
Finite Elements in Analysis and Design 142 (2018) 51–60

Contents lists available at ScienceDirect

Finite Elements in Analysis and Design

journal homepage: www.elsev ier . com/ locate / f ine l

A simple approach for finite element simulation of reinforced plates

Erik Burman a, Peter Hansbo b,*, Mats G. Larson c

a Department of Mathematics, University College London, London, UK–WC1E 6BT, United Kingdom
b Department of Mechanical Engineering, Jönköping University, S-551 11, Jönköping, Sweden
c Department of Mathematics and Mathematical Statistics, Umeå University, SE–901 87, Umeå, Sweden

A R T I C L E I N F O

Keywords:
Cut finite element method
Discontinuous Galerkin
Kirchhoff–Love plate
Euler–Bernoulli beam
Reinforced plate

A B S T R A C T

We present a new approach for adding Bernoulli beam reinforcements to Kirchhoff plates. The plate is discretised
using a continuous/discontinuous finite element method based on standard continuous piecewise polynomial
finite element spaces. The beams are discretised by the CutFEM technique of letting the basis functions of the
plate represent also the beams which are allowed to pass through the plate elements. This allows for a fast and
easy way of assessing where the plate should be supported, for instance, in an optimization loop.
1. Introduction

Reinforcements of plates using lower–dimensional structures such
as beams are often employed for the purpose of increasing buckling
loads and avoiding eigenfrequencies in vibration problems. The effect
of stiffeners can be simulated in a finite element context in a variety of
ways. The important issue is how to couple the variables of the beam
to the variables of the plate. Different approaches have been suggested:

• Point (nodal) constraints matching beam and plate displacements
[20].

• Lagrange multipliers to tie the beam and plate [17].
• Using the plate basis functions also for the beam, along edges or

aligned with the elements [5], or obliquely [13,16,19].

The last approach has only been used in the context of Timoshenko
beams coupled to Mindlin–Reissner plates, where simple C0 approx-
imations can be used; a similar approach was recently suggested for
modeling embedded trusses by Lé, Legrain, and Moës [15]. In this
paper we present a method for the coupling of Kirchhoff plates and
Euler–Bernoulli beams based on this concept, together with a tangential
differential approach which simplifies the implementation for arbitrar-
ily oriented beams. This is possible thanks to the development of contin-
uous/discontinuous Galerkin (c/dG) methods for higher order problems
[6,7,9,10], avoiding the use of C1–continuity.

The fact that we do not have to employ higher continuity allows for
coupling in other contexts as well. In Ref. [12] we proposed to use the
same finite element space for the beam as for the higher dimensional
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structure modeled by linear elasticity, using second order polynomials
for elasticity and taking the restriction, or trace, of these polynomials
to model the beam using c/dG.

2. Modeling of reinforced plates

2.1. The basic approach

In this Section we develop a simple model of a set of beam elements
in a plate. The main approach is as follows:

• Given a continuous finite element space, based on at least second
order polynomials for the plate, we define the finite element space
for the one–dimensional structure as the restriction of the plate finite
element space to the structure which is geometrically modeled by an
embedded curve or line.

• To formulate a finite element method on the restricted or trace
finite element space we employ continuous/discontinuous Galerkin
approximations of the Euler–Bernoulli beam model. The beams are
then modeled using the CutFEM paradigm and the stiffness of the
embedded beams is in the most basic version, which we consider
here, simply added to the plate stiffness.

To ensure coercivity of the cut beam model we in general need to
add a certain stabilization term which provides control of the discrete
functions variation in the vicinity of the beam. However, for beams
embedded in a plate, the plate stabilizes the beam discretizations, and
018
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we shall show that if the plate is stiff enough compared to the beam
the usual additional stabilization [1] is superfluous. The plate problem
may also be viewed as an interface problem in order to more accu-
rately approximate the plate in the vicinity of the beam structure; this
approach is however significantly more demanding from an implemen-
tation point of view and we leave it for future work.

The work presented here is an extension of earlier work [4] where
membrane structures were considered, in which case a linear approxi-
mation in the bulk suffices.

2.2. The Kirchhoff–Love plate model

In the Kirchhoff–Love plate model, posed on a polygonal domain
Ω ⊂ ℝ2 with boundary 𝜕Ω and exterior unit normal n𝜕𝛺, we seek an
out–of–plane (scalar) displacement u to which we associate the strain
(curvature) tensor

𝜺(∇u) ≔ 1
2
(∇⊗ (∇u) + (∇u)⊗∇) = ∇⊗∇u = ∇2u (1)

and the plate stress (moment) tensor

𝝈P(∇u) ≔ P
(
𝜺(∇u) + 𝜈𝛺(1 − 𝜈𝛺)−1div ∇u I

)
(2)

= P
(
∇2u + 𝜈𝛺(1 − 𝜈𝛺)−1ΔuI

)
(3)

where

P =
E𝛺t3

𝛺

12(1 + 𝜈𝛺)
(4)

with E𝛺 the Young’s modulus, 𝜈𝛺 the Poisson’s ratio, and t𝛺 denotes
the plate thickness. Since 0 ≤ 𝜈𝛺 ≤ 0.5 the constants are uniformly
bounded.

