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Pharmacokinetic (PK) models exist for most antiepileptic drugs (AEDs). Yet their use in clinical practice to assess
interindividual differences and derive individualized doses has been limited. Here we show how model-based dosing
algorithms can be used to ensure attainment of target exposure and improve treatment response in patients. Using
simulations, different treatment scenarios were explored for 11 commonly used AEDs. For each drug, five scenarios were
considered: 1) all patients receive the same dose. 2) Individual clearance (CL), as predicted by population PK models, is
used to personalize treatment. 3–5) Individual CL, obtained by therapeutic drug monitoring (TDM) according to different
sampling schemes, is used to personalize treatment. Attainment of steady-state target exposure was used as the
performance criterion to rank each scenario. In contrast to current clinical guidelines, our results show that patient
demographic and clinical characteristics should be used in conjunction with TDM to personalize the treatment of seizures.

Study Highlights

WHAT IS THE CURRENT KNOWLEDGE ON THE
TOPIC?
� Population pharmacokinetic models are available for many
antiepileptic drugs (AEDs), most of which allow the characteri-
zation of predictable (e.g., covariates) and random interindivid-
ual variability.
WHAT QUESTION DID THIS STUDY ADDRESS?
� Standard dosing recommendations and titration procedures
have important limitations. A model-based algorithm is pro-
posed for AED dose individualization, which may be of great
benefit for patients who fail to respond to initial first-line
therapy.

WHAT THIS STUDY ADDS TO OUR KNOWLEDGE
� AED dosing regimens based on typical population character-
istics do not ensure attainment and maintenance of target expo-
sure in patients. By contrast, model-based dosing algorithms
result in significant reduction in the variability of AED levels at
steady state.
HOW THIS MIGHT CHANGE CLINICAL PHARMA-
COLOGY OR TRANSLATIONAL SCIENCE
� Our approach shows how dosing algorithms can be imple-
mented in the clinic to deliver personalized and individualized
treatments. It also shows the advantages of integrating TDM
with model-based platforms.

Epilepsy is a chronic neurological disease, manifesting as recurrent
seizures. In spite of the efforts to identify novel, more effective
antiepileptic drugs (AEDs), one-third of patients are not responsive
to the first treatment. Sadly, a considerable proportion of these
patients eventually also fail after transition to alternative or second-
line treatment. Such interindividual variability in the response to
AEDs is a consequence of multiple interacting factors, including
differences in the pathophysiology, pharmacokinetics, pharmacody-
namics, and genetic variation.1,2 It is therefore acknowledged that
rational prescribing of AEDs requires not only an understanding of
the seizure type and of the drugs’ pharmacodynamic (PD) proper-
ties, but also careful consideration of the factors known to affect
drug disposition.3,4 In fact, the impact of covariate factors on drug
exposure and consequently on pharmacokinetic (PK) variability,
efficacy, and tolerability profile of AEDs has been highlighted in a
recent publication by our group.5 Our findings confirm the con-
cerns raised by previous authors on the importance of accounting

for covariate factors, particularly in patients at the extreme range of
age, such as infants and the elderly.6,7

Given the impact of demographic, clinical, and genetic covari-
ate factors, one important question that remains unaddressed is
whether the lack of response and subsequently switching to
alternative first-line AEDs (or combination therapy) can be
potentially avoided by a more robust dosing rationale. Many
AEDs show large PK variability, especially when drug–drug inter-
actions occur during combination therapy.5 Nevertheless, despite
the large number of investigations on the clinical pharmacokinet-
ics of AEDs, limited attention has been given to the magnitude
of such effects and their clinical implications. In most cases,
covariate effects have been assessed as part of a population PK
analysis, where the main objective is the characterization of the
overall drug disposition properties and underlying sources
of variability, rather than the optimization of the therapeutic
intervention in a wider patient population.8,9
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From a clinical point of view, the use of titration procedures,
without taking into account the underlying inter- and intraindi-
vidual variability in pharmacokinetics, conflate PK variability
with that of pharmacodynamics and disease progression. Usually,
treatment is started at a low dose, followed by up-titration until
adequate efficacy or unacceptable side effects are reached. Thera-
peutic drug monitoring (TDM) is eventually considered when
side effects are seen at a lower doses or inadequate efficacy is
observed at a higher doses than expected. On the other hand, in
some cases dosing regimens may be selected that aim at reaching
steady-state concentrations (Css) within a predefined therapeutic
range.10,11

