Endocrinopathies in paediatric-onset neuromyelitis optica spectrum disorder with aquaporin 4 (AQP4) antibody

Yael Hacohen^{1,2}, Silvia Messina³, Hoong-Wei Gan⁴, Sukhvir Wright⁵, Saleel Chandratre⁶, Maria Isabel Leite^{3,8}, Penny Fallon⁷, Angela Vincent⁸, Olga Ciccarelli², Evangeline Wassmer⁵, Ming Lim⁹, Jacqueline Palace^{3*}, Cheryl Hemingway^{1*}

*These authors are joint senior authors

- 1. Department of Paediatric Neurology, Great Ormond Street Hospital for Children, London, UK.
- Department of Neuroinflammation, Queen Square MS Centre, UCL Institute of Neurology, London, UK
- 3. Neurology Department, John Radcliffe Hospital, Oxford, UK
- 4. Paediatric endocrinology, Great Ormond street Hospital, London, UK
- 5. Department of Paediatric Neurology, Birmingham Children's Hospital, Birmingham, UK
- 6. Department of Paediatric Neurology, John Radcliffe Hospital, Oxford, UK
- 7. Department of paediatric neurology, St George's Hospital, London, UK
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
- 9. Children's Neurosciences, Evelina London Children's Hospital @ Guy's and St Thomas' NHS Foundation Trust, King's Health Partners Academic Health Science Centre, London, UK

Address for correspondence:

Dr Yael Hacohen, Department of neurosciences. Great Ormond Street Hospital for Children, Great Ormond Street, London, WC1N 3 JH, UK

Running head: Endocrinopathies in AQP4-Ab NMOSDWord Count: 1073Abstract: 98Title: 85 charactersReferences: 11Figure: 1Table: 1

Abstract

The involvement of the diencephalic regions in neuromyelitis optica spectrum disorder (NMOSD) may lead to endocrinopathies. In this study we identified the following endocrinopathies in 60%(15/25) of young people with paediatric-onset AQP4-Ab NMOSD: morbid obesity (n=8), hyperinsulinaemia (n=5), hyperandrogenism (n=5), amenorrhoea (n=5), hyponatraemia (n=4), short stature (n=3) and central hypothyroidism (n=2) irrespective of hypothalamic lesions. Morbid obesity was seen in 88%(7/8) of children of Caribbean origin. As endocrinopathies, were prevalent in the majority of paediatric-onset AQP4-Ab NMOSD, endocrine surveillance and in particular early aggressive weight management is required for patients with AQP4-Ab NMOSD.

1 Introduction

The revised diagnostic criteria for neuromyelitis optica spectrum disorders (NMOSD) are considered to be appropriate for paediatric patients¹. NMOSD-typical brain lesions may involve the diencephalic regions, including the hypothalamus, and the periependymal regions in the brainstem¹, with consequent clinical symptoms. In particular, endocrinopathies and disorders of water balance, associated with CNS Aquaporin 4 (AQP4) autoimmunity, have been attributed to hypothalamic involvement.²

8 An association between recurrent inflammation of the optic nerves and spinal cord with

9 endocrinopathies was first described in 1997 in patients with the distinct clinical syndrome known as

10 recurrent optic neuromyelitis (RONM); this was prior to the discovery of AQP4-Antibody (Ab). RONM

11 was predominantly described in Afro-Caribbean and African-Brazilian women with recurrent CNS

12 demyelination associated with endocrinopathies, such as central hypothyroidism, hyperphagia with

13 obesity and diabetes mellitus³⁻⁵. The patients described with RONM would fulfil the current diagnostic

criteria for neuromyelitis optica NMOSD¹, even in the absence of AQP4-Ab. In view of the phenotypic
 overlap in patients with NMOSD and RONM, we aimed to investigate whether endocrinopathies are

