
Brzozowski Goes Concurrent
A Kleene Theorem for Pomset Languages

Tobias Kappé1, Paul Brunet1, Bas Luttik2, Alexandra Silva1, and
Fabio Zanasi1

1 University College London, London, United Kingdom
tkappe@cs.ucl.ac.uk

2 Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract
Concurrent Kleene Algebra (CKA) is a mathematical formalism to study programs that exhibit
concurrent behaviour. As with previous extensions of Kleene Algebra, characterizing the free
model is crucial in order to develop the foundations of the theory and potential applications. For
CKA, this has been an open question for a few years and this paper makes an important step
towards an answer. We present a new automaton model and a Kleene-like theorem that relates
a relaxed version of CKA to series-parallel pomset languages, which are a natural candidate for
the free model. There are two substantial differences with previous work: from expressions to
automata, we use Brzozowski derivatives, which enable a direct construction of the automaton;
from automata to expressions, we provide a syntactic characterization of the automata that
denote valid CKA behaviours.

1998 ACM Subject Classification D.1.3 Parallel Programming, F.1.1 Models of Computation,
F.1.2 Modes of Computation, F.4.3 Formal Languages

Keywords and phrases Kleene theorem, Series-rational expressions, Automata, Brzozowski de-
rivatives, Concurrency, Pomsets

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2017.21

1 Introduction

In their CONCUR’09 paper [5], Hoare, Möller, Struth, and Wehrman introduced Concurrent
Kleene Algebra (CKA) as a suitable mathematical framework to study concurrent programs,
in the hope of achieving the same elegance that Kozen did when using Kleene Algebra (and
extensions) to provide a verification platform for sequential programs.

CKA is a seemingly simple extension of Kleene Algebra (KA): it adds a parallel operator
that allows to specify concurrent behaviours compositionally. However, extending the
existing KA toolkit — importantly, completeness and decidability results — turns out to be
challenging. A fundamental missing ingredient is a characterization of the free model for
CKA. This is in striking contrast with KA, where these topics are well understood. Several
authors [6, 8] have conjectured the free model to be series-parallel pomset languages — a
generalization of regular languages to sets of partially ordered words.

In KA, Kleene’s theorem provided a pillar for developing the toolkit and axiomatiza-
tion [13], and, by extension, characterizing the free model. In this light, we pursue a Kleene
Theorem for CKA. Specifically, we study series-rational expressions, with a denotational
model in terms of pomset languages. Our main contribution is a Kleene Theorem for series-
rational expressions, based on constructions faithfully translating between the denotational
model and a newly defined operational model, which we call pomset automata. In a nutshell,

© Tobias Kappé, Paul Brunet, Bas Luttik, Alexandra Silva and Fabio Zanasi;
licensed under Creative Commons License CC-BY

28th International Conference on Concurrency Theory (CONCUR 2017).
Editors: Roland Meyer and Uwe Nestmann; Article No. 21; pp. 21:1–21:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2017.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

21:2 Brzozowski Goes Concurrent — A Kleene Theorem for Pomset Languages

these are finite-state automata in which computations from a certain state s may branch into
parallel threads that contribute to the language of s whenever they both reach a final state.

We are not the first to attempt such a Kleene theorem. However, earlier works [16, 8] fall
short of giving a precise correspondence between the denotational and operational models, due
to the lack of a suitable automata restriction ensuring that only valid behaviours are accepted.
We overcome this situation by introducing a generalization of Brzozowski derivatives [3]
in the translation from expressions to automata. This guides us to a syntactic restriction
on automata (rather than the semantic condition put forward in previous works), which
guarantees the existence of a reverse construction, from automata to expressions. Moreover,
following the Brzozowski route allows us to bypass a Thompson-like construction [19], avoiding
the introduction of ε-transitions and non-determinism present in the aforementioned works.

Since series-parallel expressions do not include the parallel analogue of the Kleene star
(the “parallel star”), and our denotational model is not sound for the exchange law (which
governs the interaction between sequential and parallel composition), our contribution is
most accurately described as an operational model for weak Bi-Kleene Algebra. We leave it
to future work to extend our construction to work with a denotational model that is sound
for the exchange law (thus moving to weak Concurrent Kleene Algebra), as well as add the
parallel star operator (arriving at Concurrent Kleene Algebra proper).

The remainder of this paper is organized as follows. In Section 2, we introduce the
necessary notation. In Section 3, we introduce our automaton model as well as some notable
subclasses of automata. In Section 4, we discuss how to translate a series-rational expression
to a semantically equivalent pomset automaton, while in Section 5 we show how to translate
a suitably restricted class of pomset automata to series-rational expressions. We contrast
results with earlier work in Section 6. Directions for further work in are listed in Section 7.

To save space, proofs of lemmas are omitted from this paper. For a discussion that
includes a proof for every lemma, we refer to the extended version of this paper [9].

Acknowledgements We thank the anonymous reviewers for their insightful comments. This
work was partially supported by the ERC Starting Grant ProFoundNet (grant code 679127).

2 Preliminaries

Let S be a set; we write 2S for the set of all subsets of S, and
(
S
2
)
for the set of multisets

over S of size two. An element of
(
S
2
)
containing s1, s2 ∈ S is written {|s1, s2|}; note that

{|s1, s2|} = {|s2, s1|}, and that s1 may be the same as s2. We use the symbols φ and ψ to
denote multisets. If S and I are sets, and for every i ∈ I there exists an si ∈ S, we call (si)i∈I
an I-indexed family over S. We say that a relation ≺ ⊆ S × S is a strict order on S if it is
irreflexive and transitive. We refer to ≺ as well-founded if there are no infinite descending
≺-chains, i.e., no family (sn)n∈N over S such that ∀n ∈ N, sn+1 ≺ sn. Throughout the
paper we fix a finite set Σ called the alphabet, whose elements are symbols usually denoted
with a and b. Lastly, if → ⊆ X × Y × Z is a ternary relation, we write x y−→ z instead of
〈x, y, z〉 ∈ →.

2.1 Pomsets

Partially-ordered multisets, or pomsets [4] for short, generalise words to a setting where
events (elements from Σ) may take place not just sequentially, but also in parallel.

T. Kappé, P. Brunet, B. Luttik, A. Silva and F. Zanasi 21:3

prepare

bake

caramelize

glaze

(a) Diagram for C.

prepare

bake

caramelize

glaze prepare

bake

caramelize

glaze

(b) Diagram for C · C.

q0 q1

q3

q4

q5

q6

q2 q7
prepare

bake

caramelize

glaze

(c) PA accepting C.

Figure 1 Hasse diagrams for pomsets and a pomset automaton accepting one.

I Definition 2.1. A labelled poset is a tuple 〈U,≤U , λU 〉 consisting of a carrier set U , a
partial order ≤U on U and a labelling function λU : U → Σ. A labelled poset isomorphism is
a bijection between poset carriers that bijectively preserves the labels and the ordering. A
pomset is an isomorphism class of labelled posets; equivalently, it is a labelled poset up-to
bijective renaming of elements in U . We write 1 for the empty pomset, PomΣ for the set of
all pomsets and Pom+

Σ for the set of all the non-empty pomsets.