The Kirchhoff–Love problem then takes the form: given the
out–of–plane load (per unit area) f , find the displacement u such that

div 𝐝𝐢𝐯𝝈P(∇u) = f in Ω (5)

u = 0 on 𝜕Ω (6)

n𝜕𝛺 · ∇u = 0 on 𝜕Ω (7)

where 𝐝𝐢𝐯 and div denote the divergence of a tensor and a vector field,
respectively.

Weak Form. The variational problem takes the form: Find the dis-
placement u ∈ V = H2(Ω) such that
Ω 0
aΩ(u, v) = lΩ(v) ∀v ∈ VΩ (8)

where the forms are defined by

aΩ(v,w) = (𝝈P(∇v), 𝜺(∇w))Ω (9)

lΩ(v) = (f , v)Ω (10)

We employ the following notation: L2(𝜔) is the Lebesgue space
of square integrable functions on 𝜔 with scalar product (·, ·)L2(𝜔) =
(·, ·)𝜔 and (·, ·)L2(Ω) = (·, ·), and norm ‖·‖L2(𝜔) = ‖·‖𝜔 and ‖·‖L2(Ω) = ‖·‖,
Hs(𝜔) is the Sobolev space of order s on 𝜔 with norm ‖·‖Hs(𝜔),
and H1

0 (Ω) = {v ∈ H1(Ω) ∶ v = 0 on 𝜕Ω}, and H2
0 (Ω) = {v ∈ H2(Ω) ∶

v = n𝜕𝛺 · ∇v = 0 on 𝜕Ω}.

2.3. The Euler–Bernoulli beam model

Consider a straight thin beam with centerline Σ ⊂ Ω and a rectangu-
lar cross-section with width bΣ and thickness tΣ, see Fig. 2. The mod-
eling of the beam is performed using tangential differential calculus
and we follow the exposition in Refs. [11,12], which also covers curved
beams. Using this approach the beam equation is expressed in the same
coordinate system as the plate, which is convenient in the construction
of the cut finite element method for reinforced plates, see Fig. 1 for
examples.

Let t be the tangent vector to the line Σ and PΣ = t ⊗ t the projection
onto the one dimensional tangent space of Σ and define the tangential
derivatives

∇Σv = PΣ∇v, 𝜕tv = t · ∇v (11)

Then we have the identity

∇Σv = (𝜕tv)t (12)

Based on the assumption that planar cross sections orthogonal to
the midline remain plane after deformation we assume that the dis-
placement takes the form

u = un + 𝜃𝜁 t (13)

where 𝜁 is the signed orthogonal distance to Ω, positive on one side of Ω
and negative on the other side, and 𝜃 ∶ Σ → ℝ is an angle representing
an infinitesimal rotation, assumed constant in the normal plane.

In Euler–Bernoulli beam theory the beam cross-section is assumed
plane and orthogonal to the beam midline after deformation and no
shear deformations occur, which means that we have

𝜃 = t · ∇u ≔ 𝜕tu (14)
Fig. 1. Examples of plates reinforced by beams.

Fig. 2. Left: The reinforced plate geometry parameters, tΩ, tΣ, and bΣ.
Right: Alternative design of reinforcement with two separate beams
of thickness sΣ = (tΣ − tΩ)∕2 above and below the plate.
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Fig. 3. The mesh h with one beam, the active mesh h(Σ) for
the beam in purple, and the set of intersection points h(Σ). (For
interpretation of the references to colour in this figure legend,
the reader is referred to the Web version of this article.)
This definition for 𝜃 in combination with (13) constitutes the
Euler–Bernoulli kinematic assumption

u = un + 𝜁 (𝜕tu)t = un + 𝜁∇Σu

We assume the usual Hooke’s law for one dimensional structural
members

𝝈Σ(u) = EΣ𝜺Σ(u) (15)

where EΣ is the Young modulus and the tangential strain tensor is given
by

𝜺Σ(u) = PΣ𝜺(u)PΣ = 𝜁𝜺Σ(∇Σu) (16)

where in the last equality we used the identity

u ⊗ ∇ = (un + 𝜁∇Σu)⊗∇ = n ⊗ (∇u) + 𝜁 (∇Σu)⊗ ∇ (17)

to conclude that

𝜺Σ(u) = 𝜁𝜺Σ(∇Σu) (18)