- 16 seen in paediatric onset AQP4-Ab positive NMOSD patients.
- 17

18 Patients and methods

19 Clinical, demographic and treatment data were collected from 25 consecutive paediatric-onset (under 20 the age of 18 years) AQP4-Ab positive NMOSD patients, according to the recent diagnostic criteria¹, 21 seen in the nationally commissioned Oxford NMO service (NRES ref. 10/H0606/56). All patients had 22 undergone brain and spinal cord imaging according to local MRI protocols. Endocrinological tests were 23 only carried out when clinically indicated. Morbid obesity was defined as BMI>40 and short stature was 24 defined as height < 2SD below the mean height for age and sex. Hyperinsulinaemia was defined as 25 HOMA-IR >1.5 or insulin peak >100 mU/l to oral glucose load. Amenorrhoea was defined as absence of 26 periods by 16 years (primary) or absence of 3 consecutive periods in a woman with previously normal 27 (monthly) cycles(secondary). Polycystic ovary syndrome was defined as An LH/FSH ratio of greater 28 than 2.5:1. Central hypothyroidism was defined as low free T4/3 in the presence of a normal or low 29 TSH. Statistical analysis was performed using commercially available software GraphPad Prism 6 30 [GraphPad Software Inc]). Non-parametric statistical tests (Mann-Whitney tests) were used for 31 continuous distributions, and Fisher's exact tests for nominal data. Parental consent was obtained for 32 publication of relevant clinical information. 33

34 Results

1.

35 The clinical and radiological features of all AQP4-Ab positive NMOSD patients are summarized in table

- 36
- 37

- 1 A total of 15 patients (60%) had symptoms of endocrinopathies. These included: morbid obesity (n=8),
- 2 hyperinsulinaemia (n=5), hyperandrogenism (n=5), secondary amenorrhoea (n=5), hyponatraemia
- 3 (n=4), short stature (n=3) and central hypothyroidism (n=2).
- 4

5 When comparing patients with endocrinopathies to those without, there was no difference in the 6 patients' demographics, clinical presentations at onset and relapse, or cumulative dose of steroids 7 received (Table 1). Patients with endocrinopathies were more likely to have abnormal brain MRI 12/15 8 than those without endocrinopathies during the course of their illness (12/15 vs 3/10 p=0.034), but there 9 was no difference in hypothalamic involvement on imaging between patients with and those without 10 endocrinopathies (4/15 vs 1/10, p=0.61). Morbid obesity was seen in 7/8 (87.5%) of children of 11 Caribbean origin and only in one child (1/17, 5.9%) of non-Caribbean origin (p=0.002). Growth charts 12 and neuroimaging of three female patients with morbid obesity are illustrated in Figure 1.

13

14 Discussion

In this cohort of paediatric onset AQP4-Ab NMOSD, we have identified endocrinopathies in 60% of the
patients, contributing to significant morbidity with potential effect on the patients' quality of life and longterm health.

18

19 It is possible that in some patients the endocrinopathies result from symptomatic hypothalamic lesions 20 resulting in dysregulation of the homeostatic control of energy balance, which leads to metabolic 21 alterations and obesity.⁶ In the original description of RNMO with endocrinopathies both enhancing and 22 non-enhancing hypothalamic MRI lesions were observed in several patients. In addition inflammatory 23 lesions were observed in hypothalamic area in one patient at pathological level^{3,4}. Interestingly, no 24 difference, in terms of evident of hypothalamic involvement, at the time of study, between patients with 25 endocrinopathies and those without were observed in our cohort. This is in keeping with previous 26 paediatric case reports of hypothalamic-pituitary axis dysfunction in children with NMOSD occurring 27 with⁷ or without⁸ radiological evidence of hypothalamic inflammation. As not all patients were imaged 28 with 3T MRI and it is possible that low field MRI could explain this discrepancy. More advance imaging 29 techniques may detect microscopic tissue abnormalities suggestive of active inflammation or evidence 30 of previous lesions in the hypothalamus

31

Hyperinsulinaemia was only seen in patients with obesity and it is possibly a consequence of the obesity. Hyperandrogenism with polycystic ovary syndrome and secondary amenorrhoea were seen in 5/25 (20%) of the patients; three with obesity and two with normal BMI. A previous study of paediatric

- 35 NMOSD described 3 (out of 9) patients with irregular menstrual cycles before their initial attack, which
- 36 became regular when patients were commenced on treatment⁹. In the same study catamenial
- 37 exacerbation of disease occurred in one patient, and initiating oral contraceptives corresponded with

1 decreased attacks. Hyponatraemia, secondary to syndrome of inappropriate antidiuretic hormone

2 secretion (SIADH) was reported in 4/25 (16%) patients, all at presentation, which resolved with