For instance, suppose a recipe for caramel-glazed cookies tells us to (i) prepare cookie
dough (ii) bake cookies in the oven (iii) caramelize sugar (iv) glaze the finished cookies. Here,
step (i) precedes steps (ii) and (iii). Furthermore, step (iv) succeeds both steps (ii) and (iii).
A pomset representing this process could be 〈C,≤C , λC〉, where C = {(i), (ii), (iii), (iv)} and
≤C is such that (i) ≤C (ii) ≤C (iv) and (i) ≤C (iii) ≤C (iv); λC is as in the recipe.

Note that words are just finite pomsets with a total order. We will sometimes use a ∈ Σ
to refer to the pomset with a single point labelled a (and the obvious order); such a pomset
is called primitive. A pomset can be represented as a Hasse diagram, where nodes have
labels in Σ. For instance, the Hasse diagram for the pomset C above is drawn in Figure 1a.

To simplify notation, we refer to a pomset by the carrier U of a labelled poset 〈U,≤U , λU 〉
in its isomorphism class. We use the symbols U , V , W and X to denote pomsets. Pomsets
being isomorphism classes, the content of the carrier of the chosen representative is of very
little importance; it is the order and labelling that matters. For this reason, we tacitly assume
that whenever we have two pomsets, we pick representatives that have disjoint carrier sets.

I Definition 2.2. The width of a pomset U , denoted ‖U‖, is the size of the largest antichain
in U with respect to ≤U , i.e., the maximum n ∈ N such that there exist u1, u2, . . . , un ∈ U
that are not related by ≤U .

The pomsets we work with in this paper have a finite carrier. As a result, ‖U‖ is always
defined. For instance, the width of the pomset C above is 2, because the nodes (ii) and (iii)
are an antichain of size 2, and there is no antichain of size 3.

I Definition 2.3. Let U and V be pomsets. The sequential composition of U and V , denoted
U · V , is the pomset 〈U ∪ V,≤U ∪ ≤V ∪ (U × V), λU ∪ λV 〉. The parallel composition of U
and V , denoted U ‖ V , is the pomset 〈U ∪ V,≤U ∪ ≤V , λU ∪ λV 〉. Here, λU ∪ λV is the
function from U ∪ V to Σ that agrees with λU on U , and with λV on V .

Note that 1 is the unit for both sequential and parallel composition. Sequential composition
forces the events in the left pomset to be ordered before those in the right pomset. An
example, describing the pomset C · C, is depicted in Figure 1b.

I Definition 2.4. The set of series-parallel pomsets, Pomsp
Σ , is the smallest set that includes

the empty and primitive pomsets and is closed under sequential and parallel composition.

In this paper we will be mostly concerned with series-parallel pomsets. For inductive
reasoning about them, it is useful to record the following lemma.

CONCUR 2017

21:4 Brzozowski Goes Concurrent — A Kleene Theorem for Pomset Languages

I Lemma 2.5. Let U ∈ Pomsp
Σ . If U is non-empty, then exactly one of the following is true:

(i) U = a for some a ∈ Σ, or (ii) U = V ·W for non-empty V,W ∈ Pomsp
Σ , strictly smaller

than U , or (iii) U = V ‖W for non-empty V,W ∈ Pomsp
Σ , strictly smaller than U .

2.2 Pomset languages
If a sequential program can exhibit multiple traces, we can group the words that represent
these traces into a set called a language. By analogy, we can group the pomsets that represent
the traces that arise from a parallel program into a set, which we refer to as a pomset language.
Pomset languages are denoted by the symbols U and V.

For instance, suppose that the recipe for glazed cookies may has an optional fifth step
where chocolate sprinkles are spread over the cookies. In that case, there are two pomsets
that describe a trace arising from the recipe, C+ and C−, either with or without the chocolate
sprinkles. The pomset language C = {C−, C+} describes the new recipe.

I Definition 2.6. Let U be a pomset language. U has bounded width if there is n ∈ N such
that for all U ∈ U we have ‖U‖ ≤ n. The minimal such n is the width of U , written ‖U‖.

The pomset languages considered in this paper have bounded width, and hence ‖U‖ is always
defined. For instance, the width of C is 2, because the width of both C+ and C− is 2.

The sequential and parallel compositions of pomsets can be lifted to pomset languages.
We also define a Kleene closure operator, similar to the one defined on languages of words.

I Definition 2.7. Let U and V be pomset languages. We define:

U · V = {U · V : U ∈ U , V ∈ V} U ‖ V = {U ‖ V : U ∈ U , V ∈ V} U∗ =
⋃
n∈N

Un

Where U0 = {1}, and Un+1 = U · Un for all n ∈ N.

Kleene closure models indefinite repetition. For instance, if our cookie recipe has a final step
“repeat until enough cookies have been made”, the pomset language C∗ represents all possible
traces of repetitions of the recipe; e.g., C+ ·C+ ·C− ∈ C∗ is the trace where first two batches
of sprinkled cookies are made, followed by one without sprinkles.

2.3 Series-rational expressions
Just like a rational expression can be used to describe a regular structure of sequential events,
a series-rational expression can be used to describe a regular structure of possibly parallel
events. Series-rational expressions are rational expressions with parallel composition.

I Definition 2.8. The series-rational expressions, denoted TΣ, are formed by the grammar

e, f ::= 0 | 1 | a ∈ Σ | e+ f | e · f | e ‖ f | e∗

We use the symbols d, e, f , g and h to denote series-rational expressions.

The semantics of a series-rational expression is given by a pomset language.

I Definition 2.9. The function v−w : TΣ → 2PomΣ is defined inductively, as follows:

v0w = ∅ vaw = {a} v1w = {1} ve∗w = vew
∗

ve+ fw = vew ∪ vfw ve · fw = vew · vfw ve ‖ fw = vew ‖ vfw

If U ∈ 2PomΣ such that U = vew for some e ∈ TΣ, then U is a series-rational language.

T. Kappé, P. Brunet, B. Luttik, A. Silva and F. Zanasi 21:5

To illustrate, consider the pomset language C∗ = {C+, C−}∗, which describes the possible
traces arising from indefinitely repeating the cookie recipe, optionally adding chocolate
sprinkles at every repetition. We can describe the pomset language {C−} with the series-
rational expression c− = prepare · (bake ‖ caramelize) · glaze, and {C+} by c+ = c− · sprinkle,
which yields the series-rational expression c = c− + c+ for C. By construction, vc∗w = C∗.

2.4 Additive congruence
The following congruence on series-rational expressions will be instrumental in analyzing
the automaton we introduce in Section 4, and for restricting said automaton to be finite in
Section 4.5.

I Definition 2.10. We define ' as the smallest congruence on TΣ such that:
e1 + 0 ' e1 e1 + e1 ' e1 e1 + e2 ' e2 + e1 e1 + (e2 + e3) ' (e1 + e2) + e3

0 · e1 ' 0 e1 · 0 ' 0 0 ‖ e ' 0 e ‖ 0 ' 0

When {|g, h|}, {|g′, h′|} ∈
(TΣ

2
)
such that g ' g′ and h ' h′, we write {|g, h|} ' {|g′, h′|}.

