
Journal of Computer and System Sciences 105 (2019) 171–198
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Generalized satisfiability problems via operator assignments

Albert Atserias a,∗, Phokion G. Kolaitis b,c, Simone Severini d,e

a Universitat Politècnica de Catalunya, Barcelona, Catalonia, Spain
b University of California Santa Cruz, Santa Cruz, CA, USA
c IBM Research–Almaden, San Jose, CA, USA
d University College London, London, United Kingdom
e Shanghai Jiao Tong University, Shanghai, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 December 2017
Received in revised form 20 March 2019
Accepted 4 May 2019
Available online 21 May 2019

Keywords:
Constraint satisfaction problem
Quantum satisfiability
Non-local games
Dichotomy theorems
Linear operators
Undecidable problems
pp-Definitions

Schaefer introduced a framework for generalized satisfiability problems on the Boolean 
domain and characterized the computational complexity of such problems. We investigate 
an algebraization of Schaefer’s framework in which the Fourier transform is used to 
represent constraints by multilinear polynomials in a unique way. This representation of 
constraints gives rise to a relaxation of the notion of satisfiability in which the values to 
variables are linear operators on some Hilbert space. For constraints given by a system 
of linear equations over the two-element field, earlier work in the foundations of quantum 
mechanics has shown that there are systems that have no solutions in the Boolean domain, 
but have solutions via operator assignments on some finite-dimensional Hilbert space. 
Our main result is a complete characterization of the classes of Boolean relations for 
which there is a gap between satisfiability in the Boolean domain and the relaxation of 
satisfiability via operator assignments.

© 2019 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction and summary of results

In 1978, Schaefer [22] classified the computational complexity of generalized satisfiability problems. Each class A of 
Boolean relations gives rise to the generalized satisfiability problem SAT(A). An instance of SAT(A) is a conjunction of re-
lations from A such that each conjunct has a tuple of variables as arguments; the question is whether or not there is an 
assignment of Boolean values to the variables, so that, for each conjunct, the resulting tuple of Boolean values belongs 
to the underlying relation. Schaefer’s main result is a dichotomy theorem for the computational complexity of SAT(A), 
namely, depending on A, either SAT(A) is NP-complete or SAT(A) is solvable in polynomial time. Schaefer’s dichotomy the-
orem provided a unifying explanation for the NP-completeness of many well-known variants of Boolean satisfiability, such 
as POSITIVE 1-IN-3 SAT and MONOTONE 3SAT; moreover, it became the catalyst for numerous subsequent investigations, 
including the pursuit of a dichotomy theorem for constraints satisfaction problems, a pursuit that became known as the 
Feder-Vardi Conjecture [9].

Every Boolean relation can be identified with its characteristic function, which, via the Fourier transform, can be rep-
resented as a multilinear polynomial (i.e., a polynomial in which each variable has degree at most one) in a unique way. 
Moreover, in carrying out this transformation, the truth values false and true are typically represented by +1 and −1, in-
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stead of 0 and 1. For example, it is easy to see that the multilinear polynomial representing the conjunction x ∧ y of two 
variables x and y is 1

2 (1 + x + y − xy). The multilinear polynomial representation of Boolean relations makes it possible to 
consider relaxations of satisfiability in which the variables take values in some suitable space, instead of the two-element 
Boolean algebra. Such relaxations have been considered in the foundations of physics several decades ago, where they have 
played a role in singling out the differences between classical theory and quantum theory. In particular, it has been shown 
that there is a system of linear equations over the two-element field that has no solutions over {+1, −1}, but the system 
of the associated multilinear polynomials has a solution in which the variables are assigned linear operators on a Hilbert 
space of dimension four. The Mermin-Peres magic square [16,17,20] is the most well known example of such a system. 
These constructions give small proofs of the celebrated Kochen-Specker Theorem [8] on the impossibility to explain quantum 
mechanics via hidden-variables [2]. More recently, systems of linear equations with this relaxed notion of solvability have 
been studied under the name of binary constraint systems, and tight connections have been established between solvability 
and the existence of perfect strategies in non-local games that make use of entanglement [6,7].