- 3 treatment, in keeping with recent reports of SIADH in 6/41 (15%) of adult patients with AQP4-Ab
- 4 NMOSD¹⁰.
- 5

6 Six of 15 (40%) patients with endocrinopathies in our cohort were of African-Caribbean origin. Although 7 some of these features, in particularly the obesity, were initially attributed to the use of steroids, the 8 patients continued to gain weight (>100kg addition in 2 patients over 2 and 3 years respectively) after 9 steroids were stopped (Figure 1). It is possible that the exogenous corticosteroids may induce 10 epigenetic changes in the glucocorticoid receptors resulting in chronic increases in hypothalamic 11 corticosterone levels and consequent obesity and hyperphagia, as recently reported in an animal 12 model¹¹. Although obesity is common in British women of African-Caribbean origin, there is no 13 straightforward relationship between obesity and ethnicity, with a complex interplay of factors that 14 subsequently contribute to nutrition-related diseases.

15

A major limitation of this study is the lack of standardised endocrinological assessment in the patients for hypothalamic-pituitary axis dysfunction throughout the disease course. Furthermore, it is likely that some of the features, such as the obesity, are multifactorial making it difficult to disentangle in this small cohort. Nevertheless, the striking finding of endocrinopathies in 60% in children with AQP4-Ab NMOSD, with morbid obesity in 86% of affected children of Caribbean origin should argue for endocrine surveillance and mandate early aggressive weight management in all patients with AQP4-Ab NMOSD.

22

23 Acknowledgments

24 We are very grateful to Wallace Brownlee for his thoughtful comments on the manuscript. In addition we

25 would like to thank all the numerous primary physicians and allied health professionals caring for these

26 children during their complex course of disease. We gratefully acknowledge the Highly Specialised

- 27 Commissioning Team for funding the Neuromyelitis Optica service in Oxford. This research is supported
- by the NIHR University College London Hospitals Biomedical Research Centre (OC) and the NIHR
- 29 Great Ormond Street Hospital Biomedical Research Centre (YH, CH).

Table 1: Comparison of clinical and paraclinical features in AQP4-Ab positive patients with and
 without endocrinopathies.

without endocrinopathies.	Endocrinopathies	No endocrinopathies	P value
	(n=15)	(n=10)	i value
Age of disease onset	12 (8-14)	11 (8-15.5)	0.80
(median, IQR)	12 (0 14)		0.00
Female	14 (93%)	10 (100%)	1.0
Ethnicity	14 (5070)	10 (100 %)	1.0
Caucasian	5 (33%)	6 (60%)	0.24
Afro-Caribbean	6 (40%)	1 (10%)	0.18
Asian	4 (27%)	2 (20%)	1.0
Other	0 (0%)	1 (10%)	0.4
Disease course	0 (070)	1 (10/0)	0.1
Optic nerve	7 (47%)	7 (70%)	0.41
Cerebrum	7 (47%)	1 (10%)	0.088
Brainstem	13 (87%)	5 (50%)	0.075
Spinal cord	10 (67%)	7 (70%)	1.0
Magnetic resonance imaging			
Abnormal Brain	12 (80%)	3 (30%)	0.034
Hypothalamic involvement	4 (27%)	1 (10%)	0.61
Expanded Disability Status	2 (1.5-3)	2.5 (1-4)	0.59
Scale (median, IQR)			
Maintenance treatment	14 (93%)	8 (80%)	0.54
Maintenance oral	7 (47%, 1 obese	7 (70%)	0.41
prednisolone (>3months)	patient)		
Rituximab	5 (33%)	0 (0%)	0.06
Azathioprine/ Mycophenolate	11 (73%)	7 (70%)	1.0
mofetil			