Thus, when we claim that e ' e′, we say that e is equal to e′, modulo associativity,
commutativity and idempotence of +, as well as its unit 0, and possibly annihilation of
sequential and parallel composition by 0. Moreover, this congruence is sound with respect to
the semantics, and it identifies all expressions that have an empty denotational semantics.

I Lemma 2.11. Let e, f ∈ TΣ. If e ' f , then vew = vfw. Also, e ' 0 if and only if vew = ∅.

There is a simple linear time decision procedure to test whether two expressions are congruent.
This justifies our using this relation to build finite automata later on. As a by-product, we
get that the emptiness problem for series-rational expressions is linear time decidable.

3 Pomset Automata

We are now ready to describe an automaton model that recognises series-rational languages.

I Definition 3.1. A pomset automaton (PA) is a tuple 〈Q, δ, γ, F 〉 where Q is a set of states,
with F ⊆ Q the accepting states, δ : Q× Σ→ Q is a function called the sequential transition
function, γ : Q×

(
Q
2
)
→ Q is a function called the parallel transition function.

Note that we do not fix an initial state. As a result, a PA does not define a single pomset
language but rather a mapping from its states to pomset languages. The language of a state
is defined in terms of a trace relation that involves the transitions of both δ and γ. Here,
δ plays the same role as in classic finite automata: given a state and a symbol, it returns
the new state after reading that symbol. The function γ warrants a bit more explanation.
Given a state q and a binary multiset of states {|r, s|}, γ tells us the state that is reached
after reading two input streams in parallel starting at states r and s, and having both
“subprocesses” reach an accepting state. The precise meaning is given in Definition 3.2 below.

I Definition 3.2. →A ⊆ Q× Pom+
Σ ×Q is the smallest relation 1 satisfying the rules

q a−→A
δ(q, a)

q U−→A
q′′ q′′ V−→A

q′

q U ·V−−−→A
q′

r U−→A
r′ ∈ F s V−→A

s′ ∈ F
q U‖V−−−→A

γ(q, {|r, s|})

1 The relation →A should not be thought of as deterministic; for fixed q ∈ Q and U ∈ Pom+
Σ , there may

be multiple distinct q′ ∈ Q such that q U−→A
q′— see the extended version [9] for additional information.

CONCUR 2017

21:6 Brzozowski Goes Concurrent — A Kleene Theorem for Pomset Languages

We also define →→A ⊆ Q × PomΣ × Q by q U−→→A q′ if and only if q′ = q and U = 1, or
q U−→A

q′. The language of A at q ∈ Q, denoted LA(q), is the set {U : ∃q′ ∈ F. q U−→→A
q′}.

We say that A accepts the language U if there exists a q ∈ Q such that LA(q) = U .

Intuitively, γ ensures that when a process forks at state q into subprocesses starting at r
and s, if each of those reaches an accepting state, then the processes can join at γ(q, {|r, s|}).

We purposefully omit the empty pomset 1 as a label in →A; doing so would open up
the possibility of having traces of the form q 1−→A

q′ with q 6= q′ (i.e., “silent transitions”
or “ε-transitions”) for example by defining γ(q, {|r, s|}) = q′ for some r, s ∈ F . Avoiding
transitions of this kind allows us to prove claims about →A by induction on the pomset size,
and leverage Lemma 2.5 in the process to disambiguate between the rules that apply. By
extension, we can prove claims about →→A and LA by treating U = 1 as a special case.

For the remainder of this section, we fix a PA A = 〈Q, δ, γ, F 〉, and a state q ∈ Q. To
simplify matters later on, we assume that A has a state ⊥ ∈ Q − F such that, for every
a ∈ Σ, it holds that δ(⊥, a) = ⊥ and, for every φ ∈

(
Q
2
)
, it holds that γ(⊥, φ) = ⊥. Such a

sink state is particularly useful when defining γ: for a fixed q ∈ Q not all {|r, s|} ∈
(
Q
2
)
may

give a value of γ(q, {|r, s|}) that contributes to the language accepted by q. In such cases, we
can define γ(q, {|r, s|}) = ⊥. Alternatively, we could have allowed γ to be a partial function;
we chose γ as a total function so as not to clutter the definition of derivatives in Section 4.

We draw a PA in a way similar to finite automata: each state (except ⊥) is a vertex,
and accepting states are marked by a double border. To represent sequential transitions,
we draw labelled edges; for instance, in Figure 1c, δ(q0, prepare) = q1. To represent parallel
transitions, we draw hyper-edges; for instance, in Figure 1c, γ(q1, {|q3, q4|}) = q2. To avoid
clutter, we do not draw either of these edges types the target state is ⊥. It is not hard to
verify that the pomset C of the earlier example is accepted by the PA in Figure 1c.

In principle, the state space of a PA can be infinite; we use this in Section 4 to define
a PA that has all possible series-rational expressions as states. It is however also useful to
know when we can prune an infinite PA into a finite PA while preserving the languages of the
retained states. In Section 5, we use this to translate the PA to a series-rational expression.

Note that it is not sufficient to talk about reachable states, i.e., states that appear in
the target of some trace; we must also include states that are “meaningful” starting points
for subprocesses. To do this, we first need a handle on these starting points. Specifically,
we are interested in the states where (1) the eventual join of the states yields a state that
contributes to the behaviour of the PA, and (2) the states may join again, because they are
not the sink state. This is captured in the definition below.

I Definition 3.3. The support of q, written πA(q), is {{|r, s|} ∈
(
Q
2
)

: γ(q, {|r, s|}), r, s 6= ⊥}.

We can now talk about subsets of states of an automaton that are closed, in the sense
that the relevant part of a transition function has input and output confined to this set. As
a result, we can confine the structure of a given PA to a closed set.

I Definition 3.4. A set of states Q′ ⊆ Q is closed when the following rules are satisfied

⊥ ∈ Q′
q ∈ Q′ a ∈ Σ
δ(q, a) ∈ Q′

q ∈ Q′ φ ∈ πA(q)
γ(q, φ) ∈ Q′

q ∈ Q′ {|r, s|} ∈ πA(q)
r, s ∈ Q′

If Q′ is closed, the generated sub-PA of A induced by Q′, denoted A �Q′ , is the tuple
〈Q′, δ �Q′ , γ �Q′ , Q′ ∩ F 〉 where δ �Q′ and γ �Q′ are the restrictions of δ and γ to Q′.

Because the relevant parts of the transition functions are preserved, it is not surprising
that the language of a state in a generated sub-PA coincides with the language of that state
in the original PA.

T. Kappé, P. Brunet, B. Luttik, A. Silva and F. Zanasi 21:7

I Lemma 3.5. Let Q′ ⊆ Q be closed. If q ∈ Q′, then LA�Q′ (q) = LA(q).

We now work out how to find a closed subset of states that contains a particular state.
The first step is to characterize the states reachable from q by means of transitions.

