogenic cell lines from the chromosomally unstable SW620 colorectal cancer cell line (Fig. 4a, 
see Methods). We analysed the proliferation rate of the 12 isogenic cell populations, and found they exhibited 
different growth patterns. We selected 4 clones (designated A, B, C and D), because of their apparent different 
growth dynamics (Fig. 4b). DNA was extracted from each clone, and we created 12 mixtures consisting of DNA 
from 2 to 4 of these cell populations at different proportions. We calculated the expected diversity of each mixture 
(“true diversity”), using the Shannon diversity index based on the frequency of each population (Supplementary 

Figure 2. In-silico clonal mixtures. (a) Distributions of the percentage of altered genome in samples from the 
TCGA cohorts (blue) and the computationally simulated copy number profiles (cyan). (b) Median percentage 
of genome altered in TCGA and simulated data across cancer types. Each point is a different cancer type and the 
red line indicates the linear fit between the two datasets. (c,d) Correlation of the S score (c) and R score (d) with 
the true diversity in in-silico mixtures. the red line indicates the linear fit of the median scores at each possible 
diversity measure. Boxplots: boxes represent the middle quartiles, whiskers indicate the 95% confidence 
intervals, horizontal bars show the median and outliers are highlighted by circles.
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Table 2). We defined the genomic profiles of the 12 mixtures and of the 4 initial cell populations by SNP array 
analysis. Mixture 8 failed quality control (call rate < 0.95; all other call rates > 0.98) and was excluded from sub-
sequent analyses. Although the CN profiles of the initial cell lines showed little divergence, some large CN altera-
tions (CNAs) were specific to a unique cell line: 5q gain and 9q loss in A; 6q loss in C (Fig. 4c). In total, 7.5% of the 
genome (201 out of 2,755 Mb) analysed presented a CN state that was not uniform across all cell lines.

Correlation with genetic diversity in in-vitro clonal mixtures. We calculated the S and R scores on 
the in-vitro mixtures and compared the outcome with the true Shannon diversity. Both scores were correlated 
with the true diversity, although it was statistically significant only for the S score and borderline for the R score 
(p = 0.015 and p = 0.085, respectively, Fig. 4d,e), and the R2 values (percentage of variance explained) were low 
(0.38 and 0.21, respectively). To assess whether the low divergence observed between the 4 unmixed profiles 
influenced the results, we performed a second analysis restricted to the 7.5% of the genome that was divergent. 
We however report similar results in this design, this time with significance being weak for S and moderate for R 
(p = 0.16 and p = 0.04, respectively; Supplementary Figure 5).

Despite the limited inter-sample variability, these results confirmed that both scores were informative on the 
clonal heterogeneity of ‘real’ single samples analysed by SNP array. In addition, we calculated the percentage of 
genome altered in all samples, which was not significantly related to the expected diversity (R2 = 0.06, p = 0.388, 
Supplementary Figure 6). The AUCs to distinguish polyclonailty from monoclonality obtained in-vitro were 0.81 
and 0.77 respectively for S and R, indicating reasonable power to discriminate between monoclonal and poly-
clonal samples in-vitro (Supplementary Figure 7). The percentage of genome altered achieved a lower AUC of 
0.62.

Calibration of diversity scores to in-silico and in-vitro data. Both scores rely on a tunable parameter: 
the number of bins for the S score and the maximum radius size for the R score. We therefore used our in-silico 
and in-vitro data to define the most appropriate parameters for use on real data. We selected 10 possible values 
for the number of bins (6 to 24) in the S score, and 7 for the maximum radius (0.025 to 0.25) in the R score, then 
analysed the correlation between the obtained scores and the true diversity in the in-silico and in-vitro datasets 
(Supplementary Figures 8 and 9). We furthermore analysed their power to discriminate between monoclonal and 
polyclonal samples using AUC calculations. The synthetic data suggested that increasing the number of bins by 
increments of 2 from 6 to 24 bins would yield S scores more correlated and more predictive with each increment. 
The in-vitro data however peaked sharply at 14 bins before losing power (likely due to the small number of diver-
gent CNAs amongst these samples). For the R score, increasing the maximum radius size led to gradually worse 
anti-correlation and predictive power in the in-silico data, while the in-vitro data registered poor performance for 
the shortest radius (0.025). We therefore empirically decided to use 12 bins for the S calculation, and a maximum 
radius of 0.05 for the R calculation as optimal parameters for use in real cancer data.