1 Figure 1: Growth charts of the three female patients with NMOSD and morbid obesity.

2 Hypothalamic lesions on MRI were reported in patients 1 and 3 but not in patient 2. Patient 1 first 3 presented with an area postrema syndrome at the age of 12 years. Her weight on presentation was 4 63kg (BMI 21). She was referred to endocrinology service at age 12.5 years due to concerns about her 5 weight (BMI 36.7 +3.5 SDS). She was not on steroids. She was noted to have striae, acanthosis 6 nigricans and mild acne but no other Cushingoid features. She was also oligomenorrhoeic. Basal 7 endocrine testing was normal. A subsequent oral glucose tolerance test performed at age 12.6 years 8 showed a impaired fasting glucose (6.2 mmol/l), impaired glucose tolerance (9.0 mmol/l) and a peak 9 insulin concentration that was above the upper limit of detection of >300 mU/I. She was subsequently 10 started on metformin in escalating doses. At the age of 13.2 years, due to continued oligomenorrhoea, a 11 pelvic ultrasound was performed which showed polycystic ovaries. However, despite dietary advice, at 12 the age of 14 years her weight has increased to 162kg (BMI 55, > + 4SDS). Patient 2 first presented 13 with area postrema syndrome at the age of 10 years. Her weight on presentation was 43.5kg (BMI 14 21.9). She was seen by the endocrinology service at age 12.0 years. She was menarchal. She was 15 noted to be obese (BMI 27.6, +2.7 SDS) with some hirsutism, and subsequently developed striae and 16 acanthosis nigricans, and was noted to be Cushingoid. Baseline endocrine testing revealed central 17 hypothyroidism (free T4 6.8 pmol/l (normal range 10.8-19.0), free T3 5.9 pmol/l (normal range 6.2-9.5), 18 TSH 1.5 mU/l (normal <6.0)) and marked insulin resistance (fasting glucose 5.2 mmol/l, fasting insulin 19 75.3 mU/l, HOMA-IR 17.3). Her endocrine status was otherwise normal. She was subsequently started 20 on levothyroxine supplementation and metformin. Despite rapidly increasing doses of levothyroxine and 21 metformin, her weight continued to escalate, a pelvic ultrasound at the age of 13.5 years revealed 22 polycystic ovaries, although she was still experiencing regular periods. After prednisolone was stopped 23 her BMI decreased to 44.4 from a peak of 49.8(+4.1 to +3.9 SDS). However, despite dietary advice and 24 increasing her levothyroxine and metformin to maximum doses, she continued to gain weight. At the 25 age of 15.5 years and a BMI of 46.9 (+4.0 SDS), she was referred for bariatric surgery. Patient 3 first 26 presented with encephalopathy at the age of 10 years. Neuroimaging revealed signal changes through 27 amygdala, temporal lobes hypothalamus and dorsal medulla and an longitudinally extensive transverse 28 myelitis At the time of admission her weight was 56kg (BMI 22). At the age of 12.7 years, patient 3's 29 escalating obesity (BMI 35.5, +3.4 SDS) led to an endocrinology review where she was found to be in 30 late puberty (Tanner stage 4) but had not attained menarche. Baseline endocrine function was normal. 31 Her weight continued to escalate despite continued efforts at dietary restriction and lifestyle changes, 32 and at 13.1 years her BMI was 42.5 (+3.8 SDS). Examination revealed significant striae and 33 Cushingoid features but spontaneous onset of menarche. Seguential trials of metformin and orlistat 34 were instituted, but both caused significant side effects (abdominal pain and headaches) and were 35 subsequently stopped. At the age of 13years, her prednisolone was weaned and stopped. In 36 combination with dietary restriction, this led to a degree of weight loss and at last follow-up she had lost 37 9.5 kg.

1 References

Wingerchuk DM, Banwell B, Bennett JL, et al. International consensus diagnostic
 criteria for neuromyelitis optica spectrum disorders. *Neurology* 2015.

McKeon A, Lennon VA, Lotze T, et al. CNS aquaporin-4 autoimmunity in children.
 Neurology 2008; **71**(2): 93-100.

6 3. Vernant JC, Cabre P, Smadja D, et al. Recurrent optic neuromyelitis with 7 endocrinopathies: a new syndrome. *Neurology* 1997; **48**(1): 58-64.

8 4. Papais-Alvarenga RM, Miranda-Santos CM, Puccioni-Sohler M, et al. Optic
9 neuromyelitis syndrome in Brazilian patients. *J Neurol Neurosurg Psychiatry* 2002; **73**(4): 42910 35.

11 5. Petravic D, Habek M, Supe S, Brinar VV. Recurrent optic neuromyelitis with 12 endocrinopathies: a new syndrome or just a coincidence? *Mult Scler* 2006; **12**(5): 670-3.