Based on the aforementioned, it becomes clear that current
guidelines for the selection and titration of AEDs overlook the
impact of the underlying variability in drug disposition. Even if
only part of the PK variability can be explained by demographic
covariates such as weight and age, dose adjustments can provide a
concrete opportunity for optimizing AED therapy. Surprisingly,
this contrasts with the fact that nomograms have had a place in
the optimization of AED therapy since the early 1970s, especially
for phenytoin, which shows large variability due to its nonlinear
PK properties. Nomograms have, however, important limitations.
They allow for adjustment of only a few variables (see examples
in Hudson et al.12) or otherwise can become convoluted (e.g.,
Lee et al.13). In contrast, the use of population PK models allows
dose adjustment to be made a priori based on any number of
covariates (i.e., personalization). The availability of models also
enable subsequent optimization of the treatment based on clini-
cal follow-up procedures such as TDM (i.e., individualization)
without the need for empirical calculations or drawing lines on
graphs by hand. An additional advantage of population PK mod-
els is the incorporation of statistical distributions to describe
measurement error, which can theoretically lead to more accurate
and/or precise parameter estimates depending on the error
model; in turn, this results in more accurate dosing recommenda-
tions. Moreover, PK models are one of the building blocks
of clinical trial simulations, which can provide the basis for the
evaluation of alternative dosing scenarios in silico.
Here we explore how clinical trial simulations and optimal

design concepts can be used to identify suitable dosing algorithms
and possibly personalize the treatment of seizures with the avail-
able AEDs. It can be anticipated that the implementation of
model-based titration and dosing algorithms, as a criterion for
dose adjustment and transition to alternative first-line or combi-
nation therapy, may prevent treatment failure in a considerable
fraction of patients who currently do not respond to the first
AED. Our approach may be of particular relevance for the
10–20% of patients who still show unresolved seizures when
their target dose has been achieved.3 It may also allow the identi-
fication of individuals within the group of patients who would
respond to optimized regimens, but currently remain refractory
to treatment and are said to have drug-resistant epilepsy.4

Finally, we aim to show how TDM procedures can be com-
bined with inferential methods based on modeling and simulation
to optimize doses and dosing regimens. These concepts have been
increasingly applied to other therapeutic areas (e.g., antitumor,

immunosuppressant, and antiinfective drugs) where favorable
treatment outcome depends on the attainment and maintenance
of target drug exposure.14–18 Such developments illustrate the
effective introduction of individualized medicines to patients.19

This diverges from current clinical practice in epilepsy, which
relies on limited clinical evidence and somewhat randomly
selected sparse PK sampling when TDM is used. In most cases,
blood collection is performed without further understanding of
the required number of samples or most appropriate time for
collection to ensure accurate estimation of a patient’s clearance
(CL), which is critical for subsequent dose individualization. So
far, no evidence exists on the optimality of such sampling strate-
gies. Typically, optimal sampling is assumed to be at the end of
the dosing interval (i.e., trough levels), but this is not always the
case (e.g., see details on sampling times between 2–6 h postdose in
Yukawa et al.20). Moreover, there is often a large spread in sam-
pling times, in part due to factors such variable dosing time,
patient availability, and blood withdrawal service opening times.
For the sake of clarity, here we refer to personalization when

treatment decisions, including dose adjustment, are based on
covariate factors, including demographic, clinical, and pathophys-
iological data. Such a definition is required to account for the
contribution and interaction between multiple factors, other
than genotype and phenotype.21 We also make use of the term
individualization to refer to dose adjustments based on
TDM and subsequent estimation of the individual patient’s PK
parameters (e.g., clearance). This distinction is important, as in
some cases treatment optimization may be reached without the
requirement for TDM. In fact, when used in conjunction
with model-based approaches, TDM may form the basis for the
individualization of therapy, in particular in special populations
such as children and pregnancy.22–24

RESULTS
Implications of dosing algorithms for systemic
exposure to AEDs
Although dose levels were found that resulted in concentrations
that are within the therapeutic window for 8 out of 11 AEDs in at
least 95% of the adult population, large interindividual differences
in CL resulted in a wide spread of Css relative to the target concen-
tration, i.e., RTCss in the population (Figure 1). Personalization
improved the precision of RTCss (CV% of population – CV% of
personalized scenario) in adults for PHT (see Methods for drug
abbreviations) (36.0%) and ZNS (8.5%). No relevant changes (i.e.,
between 25 to 15%) were found for CBZ, CLBZ, CLNZ, LMT,
LVT, OXC, PHB, TPM, and VPA. In children, personalization
also improved the precision of RTCss for PHT (32.9%) and ZNS
(5.9%) (Figure 2). No relevant differences were found for CBZ,
CLBZ, CLNZ, LMT, OXC, PHB, TPM, and VPA. The CV% for
the personalization scenario was worse for LVT (215.6%). Person-
alization procedures resulted in a reduction of the bias in RTCss