Association with survival in available clinical datasets. We calculated the S score on 5,078 samples 
with survival data from the TCGA dataset, and investigated its relationship with clinical outcome. We used uni-
variate Cox proportional hazard models to test the relationship in both overall and relapse-free survival data 
(Supplementary Tables 3 and 4, Fig. 5a,b). In univariate Cox regression, S was significantly associated with sur-
vival in multiple cancers, though the only association that held to multiple testing was the one between higher 
diversity and poorer survival (OS and RFS) in head and neck cancers, for both scores (p < 0.05). Furthermore, 
repeating the analysis including either S or R and clinical stage (as a categorical variable) in multivariate models 
indicated that both measures were still significant covariates after correction for stage in head & neck cancers, 
but not in other tumour types. However, S and R were respectively correlated and anti-correlated with stage 
across tumours (p < 2e−16, independence test; Fig. 5c,d, Supplementary Figures 10 and 11), particularly in blad-
der, breast, colon, head & neck and kidney clear cell cancers. We further investigated a pan-cancer meta-dataset 

Figure 3. Accuracy of the S score in polyclonality detection in-silico. (a,b) Distribution of S and R scores per 
different levels of cellularity (tumour cell fraction in a sample), according to the number of clones present in 
in-silico clonal mixtures. (c) Distribution of the Area Under the Curve in all 16 sets for both S and R scores at 
different cellularity levels. “All” indicates that samples with 0.2, 0.4, 0.6 and 0.8 cellularity were all included in 
the dataset. The percentage of genome altered was calculated on.
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by pooling all samples together and found that S was significantly associated with poor relapse-free survival in 
this dataset (p = 0.001) but not with overall survival, while R showed no association.

Both scores were also highly correlated with the percentage of genome altered in all tumours (R² = 0.48, 
p < 2e−16; Supplementary Figure 12), and a survival analysis using the percentage of genome altered yielded com-
parable results, with significance in multiple cancer types (Supplementary Table 5). We could furthermore verify 
precedent findings that extreme values for the percentage of genome altered (<25% or >75%) were associated to 
better prognosis on a pan-cancer basis20 (OS p = 2.6e−6, RFS: p = 9.2e−8; Supplementary Figure 13). This suggests 
that although S and R appear to better represent the underlying sample diversity than the percentage of genome 
altered in in-silico and in-vitro SNP array data, they do not offer increased prognostic value in clinical samples.

Figure 4. In-vitro clonal mixtures. (a) Experimental procedure. (b) Growth curves of 12 single cell cloned 
isogenic cell lines. In colour, the 4 cell lines that were selected for further characterisation and in-vitro mixing of 
DNA. (c) Total copy number profiles of A, B, C and D, the 4 selected cell lines. Grey rectangles highlight regions 
where one profile showed marked divergence with the others. Vertical dashed lines indicate chromosome 
boundaries. (d,e) Correlation of the S score (c) and R score (d) with the true diversity in in-vitro mixtures. Black 
lines indicate the linear fit between the scores and the expected diversity.
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Comparison to EXPANDS’ number of clones. To our knowledge, no other method or algorithm has 
been designed to estimate diversity using only individual SNP array data. However, the EXPANDS software uses 
single nucleotide allele frequencies from sequencing data in combination with SNP array data to predict the 
number of clones in a sample27. Using TCGA data from 9 tumour types samples where EXPANDS estimated 
more than 2 clones were present had poorer survival than samples with 2 or fewer large clones20. We compared 
our scores to the EXPANDS number of clones and found that the S and R scores were significantly correlated and 
anti-correlated, respectively (p < 0.001, Fig. 6) but R2 values were low (0.08 and 0.09), indicating high variability. 
The extra information added by mutation calls from sequencing data, which can more accurately measure clonal 
frequencies, could however explain the low R2 values. This suggests that S and R, defined on CN alterations, cor-
relate with ITH scores defined on corrected mutational frequencies.