I Definition 3.6. The reach of q, written ρA(q), is the smallest set satisfying the rules

q ∈ ρA(q)
q′ ∈ ρA(q) a ∈ Σ
δ(q′, a) ∈ ρA(q)

q′ ∈ ρA(q) φ ∈ πA(q)
γ(q′, φ) ∈ ρA(q)

The reach of a state is closely connected to the states that can be reached from q through
the trace relation of the automaton, in the following way:

I Lemma 3.7. The set ρA(q) ∪ {⊥} contains {q′ ∈ Q : ∃U ∈ Pom+
Σ . q

U−→A
q′} ∪ {q}.

Note that ρA(q) ∪ {⊥} is not necessarily closed: we also need the states required by the
fourth rule of closure in Definition 3.4. Thus, if we want to “close” ρA(q)∪{⊥} by adding the
support of its contents, we need to find closed sets of states that contain branching points.
In order to do this inductively, we propose the following subclass of PAs.

I Definition 3.8. We say that A is fork-acyclic if there exists a fork hierarchy, which is a
strict order ≺A ⊆ Q×Q such that the following rules are satisfied.

{|r, s|} ∈ πA(q)
r, s ≺A q

a ∈ Σ r ≺A δ(q, a)
r ≺A q

φ ∈ πA(q) r ≺A γ(q, φ)
r ≺A q

The fork hierarchy is connected with the reach of a state in the following way.

I Lemma 3.9. Let q′, r ∈ Q. If A is fork-acyclic, q′ ∈ ρA(q) and r ≺A q′, then r ≺A q.

The term fork-acyclic has been used in literature for similar automata [16, 7]. However,
in op. cit., it is defined in terms of the traces that arise from the transition structure of the
automaton. In contrast, our definition is purely syntactic: it imposes an order on states such
that forks cannot be nested. To show that, as in [16], our definition implies that languages
of the PA have bounded width, we present the following lemma. Since the state space of a
PA can be infinite, we additionally require that the fork hierarchy is well-founded.

I Lemma 3.10. If A is fork-acyclic and ≺A is well-founded then LA(q) is of finite width.

We introduce the notion of a bounded PA, which is sufficient to guarantee the existence of
a closed, finite subset containing a given state, even when the PA has infinitely many states.

I Definition 3.11. Let A be fork-acyclic. We say that A is bounded if ≺A is well-founded,
and for all q ∈ Q, both πA(q) and ρA(q) are finite.

I Theorem 3.12. If A is bounded, then for every state q of A there exists a finite set of
states Qq ⊆ Q that is closed and contains q.

Proof. The proof proceeds by ≺A-induction; this is sound, because ≺A is well-founded.
Suppose the claim holds for all r ∈ Q with r ≺A q. If q′ ∈ ρA(q) and {|r, s|} ∈ πA(q′),

then r ≺A q′ and thus r ≺A q by Lemma 3.9; by induction we obtain for every such r a finite
set of states Qr ⊆ Q that is closed and contains r. We choose:

Qq = {⊥} ∪ ρA(q) ∪
⋃
{Qr : q′ ∈ ρA(q), {|r, s|} ∈ πA(q′)}

This set is finite because ρA(q) and πA(q′) are finite for all q, q′ ∈ Q since A is bounded. To
see that Qq is closed, it suffices to show that the last rule of closure holds for q′ ∈ ρA(q); it
does, since if q′ ∈ ρA(q) and {|r, s|} ∈ πA(q′), then r ∈ Qr and s ∈ Qs, thus r, s ∈ Qq. J

CONCUR 2017

21:8 Brzozowski Goes Concurrent — A Kleene Theorem for Pomset Languages

4 Expressions to automata

We now turn our attention to the task of translating a series-rational expression e into a
PA that accepts vew. We employ Brzozowski’s method [3] to construct a single syntactic PA
where every series-rational expression is a state accepting exactly its denotational semantics.
To this end we must define which expressions are accepting, and how the sequential and
parallel transition functions transform states — what are, in Brzozowski’s vocabulary, their
sequential and parallel derivatives?

We start with the accepting states. In Brzozowski’s construction, a rational expression is
accepting if its denotational semantics includes the empty word. Analogously, a series-rational
expression is accepting if its denotational semantics includes the empty pomset.

I Definition 4.1. We define the set FΣ to be the smallest subset of TΣ satisfying the rules:

1 ∈ FΣ

e ∈ FΣ f ∈ TΣ

e+ f, f + e ∈ FΣ

e, f ∈ FΣ

e · f, f · e ∈ FΣ

e, f ∈ FΣ

e ‖ f, f ‖ e ∈ FΣ

e ∈ TΣ

e∗ ∈ FΣ

It is not hard to see that e ∈ FΣ if and only if 1 ∈ vew. We use e ? f as a shorthand for f if
e ∈ FΣ, and 0 otherwise. For an equation E , we write [E] as a shorthand for 1 if E holds, and
0 otherwise. We now define sequential and parallel derivatives:

I Definition 4.2. We define the function δΣ : TΣ × Σ→ TΣ as follows:

δΣ(0, a) = 0 δΣ(1, a) = 0 δΣ(b, a) = [a = b] δΣ(e∗, a) = δΣ(e, a) · e∗

δΣ(e+ f, a) = δΣ(e, a) + δΣ(f, a) δΣ(e · f, a) = δΣ(e, a) · f + e ? δΣ(f, a)

δΣ(e ‖ f, a) = e ? δΣ(f, a) + f ? δΣ(e, a)

Furthermore, the function γΣ : TΣ ×
(TΣ

2
)
→ TΣ is defined as follows:

γΣ(0, φ) = 0 γΣ(1, φ) = 0 γΣ(b, φ) = 0 γΣ(e∗, φ) = γΣ(e, φ) · e∗

γΣ(e+ f, φ) = γΣ(e, φ) + γΣ(f, φ) γΣ(e · f, φ) = γΣ(e, φ) · f + e ? γΣ(f, φ)

γΣ(e ‖ f, φ) = [φ ' {|e, f |}] + e ? γΣ(f, φ) + f ? γΣ(e, φ)

The definition of δΣ coincides with Brzozowski’s derivative on rational expressions. The
definition of γΣ mimics the definition of δΣ on non-parallel terms except b ∈ Σ.

The definition of γΣ on parallel terms includes (in the first term) the possibility that the
starting states provided to the parallel transition function are (congruent to) the operands
of the parallel, in which case the target join state is the accepting state 1. The other two
terms (as well as the definition of δΣ on a parallel term) account for the fact that if 1 ∈ vew,
then vfw ⊆ ve ‖ fw. Since we do not allow traces labelled with the empty pomset, traces that
originate from these operands are thus lifted to the composition when necessary.

I Definition 4.3. The syntactic PA is the PA AΣ = 〈TΣ, δΣ, γΣ, FΣ〉.

We use LΣ as a shorthand for LAΣ , and →Σ (→→Σ) as a shorthand for →AΣ (→→AΣ).
The remainder of this section is devoted to showing that if e ∈ TΣ, then LΣ(e) = vew.