(RE% of population – RE% of personalized scenario) for PHT
(8.2%), TPM (7.9%), and ZNS (13.5%) in adults, and CLBZ
(6.3%), CLNZ (9.4%), OXC (12.8%), and TPM (8.7%) in chil-
dren. Some bias was observed by personalized dosing of LMT
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(26.0%) in children. No relevant differences in bias were found
for any of the other AEDs.
By contrast, the integration of model-based algorithms with

empirical Bayesian estimates (EBE) from TDM using one sample
showed improvement in terms of target Css for nearly all AEDs.
Reductions in CV% of RTCss in adults varied between 6.6% for
CBZ and 20.9% for CLBZ. The effect of these procedures was
found to be negligible only for TPM (4.6%). In children, similar
reductions were observed in CV% of RTCss, with values varying
between 6.0% for CLBZ to 19.9% for CLNZ. Further reductions
in the variability of RTCss could be achieved by evaluating two
blood samples instead of one. Such an improvement was observed
for LVT (7.5%) in adults and CLBZ (8.4%) in children.
Finally, bias in the RTCss estimates (RE%) in children could

be reduced using one TDM sample only for LMT (6.9%). No
improvement in bias was found for any of the other AEDs, irre-
spective of the number of TDM samples.

Implications of optimized sampling times for TDM
The sampling times for characterization of clearance (trough
levels) in adults could be optimized for 6 out of 11 AEDs,
whereas for two other compounds, sampling times optimization
was achieved by including data relative to the upswing portion of
the concentration vs. time curve (Figures 3 and 4). Of note is
the fact that optimization procedures show a counterintuitive
behavior. When more frequent sampling is required or feasible,
one should collect additional samples at timepoints close to the
reference sampling times. The spreading of blood samples at

wider intervals such as at 6, 9, and 12 h after dose for once-daily
regimens is often less informative than when the additional sam-
ples are collected at the end of the dosing interval.
Despite the possibility of introducing optimized times for

blood sampling and obtaining increased precision for individual
clearance estimates, our findings reveal that such efforts do not
ensure improved target attainment. In fact, comparison of CV%
of RTCss between the D-optimized and individualized scenarios
(i.e., one vs. one, two vs. two and three vs. three samples) reveals
no reductions larger than 5%. By contrast, a worsening was found
for PHT in adults (27.4, 28.5, and 25.1%) and children
(25.4, 26.7, and 29.0%), and LMT (25.3% for one sample) in
children. In addition, bias was not reduced by taking samples at
D-optimized sampling times. Surprisingly, D-optimized schemes
introduced bias for LVT (221.7, 224.7, and 221.4%), PHT
(29.2, 29.7, and 29.2%), and VPA (211.4 when taking three
samples) in adults, and for LVT (225.7, 225.9, and 224.6%),
PHT (29.8, 210.7, and 28.3%), and VPA (27.9, and 27.3%
for two and three samples, respectively).

DISCUSSION
The treatment of epileptic seizures with AEDs is based on the
clinical classification of overt seizure type.20,21 Whereas heteroge-
neity in disease is well known and treatment response varies
considerably between patients, there has been a long debate about
to what extent treatment should be complemented by therapeutic
drug monitoring, which is aimed at establishing whether patients