Next note that the strain energy density can be written

𝝈Σ(u) ∶ 𝜺Σ(u) = 𝜁2
𝝈Σ(∇Σu) ∶ 𝜺(∇Σu) (19)

and the total energy of the beam structure is obtained by integrating
over the beam volume

Σ = 1
2∫ΣIΣ𝝈Σ(∇Σu) ∶ 𝜺(∇Σu) dΣ − ∫ΣaΣ fΣu dΣ (20)

where the integral over the cross section is accounted for by the cross-
section area and its second moment

aΣ = bΣtΣ, IΣ = bΣt3Σ∕12 (21)

We are thus led to introducing the beam stress tensor

𝝈B,Σ(∇Σv) = IΣ𝝈Σ(∇Σv) = IΣEΣ𝜺Σ(∇Σv) (22)

and thus we have the beam Hooke law

𝝈B,Σ(∇Σv) = B𝜺Σ(∇Σv) (23)

where

B = EΣIΣ =
EΣbΣt3Σ

12
(24)

Taking variations we obtain the weak statement, assuming zero
displacements and rotations at the end points of Σ, we thus seek
u ∈ VΣ = H2

0 (Σ), such that

aΣ(u, v) = lΣ(v) ∀v ∈ VΣ (25)

where the forms are defined by

aΣ(v,w) = ∫Σ𝝈B,Σ(∇Σv) ∶ 𝜺Σ(∇Σw) dΣ, lΣ(v) = ∫ΣaΣ fΣv dΣ (26)

Remark 1. We have the identity

𝜺Σ(∇Σv) = (𝜕2
t v)t ⊗ t (27)
since (∇Σv)⊗ ∇Σ = ((𝜕tv)t)⊗ ∇Σ = (𝜕t (𝜕tv)t)⊗ t = (𝜕2
t v)t ⊗ t, where

𝜕t (𝜕tv) = 𝜕2
t v since t is constant, which leads to

𝝈B,Σ(∇Σv) ∶ 𝜺(∇Σw) = EΣIΣ𝜕2
t v𝜕2

t w (28)

which leads to

aΣ(v,w) = ∫Σ𝝈B,Σ(∇Σv) ∶ 𝜺(∇Σw) dΣ = ∫ΣEΣIΣ𝜕2
t v𝜕2

t w dΣ (29)

Here we recognize the right hand side as the traditional bilinear form
associated with the Euler-Bernoulli beam.

Remark 2. We note that in the alternative reinforcement geometry,
right in Fig. 2, we have

aΣ = bΣ(tΣ − tΩ), IΣ =
EΣbΣ(t3Σ − t3Ω)

12
(30)

We may also consider more complicated cross sections and compute the
proper parameters.

Remark 3. We assume that the beam centerline is located in the sym-
metry plane of the plate, see Fig. 2, which simplifies the modeling of a
reinforced plate since it will be subject to pure bending. If the beams
are located on one side of the plate the main approach is the same but
we must include models for the membrane deformation of the plate and
beams.

2.4. The reinforced plate model

Let  = {S} be a set of beams arbitrarily oriented in Ω. Using super-
position we obtain the problem: find u ∈ V such that

a(u, v) = l(v) ∀v ∈ V (31)

where

V = VΩ
⋂
Σ∈

VΣ (32)

and the forms are defined by

a(v,w) = aΩ(v,w) +
∑
Σ∈

aΣ(v,w) (33)

l(v) = lΩ(v) +
∑
Σ∈

lΣ(v) (34)

Remark 4. Note that for the alternative plate reinforcement geometry,
right in Fig. 2, there is no geometric error in our method if we use the
parameters (30). In the standard reinforcement geometry, left in Fig. 2,
there is a however a geometric error proportional to bΣ in the plate
bilinear form, which arises in the superposition since the intersection
between the beam and the plate is nonempty. We will later see that bΣ
typically is smaller (in practice significantly smaller) than the mesh size
since we are using thin beam and plate theory, see (35), and thus the
geometric error is small.
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Fig. 4. Beam reinforced plate.

Fig. 5. Computational mesh.
3. Finite element discretization

3.1. The mesh and finite element spaces

• We consider a subdivision h = {T} of Ω into a geometrically con-
forming finite element mesh, with mesh parameter h ∈ (0, h0]. We
assume that the elements are shape regular, i.e., the quotient of
the diameter of the smallest circumscribed sphere and the largest
inscribed sphere is uniformly bounded. We denote by hT the diam-
eter of element T and by h = maxT∈h

hT the global mesh size
parameter.