Discussion
Intra-tumour genetic diversity is a major hurdle to cancer prognostication and therapy and there is no ‘gold 
standard’ for its quantification, particularly from routine clinical samples. Although the use of multiple samples 
provides important insight into the clonal architecture of tumours28, in practice multiple samples are rarely col-
lected routinely apply because of the inherent difficulties associated with sampling more of the cancer and the 
prohibitive increased costs of multi-sample assays. SNP-arrays have been widely used in cancer genetic studies to 
unravel the genomic landscape of multiple tumour types, however typically only one SNP-array is analysed per 
tumour.

Figure 5. Relationships of the S and R scores with survival and stage in real cancer data. (a,b) Hazard ratios and 
confidence intervals for overall survival Cox proportional based on the S score (a) and R score (b) for all cancer 
types. Blue squares correspond to overall survival and red squares to relapse-free survival. Squares indicate the 
predicted hazard ratios, horizontal black lines indicate the confidence intervals and the vertical dashed grey 
lines indicate a hazard ratio of 1. X-axis scales differ. (c,d) Distributions of the S score (c) and R score (d) per 
cancer stage on a pan-cancer basis (4,363 samples with stage and survival information). Gray dots represent 
each individual sample. Both p < 0.001 (independence test).
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Here we developed two novel metrics to quantify genetic diversity in SNP-array data from single samples and 
evaluated their performance using in-silico and in-vitro data, and assessed their prognostic value on publicly avail-
able data. We found that our two diversity scores reflected the true diversity of synthetic mixtures. We however 
highlight the influence of cellularity on both scores, meaning that heterogeneous levels of tumour cell content 
in cohorts will hamper accurate ITH quantification. The in-silico results nevertheless suggested that the R score 
would be more informative than the S score in cohorts of relatively uniform cellularity, particularly if the latter is 
high. Finally, we found that the prognostic potential was limited: head and neck squamous cancers were the only 
cancer type in which a significant association with poor survival was found. This observation nonetheless ties 
up with previous findings of a sequencing-based ITH measure being correlated to poor survival in this tumour 
type22, highlighting a common behaviour for sequence-level and chromosomal heterogeneity. It suggests that ITH 
may be particularly relevant for prognosis in head and neck squamous cancers and that further development in 
routine quantification could be clinically useful in this disease.

While methods exist to infer the clonality of mutations in a tumour10, 11, 27, these are generally based on multi-
ple samples. The diversity scores developed in this manuscript differ because they are designed to calculate diver-
sity from a single SNP array sample. Nevertheless, there are inherent limits to a single-sample approach: subclonal 
events could be invisible without multi-region sampling29, meaning that although ITH is present in a tumour, a 
single biopsy could ‘miss’ the heterogeneous lesion and present a homogeneous profile. Furthermore, SNP arrays 
are less sensitive to the detection of small clones than sequencing data, particularly when sequencing is performed 
at high read depth10, 27. This sensitivity issues potentially explains why EXPANDS software, that integrates CN and 
sequencing data, measures much more variability in clonal composition than the SNP-array only methods we 
present here. In addition, copy number alterations have recently been linked to clonal expansions during punc-
tuated cancer evolution30, 31, which could imply they would be less frequently subclonal in small tumour regions 
than sequence levels variations that accrue continuously32.