Figure 3 Overview of optimized samples in hours after dose (circles) for each drug and number of samples per individual. The relative size of the circle
represents the relative frequency of sampling at each specific timepoint, i.e., if more patients were sampled at the timepoint, a larger circle is depicted.
The scenarios shown along the x-axis refer to: 6 5 Individualized based on 1 D-optimized sample; 7 5 Individualized based on 2 D-optimized samples;
8 5 Individualized based on 3 D-optimized samples. [Color figure can be viewed at cpt-journal.com]
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reach and maintain a predefined concentration or concentration
range.
Our results show that despite the limited attention given to

the impact of covariate factors on drug disposition, model-based
dosing algorithms can be developed in conjunction with TDM
to individualize treatment. The use of such an integrated
approach allows a significant reduction in the variability in drug
exposure, which is observed after administration of standard
doses, even when titration steps are used at the start of treat-
ment.22,23 In addition, our investigation shows that individualiza-
tion based on a single TDM sample at the end of the dosing
interval resulted in large improvements in target attainment. Fur-
ther improvements could be achieved with one or two additional
TDM samples, but differences were not marked.
Contrary to what one would expect, optimization of sampling

times by D-optimality did not improve precision or bias, and par-
adoxically resulted in worsening for some AEDs. Based on our
results, sampling time optimization seems unnecessary and may
in some cases even introduce bias. It may still be of use in situa-
tions where accurate information on the parameter of interest
(here: clearance) cannot be as easily derived, e.g., in the case of
multiple, variable dosing regimens, or polytherapy with drug–
drug interactions.
Our investigation also shows that implementation of TDM

without further integration with model-based techniques does
not lead to effective individualization of the dose. In this regard,
the lack of consensus about the clinical relevance and perfor-
mance of TDM may be partly explained by its use as a diagnostic

tool, i.e., TDM results are treated similarly to any other clinical
laboratory data. Instead, TDM should be seen as the input vari-
able for a dosing algorithm, in which inferences from individual
drug levels are used to establish the contribution of multiple
interacting factors.10,14,16,25 While some evidence exists for the
lack of a significant impact of AED TDM on treatment outcome,
such investigations did not include model-based dosing
algorithms. Further clinical evidence is required to build a stron-
ger case for the advantages of parametric methods as a tool for
obtaining accurate estimates of interindividual variability in drug
disposition. Irrespective of the limitations which some of the PK
models present, our approach clearly illustrates how therapeutic
platforms can be implemented to support personalized and indi-
vidualized treatment. It also shows how clinical decision criteria
and therapeutic guidelines can benefit from quantitative clinical
pharmacology methods. We anticipate that as the relationships
between AED exposure and efficacy become elucidated,26–30 this
approach may be further refined by targeting individualized
plasma concentrations to account for variability in pharmacody-
namics. In any case, the assumption that standard doses and dos-
ing regimens, whether or not corrected empirically by body
weight or other covariate factors, is no longer defendable for
AEDs.

Potential limitations
Given that all PK models were retrieved from the published liter-
ature, one cannot exclude possible limitations when using them
for simulation purposes. First, it should be noted that some of

Figure 4 Overview of optimized samples in hours after dose (circles) for each drug, and number of samples per individual. The relative size of the circle
represents the relative frequency of sampling at each specific timepoint, i.e., if more patients were sampled at the timepoint, a larger circle is depicted.
The scenarios shown along the x-axis refer to: 6 5 Individualized based on 1 D-optimized sample; 7 5 Individualized based on 2 D-optimized samples;
8 5 Individualized based on 3 D-optimized samples. [Color figure can be viewed at cpt-journal.com]

ARTICLES

668 VOLUME 103 NUMBER 4 | APRIL 2018 | www.cpt-journal.com

http://cpt-journal.com


these models were based on sparse data. This may have resulted
in an inflated variability in clearance, as often variability in
absorption or distribution volume was not included. Conse-
quently, these models may indirectly produce results in favor of
the individualized and D-optimized dosing algorithms, as these
approaches take into account additional sources of variability,
other than clearance. Clearly, given the simplifications, some
models may not adequately describe the relevant physiological
processes when applied to other conditions or scenarios, such as
dosing during nonsteady-state conditions. By contrast, other
models may be considered overparameterized. For instance, the
models for CLBZ and ZNS incorporate information on genetic
polymorphisms for the prediction of clearance, which requires
DNA sequencing, a procedure which is not yet commonly used
in current clinical practice and may therefore be of limited clini-
cal value. Another example of such limitations is the case of
CLNZ, for which the relative target attainment approached unity
for the individualized and D-optimized dosing algorithms; the
population PK model for this drug does not include interindivid-
ual differences in absorption or distribution processes. In real life,
some variation would be detected even after integration of the
TDM with population PK concepts.
The discrepancies that were found in terms of precision and