T. Kappé, P. Brunet, B. Luttik, A. Silva and F. Zanasi 21:9

4.1 Traces of congruent states
In the analysis of the syntactic trace relation →Σ, we often encounter sums of terms. To
work with these, it is useful to identify terms modulo '. In this section, we establish that
such an identification is in fact sound, in the sense that if two expressions are related by ',
then the languages accepted by the states representing those expressions are also identical.

In the first step towards this goal, we show that FΣ is well-defined with respect to '.

I Lemma 4.4. Let e, f ∈ TΣ be such that e ' f . Then e ∈ FΣ if and only if f ∈ FΣ.

Also, δΣ and γΣ are well-defined with respect to ', in the following sense:

I Lemma 4.5. Let e, f ∈ TΣ such that e ' f . If a ∈ Σ, then δΣ(e, a) ' δΣ(f, a). Moreover,
if φ = {|g, h|} ∈

(TΣ
2
)
with g, h 6' 0, then γΣ(e, φ) ' γΣ(f, φ), and if ψ ∈

(TΣ
2
)
with φ ' ψ,

then γΣ(e, φ) = γΣ(e, ψ).

With these lemmas in hand, we can show that ' is a “bisimulation” with respect to →Σ.

I Lemma 4.6. Let e, f ∈ TΣ be such that e ' f . If e U−→Σ e′, then there exists an f ′ ∈ TΣ
such that f U−→Σ f ′ and e′ ' f ′.

Let I be a finite set, and let (ei)i∈I be an I-indexed family of terms. In the sequel, we
treat

∑
i∈I ei as a term, where the ei are summed in some arbitrary order or bracketing. The

lemmas above guarantee that the precise choice of representing this sum as a term makes no
matter with regard to the traces allowed.

4.2 Trace deconstruction
We proceed with a series of lemmas that characterise reachable states in the syntactic PA.
More precisely, we show that the expressions reachable from some expression e can be written
as sums of expressions reachable from subexpressions of e. For this reason, we refer to these
observations as trace deconstruction lemmas: they deconstruct a trace of an expression into
traces of “smaller” expressions. The purpose of these lemmas is twofold; in Section 4.4, they
are used to characterise the languages of expressions as they appear in the syntactic PA,
while in Section 4.5 they allow us to bound the reach of an expression.

We start by analysing the traces that originate in base terms, such as 0, 1, or a ∈ Σ.

I Lemma 4.7. Let e, e′ ∈ TΣ and U ∈ Pom+
Σ such that e U−→Σ e′. If e ∈ {0, 1}, then e′ = 0.

Furthermore, if e = b ∈ Σ, then either e′ = 1 and U = b, or e′ = 0.

Note, however, that 0 and 1 are not indistinguishable, for 0 6∈ FΣ while 1 ∈ FΣ.
We also consider the traces that originate in a sum of terms. The intuition here is that

the input is processed by both terms simultaneously, and thus the target state must be the
sum of the states that are the result of processing the input for each term individually.

I Lemma 4.8. Let e1, e2 ∈ TΣ and U ∈ Pom+
Σ . If e1 +e2 U−→Σ e′, then there exist e′1, e′2 ∈ TΣ

such that e′ = e′1 + e′2, and e1 U−→Σ e′1 and e2 U−→Σ e′2.

We now consider the traces starting in a sequential composition. The intuition here is
that the syntactic PA must first proceed through the left operand, before it can proceed to
process the right operand. Thus, either the pomset is processed by the left operand entirely,
or we should be able to split the pomset in two sequential parts: the first part is processed
by the left operand, and the second by the right operand.

CONCUR 2017

21:10 Brzozowski Goes Concurrent — A Kleene Theorem for Pomset Languages

I Lemma 4.9. Let e1, e2 ∈ TΣ and U ∈ Pom+
Σ be such that e1 · e2 U−→Σ f . There exist an

f ′ ∈ TΣ and a finite set I, as well as I-indexed families (f ′i)i∈I over FΣ and (fi)i∈I over TΣ,
and I-indexed families (U ′i)i∈I , (Ui)i∈I over Pom+

Σ , such that:

f ' f ′ · e2 +
∑
i∈I fi and e1 U−→Σ f ′, and

for all i ∈ I, e1
U ′

i−→→Σ f ′i , e2 Ui−→Σ fi, and U = U ′i · Ui.

The next deconstruction lemma concerns traces originating in a parallel composition.
Intuitively, the syntactic PA either processes parallel components of the pomset, or processes
according to one operand, provided that the other operand allows immediate acceptance.

I Lemma 4.10. If e1 ‖ e2 U−→Σ f , then there exist f1, f2, f3 ∈ TΣ, such that

f ' f1 + f2 + f3,
either f1 = 0, or e2 ∈ FΣ and e1 U−→Σ f1,
either f2 = 0, or e1 ∈ FΣ and e2 U−→Σ f2, and
either f3 = 0, or f3 = 1 and there exist f ′1, f ′2 ∈ FΣ and U1, U2 ∈ Pom+

Σ such that
U = U1 ‖ U2 and e1 U1−−→Σ f ′1 and e2 U2−−→Σ f ′2.

Finally, we analyse the reachable states of an expression of the form e∗. The intuition here
is that, starting in e∗, the PA can iterate traces originating in e indefinitely. The trace should
thus be sequentially decomposable, with each component the label of a trace originating in e.
Furthermore, all but the last target state of these traces should be accepting.

I Lemma 4.11. If e∗ U−→Σ f , then there exists a finite set I and an I-indexed family of
finite sets (Ji)i∈I , as well as I-indexed families (fi)i∈I over TΣ and (Ui)i∈I over Pom+

Σ , and
for all i ∈ I also Ji-indexed families (fi,j)j∈Ji

over FΣ and (Ui,j)j∈Ji
over Pom+

Σ , such that
f '

∑
i∈I fi · e∗, and for all i ∈ I:

e Ui−→Σ fi,
for all j ∈ Ji we have that e Ui,j−−→Σ fi,j, and
U = U ′i · Ui, where U ′i is some concatenation of all Ui,j for all j ∈ Ji.

4.3 Trace construction
In the above, we learned how to deconstruct traces in the syntactic PA. To verify that
the state in the syntactic PA associated with a series-rational expression e indeed accepts
the series-rational pomset language vew, we also need to show the converse, that is, how to
construct traces in the syntactic PA from smaller traces. In this context it is often useful to
work with the preorder obtained from '.

I Definition 4.12. The relation . ⊆ TΣ × TΣ is defined by e . f if and only if e+ f ' f .

The intuition to e . f is that e consists of one or more terms that also appear in f , up to '.
In analogy to Lemma 4.6, we show that . is a “simulation” with respect to traces.

I Lemma 4.13. Let e, e′, f ∈ TΣ be such that e . f . If e U−→Σ e′, then there exists an
f ′ ∈ TΣ such that f U−→Σ f ′ and e′ . f ′. Furthermore, if e ∈ FΣ, then f ∈ FΣ.