Finally, the ability to detect subclonal alterations in our method was inevitably correlated to the total number 
of alterations in a sample – subclones cannot be detected unless they bear unique CNAs. This is a confounding 
issue, and future improvements of copy-number-based ITH quantification should thus aim at reliably teasing 
apart low diversity and high CNA load samples from those with high diversity and low CNA load – though this 
may prove intractable. Consequently, while a single-sample SNP-array diversity score may accurately reflect the 
diversity of copy-number altered clones present in a sample, it may not reflect the diversity of the tumour as a 
whole, nor all the biologically relevant genetic diversity in that sample.

Quantification of ITH has direct relevance for both prognostication and treatment choice, but ITH measure-
ment is subject to a compromise between the practicality of clinical implementation and the accuracy and scope 
of the measurement. Here we have shown that ITH can be quantified from single tumour samples assayed with 
SNP-arrays, using scores whose computation we have made publically available. Although the scores covaried 
linearily with clonal diversity in-silico and in-vitro, the proposed method may lack precision to reliably tease 
apart highly altered but stable genomes from highly unstable ones. Despite a very significant association between 
higher heterogeneity and poor outcome in head and neck cancers, our analysis suggests that the prognostic value 
of such measurements is generally limited.

Methods
Publicly available SNP array data. The raw data from 5,416 tumours in 16 different cancer types were 
downloaded from The Cancer Genome Atlas (TCGA) between 02/04/2013 and 07/07/2014. Allele-specific copy 
numbers (CN) were produced using ASCAT33 after prior normalisation using the Aroma software34, all in the R 
statistical computing framework35. Only segments of length >10 probes were considered. Cancer types and the 

Figure 6. Comparison with other methods and datasets. (a,b) Correlation between S score (a), R score (b) and 
the number of clones predicted by the EXPANDS software. Different point styles and colours correspond to 
different cancer types.
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samples in them are described in Table 1. For cancer type, the distributions of baseline CN and percentage of 
genome altered was calculated for further use. LogR and BAF data could not be retrieved for 8 out of 5,416 samples.

Baseline copy number and percentage of genome altered. The percentage of genome altered was 
calculated for each sample using segmented allele-specific CN. The baseline copy number state of each sample 
was defined as the modal CN of the genome. The percentage of genome altered was then defined as the propor-
tion (in base pairs) of the genome that did not match the baseline CN state. In in-silico mixtures, real numbers 
for the average allele-specific CN of each segment weighted by the frequency of each clone were rounded to the 
closest integer CN, to reflect the standard ASCAT output. These integer CNs were then used for the calculation 
of the percentage of genome altered.

Synthetic copy number profiles. Random copy number (CN) profiles were generated for each cancer 
type in the TCGA data (hereafter referred to as a ‘set’), starting by generating allele-specific CN profiles for 10 
“clones” per set (Supplementary Figure 1). Each clone profile i was defined by first generating a random baseline 
allele-specific CN Bi from the set-specific distribution. This takes the form of a pair of integers, defining the major 
and minor CN most commonly found in the sample’s genome (1 and 1 for a normal genome). Then, the percent-
age of genome altered Pi (i.e. the percentage of the genome deviating from Bi) was randomly generated for each 
generated profile from a normal distribution, whose mean and standard deviation corresponded to those of the 
set-specific distribution of the percentage of genome altered. The minimum acceptable value for Pi was set to 2%, 
so as to ensure a minimal level of abnormality in the profile.

The next step was to define the segmentation of each profile i into non-overlapping segments across the 
genome. This was performed by selecting the segment boundaries of each chromosome (1 to 22) individually 
from 22 distinct TCGA samples drawn from the same cancer type at random with replacement, then merging all 
segments into a set Si, in respective chromosomal order, and setting the allele-specific CN of all segments to Bi. A 
random subset of segments Ri was then defined by iteratively sampling segments from Si (without replacement), 
until the cumulative length of the segments in Ri was superior to 95% of Pi. Finally, each segment s of Ri was 
assigned a CN state, with values taken from a distribution of all CN states from TCGA segments from the same 
cancer type, whose CN state differed from Bi and whose length was equal to the length of s ± 25%.