A Boolean relation is affine if it is the set of solutions of a system of linear equations over the two-element field. 
The collection LIN of all affine relations is prominent in Schaefer’s dichotomy theorem, as it is one of the main classes A
of Boolean relations for which SAT(A) is solvable in polynomial time. The discussion in the preceding paragraph shows 
that SAT(LIN) has instances that are unsatisfiable in the Boolean domain, but are satisfiable when linear operators on a 
Hilbert space are assigned to variables (for simplicity, from now on we will use the term “operator assignments” for such 
assignments). Which other classes of Boolean relations exhibit such a gap between satisfiability in the Boolean domain 
and the relaxation of satisfiability via operator assignments? As a matter of fact, this question bifurcates into two separate 
questions, depending on whether the relaxation allows linear operators on Hilbert spaces of arbitrary (finite or infinite) 
dimension or only on Hilbert spaces of finite dimension. In a recent breakthrough paper, Slofstra [24] showed that these 
two questions are different for LIN by establishing the existence of systems of linear equations that are satisfiable by 
operator assignments on some infinite-dimensional Hilbert space, but are not satisfiable by operator assignments on any 
finite-dimensional Hilbert space. In a related vein, Ji [15] showed that a 2CNF-formula is satisfiable in the Boolean domain 
if and only if it is satisfiable by an operator assignment in some finite-dimensional Hilbert space. Moreover, Ji showed 
that the same holds true for Horn formulas. Note that 2SAT, HORN SAT, and DUAL HORN SAT also feature prominently in 
Schaefer’s dichotomy theorem as, together with SAT(LIN), which from now on we will denote by LIN SAT, they constitute the 
main tractable cases of generalized satisfiability problems (the other tractable cases are the trivial cases of SAT(A), where A
is a class of 0-valid relations or a class of 1-valid relations, i.e., Boolean relations that contain the tuple consisting entirely 
of 0’s or, respectively, the tuple consisting entirely of 1’s).

In this paper, we completely characterize the classes A of Boolean relations for which SAT(A) exhibits a gap between 
satisfiability in the Boolean domain and satisfiability via operator assignments. Clearly, if every relation in A is 0-valid or 
every relation in A is 1-valid, then there is no gap, as every constraint is satisfied by assigning to every variable the identity 
operator or its negation, respectively. Beyond this, we first generalize and extend Ji’s results [15] by showing that if � is a 
class of Boolean relations such that every relation in A is bijunctive,1 or every relation in A is Horn, or every relation in A
is dual Horn,2 then there is no gap whatsoever; this means that an instance of SAT(A) is satisfiable in the Boolean domain 
if and only if it is satisfiable by an operator assignment on some finite-dimensional Hilbert space if and only if is satisfiable 
by an operator assignment on some arbitrary Hilbert space. In contrast, we show that for all other classes A of Boolean 
relations, SAT(A) exhibits a two-level gap: there are instances of SAT(A) that are not satisfiable in the Boolean domain, but 
are satisfiable by an operator assignment on some finite-dimensional Hilbert space; moreover, there are instances of SAT(A)

that are not satisfiable by an operator assignment on any finite-dimensional Hilbert space, but are satisfiable by an operator 
assignment on some (infinite-dimensional) Hilbert space. For this last part of the statement we need to assume that A
contains the full binary relation or, alternatively, that A admits a so-called commutativity gadget. This is a mild assumption 
that is met by all the classes of Boolean relations from the literature; we discuss this in Section 4.5.

The proof of this result uses several different ingredients. First, we use the substitution method [7] to show that there 
is no satisfiability gap for classes of relations that are bijunctive, Horn, and dual Horn. This gives a different proof of 
Ji’s results [15], which were for finite-dimensional Hilbert spaces, but also shows that, for such classes of relations, there 
is no difference between satisfiability by linear operators on finite-dimensional Hilbert spaces and satisfiability by linear 
operators on arbitrary Hilbert spaces. The main tool for proving the existence of a two-level gap for the remaining classes 
of Boolean relations is the notion of pp-definability, that is, definability via primitive-positive formulas, which are existential 
first-order formulas having a conjunction of (positive) atoms as their quantifier-free part. In the past, primitive-positive 
formulas have been used to design polynomial-time reductions between decision problems; in fact, this is one of the main 
techniques in the proof of Schaefer’s dichotomy theorem. Here, we show that primitive-positive formulas can also be used to 
design gap-preserving reductions, that is, reductions that preserve the gap between satisfiability on the Boolean domain and 
satisfiability by operator assignments. To prove the existence of a two-level gap for classes of Boolean relations we combine 
gap-preserving reductions with the two-level gap for LIN discussed earlier (i.e., the results of Mermin [16,17], Peres [16], 
and Slofstra [24]) and with results about Post’s lattice of clones on the Boolean domain [21].

1 A Boolean relation is bijunctive if it is the set of satisfying assignments of a 2CNF-formula.
2 A Boolean relation is Horn (dual Horn) if it is the set of satisfying assignments of a Horn (dual Horn) formula.
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We also give two additional applications of pp-definability. First, we consider an extension of pp-definability in which the 
existential quantifiers may range over linear operators on some finite-dimensional Hilbert space. At first sight, it appears 
that new Boolean relations may be pp-definable in the extended sense from a given set of Boolean relations. We show, 
however, that this is not the case. Specifically, by analyzing closure operations on sets of linear operators, we show that if 
a Boolean relation is pp-definable in the extended sense from other Boolean relations, then it is also pp-definable from the 
same relations. In other words, for Boolean relations, this extension of pp-definability is not more powerful than standard 
pp-definability. Second, we apply pp-definability to the problem of quantum realizability of contextuality scenarios. Recently, 
Fritz [12] used Slofstra’s results [24] to resolve two problems raised by Acin et al. in [1]. Using pp-definability and Slofstra’s 
results, we obtain new proofs of Fritz’s results that have the additional feature that the parameters involved are optimal.