The following lemma tells us that we can create a trace labelled with the concatenation
of the labels of two smaller traces, and starting in the sequential composition of the original
starting states, provided that the first trace ends in an accepting state. Furthermore, the
target state of the newly constructed trace contains the target state of the second trace.

T. Kappé, P. Brunet, B. Luttik, A. Silva and F. Zanasi 21:11

I Lemma 4.14. Let e1, e2, f2 ∈ TΣ and f1 ∈ FΣ. If U, V ∈ Pom+
Σ are such that e1 U−→Σ f1

and e2 V−→Σ f2, then there exists an f ∈ TΣ such that e1 · e2 U ·V−−−→Σ f with f2 . f .

We can also construct traces that start in a parallel composition. One way is to construct
traces that start in each operand and reach an accepting state; we obtain a trace in their
parallel composition almost trivially. If one of the operands is accepting, we can also construct
a single trace that starts in the other operand and obtain a trace with the same label starting
in the parallel construction. In both cases, we describe the target of the new trace using ..

I Lemma 4.15. Let e1, e2 ∈ TΣ. The following hold:

If f1, f2 ∈ FΣ and U, V ∈ Pom+
Σ are such that e1 U−→Σ f1 and e2 V−→Σ f2, then there exists

an f ∈ TΣ such that e1 ‖ e2
U‖V−−−→Σ f with 1 . f .

If e2 ∈ FΣ (respectively e1 ∈ FΣ), and f ′ ∈ TΣ and U ∈ Pom+
Σ are such that e1 U−→Σ f ′

(respectively e2 U−→Σ f ′), then there exists an f ∈ TΣ such that e1 ‖ e2 U−→Σ f with f ′ . f .

Lastly, we present a trace construction lemma to obtain traces originating in expressions
of the form e∗. The idea here is that, given a finite number of traces that originate in e,
where all (but possibly one) have an accepting state as their target, we can construct a trace
originating in e∗, with a concatenation of the labels of the input traces as its label.

I Lemma 4.16. Let e, f1, f2, . . . , fn ∈ TΣ (with n > 0) be such that f1, f2, . . . , fn−1 ∈ FΣ.
Also, let U,U1, U2, . . . , Un ∈ Pom+

Σ be such that U = U1 · U2 · · ·Un. If for all i ≤ n it holds
that e Ui−→Σ fi, then there exists an f ∈ TΣ such that e∗ U−→Σ f , with fn · e∗ . f .

4.4 Soundness for the syntactic PA
With trace deconstruction and construction lemmas in our toolbox, we are ready to show
that the syntactic PA indeed captures series-rational languages.

First, note that LΣ can be seen as a function from TΣ to PomΣ, like v−w. To establish
equality between LΣ and v−w, we first show that LΣ enjoys the same homomorphic equalities
as those in the definition of the semantic map, i.e., that LΣ(e) can be expressed in terms of
LΣ applied to subexpressions of e. The proofs of the equalities below follow a similar pattern:
for the inclusion from left to right we use trace deconstruction lemmas to obtain traces for
the component expressions, while for the inclusion from right to left we use trace construction
lemmas to build traces for the composed expressions given the traces of the component
expressions. We treat the case for the empty pomset separately almost everywhere.

I Lemma 4.17. Let e1, e2 ∈ TΣ, and a ∈ Σ. The following equalities hold:

LΣ(0) = ∅ LΣ(1) = {1} LΣ(a) = {a} LΣ(e1 + e2) = LΣ(e1) ∪ LΣ(e2)

LΣ(e1 · e2) = LΣ(e1) · LΣ(e2) LΣ(e1 ‖ e2) = LΣ(e1) ‖ LΣ(e2) LΣ(e∗1) = LΣ(e1)∗

It is now easy to establish that the Brzozowski construction for the syntactic PA is sound
with respect to the denotational semantics of series-rational expressions.

I Theorem 4.18. Let e ∈ TΣ. Then LΣ(e) = vew.

Proof. The proof proceeds by induction on e. In the base, e = 0, e = 1 or e = a for some
a ∈ Σ. In all cases, LΣ(e) = vew by Lemma 4.17. For the inductive step, there are four cases
to consider: either e = e1 +e2, e = e1 ·e2, e = e1 ‖ e2 or e = e∗1. In all cases, the claim follows
from the induction hypothesis and the definition of v−w, combined with Lemma 4.17. J

CONCUR 2017

21:12 Brzozowski Goes Concurrent — A Kleene Theorem for Pomset Languages

4.5 Bounding the syntactic PA
Ideally, we would like to obtain a single PA with finitely many states that recognizes vew for
a given e ∈ TΣ. Unfortunately, the syntactic PA is not bounded, and thus Theorem 3.12
does not apply. For instance, the requirement that ρΣ(e) be finite for e ∈ TΣ fails; consider
the family of distinct terms (en)n∈N defined by e0 = 1 · a∗ and en+1 = 0 · a∗ + en for n ∈ N;
it is not hard to show that en ∈ ρΣ(a∗) for n ∈ N, and thus conclude that ρΣ(a∗) is infinite.
We remedy this problem by quotienting the state space of the syntactic PA by congruence.

In what follows, we write [e] for the congruence class of e ∈ TΣ modulo ', i.e., the set of
all e′ ∈ TΣ such that e ' e′. We furthermore write QΣ for the set of all congruence classes of
expressions in TΣ. We now leverage Lemma 4.5 to define a transition structure on QΣ.

To save space, this section only summarizes the main stepping stones towards finding a
finite PA for an expression; for a full proof, we refer to the full version of this paper [9].

I Definition 4.19. We define δ' : QΣ × Σ→ QΣ and γ' : QΣ ×
(QΣ

2
)
→ QΣ as

δ'([e], a) = [δΣ(e, a)] γ'([e], {|[f], [g]|}) =
{

[0] f ' 0 or g ' 0
[γΣ(e, {|g, h|})] otherwise

Furthermore, the set F' is defined to be {[e] : e ∈ FΣ}. The quotiented syntactic PA is the
PA A' = 〈QΣ, δ', γ', F'〉.

Note that, by virtue of Lemma 4.5 and Lemma 4.4, we have that δ' and γ', as well as
F', are well-defined. As before, we abbreviate subscripts, for example by writing →' rather
than →A' , and L' rather than LA' . Of course, we also want the quotiented syntactic PA
to accept the same languages as the syntactic PA. This turns out to be the case.

I Theorem 4.20. Let e ∈ TΣ. Then LΣ(e) = L'([e]).

Furthermore, the quotiented syntactic PA is sufficiently restricted to show the following:

I Theorem 4.21. The quotiented syntactic PA is fork-acyclic and bounded.

The desired result then follows from the above, Lemma 3.5 and Theorem 3.12.

I Corollary 4.22. Let e ∈ TΣ. There exists a finite PA Ae that accepts vew.

5 Automata to expressions

To associate with every state q in a bounded PA A = 〈Q, δ, γ, F 〉 a series-rational expression
eq such that veqw = LA(q), we modify the procedure for associating a rational expression
with a state in a finite automaton described in [12]. The modification consists of adding
parallel terms to the expression associated with q whenever a fork in q contributes to its
language, i.e., whenever {|r, s|} ∈ πA(q).