13 6. Cesar HC, Pisani LP. Fatty-acid-mediated hypothalamic inflammation and epigenetic 14 programming. *J Nutr Biochem* 2016; **42**: 1-5.

Viegas S, Weir A, Esiri M. Symptomatic, radiological and pathological involvement of
the hypothalamus in neuromyelitis optica (vol 80, pg 679, 2009). *J Neurol Neurosur Ps* 2009;
80(8): 938-.

18 8. Fung EL, Tsung LL, Dale RC. Aquaporin-4 autoantibody: a neurogenic cause of 19 anorexia and weight loss. *Dev Med Child Neurol* 2012; **54**(1): 45-7.

20 9. Lotze TE, Northrop JL, Hutton GJ, Ross B, Schiffman JS, Hunter JV. Spectrum of 21 pediatric neuromyelitis optica. *Pediatrics* 2008; **122**(5): e1039-47.

10. Pu S, Long Y, Yang N, et al. Syndrome of inappropriate antidiuretic hormone secretion in patients with aquaporin-4 antibody. *J Neurol* 2015; **262**(1): 101-7.

Sefton C, Harno E, Davies A, et al. Elevated hypothalamic glucocorticoid levels are
 associated with obesity and hyperphagia in male mice. *Endocrinology* 2016: en20161571.

27

28

1 Authors' contribution

YH study concept and design, acquisition of data, analysis and interpretation; critical revision of the
 manuscript for important intellectual content. SM, HWG, SW, PF, EW, ML acquisition of data, analysis

- 4 and interpretation, critical revision of the manuscript for important intellectual content. SC, MIL
- 5 acquisition of data, critical revision of the manuscript for important intellectual content. AV, OC analysis
- 6 and interpretation, critical revision of the manuscript for important intellectual content. JC, CH analysis
- 7 and interpretation, critical revision of the manuscript for important intellectual content, study supervision
- 8

9 Author disclosures

10 YH, SM, HWG, SW, PF have no disclosures. SC is supported by the National Health Service and the 11 National Specialised Commissioning Group for Neuromyelitis Optica and Neurofibromatosis type 2. He 12 has received conference funding for scientific meetings, speaking honoraria and honoraria for advisory 13 work from Eisai and Novartis. MIL is involved in AQP4 testing; is supported by the National Health 14 Service National Specialised Commissioning Group for Neuromyelitis Optica and by the National 15 Institute for Health Research Oxford Biomedical Research Centre; and has received speaking honoraria 16 from Biogen Idec and travel grants from Novartis.AV serves/has served on scientific advisory boards for 17 the Patrick Berthoud Trust, the Brain Research Trust and the Myasthenia Gravis Foundation of 18 America; has received funding for travel and a speaker honorarium from Baxter International Inc and 19 Biogen Inc; receives/has received research support from the European Union, NIHR Biomedical 20 Research Centre Oxford, Euroimmun AG and the Sir Halley Stewart Trust; and has received Musk 21 antibody royalties and consulting fees from Athena Diagnostics Inc. OC serves as a consultant for GE, 22 Biogen Idec, and Novartis, and all the payments are made to the institution (Queen Square MS Centre, 23 UCL Institute of Neurology, London, UK). EW has received speaker honoraria and/or travel funding 24 from Biogen, Teva, Genzyme, Shire, UCB, and Merck Serono ML receives research grants from Action 25 Medical Research, DES society, GOSH charity, NIHR, MS Society, SPARKS charity and; receives 26 research support grants from the London Clinical Research Network and Evelina Appeal; has received 27 consultation fees from CSL Behring; received travel grants from Merck Serono; and awarded 28 educational grants to organize meetings by Novartis, Biogen Idec, Merck Serono and Bayer 29 JP is partly funded by highly specialized services to run a national congenital myasthenia service and a 30 national neuromyelitis optica service. She has received conference funding for scientific meetings and 31 honoraria for advisory work from Bayer Schering, Biogen Idec, Chugai Pharma, Merck Serono, 32 Novartis, Ono Pharmaceutical Co. Ltd and Teva. She has received unrestricted research grants from 33 Bayer Schering, Biogen Idec, Merck Serono and Novartis.CH has received speaking honoraria from 34 Biogen and terumo, and an educational grant from Merck Serono, Biogen and Bayer. 35 36