• Since we are using thin plate and beam theory we assume that there
is a constant Cmesh such that

Cmesh max(tΩ, tΣ, bΣ) ≤ h (35)

• We shall use continuous, piecewise polynomial approximations, for
both the membrane and plate problem. Let

VΩ,h,k = {v ∈ C0(Ω) ∶ v∣T ∈ k(T) ∀T ∈  } (36)

where k(T) is the space of polynomials of degree less or equal to k
defined on T. For simplicity, we write VΩ,h = VΩ,h,k .

• To define our method we introduce the set of faces (edges) F in the
mesh, h = {F}, and we split h into two disjoint subsets

h = h,I ∪ h,B (37)

where h,I is the set of faces in the interior of Ω and h,B is the set
of faces on the boundary.

• Further, with each face F we associate a fixed unit normal nF such
that for faces on the boundary nF is the exterior unit normal. We
denote the jump of a function v at a face F by [v] = v+ − v− for
F ∈ h,I and [v] = v+ for F ∈ h,B, and the average ⟨v⟩ = (v+ + v−)∕2
for F ∈ h,I and ⟨v⟩ = v+ for F ∈ h,B , where v± = lim𝜖↓0v(x ∓ 𝜖 nF )
with x ∈ F.

• Given a line segment Σ in Ω that represents a beam we let

h(Σ) = {T ∈ h ∶ T ∩ Σ ≠ ∅}

and we let h(Σ) be the set of all interior faces in h(Σ).

• The intersection points between Σ and element faces in h(Σ) is
denoted

h(Σ) = {x ∶ x = F ∩ Σ, F ∈ h(Σ)} (38)

and we assume that this is a discrete set of points (thus excluding
the case where any F ∈ h coincides with a part of Σ), see Fig. 3 for
illustration.

Remark 5. The assumption (35) is natural since we use models for thin
structures as our basis for the finite element discretization. In particular,
in (71) we use the estimate bΣ ≤ Ch which means that the mesh size
can not become very small in comparison to the beam width. If that
would happen the modeling of the beam as a form based on the beam
centerline would not be reasonable and a more detailed model should
be used as the basis for finite element modeling.

3.2. The c/dG method for the plate

We approximate the solution to the plate problem using the continu-
ous/discontinuous Galerkin (c/dG) method: Find uh ∈ VΩ,h, with k ≥ 2,
such that

aΩ,h(uh, v) = lΩ(v) ∀v ∈ VΩ,h (39)

The bilinear form aΩ,h(·, ·) is defined by
aΩ,h(v,w) =
∑

T∈h

(𝝈P(∇v), 𝜺(∇w))T

−
∑

F∈h,I∪h,B

(⟨nF · 𝝈P(∇v)⟩, [∇w])F

−
∑

F∈h,I∪h,B

([∇v], ⟨nF · 𝝈P(∇w)⟩)F
+

∑
F∈h,I∪h,B

𝛽𝛺h−1
F ([∇v], [∇w])F (40)

Here 𝛽𝛺 is a positive parameter of the form

𝛽𝛺 = 𝛽Ω,0P = 𝛽Ω,0
E𝛺t3

𝛺

12(1 + 𝜈𝛺)
(41)

where 𝛽Ω,0 is a constant depending on the polynomial order k, see Ref.
[10] for details, and hF is defined on each face F by

hF =
(|T+| + |T−|) ∕(2 |F|) for F = 𝜕T+ ∩ 𝜕T− (42)

with |T| the area of T and |F| the length of F.

Remark 6. The idea of using continuous/discontinuous approxima-
tions was first proposed by Engel et al. [6] and later analysed for
Kirchhoff–Love and Mindlin–Reissner plates in Refs. [7,9,10], cf. also
Wells and Dung [21].
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Fig. 6. Beam/mesh intersection at the center.
Remark 7. Other boundary conditions for plates, for instance simply
supported and free, can easily be included in the c/dG finite element
method, see Ref. [8] for details.

Remark 8. For v ∈ VΩ,h we have [∇v] = [nF · ∇v]nF since v is continu-
ous across a face and v = 0 on 𝜕Ω. Therefore

(⟨nF · 𝝈(∇v)⟩, [∇w])F = (⟨nF · 𝝈(∇v) · nF⟩, [nF · ∇w])F (43)

for all v,w ∈ VΩ,h, and we note that (nF · 𝝈(∇u) · nF )|F is the bending
moment at the edge F.