In view of the special treatment of 1 in the semantics of PAs, it is convenient to first
define expressions e+

q with the property that
0
e+
q

8
= LA(q)− {1}; then we can define eq by

eq = e+
q + [q ∈ F]. The definition of e+

q proceeds by induction on the well-founded partial
order ≺A associated with a bounded PA. That is, when defining e+

q we assume the existence
of expressions e+

q′ for all q′ ∈ Q such that q′ ≺A q.
First, however, we shall define auxiliary expressions eQ

′

qq′ for suitable choices of Q′ ⊆ Q
and of q, q′ ∈ Q. Intuitively, eQ

′

qq′ denotes the pomset language characterizing all paths from
q to q′ with all intermediate states in Q′; e+

q can then be defined as the summation of all
e
ρA(q)
qq′ with q′ ∈ F ∩ ρA(q).

T. Kappé, P. Brunet, B. Luttik, A. Silva and F. Zanasi 21:13

I Definition 5.1. Let Q′ be a finite subset of Q, and assume that for all r ∈ Q such
that r ≺A q for some q ∈ Q′ there exists a series-rational expression e+

r ∈ TΣ such that
ve+
r w = LA(q)− {1}. For all Q′′ ⊆ Q′ and q, q′ ∈ Q′, we define a series-rational expression

eQ
′′

qq′ by induction on the size of Q′′, as follows:

1. If Q′′ = ∅, then let Σ̃ = {a ∈ Σ : q′ = δ(q, a)}, and let Q̃ = {φ ∈ πA(q) : γ(q, φ) = q′}.
We define

eQ
′′

qq′ =
∑
a∈Σ̃

a+
∑

{|r,s|}∈Q̃

e+
r ‖ e+

s .

2. Otherwise, we choose a q′′ ∈ Q′′ and define

eQ
′′

qq′ = e
Q′′−{q′′}
qq′ + e

Q′′−{q′′}
qq′′ · (eQ

′′−{q′′}
q′′q′′)∗ · eQ

′′−{q′′}
q′′q′ .

Note that e+
r and e+

s , appearing in the first clause of the definition of eQ
′′

qq′ , exist by assumption,
for by fork-acyclicity we have that r, s ≺A q ∈ Q′.

I Theorem 5.2. Let Q′ be a finite subset of Q and assume that for all r ∈ Q such that r ≺A q
for some q ∈ Q′ there exists a series-rational expression e+

r ∈ TΣ with ve+
r w = LA(q)− {1}.

For all q, q′ ∈ Q′, for all Q′′ ⊆ Q′, and for all U ∈ Pom+
Σ, we have that q U−→A

q′ according
to some path that only visits states in Q′′ if, and only if, U ∈

1
eQ

′′

qq′

9
.

Using the auxiliary expressions eQ
′′

qq′ , we can now associate series-rational expressions
eq, e

+
q ∈ TΣ with every q ∈ Q, defining e+

q by e+
q =

∑
q′∈ρA(q)∩F e

ρA(q)
qq′ and eq = e+

q + [q ∈ F].
Note that q ∈ ρA(q) and, by Lemma 3.9, for all q′ ∈ Q such that q′ ≺A q′′ for some q′′ ∈ ρA(q)
we have q′ ≺A q, and hence there exists, by induction, a series-rational expression eq′ ∈ TΣ

such that veq′w = LA(q′). So the expressions eρA(q)
qq′ are, indeed, defined in Definition 5.1.

I Corollary 5.3. For every state q ∈ Q we have
0
e+
q

8
= LA(q)− {1} and veqw = LA(q).

6 Discussion

Another automaton formalism for pomsets, branching automata, was proposed by Lodaya
and Weil [15, 16]. Branching automata define the states where parallelism can start (fork)
or end (join) in two relations; pomset automata condense this information in a single
function. Lodaya and Weil also provided a translation of series-parallel expressions to
branching automata, based on Thompson’s construction [19], which relies on the fact that
their automata encode transitions non-deterministically, i.e., as relations. Our Brzozowski-
style [3] translation, in contrast, directly constructs transition functions from the expressions.
Lastly, their translation of branching automata to series-parallel expressions is only sound
for a semantically restricted class of automata, whereas our restriction is syntactic.

Jipsen and Moshier [8] provided an alternative formulation of the automata proposed by
Lodaya and Weil, also called branching automata. Their method to encode parallelism in
these branching automata is conceptually dual to pomset automata: branching automata
distinguish based on the target states of traces to determine the join state, whereas pomset
automata distinguish based on the origin states of traces. The translations of series-parallel
expressions to branching automata and vice versa suffer from the same shortcomings as those
by Lodaya and Weil, i.e., transition relations rather than functions and a semantic restriction
on automata for the translation of automata to expressions.

CONCUR 2017

21:14 Brzozowski Goes Concurrent — A Kleene Theorem for Pomset Languages

Lodaya and Weil observed [16] that the behaviour of their automata corresponds to
1-safe Petri nets. Since the behavior of their branching automata can be matched with our
(bounded, fork-acyclic) pomset automata, we believe that 1-safe Petri nets also correspond to
our automata. We opted to treat semantics of series-rational expressions in terms of automata
instead of Petri nets to find more opportunities to extend to a coalgebraic treatment. While
the present paper does not reach this goal, we believe that our formulation in terms of states
and transition functions offers some hope of getting there.

Prisacariu introduced Synchronous Kleene Algebra (SKA) [17], extending Kleene Algebra
with a synchronous composition operator. SKA differs from our model in that it assumes
that all basic actions are performed in unit time, and that actors responsible for individual
actions never idle. In contrast, our (weak BKA-like) model makes no synchrony assumptions:
expressions can be composed in parallel, and the relative timing of basic actions within those
expressions is irrelevant for the semantics. Prisacariu axiomatized SKA and extended it
to Synchronous Kleene Algebra with Tests (SKAT); others [2] proposed Brzozowski-style
derivatives of SKA expressions and used them to test equivalence of SKA(T) expressions.

7 Further work

We plan to extend our results to semantics of series-parallel expressions in terms of downward-
closed pomset languages, i.e., sets of pomsets that are closed under Gischer’s subsumption
order [4]. Such an extension would correspond to adding the weak exchange law (which
relates sequential and parallel compositions), and thus yields an operational model for weak
CKA. We conjecture that no change to the automaton model is necessary to accommodate
this generalization, just like Struth and Laurence suspect that the downward-closed semantics
of series-parallel expressions can be captured by their non-downward closed semantics.

Our series-rational expressions do not include the parallel analogue of the Kleene star
(sometimes called “parallel star”, or “replication”). Future work could look into extending
derivatives to include this operator, and relaxing fork-acyclicity to allow recovering expressions
that include the parallel star from an automaton that satisfies this weaker restriction.