2. Definitions and technical background

2.1. Notation

For an integer n, we write [n] for the set {1, . . . , n}. We use mainly the +1, −1 representation of the Boolean domain 
(+1 for “false” and −1 for “true”). We write {±1} for the set {+1, −1}. If a denotes a tuple of length r we write a1, . . . , ar to 
denote its r components. If a is such a tuple and f is a function that has a1, . . . , ar in its domain, we write f (a) to denote 
the tuple ( f (a1), . . . , f (ar)). We write T and F for the full and empty Boolean relations, respectively. The letters stand for 
true and false. Their arity is unspecified by the notation and will be made clear by the context.

2.2. Linear operators and polynomials thereof

Let V be a complex vector space. A linear operator on V is a linear map from V to V . The linear operator that is the 
identity on V is denoted by I , and the linear operator that is identically 0 is denoted by 0. The pointwise addition of two 
linear operators A and B is denoted by A + B , the composition of two linear operators A and B is denoted by AB , and the 
pointwise scaling of a linear operator A by a scalar c ∈ C is denoted by c A. All these are linear operators. As a result, if 
C〈X1, . . . , Xn〉 denotes the ring of polynomials with complex coefficients and non-commuting variables in X1, . . . , Xn , then 
for a polynomial P (X1, . . . , Xn) in C〈X1, . . . , Xn〉 and linear operators A1, . . . , An on V , the notation P (A1, . . . , An) makes 
sense. If A1, . . . , An pairwise commute, i.e., Ai A j = A j Ai for all i, j ∈ {1, . . . , n}, then the notation makes sense even for a 
polynomial in C[X1, . . . , Xn], the ring of polynomials with commuting variables in X1, . . . , Xn .

Let V and W be complex vector spaces. Let A be a linear operator on V and let B be a linear operator on W . We 
say that A and B are similar if there exists an invertible linear map C : V → W such that A = C BC−1. Let A1, . . . , An and 
B1, . . . , Bn be linear operators on V and W , respectively. We say that A1, . . . , An and B1, . . . , Bn are simultaneously similar 
if there exists an invertible linear map C : V → W such that Ai = C Bi C−1 holds for all i ∈ [n]. The following simple fact 
with an equally simple proof will be used multiple times.

Lemma 1. Let V and W be complex vector spaces, and let P (X1, . . . , Xn) be a polynomial in C〈X1, . . . , Xn〉. If A1, . . . , An and 
B1, . . . , Bn are simultaneously similar linear operators on V and W , respectively, then so are P (A1, . . . , An) and P (B1, . . . , Bn).

Proof. We write [n]∗ for the set of finite sequences with components in [n], and |α| for the length of the sequence α. 
Let P (X1, . . . , Xn) = ∑

α∈[n]∗ cα
∏|α|

i=1 Xαi , where only finitely many of the coefficients cα are non-zero. Let C : V → W be 
an invertible linear map witnessing that A1, . . . , An and B1, . . . , Bn are simultaneously similar; thus A j = C B j C−1 holds 
for every j ∈ [n]. Note that for every α ∈ [n]∗ of length � we have 

∏�
i=1(C Bαi C

−1) = C
(∏�

i=1 Bαi

)
C−1. It follows that 

P (A1, . . . , An) = ∑
α∈[n]∗ cαC

(∏|α|
i=1 Bαi

)
C−1, and linearity gives P (A1, . . . , An) = C P (B1, . . . , Bn)C−1. �

2.3. Unique multilinear polynomial representations

A polynomial P (X1, . . . , Xn) is called multilinear if it has individual degree at most one on each variable. Each function 
f : {±1}n → C has a unique representation as a multilinear polynomial in C[X1, . . . , Xn] given by the Fourier or Walsh-
Hadamard transform [18]. Explicitly:

P f (X1, . . . , Xn) =
∑

S⊆[n]
f̂ (S)

∏
i∈S

Xi, (1)

where

f̂ (S) = 1

2n

∑
a∈{±1}n

f (a)
∏
i∈S

ai . (2)

The polynomial represents f in the sense that P f (a) = f (a) holds for every a ∈ {±1}n . If the range of f is a subset of R, 
then each f̂ (S) is indeed a real number. The Convolution Formula describes the Fourier coefficients of pointwise products 
f g of functions f , g : {±1}n →C. It states that
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f̂ g(S) =
∑

T ⊆[n]
f̂ (S)ĝ(S�T ) (3)

for every S ⊆ [n], where S�T denotes symmetric difference; i.e. S�T = (S \ T ) ∪ (T \ S).
We give an example of use of the uniqueness of the Fourier transform that will be useful later on. We begin by recalling 

some notation and terminology. A literal is a Boolean variable x or its negation ¬x. The literals x and ¬x are said to be 
complementary of each other, and x is their underlying variable. If � is a literal, then � denotes its complementary literal. The 
sign sg(�) of � is defined as follows: sg(�) = 1 if � = x, and sg(�) = −1 if � = ¬x, where x is its underlying variable. Clearly, 
sg(�) = −sg(�).