3.3. The cut c/dG method for a beam

We propose the following cut c/dG method. Find uh ∈ VΣ,h =
VΩ,h|h (Σ) such that

AΣ,h(uh, v) = lΣ(v) ∀v ∈ VΣ,h (44)

where the forms are defined by

AΣ,h(v,w) = aΣ,h(v,w) + sΣ,h(v,w) (45)

aΣ,h(v,w) =
∑

T∈h (Σ)
(𝝈B,Σ(∇Σv), 𝜺(∇Σw))Σ∩T

−
∑

x∈h (Σ)
(⟨t · 𝝈B,Σ(∇Σv)⟩, [∇Σw])x

−
∑

x∈h (Σ)
([∇Σv], ⟨t · 𝝈B,Σ(∇Σw)⟩)x

+
∑

x∈h (Σ)
𝛽Σh−1([∇Σv], [∇Σw])x (46)

sΣ,h(v,w) =
∑

F∈h,I (Σ)

k∑
j=0

2∑
i=0

h2j‖[𝜕j
nF
𝜕i

tv]‖2
F

+
∑

T∈h,I (Σ)

2∑
i=0

𝛾Σ,2h(𝜕nΣ𝜕
i
tv, 𝜕nΣ𝜕

i
tw)T (47)

Here we used the notation (v,w)x = v(x)w(x), the penalty parameter
takes the form

𝛽Σ = 𝛽Σ,0B = 𝛽Σ,0EΣIΣ (48)

with 𝛽Σ,0 a parameter that only depends on the polynomial order, and
sΣ,h is a stabilization form with positive parameters

𝛾Σ,i = 𝛾Σ,i,0B = 𝛾Σ,i,0EΣIΣ, i = 1, 2 (49)

The form sΣ,h is added to ensure coercivity and stability of the stiffness
matrix, cf. [1], in the case when the beam is not embedded in a plate
5

or if the plate is very weak. For completeness we provide an analysis
of this case, which also motivates the form of the stabilization form, in
Appendix A below.

Remark 9. Using the identities

∇Σv = (𝜕tv)t, 𝜺Σ(∇Σv) = (𝜕2
t v)t ⊗ t, 𝝈B,Σ(∇Σv) = EΣIΣ(𝜕2

t v)t ⊗ t (50)

we note that aΣ,h can alternatively be written in the form

aΣ,h(v,w) =
∑

T∈h(Σ)
(EΣIΣ 𝜕2

t v, 𝜕2
t w)Σ∩T

−
∑

x∈h(Σ)
(⟨EΣIΣ𝜕2

t v⟩, [𝜕tw])x

−
∑

x∈h(Σ)
([𝜕tv], ⟨EΣIΣ𝜕2

t w⟩)x
+

∑
x∈h(Σ)

𝛽Σ,0
h

(EΣIΣ[𝜕tv], [𝜕tw])x (51)

which is the form in Ref. [6].

Remark 10. The terms on the discrete set h(Σ) are associated with
the work of the end moments on the end rotation which occur due to
the lack of C1(Ω) continuity of the approximation, as in the plate model.
See Remark 8.

Remark 11. We note that due to the stabilization this method works
for a single beam, i.e. without being embedded in a plate. The basic
principle is the same as for the trace finite element method proposed
in Ref. [18] and the stabilized version proposed in Ref. [2]. When the
beam is embedded in a plate, which is the case in this work, the need
for the stabilization term is mitigated, and if the plate is sufficiently
stiff we may omit the stabilization term, see Section 3.5 for further
details.

3.4. The c/dG method for the reinforced plate model

Recall that  = {Σ} is a set of beams arbitrarily oriented in Ω. Using
superposition we obtain the problem: find uh ∈ VΩ,h such that

Ah(uh, v) = l(v) ∀v ∈ VΩ,h (52)

where the forms are defined by

Ah(v,w) = aΩ,h(v,w) +
∑
Σ∈

aΣ,h(v,w) (53)

l(v) = lΩ(v) +
∑
Σ∈

lΣ(v) (54)

3.5. Coercivity for reinforced plates

In this section we study the coercivity of the c/dG method for the
reinforced plate. We shall use the stability provided by the plate to
prove stability of the reinforced plate, without the need of the stabi-
lizing terms (𝛾Σ,1 = 𝛾Σ,2 = 0). This is only possible as long as the mesh
size h is larger than or equal to the beam with bΣ. When this condition
is not satisfied, stability uniform in h is achieved only when the stabi-
lizing terms are included (𝛾Σ,1, 𝛾Σ,2 > 0), using similar ideas as in Refs.
[2,3].