To model the subclonal architecture of tumours, 4 subclonal profiles were subsequently computed for profile i, 
similar to a progenitor clone and 4 distinct clonally derived subclones that could be present in a tumour. For each 
subclonal profile j, the divergence from the previously obtained ancestor i was drawn from a normal distribution 
centred on 15% ± 5%, with a 1% minimum threshold to ensure the presence of a minimum level of divergence. A 
set of segments Di whose CN state in j was divergent from i was defined and their CN states were assigned using 
the same method as for Ri.

In-silico mixtures. Clonal combinations of 1 to 5 profiles were selected: all 5 single clones, all 20 combina-
tions of two clones, all 60 combinations of 3 clones, 100 non-redundant randomly selected combinations of 4 and 
5 clones, resulting in a total of 285 combinations. For each combination, we defined different assorted frequencies 
at which to include all clones in the mixtures, depending on the number of clones and always summing to 100%: 
3 frequency assortments were chosen for mixtures of 2 clones, 4 assortments were chosen for 3, 4 or 5 clones 
(Supplementary Table 1). This amounted to a total of 1,105 in-silico mixtures for each of the 160 groups of clonally 

Set Type
Number 
of samples

With OS 
data

With 
RFS data Stage I Stage II Stage III Stage IV Stage NA

BLCA Bladder Urothelial Carcinoma 142 141 104 1 44 46 47 4

BRCA Breast Invasive Carcinoma 935 865 594 156 530 216 15 18

COAD Colon Adenocarcinoma 396 396 342 66 150 114 58 8

GBM Glioblastoma Multiforme 454 454 293 0 0 0 0 454

HNSC Head and Neck Squamous Cell 
Carcinoma 336 336 207 20 54 54 154 54

KIRC Kidney Renal Clear Cell 
Carcinoma 468 467 129 224 54 118 72 0

LAML Acute myeloid leukemia 154 144 0 0 0 0 0 154

LIHC Liver Hepatocellular Carcinoma 196 149 136 71 44 56 5 20

LUAD Lung Adenocarcinoma 367 354 273 198 84 66 19 0

LUSC Lung Squamous Cell Carcinoma 251 247 147 120 65 58 5 3

OV Ovarian Serous 
Cystadenocarcinoma 514 510 290 16 22 398 74 4

PAAD Pancreatic Adenocarcinoma 63 63 62 5 54 1 3 0

PRAD Prostate Adenocarcinoma 285 284 234 0 0 0 0 285

SKCM Skin Cutaneous Melanoma 246 241 235 44 65 92 10 35

STAD Stomach Adenocarcinoma 170 138 136 31 55 50 22 12

THCA Thyroid Carcinoma 439 297 237 249 46 94 48 2

Table 1. TCGA samples. Description of the 16 datasets downloaded from the TCGA and the related samples.
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related profiles (1 clonal, 4 subclonal profiles per group). Clonal combinations were therefore order-sensitive, as 
mixing clones 1, 2 and 3 at respective frequencies 45%, 30% and 25% would yield a mixture different to combin-
ing clones 3, 1 and 2 at the same frequencies.

For every combination of n clonally related profiles at given frequencies fn, the number of copies N of each 
allele l in a segment were calculated as floating point number:

∑= ×N N f
(4)l

i

n

li i

where i is the clone identifier from the n profiles in the mixtures, Nlsi is the number of copies of allele l in segment 
s in profile i and fi is the frequency of profile i in the mixture.