bias between dose individualization using typical and optimized
sampling times may also be due to model limitations, as in the
case of LVT and PHT, for which information regarding the
underlying correlation between clearance and volume of distribu-
tion and variability in the absorption kinetics was missing. A
major difference between sampling time optimization in adults
and children was seen for LMT and VPA. These differences are
most probably caused by the fact that the PK models have been
originally developed separately for adults and children. From a
statistical perspective, the main difference between the two PK
models was the use of additive (adults) and proportional (chil-
dren) residual errors. When residual error is large and parameter-
ized as proportional-only simulations, they will behave differently
from combined error models.
Lastly, we have not limited the dose adjustments to the

approved dose ranges or available dosage strengths, as the scope
of our investigation was to establish the relevance of model-
based principles for the personalization of treatment with AEDs.
Nevertheless, we do not anticipate any major differences in the
conclusions drawn so far. The predicted doses were within the
approved dose ranges even if doses were not adjusted for avail-
able strengths.

Current challenges in clinical practice
The implementation of model-based dosing algorithms for indi-
vidualization of treatment in the clinic is subject to practical,
technical, and theoretical challenges, such as the characteriza-
tion of interindividual differences. As a consequence, histori-
cally AED dose adjustments have been restricted to the typical
population parameter values, without taking into account the
contribution of predefined covariate effects. In fact, exceptions
are illustrated by the requirement for dose adjustment in
patients with varying degrees of renal and hepatic impairment.

Treatment individualization or precision medicine has become
the goal of the clinical research community in other therapeutic
areas such as oncology, but its wider acceptance seems to be hin-
dered by limited evidence of its large-scale utility and impact.31

Furthermore, the lack of user-friendly software programs over
the past decades has imposed the need for technical skills to
access and use quantitative technologies. This situation has
changed in recent times; advances in computing performance
and continuous development of dedicated software packages,
such as R and Shiny, have allowed the development of dosing
tools with user-friendly graphical user interfaces.32 For example,
the use of TDM is popular in antibiotic treatment, and the
application TDMx has been created to make use of the available
PK models for TDM-based dosing adjustments.33 Currently, no
such software applications exist with the required functionality
to integrate bioanalytical results from TDM with a population
PK model and patient demographic, clinical, and genetic infor-
mation to derive individualized dose recommendations for
AEDs. Given the availability of dosing algorithms in other fields
of medicine, it appears that the lack of such applications for
AEDs reflects the entrenched culture in clinical decision mak-
ing, rather than a technical hurdle. Taking into account the
possibility of performing TDM based on a dried blood spot or
saliva, it can be anticipated that the implementation of inte-
grated platforms will not represent an increased burden to
patient care in epilepsy.34,35 A final obstacle for the uptake of
TDM-based dosing individualization applications is the lack of
standards and consensus regarding the validation requirements
for such a platform. At the moment, no clear guidelines exist
for such an evaluation. This leads to the use of ad-hoc criteria,
creating unnecessary complexities and inconsistencies for the
development and acceptance of these tools. Agreement on the
quality standards and validation requirements may create a more
favorable environment for these applications to thrive in. In this
respect, the approval of model-based dosing algorithms may require
a (regulated) process comparable to what is expected from any
diagnostic test or device. One should demonstrate the accuracy
and precision of the method as well as the implications of making
the “wrong” decision. Public–private partnerships and consortia
could play an important role in the development of such standards,
acting as custodians and curators.
In summary, some important recommendations arise from our

investigation. First, that the use of wide blood sampling intervals
for TDM has limited impact on the characterization of individ-
ual PK parameters. Second, AED target exposure levels are
unlikely to be attained without the use of dosing algorithms and
individualized dosing recommendations. Third, available PK
models have limitations that highlight the need for standardiza-
tion and validation procedures. Simplified models can lead to
under- or overestimation of variability and thereby to imprecise
dosing. On the other hand, models that are too complex may
show parameter identifiability issues. In essence, a balance needs
to be struck between complexity and usability. The work pre-
sented here adds to the increasing evidence that individualized
therapy provides an opportunity to prevent failure of treatment
with first-line and alternative first-line AEDs, disentangling truly

ARTICLES

CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 103 NUMBER 4 | APRIL 2018 669



drug-resistant patients from those who are labeled as nonres-
ponders, i.e., whose phenotype is a consequence of suboptimal
exposure.