Coercivity of the Plate. We first recall that the c/dG method for the
plate is coercive. Introducing the energy norm

|||v|||2Ω,h =
∑

T∈h

P‖∇2v‖2
T +

∑
F∈h

Ph‖⟨∇2v⟩‖2
F +

∑
F∈h

Ph−1‖[∇v]‖2
F (55)

there is a constant mP > 0 such that

mP|||v|||2Ω,h ≤ aΩ,h(v, v) ∀v ∈ VΩ,h (56)

for 𝛽Ω large enough.
5
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Fig. 7. Displacements using simply supported support for the beams, EΣ = 100EΩ (left) and EΣ = 1000EΩ (right).

Fig. 8. Displacements using fixed support for the beams, EΣ = 100EΩ (left) and EΣ = 1000EΩ (right).

Coercivity of the Reinforced Plate. Next turning to the reinforced plate
we introduce the energy norm associated with the beam|||v|||2Σ,h =

∑
T∈h (Σ)

B‖𝜕t2 v‖2
Σ∩T +

∑
x∈h (Σ)

Bh‖⟨𝜕2
t v⟩‖2

x

+
∑

x∈h(Σ)
Bh−1‖[𝜕tv]‖2

x (57)

Then there is a constant m such that

m
(|||v|||2Σ,h + |||v|||2Ω,h

)
≲ Ah(v, v) ∀v ∈ Vh (58)

for 𝛽Ω and 𝛽Σ large enough.
Verification of (58), Using the following two inequalities, which we

verify below,

C1

( ∑
x∈h(Σ)

Bh‖⟨𝜕2
t v⟩‖2

x

)
≤ ∑

T∈h

P‖∇2v‖2
T (59)

for some constant C1 > 0, and∑
T∈h(Σ)

B‖𝜕2
t v‖2

Σ∩T +
∑

x∈h(Σ)
Bh−1‖[𝜕tv]‖2

x

≤ ∑
T∈h

mP
3

P‖∇2v‖2
T + aΣ,h(v, v) (60)

for 𝛽Σ large enough, we have

Ah(v, v) = aΩ,h(v, v) + aΣ,h(v, v) (61)

≥ mP|||v|||2Ω,h + aΣ,h(v, v) (62)

= mP
3

|||v|||2Ω,h + mP
3

|||v|||2Ω,h +
(mP

3
|||v|||2Ω,h + aΣ,h(v, v)

)
(63)

≥ mP
3

|||v|||2Ω,h + C1mP
3

( ∑
x∈h(Σ)

Bh‖⟨𝜕2
t v⟩‖2

x

)
(64)

+
⎛⎜⎜⎝

∑
T∈h(Σ)

B‖𝜕2
t v‖2

∩T +
∑

x∈h(Σ)
Bh−1‖[𝜕tv]‖2

x

⎞⎟⎟⎠
≥ m

(|||v|||2Σ,h + |||v|||2Ω,h

)
(65)

where m = min(mP∕3,C1mP∕3, 1).
Verification of (59). We note that, for a point x ∈ Σ ∩ T, T ∈ h, we

have the estimates

‖𝜕2
t v‖x ≤ Cinvh−1‖𝜕2

t v‖T ≤ Cinvh−1‖∇2v‖T (66)
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where used the fact that t is a constant unit vector so that 𝜕2
t v =

t · (∇2v) · t ∈ k−2(T) is a well defined expression on T since v ∈ k(T)
is a polynomial on T then we used an inverse inequality to pass from
the point value to the L2 norm on the element T. For instance, in the
important case of quadratic elements ∇2v is a constant and for a con-
stant function w we have the estimate

‖w‖2
x = w2(x) = |T|−1|T|w2(x) = |T|−1‖w‖2

T ≲ h−2‖w‖2
T (67)

since it follows from shape regularity of T and quasiuniformity of the
mesh that the element area |T| ∼ h2.

Using (66) we obtain, with h(x) = {T ∈ h ∶ x ∈ T} the set of all
elements such that x ∈ T,∑
x∈h(Σ)

Bh‖⟨𝜕2
t v⟩‖2

x ≤ ∑
x∈h(Σ)

C2
inv

BPh
P‖∇2v‖2h(x)

(68)

≤ C2
inv

BPh
|||v|||2Ω,h (69)

and thus we have the estimate

1
C2

inv

Ph
B

⏟⏞⏞⏟⏞⏞⏟
C1

( ∑
x∈h (Σ)

Bh‖⟨𝜕2
t v⟩‖2

x

)
≤ |||v|||2Ω,h (70)