The logR L(s) and mirrored B allele frequencies (BAF) mB(s) values of each segment s were then calculated as 
follows, according to 4 possible values of cellularity C, defined as the fraction of tumour cells in the sample (20%, 
40%, 60% or 80%):

= + × + × −L s N N C C( ) log2((( ) 2 (1 ))/2) (5)a b

where Na is the real CN (as opposed to nearest integer) of allele A and Nb the one of allele B.

= . + . −
∗ + −

+ ∗ + ∗ −
mB s N C C

N N
( ) 0 5 0 5 ( (1 ))

(( ) C 2 (1 C)) (6)
b

b a

The ratio uncorrected for cellularity Nb/(Na + Nb) was set to 0.5 when Na and Nb were equal to 0 (bi-allelic loss 
of a whole segment), for feasibility. Finally, the final values were taken from normal distributions centred on L(s) 
and mB(s) with standard deviation 0.02, to account for experimental and technical noises.

Cell culture. To derive clonally related cells with distinct CN profiles, we performed two rounds of single-cell 
cloning on human colon cancer SW620 cells. Cells were maintained in Dulbecco’s modified Eagle medium 
(DMEM, D6429, Sigma) supplemented with 10% Foetal Bovine Serum (10500-064, Life Technologies) and 50 
U/ml penicillin/streptomycin (15070-064, Life Technologies). The initial population of cells was cultured until 
75% confluency.

For the first round of single cell cloning: single cells were isolated using the FACSAria II with the orifice at 
100 μm (Beckton Dickinson). Each single cell derived clones were grown until ~75% confluent in 96 well plates, 
before 12 individual colonies were transferred to individual wells of a 12 well plate and cultured until ~75% con-
fluent, and then each were transferred to an individual 75 cm2 flask and again grown until ~75% confluent.

For the second round of single cell cloning: each of the grown-up 12 clones from the previous round was 
incubated in fresh DMEM with 10 nM Draq5 (62251, Thermo Fisher) at 37 °C for 10 minutes, washed in PBS and 
individually FACs sorted as previously. From each clone, we isolated individual cells with >2 N nuclear content 
as determined by Draq5 staining in order to increase the likelihood of selecting cells with increased ploidy. The 
re-sorted individual cells (8 cells from each of the 12 first-round clones) were then grown until 75% confluent 
in a 96 well plate. Of those that successfully expanded, one clone from each of the first-round 12 colonies were 
transferred to individual wells of a 12 well plate and grown until ~75% confluent and then transferred to a 75 cm2 
flask and again grown until ~75% confluent. DNA was extracted using a DNeasy Blood and Tissue Kit (69505, 
Qiagen) and quantified on the Qubit. 2.0 Fluorometer (Q32866, Life Techniologies).

In-vitro mixtures and SNP array data. Four of the in-vitro clones selected for further study were labelled 
A, B, C and D. DNA from the 4 clones was combined in different proportions to create 12 distinct mixtures cor-
responding to different numbers of clones at different concentrations (Supplementary Table 2). The quantity of 
DNA to be taken from each clone in each mixture was calculated as its frequency in the mixture multiplied by the 
desired quantity of input DNA (200ng) and the 12 in-vitro mixtures were created by pooling the desired clones at 
the desired concentrations. The 12 in-vitro mixtures and an individual sample for each of the 4 clones were then 
loaded as individual samples on a HumanOmni2.5–8 v1.2 BeadChip (Illumina) run according to the manufac-
turer’s instructions. LogR values and B allele frequencies (BAF) were extracted from the Illumina GenomeStudio 
software. One sample (Mixture 8 with all four clones at an equal ratio of 25%) did not pass quality control (call 
rate <0.98) and was discarded. LogR values were further normalised using the genomic wave correction tool 
from the pennCNV software suite36 and the CN profiles of the 15 remaining samples were computed using 
ASCAT. The Shannon diversity indices were calculated using the clonal frequencies of each mixture to represent 
their expected diversity.

Bioinformatics. All analyses were performed in R. The pROC package37 was used for ROC analyses. The coin 
package was used for independence tests38.
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