A clause is a disjunction of literals. Let C = (�1 ∨ · · · ∨ �r) be a clause. In the ±1 representation of Boolean values, 
the clause C represents the relation {±1}r \ {(sg(�1), . . . , sg(�r))}, which will be denoted by RC . The indicator function of 
the clause C = (�1 ∨ · · · ∨ �r) is the Boolean function from {±1}r → {±1} that maps the tuple (sg(�1), . . . , sg(�r)) to +1
and every other tuple to −1. We write P C (X1, . . . , Xr) to denote the unique multilinear polynomial representation of the 
indicator function of the clause C .

Lemma 2. Let C = (�1 ∨ · · · ∨ �r) be a clause on r different variables. Then, in the ring of polynomials C[X1, . . . , Xr], the following 
identity holds.

P C (X1, . . . , Xr) = 21−r
r∏

i=1

(
1 + sg(�i)Xi

)
− 1. (4)

Proof. Let RC = {±1}r \ {(sg(�1), . . . , sg(�r))} be the Boolean relation represented by C . Since the right-hand side of equa-
tion (4) is a multilinear polynomial and its left-hand side is the unique multilinear polynomial that agrees with the indicator 
function of RC on {±1}, it suffices to check that the right-hand side also agrees with the indicator function of RC on {±1}r . 
In other words, we claim that for every (a1, . . . , ar) ∈ {±1}r , the right-hand side evaluates to −1 if the truth-assignment 
(a1, . . . , ar) satisfies the clause C , and it evaluates to 1, otherwise.

Assume that (a1, . . . , ar) satisfies the clause C . Then there is some j ∈ {1, . . . , r} such that a j = −sg(� j). It follows that 
1 + sg(� j)a j = 0 and so 

∏r
i=1 (1 + sg(�i)ai) = 0, which, in turn, implies that P C (a1, . . . , ar) = −1. Assume that (a1, . . . , ar)

does not satisfy the clause C . Then, for every i ∈ {1, . . . , r}, we have that ai = sg(�i). Consequently, for every i ∈ {1, . . . , r}, 
we have that 1 + sg(�i)ai = 2 and so 

∏r
i=1 (1 + sg(�i)ai) = 2r , which, in turn, implies that P C (a1, . . . , ar) = 1. This completes 

the proof of the claim. �
2.4. Hilbert space

A Hilbert space is a complex vector space with an inner product whose norm induces a complete metric. All Hilbert 
spaces of finite dimension d are isomorphic to Cd with the standard complex inner product. In particular, this means that 
after the choice of a basis, we can identify the linear operators on a d-dimensional Hilbert space with the matrices in Cd×d . 
Composition of operators becomes matrix multiplication. A matrix A is Hermitian if it is equal to its conjugate transpose 
A∗ . A diagonal matrix is one all whose off-diagonal entries are 0. A matrix A is unitary if A∗ A = A A∗ = I , where I is the 
identity matrix. Two matrices A and B commute if AB = B A, and a collection of matrices A1, . . . , Ar pairwise commute if 
Ai A j = A j Ai for all i, j ∈ [r].

For the basics of general Hilbert spaces and their linear operators we refer the reader to Halmos’ monograph [14]. 
We need from it the concepts of bounded linear operator and of adjoint A∗ of a densely defined linear operator A. Two 
operators A and B commute if AB = B A. A sequence of operators A1, . . . , Ar pairwise commute if Ai A j = A j Ai for all 
i, j ∈ [r]. A linear operator A is called normal if it commutes with its adjoint A∗; i.e., A A∗ = A∗ A. A linear operator is called 
self-adjoint if A∗ = A. A linear map from a Hilbert space H1 to another Hilbert space H2 is called unitary if it preserves 
norms.

We also make elementary use of general L2- and L∞-spaces. Let (�, M, μ) be a measure space. Then L2(�, μ) denotes 
the collection of square integrable measurable functions, up to almost everywhere equality. Also L∞(�, μ) denotes the 
collection of essentially bounded measurable functions, up to almost everywhere equality. All measure-theoretic terms in 
these definitions refer to μ. See [11] for definitions.

2.5. Constraint languages, instances, value and satisfiability

A Boolean constraint language A is a collection of relations over the Boolean domain {±1}. Let V = {X1, . . . , Xn} be a set 
of variables. An instance I on the variables V over the constraint language A is a finite collection of pairs

I = ((Z1, R1), . . . , (Zm, Rm)) (5)

where each Ri is a relation from A and Zi = (Zi,1, . . . , Zi,ri ) is a tuple of variables from V or constants from {±1}, where ri
is the arity of Ri . Each pair (Zi, Ri) is called a constraint, and each Zi is called its constraint-scope. A Boolean assignment is a 
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mapping f assigning a Boolean value ai ∈ {±1} to each variable Xi , and assigning −1 and +1 to the constants −1 and +1, 
respectively. We say that the assignment satisfies the i-th constraint if the tuple f (Zi) = ( f (Zi,1), . . . , f (Zi,ri )) belongs to 
Ri . The value of f on I is the fraction of constraints that are satisfied by f . The value of I , denoted by ν(I), is the maximum 
value over all Boolean assignments. We say that I is satisfiable in the Boolean domain if there is a Boolean assignment that 
satisfies all constraints; equivalently, if ν(I) = 1.