We note, using the definitions (4) and (24) of P and B, that

Ph
B

= 1
1 + 𝜈𝛺

E𝛺t3Ω
EΣt3Σ

h
bΣ

≥ 1
1 + 𝜈𝛺

E𝛺t3Ω
EΣt3Σ

Cmesh (71)

where we used the condition that the beam width is smaller than the
mesh size (35) and thus the right hand side is a positive constant inde-
pendent of the mesh size and so is C1.
Verification of (60). First we have the equality

aΣ,h(v, v) =
∑

T∈h (Σ)
B‖𝜕2

t v‖2
Σ∩T

− 2
∑

x∈h(Σ)
B(⟨𝜕2

t v⟩, [𝜕tv])x

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
★

+
∑

x∈h(Σ)
𝛽Σ,0Bh−1‖[𝜕tv]‖2

x (72)

To estimate ★ we employ the inverse inequality (66) as follows

★ = 2
∑

x∈h (Σ)
B(⟨𝜕2

t v⟩, [𝜕tv])x (73)

≤ 2
∑

x∈h(Σ)
BCinvh−1‖∇2v‖h(x)‖[𝜕tv]‖x (74)

≤ ∑
T∈h (Σ)

𝛿BC2
invh−1‖∇2v‖2

T

+
∑

x∈h(Σ)
𝛿−1Bh−1‖[𝜕tv]‖2

x (75)

where we used the inequality ab ≤ (𝛿a2 + 𝛿−1b2)∕2 for 𝛿 > 0. We then
obtain (60) as follows∑
T∈h

mP
3

P‖∇2v‖2
T + aΣ,h(v, v) ≥

∑
T∈h (Σ)

B‖𝜕2
t v‖2

Σ∩T

+
∑

T∈h

(mP
3

P − 𝛿BC2
invh−1

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≥0

‖∇2v‖2
T

+
∑

x∈h(Σ)
(𝛽Σ,0 − 𝛿−1)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

≥1

Bh−1‖[𝜕tv]‖2
x

(76)

Fig. 9. Beam reinforced plate.

Fig. 10. Computational mesh.

≥ ∑
x∈h(Σ)

Bh−1‖[𝜕tv]‖2
x +

∑
x∈h(Σ)

Bh−1‖[𝜕tv]‖2
x (77)

Here we choose: 𝛿 small enough to guarantee that

0 ≤ mP
3

P − 𝛿BC2
invh−1 = mP

3
P

(
1 − 𝛿

3
mP

BC2
invPh

)

= mP
3

P

(
1 − 𝛿

3
mP

1
C1

)
(78)

where as above, see (71), C1 > 0 independent of the mesh parameter h,
and 𝛽Σ such that

𝛽Σ − 1
𝛿
≥ 1 (79)

4. Numerical examples

In this section, we give some elementary examples of what can be
achieved with the presented technique. In all numerical examples we
use polynomial order 2, fΣ = 0, and

fΩ = 8P(3(x2(1 − x)2 + y2(1 − y)2) + (1 − 6x(1 − x))(1 − 6y(1 − y)))

corresponding to the solution u = x2(1 − x)2y2(1 − y)2 for a clamped
plate unsupported by beams.

In order to handle more general boundary conditions we in partic-
ular need to be able to impose end displacements on the beam in the
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Fig. 11. Deformations when the beams are clamped at x = 1.

Fig. 12. Deformations when all beams are clamped.

Fig. 13. Deformations when all beams are simply supported.
case of a free plate (we note that strongly imposed boundary conditions
on the plate are also enforced on the beam). Zero displacement of the
beam endpoints xE are imposed by adding penalty terms

𝛽Σ,0
h3 (EΣIΣv,w)xE

(80)

to the form aΣ,h(v,w) in (51), where 𝛽Σ,0 is a penalty parameter. These
terms suffice for optimal order convergence (of the beam approxima-
tion) in the case of second degree polynomial approximations since the
shear forces required for energy consistency are third derivatives of dis-
placements, and thus equal zero.

4.1. Simply supported plate using beams with different supports

We consider a simply supported plate on the domain Ω = (0, 1) ×
(0, 1) with Young’s modulus EΩ = 100, Poisson’s ratio 𝜈Ω = 1∕2, and
thickness tΩ = 0.1. The plate is supported by two beams oriented as
in Fig. 4, one at x = 0.499 and one at y = 0.499 (to avoid intersection
with the mesh lines). The computational mesh is shown in Fig. 5 and in
Fig. 6 were show a close-up of the intersection between the beams and
the mesh.

For this problem we test two different supports for the beams: sim-
ply supported and fixed, and two different stiffnesses for the beams:
EΣ = 100EΩ and EΣ = 1000EΩ. The thickness and width of the beam are
equal and the same as the thickness of the plate. In Fig. 7 we show the
results using EΣ = 100EΩ, with simply supported and fixed supports; in
Fig. 8 we show the results using EΣ = 1000EΩ, with simply supported
and fixed supports.