METHODS
PK models and virtual patient demographics
Models describing the adult and pediatric PK of carbamazepine
(CBZ),36 clobazam (CLBZ),37 clonazepam (CLNZ),20 lamotrigine
(LMT),38,39 levetiracetam (LVT),40 oxcarbazepine (OXC),41 pheno-
barbital (PHB),42 phenytoin (PHT),43 topiramate (TPM),30 valproic
acid (VPA),44,45 and zonisamide (ZNS)46 were collected from the
published literature. Models were transcribed into the appropriate for-
mat in R v. 3.1.1,47 along with the parameter estimates and combined
with analytical solutions of the mathematical equations describing the
concentration over time profiles (Eqs. 1 and 2.1–2.5 for one- and two-
compartment models, respectively; see online Supplemental Material
for details).12 These equations were then implemented as scripts and
used for all subsequent simulations. For each AED, separate adult and
pediatric populations were evaluated (n 5 1,000) using the baseline
demographic characteristics depicted in Table 1. Values of other influ-
ential factors, such as genetic polymorphisms, were simulated accord-
ing to their occurrence as in the original publication. Steady-state
concentrations over 12-h dose intervals and Css (Eq. 3) were simulated
for typical adult and pediatric populations (Table 1). Hypothetical
dosing regimens were considered according to different dosing algo-
rithms (Table 2). Steady-state concentrations (Css) were used as a sur-
rogate marker for AED effect, with the therapeutic target Css (TCss)
in each scenario set to the concentration halfway between
the therapeutic minimum and maximum of the therapeutic window
(Table 3)10:
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where Ct: concentration at time t (mg/L or lg/L). D: dose (mg or lg).
V or V1: central volume of distribution (L). ka: absorption rate constant
(h-1). CL: clearance (L/h). t: time (h). tD: time of dose (h). s: dosing inter-
val (h). Q: intercompartmental clearance (L/h). V2: peripheral volume of
distribution (L). F: bioavailability (fraction of the dose that is absorbed).
TCss: target steady-state concentration (mg/L or lg/L). i: individual i.

Personalized dosing algorithms
Two different dosing algorithm scenarios were simulated based on the pop-
ulation PK models alone. In an initial scenario, exploratory simulations (not
shown) were performed to select one dose for the whole population that
resulted in exposures which were the closest to the target exposure in the

Table 1 Baseline characteristics of the patient population used
across the different simulation scenarios

Demographic Adult values Pediatric values

Age range in years
(uniformly distributed)

18-65 4-14

Mean, CV% of weight (kg)
(normally distributed)

Male: 75, 16%
Female: 65, 16%

Age3317,a 10%

Gender Male: 50%
Female: 50%

Male: 50%
Female: 50%

aBased on the weight-by-age formula proposed by Luscombe and Owens.49

Table 2 Model-based dosing algorithms tested in the different scenarios
Dosing algorithm name Dose calculated using

Standard (population) Population CL

Personalized Model-predicted CL, including covariate effects

Individualized (1) Individual CL prediction based on TDM with 1 sample

Individualized (2) Individual CL prediction based on TDM with 2 samples

Individualized (3) Individual CL prediction based on TDM with 3 samples

D-optimized (1) Individual CL prediction based on TDM with optimized
sampling time (1 sample during the elimination phase)

D-optimized (2) Individual CL prediction based on TDM with optimized
sampling times (2 samples during the elimination phase)

D-optimized (3) Individual CL prediction based on TDM with optimized
sampling times (3 samples during the elimination phase)
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largest proportion of the population. This population scenario was selected
as a reference scenario. For subsequent comparisons, there was the assump-
tion that the selected doses reflect the titration procedures used in clinical
practice. By contrast, in the personalized dosing scenario, individual clear-
ance estimates were calculated for each patient i (CLi) using the covariates
included in the model. The difference between the initial population dose
and personalized dosing scenarios represents the impact of interindividual
variability in clearance, which is explained by covariates. Finally, an addi-
tional dosing scenario was generated for PHT based on the nomogram of
Ludden et al.48 This nomogram requires two samples at different steady-
state doses. We have therefore used 300 and 200 mg/day for adults, and 10
and 6.7 mg/kg/day for children. Based on their nomogram, parameters
Vmax and Km are calculated and an updated dose can be derived using the
formula Vmax*TCss/Km1TCss. It should be noted that the nomogram will
derive a negative Km when higher concentrations are observed for a lower
dose as compared to that of the higher dose, in which case their median
reported Km of 7.73 was used instead.