Three examples of Boolean constraint languages that will play an important role in the sequel are LIN, 3LIN, and 
1-IN-3-SAT. The constraint language LIN consists of all affine relations, i.e., the Boolean relations whose tuples are solu-
tions to a system of linear equations over the two-element field. In the ±1-representation, every such equation is a parity 
equation of the form 

∏r
i=1 xi = b, where b ∈ {±1}. Note that LIN is an infinite constraint language since it contains infinitely 

many different relations. The constraint language 3LIN is the finite constraint language that consists of the two types of 
parity equations of arity three; in other words, 3LIN = {{(a1, a2, a3) ∈ {±1}3 : a1a2a3 = b} : b ∈ {±1}}. Finally, the constraint 
language 1-IN-3-SAT consists of a single relation, namely, the relation R1/3 = {(+1, +1, −1), (+1, −1, +1), (−1, +1, +1)} of 
Boolean triples that have a single −1. Observe that 3LIN ⊆ LIN, but 1-IN-3-SAT � LIN since the cardinality of every affine 
subspace over the two-element field is an exact power of 2.

The instances over 3LIN are precisely the systems of linear equations over the two-element field with three variables per 
equation. Note that, formally, the variables in each equation need not be different. For example, the single linear equation 
X1 + X2 + X2 = 1 mod 2 or, equivalently, the parity equation X1 X2 X2 = −1 in the ±1-representation, is a valid instance 
over 3LIN. The set of Boolean assignments that satisfy this instance is the set of two assignments that map X1 �→ −1 and 
X2 �→ b for any b ∈ {±1}.

2.6. Operator assignments and satisfiability via operators

Let X1, . . . , Xn be n variables, and let H be a Hilbert space. An operator assignment for X1, . . . , Xn over H is an assignment 
of a bounded linear operator on H to each variable, f : X1, . . . , Xn �→ A1, . . . , An , such that the following conditions hold:

1. A j is self-adjoint for every j ∈ [n],
2. A2

j = I for every j ∈ [n].

If S is a subset of {X1, . . . , Xn}, we say that the operator assignment A1, . . . , An pairwise commutes on S if in addition it 
satisfies A j Ak = Ak A j for every X j and Xk in the set S . If it pairwise commutes on the whole set {X1, . . . , Xn}, we say that 
the assignment fully commutes.

Let A be a Boolean constraint language, let I be an instance over A, with n variables X1, . . . , Xn as in (5), and let H be 
a Hilbert space. An operator assignment for I over H is an operator assignment f : X1, . . . , Xn �→ A1, . . . , An for the variables 
X1, . . . , Xn that pairwise commutes on the set of variables of each constraint scope Zi in I; explicitly

A j Ak = Ak A j for every X j and Xk in Zi, for every i ∈ {1, . . . ,m}. (6)

We also require that f maps the constant −1 and +1 to −I and I , respectively, where I is the identity operator on H. We 
say that the assignment f satisfies the i-th constraint if

P Ri ( f (Zi)) = P Ri ( f (Zi,1), . . . , f (Zi,ri )) = −I, (7)

where P Ri denotes the unique multilinear polynomial representation of indicator function of the relation Ri , i.e., the function 
that maps each tuple in Ri to −1, and each tuple in its complement {±1}ri \ Ri to +1. Note that since f (Zi,1), . . . , f (Zi,ri )

are required to commute by definition, this notation is unambiguous despite the fact that P Ri is defined as a polynomial in 
commuting variables. The value of f on I is the fraction of constraints that are satisfied by f ; note that this quantity takes 
one of a finite set of values in the set {0, 1/m, 2/m, . . . , (m − 1)/m, 1}. The value of I over H is the maximum value over all 
operator assignments for I over H. We say that f satisfies I if it satisfies all constraints. In that case we also say that f is 
a satisfying operator assignment for I over H.

The finite-dimensional value of I , denoted by ν∗(I), is the maximum of its value over all finite-dimensional Hilbert spaces. 
The value of I , denoted by ν∗∗(I), is the maximum of its value over all Hilbert spaces. We say that an instance I is satisfiable 
via finite-dimensional operator assignments, or satisfiable via fd-operators for short, if ν∗(I) = 1. We say that I is satisfiable 
via operator assignments, or satisfiable via operators for short, if ν∗∗(I) = 1.