A classic result by Kozen [11] axiomatizes language equivalence of rational expressions
using Kleene’s theorem [10] and the uniqueness of minimal finite automata; consequently,
the free model for KA can also be characterized in terms of rational languages. It would be
interesting to see if the same technique can be used (based on pomset automata) to show that
the axioms of weak Bi-Kleene Algebra are a complete axiomatization of pomset language
equivalence of series-rational expressions, and thus characterise the free weak Bi-Kleene
Algebra (or even the free weak CKA) in terms of series-rational pomset languages. Although
an such a result was recently published [14], it does not rely on an automaton model.

Brzozowski derivatives for classic rational expressions induce a coalgebra on rational
expressions that corresponds to a finite automaton. We aim to study series-rational expres-
sions coalgebraically. The first step would be to find the coalgebraic analogue of pomset
automata such that language acceptance is characterized by the homomorphism into the final
coalgebra. Ideally, such a view of pomset automata would give rise to a decision procedure
for equivalence of series-rational expressions based on coalgebraic bisimulation-up-to [18].

Rational expressions can be extended with tests to reason about imperative programs
equationally [13]. In the same vein, one can extend series-rational expressions with tests [7, 8]
to reason about parallel imperative programs equationally. We are particularly interested in
employing such an extension to extend the network specification language NetKAT [1] with
primitives for concurrency so as to model and reason about concurrency within networks.

T. Kappé, P. Brunet, B. Luttik, A. Silva and F. Zanasi 21:15

References
1 Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter Kozen,

Cole Schlesinger, and David Walker. NetKAT: semantic foundations for networks. In
Proc. Principles of Programming Languages (POPL), pages 113–126, 2014. doi:10.1145/
2535838.2535862.

2 Sabine Broda, Sílvia Cavadas, Miguel Ferreira, and Nelma Moreira. Deciding synchronous
Kleene algebra with derivatives. In Proc. Implementation and Application of Automata
(CIAA), pages 49–62, 2015. doi:10.1007/978-3-319-22360-5_5.

3 Janusz A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481–494, 1964.
doi:10.1145/321239.321249.

4 Jay L. Gischer. The equational theory of pomsets. Theor. Comput. Sci., 61:199–224, 1988.
doi:10.1016/0304-3975(88)90124-7.

5 C. A. R. Hoare, Bernhard Möller, Georg Struth, and Ian Wehrman. Concurrent Kleene
Algebra. In Proc. Concurrency Theory (CONCUR), pages 399–414, 2009. doi:10.1007/
978-3-642-04081-8_27.

6 Tony Hoare, Stephan van Staden, Bernhard Möller, Georg Struth, and Huibiao Zhu. De-
velopments in Concurrent Kleene Algebra. J. Log. Algebr. Meth. Program., 85(4):617–636,
2016. doi:10.1016/j.jlamp.2015.09.012.

7 Peter Jipsen. Concurrent Kleene Algebra with tests. In Proc. Relational and Algeb-
raic Methods in Computer Science (RAMiCS) 2014, pages 37–48, 2014. doi:10.1007/
978-3-319-06251-8_3.

8 Peter Jipsen and M. Andrew Moshier. Concurrent Kleene Algebra with tests and branching
automata. J. Log. Algebr. Meth. Program., 85(4):637–652, 2016. doi:10.1016/j.jlamp.
2015.12.005.

9 Tobias Kappé, Paul Brunet, Bas Luttik, Alexandra Silva, and Fabio Zanasi. Brzozowski
goes concurrent — a Kleene theorem for pomset languages. arXiv:1704.07199.

10 Stephen C. Kleene. Representation of events in nerve nets and finite automata. Automata
Studies, pages 3–41, 1956.

11 Dexter Kozen. A completeness theorem for Kleene Algebras and the algebra of regular
events. Inf. Comput., 110(2):366–390, 1994. doi:10.1006/inco.1994.1037.

12 Dexter Kozen. Automata and computability. Undergraduate texts in computer science.
Springer, 1997.

13 Dexter Kozen. Kleene Algebra with tests. ACM Trans. Program. Lang. Syst., 19(3):427–443,
1997. doi:10.1145/256167.256195.

14 Michael R. Laurence and Georg Struth. Completeness theorems for Bi-Kleene Algebras
and series-parallel rational pomset languages. In Proc. Relational and Algebraic Methods
in Computer Science (RAMiCS), pages 65–82, 2014. doi:10.1007/978-3-319-06251-8_5.

15 Kamal Lodaya and Pascal Weil. Series-parallel posets: Algebra, automata and languages.
In Proc. Annual Symposium on Theoretical Aspects of Computer Science (STACS), pages
555–565, 1998. doi:10.1007/BFb0028590.

16 Kamal Lodaya and Pascal Weil. Series-parallel languages and the bounded-width prop-
erty. Theoretical Computer Science, 237(1):347–380, 2000. doi:10.1016/S0304-3975(00)
00031-1.

17 Cristian Prisacariu. Synchronous Kleene algebra. J. Log. Algebr. Program., 79(7):608–635,
2010. doi:10.1016/j.jlap.2010.07.009.

18 Jurriaan Rot, Marcello M. Bonsangue, and Jan J. M. M. Rutten. Coalgebraic bisimulation-
up-to. In Proc. Current Trends in Theory and Practice of Computer Science (SOFSEM),
pages 369–381, 2013. doi:10.1007/978-3-642-35843-2_32.

19 Ken Thompson. Regular expression search algorithm. Commun. ACM, 11(6):419–422, 1968.
doi:10.1145/363347.363387.

CONCUR 2017

http://dx.doi.org/10.1145/2535838.2535862
http://dx.doi.org/10.1145/2535838.2535862
http://dx.doi.org/10.1007/978-3-319-22360-5_5
http://dx.doi.org/10.1145/321239.321249
http://dx.doi.org/10.1016/0304-3975(88)90124-7
http://dx.doi.org/10.1007/978-3-642-04081-8_27
http://dx.doi.org/10.1007/978-3-642-04081-8_27
http://dx.doi.org/10.1016/j.jlamp.2015.09.012
http://dx.doi.org/10.1007/978-3-319-06251-8_3
http://dx.doi.org/10.1007/978-3-319-06251-8_3
http://dx.doi.org/10.1016/j.jlamp.2015.12.005
http://dx.doi.org/10.1016/j.jlamp.2015.12.005
http://arxiv.org/abs/1704.07199
http://dx.doi.org/10.1006/inco.1994.1037
http://dx.doi.org/10.1145/256167.256195
http://dx.doi.org/10.1007/978-3-319-06251-8_5
http://dx.doi.org/10.1007/BFb0028590
http://dx.doi.org/10.1016/S0304-3975(00)00031-1
http://dx.doi.org/10.1016/S0304-3975(00)00031-1
http://dx.doi.org/10.1016/j.jlap.2010.07.009
http://dx.doi.org/10.1007/978-3-642-35843-2_32
http://dx.doi.org/10.1145/363347.363387

	Introduction
	Preliminaries
	Pomsets
	Pomset languages
	Series-rational expressions
	Additive congruence

	Pomset Automata
	Expressions to automata
	Traces of congruent states
	Trace deconstruction
	Trace construction
	Soundness for the syntactic PA
	Bounding the syntactic PA

	Automata to expressions
	Discussion
	Further work