4.2. Plate only supported by beams

Next, we consider a plate with free boundaries, supported only by
beams. All data for the plate are the same as in the previous exam-
ple. The plate is supported by four beams positioned at 1∕3 and 2∕3
from each boundary as indicated in Fig. 9. The beams have the same
dimension as previously, with Young’s modulus EΣ = 100EΩ. The com-
putational mesh is unstructured and shown in Fig. 10.

We first consider the case when the beams are clamped at x = 1
and free elsewhere. In Fig. 11 we see an elevation of the corresponding
deformation. Next we consider the case when all beams are clamped,
Fig. 12, and simply supported, Fig. 13. Note the slight increase in cen-
tral displacement for the latter.

5. Conclusions

We have formulated a continuous/discontinuous Galerkin method
for beam reinforced thin plates. The method has the advantage that we
can discretize both the beam and plate problem with the same standard
finite element spaces of continuous piecewise polynomials defined on
triangles (or quadrilaterals).
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Appendix A. Coercivity for beams which are not embedded in a plate

To prove coercivity of the bilinear form associated with the beam AΣ,h, defined in (45), in the case when the beam is not embedded in a plate
we utilize the stabilization term sΣ,h, see (47), which provides the following estimate

∑
T∈h(Σ)

2∑
j=0

Bh−1‖𝜕j
tv‖2

T ≤ Cstab

( 2∑
j=0

B‖𝜕2
t v‖2

Σ + ‖v‖2
sΣ,h

)
(A.1)

where ‖v‖2
sΣ,h

= sΣ,h(v, v). Starting from (72) we use the first inequality in (66) followed by (A.2) to estimate ★ as follows

★ = 2
∑

x∈h (Σ)
B(⟨𝜕2

t v⟩, [𝜕tv])x (A.2)

≤ 2
∑

x∈h(Σ)
BCinvh−1‖𝜕2

t v‖h(x)‖[𝜕tv]‖x (A.3)

≤ ∑
T∈h (Σ)

𝛿BC2
invh−1‖𝜕2

t v‖2
T +

∑
x∈h(Σ)

𝛿−1Bh−1‖[𝜕tv]‖2
x (A.4)

≤ 𝛿C2
invCstab

⎛⎜⎜⎝
∑

T∈h (Σ)
B‖𝜕2

t v‖2
Σ∩T + ‖v‖2

sΣ,h

⎞⎟⎟⎠ +
∑

x∈h (Σ)
𝛿−1Bh−1‖[𝜕tv]‖2

x (A.5)

Now choosing 𝛿 small enough and 𝛽Σ,0 large enough we obtain the coercivity estimate∑
T∈h(Σ)

B‖𝜕2
t v‖2

Σ∩T + ‖v‖2
sΣ,h

+
∑

x∈h (Σ)
Bh‖⟨𝜕2

t v⟩‖2
x +

∑
x∈h(Σ)

Bh−1‖[𝜕tv]‖2
x ≲ AΣ,h(v, v) (A.6)

for all v ∈ VΣ,h. For completeness we include the main steps in the derivation of (A.1). For related results we refer to [3] and [14].

• For an element T with a so called large intersection with Σ, that is |T ∩ Σ| ≳, it holds, for v ∈ k(T),‖v‖2
T ≲ h‖v‖2

T∩Σ + h2‖𝜕nΣv‖2
F (A.7)

Setting v = 𝜕i
tw, i = 0, 1, 2, we get

2∑
i=0

h−1‖𝜕i
tw‖2

T ≲ ‖𝜕i
tw‖2

T∩Σ +
2∑

i=0
h‖𝜕nΣ𝜕

i
tw‖2

T (A.8)

• For two elements T1 and T2 which share the face F it holds, for all w1 ∈ Pk(T1) and w2 ∈ Pk(T2),

‖w1‖2
T1

≲ ‖w2‖2
T2

+
k∑

j=0
h2j+1‖[𝜕 j

nF
w]‖2

F (A.9)

see Ref. [12]. Setting w = 𝜕i
tv, i = 0, 1, 2, we obtain

2∑
i=0

h−1‖𝜕i
tv‖2

T1
≲

2∑
i=0

h−1‖𝜕i
tv‖2

T2
+

k∑
j=0

2∑
i=0

h2j‖[𝜕 j
nF
𝜕i

tv]‖2
F (A.10)

• To prove the stability estimate (A.1) we note that it follows from quasi uniformity that for each element T ∈ h(Σ) there is a path of elements
{Ti}n

i=0, with length n uniformly bounded, such that T0 = T, Ti and Ti+1 share a face, and Tn has a large intersection with Σ. Using (A.10) to pass
between the elements in the path and then finally using (A.8) we obtain (A.1).
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