Individualized dosing algorithms
Given that the AEDs are titrated to steady-state conditions, the average
plasma concentration at steady state will vary according to the individual
patient’s clearance (CL). Empirical Bayesian estimation procedures can be
used to obtain accurate predictions of the individual parameter of interest.
The EBE determines the deviation (h, eta) from the population value (u,
theta) of the parameters of interest (e.g., rate of absorption, volume of distri-
bution, clearance, etc.), taking into account the residual variability (e, epsi-
lon).50 Thus, AED concentrations derived from TDM can be used in
conjunction with EBE to individualize the dose.10,11,51 In theory, such an
approach allows one to account for the variability in clearance and other
individual PK parameters which are not described by the underlying covari-
ate effects. To date, it is unclear to what degree the proposed dosing algo-
rithm yields higher proportions of patients achieving target Css (TCss) when
compared to conventional dose adjustment for AEDs based on TDM only.
Here we present three individualized dosing scenarios, in which EBEs

were obtained for clearance (CLi), under the assumption of blood sam-
pling being performed according to empirical sampling schemes, includ-
ing 1, 2, or 3 samples for each individual patient. When only one sample
was collected, sampling was performed at the end of the dosing interval
(e.g. 12 h for a b.i.d. regimen) to ensure information about the trough
levels. When two samples were used, blood sampling was such that infor-
mation was obtained about the elimination phase in addition to the
trough sample at the end of the dosing interval, i.e., at 9 h and 12 h post-
dose. For three samples, data on the elimination phase was obtained at 6,

9, and 12 h postdose. EBEs of clearance were obtained by minimizing
the Bayesian objective function:
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where �Y ij is the j
th concentration prediction for individual i, Yij is the j

th

concentration observed for individual i, r is the variance of the residual
error, hik is the deviation (eta) from population parameter k in individ-
ual i, and x is the variance of the kth eta. Although EBEs were estimated
for all etas, only those for clearance were subsequently used for dose opti-
mization using Eq. 4. The difference between personalized and individu-
alized dosing scenarios reflects the contribution of the parameter
distribution describing an additional fraction of the unexplained interin-
dividual variability in clearance. See the online Supplemental Material
for further details about the optimization of blood sampling for TDM
using D-optimal design in software PFIM.

Graphical and statistical summaries of the simulated
scenarios
The ratio RTCss 5 Css/TCss was used to describe how well the Css

resulting from a dosing algorithm compared to the theoretical TCss.
Consequently, values for RTCss below or above 1 represent underdosing
or overdosing, respectively. The observed differences between dosing
algorithms for each drug and simulation scenario were graphically ana-
lyzed using whisker-box plots of the median and 95% prediction inter-
vals. In addition, the range of PFIM-derived sampling times was used to
assess differences in parameter information content for the scenarios
involving sampling time optimization. Furthermore, bias and precision
of RTCss were determined by calculating the relative error (RE%) as
(Css – TCss) * 100%, and coefficient of variance (CV%) as mean(RTCss)
/ sd(RTCss) * 100%, respectively. The impact of dosing algorithms on
the ability to attain TCss was determined by taking the difference in
CV% and RE% estimates between simulated scenarios.

SUPPLEMENTARY MATERIAL is linked to the online version of the arti-
cle at http://www.cpt-journal.com
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Table 3 Dose levels simulated for the initial dosing scenario, along with the corresponding therapeutic windows and target steady-
state concentration for each drug

Drug Adult standard dose Pediatric standard dose
Therapeutic concentration

window [9]
Target steady-state

concentration

CBZ 700 mg/day 15 mg/kg/day 4-12 mg/L 8 mg/L

CLBZ 20 lg/day 0.4 lg/kg/day 30-300 lg/L 165 lg/L

CLNZ 5 lg/day 0.08 lg/kg/day 20-70 lg/L 45 lg/L

LMT 400 mg/day 7 mg/kg/day 2.5-15 mg/L 8.75 mg/L

LVT 2500 mg/day 50 mg/kg/day 12-46 mg/L 29 mg/L

OXC 1000 mg/day 20 mg/kg/day 3-35 mg/L 19 mg/L

PHB 150 mg/day 4 mg/kg/day 10-40 mg/L 25 mg/L

PHT 300 mg/day 10 mg/kg/day 10-20 mg/L 15 mg/L

TPM 300 mg/day 8 mg/kg/day 5-20 mg/L 12.5 mg/L

VPA 1200 mg/day 20 mg/kg/day 50-100 mg/L 75 mg/L

ZNS 300 mg/day 6 mg/kg/day 10-40 mg/L 25 mg/L
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