3. The strong Spectral Theorem

The Spectral Theorem plays an important role in linear algebra and functional analysis. It has also been used in the 
foundations of quantum mechanics (for some recent uses see [7,15]). We will make a similar use of it, but we will also 
need the version of this theorem for infinite-dimensional Hilbert spaces. In this section we discuss the statement, both for 
finite- and infinite-dimensional Hilbert spaces, as well as one of its important applications that we encapsulate in a lemma 
for later reuse.
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3.1. Statement

In its most basic form, the Spectral Theorem for complex matrices states that every Hermitian matrix is unitarily equiv-
alent to a diagonal matrix. Explicitly: if A is a d × d Hermitian matrix, then there exist a unitary matrix U and a diagonal 
matrix E such that A = U−1 EU . In its strong form, the Strong Spectral Theorem (SST) applies to sets of pairwise commuting 
Hermitian matrices and is stated as follows.

Theorem 1 (Strong Spectral Theorem; finite-dimensional case). Let A1, . . . , Ar be d × d Hermitian matrices, for some positive integer 
d. If A1, . . . , Ar pairwise commute, then there exists a unitary matrix U and diagonal matrices E1, . . . , Er such that Ai = U−1 Ei U for 
every i ∈ [r].

This form of the SST will be enough to discuss satisfiability via fd-operators. For operator assignments over arbitrary 
Hilbert spaces, we need to appeal to the most general form of the SST in which the role of diagonal matrices is played by 
multiplication operators on an L2(�, μ)-space. These are defined as follows.

Let V be a complex function space; a complex vector space of functions mapping indices from an index set X to C. 
A multiplication operator of V is a linear operator whose value at a function f : X → C in V is given by pointwise 
multiplication by a fixed function a : X →C. In symbols, the multiplication operator given by a is

(Ta( f ))(x) = a(x) f (x) for each x ∈ X . (8)

In its weak form, the general Spectral Theorem states that any normal bounded linear operator on a Hilbert space is unitarily 
equivalent to a multiplication operator on an L2-space. We need the following strong version of the Spectral Theorem that 
states that the same is true for a collection of such operators, simultaneously through the same unitary transformation, 
provided they commute. The statement we use is a direct consequence of Theorem 1.47 in Folland’s monograph [10].

Theorem 2 (Strong Spectral Theorem; general case). Let A1, . . . , An be normal bounded linear operators on a Hilbert space H. 
If A1, . . . , Ar pairwise commute, then there exist a measure space (�, M, μ), a unitary map U : H → L2(�, μ), and functions 
a1, . . . , ar ∈ L∞(�, μ) such that Ai = U−1Tai U for every i ∈ [r].

The special case in which H has finite dimension d, the measure space is actually a finite set of cardinality d with the 
counting measure, and thus L2(�, μ) is isomorphic to Cd with the usual complex inner product.

3.2. An oft-used application

The following lemma encapsulates a frequently used application of the Strong Spectral Theorem. It states that whenever 
a set of polynomial equations entail another polynomial equation over the Boolean domain, then the entailment holds as 
well for fully commuting operator assignments.

Lemma 3. Let X1, . . . , Xr be variables, let Q 1, . . . , Q m, Q be polynomials in C[X1, . . . , Xr], and let H be a Hilbert space. If every 
Boolean assignment that satisfies the equations Q 1 = · · · = Q m = 0 also satisfies the equation Q = 0, then every fully commuting 
operator assignment over H that satisfies the equations Q 1 = · · · = Q m = 0 also satisfies the equation Q = 0.

Although the same proof applies to all Hilbert spaces, the proof of the finite-dimensional case can be made more elemen-
tary. Since for certain applications only the finite-dimensional case of the lemma is relevant, we split the proof accordingly 
into cases.

Proof of Lemma 3; finite-dimensional case. Assume H has finite dimension d. Since all Hilbert spaces of dimension d are 
isometrically isomorphic to Cd , let us assume without loss of generality that H =Cd . In such a case, a self-adjoint bounded 
linear operator is just a Hermitian d × d matrix, and the composition of linear operators is matrix multiplication.

Assume the hypotheses of the lemma and let A1, . . . , Ar be Hermitian d × d matrices. Assume that A1, . . . , Ar make a 
fully commuting operator assignment for X1, . . . , Xr such that the equations Q 1 = · · · = Q m = 0 are satisfied. The matrices 
A1, . . . , Ar pairwise commute, so the Strong Spectral Theorem (i.e. Theorem 1) applies to them. Thus, there exist a unitary 
matrix U and diagonal d × d matrices E1, . . . , Em such that Ai = U−1 Ei U for every i ∈ [r]. Equivalently, U Ai U−1 = Ei . From 
A2

i = I we conclude E2
i = I . Hence, if ai( j) denotes the j-th diagonal entry of Ei , then ai( j)2 = 1 for all j ∈ [d]. Thus 

ai( j) ∈ {±1} for all j ∈ [d]. The conditions of Lemma 1 apply, so Q k(A1, . . . , Ar) and Q k(E1, . . . , Er) are similar matrices for 
each k ∈ [m]. Since Q k(A1, . . . , Ar) = 0 and the unique matrix that is similar to the null matrix is the null matrix itself, we 
conclude that Q k(E1, . . . , Er) = 0. Now, Ei is the diagonal matrix that has the vector (ai(1), . . . , ai(d)) in the diagonal, so 
Q k(a1( j), . . . , ar( j)) = 0 for all j ∈ [d]. Since ai( j) is in {±1} for each i ∈ [r] and j ∈ [d], the hypothesis of the lemma says 
that also Q (a1( j), . . . , ar( j)) = 0 for all j ∈ [d]. Thus Q (E1, . . . , Er) = 0, and another application of Lemma 1 shows that 
Q (A1, . . . , Ar) = 0, as was to be proved. �
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The proof for the general case follows the same structure as the proof of the finite-dimensional case, using Theorem 2
in place of Theorem 1. Other than taking care of null sets of exceptions, there are no further differences in the two proofs. At 
a later stage we will find an application of the SST whose proof for the infinite-dimensional case does require some new 
ingredients. For now, let us fill in the details of the null-set-of-exceptions argument as a warm-up.

Proof of Lemma 3; general case. Assume the hypotheses of the lemma and let A1, . . . , Ar be bounded self-adjoint linear 
operators on H. Suppose that A1, . . . , Ar make a fully commuting operator assignment for X1, . . . , Xr such that the equa-
tions Q 1 = · · · = Q m = 0 are satisfied. The operators A1, . . . , Ar pairwise commute, and since they are self-adjoint they are 
also normal, so the Strong Spectral Theorem (i.e. Theorem 2) applies to them. Thus, there exist a measure space (�, M, μ), 
a unitary map U : H → L2(�, μ) and functions a1, . . . , ar ∈ L∞(�, μ) such that, for the multiplication operators Ei = Tai of 
L2(�, μ), the relations Ai = U−1 Ei U hold for every i ∈ [r]. Equivalently, U Ai U−1 = Ei . From A2

i = I we conclude E2
i = I . 

Hence, ai(ω)2 = 1 for almost all ω ∈ �; i.e. formally, μ({ω ∈ � : ai(ω)2 
= 1}) = 0. Thus ai(ω) ∈ {±1} for almost all ω ∈ �. 
The conditions of Lemma 1 apply, thus Q k(A1, . . . , Ar) and Q k(E1, . . . , Er) are similar linear operators for each k ∈ [m]. Since 
Q k(A1, . . . , Ar) = 0 and the unique linear operator that is similar to the null operator is the null operator itself, we con-
clude that Q k(E1, . . . , Er) = 0. Now, Ei is the multiplication operator given by the function ai , so Q k(a1(ω), . . . , ar(ω)) = 0
for almost all ω ∈ �. Since for almost all ω ∈ � the component ai(ω) is in {±1} for each i ∈ [r], the hypothesis of the 
lemma says that also Q (a1(ω), . . . , ar(ω)) = 0 for almost all ω ∈ �. Writing Q (a1, . . . , ar) for the function that maps ω to 
Q (a1(ω), . . . , ar(ω)) we have Q (Ta1 , . . . , Tar ) = T Q (a1,...,ar) . Thus Q (E1, . . . , Er) = 0, and another application of Lemma 1
shows that Q (A1, . . . , Ar) = 0, as was to be proved. �
4. Reductions through primitive positive formulas

Let A be a Boolean constraint language, let r be a positive integer, and let x1, . . . , xr be variables ranging over the Boolean 
domain {±1}. A primitive positive formula, or pp-formula for short, is a formula of the form

φ(x1, . . . , xr) = ∃y1 · · · ∃ys (R1(z1) ∧ · · · ∧ Rm(zm)) (9)

where each Ri is a relation in A and each zi is an ri -tuple of variables or constants from {x1, . . . , xr} ∪ {y1, . . . , ys} ∪ {±1}, 
where ri is the arity of Ri . A relation R ⊆ {±1}r is pp-definable from A if there exists a pp-formula φ(x1, . . . , xr) such that

R = {(a1, . . . ,ar) ∈ {±1}r : φ(x1/a1, . . . , xr/ar) is true in A}, (10)

where the notation x/a refers to the syntactic substitution of each (free) occurrence of the variable x by a. A Boolean 
constraint language A is pp-definable from another Boolean constraint language B if every relation in A is pp-definable 
from B . Whenever the constants +1 and −1 do not appear in the pp-formulas, we speak of pp-formulas and pp-definability 
without constants or, also, without parameters.

In the following we show that if A is pp-definable from B , then every instance I over A can be translated into an 
instance J over B in such a way that the satisfying operator assignments for I lift to satisfying operator assignments for 
J . We make this precise.

4.1. The basic construction

Let A and B be two Boolean constraint languages and assume that every relation in A is pp-definable from B . For R in 
A, let

φR(x1, . . . , xr) = ∃y1 · · · ∃yt(S1(w1) ∧ · · · ∧ Sm(wm)) (11)

be the pp-formula that defines R from B , where S1, . . . , Sm are relations from B , and w1, . . . , wm are tuples of variables or 
constants in {x1, . . . , xr} ∪ {y1, . . . , yt} ∪ {±1} of appropriate lengths. For every instance I of A we construct an instance J
of B as follows.

Consider a constraint (Z , R) in I , where Z = (Z1, . . . , Zr) is a tuple of variables of I or constants in {±1}. In addition 
to the variables in Z , in J we add new fresh variables Y1, . . . , Yt for the quantified variables y1, . . . , yt in φR . We also 
add one constraint (W j, S j) for each j ∈ [m], where W j is the tuple of variables and constants obtained from w j by 
replacing the variables in x1, . . . , xr by the corresponding components Z1, . . . , Zr of Z , replacing any yi -variable by the 
corresponding Yi , and leaving all constants untouched. We do this for each constraint in I one by one. The collection of 
variables Z1, . . . , Zr, Y1, . . . , Yt that are introduced by the constraint (Z , R) of I is referred to as the block of (Z , R) in J . 
Note that two blocks of different constraints may intersect, but only on the variables of I .

This construction is referred to as a gadget reduction in the literature. Its main property for satisfiability in the Boolean 
domain is the following straightforward fact:

Lemma 4. I is satisfiable in the Boolean domain if and only if J is.
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We omit its very easy proof. Our goal in the rest of this section is to show that one direction of this basic property of gadget 
reductions is also true for satisfiability via operators, for both finite- and infinite-dimensional Hilbert spaces, and that the 
other direction is almost true in a sense we will make precise in due time.

4.2. Correctness: operator solutions lift

The following lemma shows that the left-to-right direction in Lemma 4 also holds for satisfiability via operators: satisfy-
ing operator assignments for I can be lifted to satisfying operator assignments for J , over the same Hilbert space.

Lemma 5. Let I and J be as above and let H be a Hilbert space. For every f that is a satisfying operator assignment for I over H, 
there exists g that extends f and is a satisfying operator assignment for J over H. Moreover, g is pairwise commuting on each block 
of J .

As in the proof of Lemma 3 we split into cases.

Proof of Lemma 5, finite-dimensional case. As in the proof of the finite-dimensional case of Lemma 3, we may assume 
that H =Cd for some positive integer d, and that A1, . . . , An are Hermitian d × d matrices that make a satisfying operator 
assignment f for I . We need to define Hermitian matrices for the new variables of J that were introduced by its con-
struction. We define these matrices simultaneously for all variables Y1, . . . , Yt that come from the same constraint (Z , R) of 
I .

By renaming the entries in Z if necessary, let us assume without loss of generality that the variables in Z are X1, . . . , Xr , 
where r is the arity of R . By the commutativity condition of satisfying operator assignments, the matrices A1, . . . , Ar pair-
wise commute. As each Ai is Hermitian, the Strong Spectral Theorem applies to them. Thus, there exist a unitary matrix U
and diagonal d ×d matrices E1, . . . , Er such that the relations Ai = U−1 Ei U hold for each i ∈ [r]. Equivalently, U Ai U−1 = Ei . 
From A2

i = I we conclude E2
i = I . Hence, if ai( j) denotes the j-th diagonal entry of Ei , then ai( j)2 = 1 for all j ∈ [d]. Thus 

ai( j) ∈ {±1} for all j ∈ [d]. The conditions of Lemma 1 apply, thus P R(A1, . . . , Ar) and P R(E1, . . . , Er) are similar matrices. 
Since P R(A1, . . . , Ar) = −I and the unique matrix that is similar to −I is −I itself, we conclude that P R(E1, . . . , Er) = −I . 
Now, Ei is the diagonal matrix that has the vector (ai(1), . . . , ai(d)) in the diagonal, so P R(a1( j), . . . , ar( j)) = −1 for all 
j ∈ [d]. Thus the tuple a( j) = (a1( j), . . . , ar( j)) belongs to the relation R for all j ∈ [d]. Now we are ready to define the 
matrices for the variables Y1, . . . , Yt .

For each j ∈ [d], let b( j) = (b1( j), . . . , bt( j)) ∈ {±1}t be a tuple of witnesses to the existentially quantified variables 
in φR(x1/a1( j), . . . , xr/ar( j)); such a vector of witnesses must exist since the tuple a( j) belongs to R and φR defines R . 
Let Fk be the diagonal matrix that has the vector (bk(1), . . . , bk(d)) in the diagonal, and let Yk be assigned the matrix 
Bk = U−1 FkU . Since U is unitary, each such matrix is Hermitian and squares to the identity since bk( j) ∈ {±1} for all 
j ∈ [d]. Moreover, E1, . . . , Er, F1, . . . , Ft pairwise commute since they are diagonal matrices; thus A1, . . . , Ar, B1, . . . , Bt also 
pairwise commute since they are simultaneously similar via U . Moreover, as each atomic formula in the quantifier-free part 
of φR is satisfied by the mapping that sends xi �→ ai( j) and yi �→ bi( j) for all j ∈ [d], another application of Lemma 1 shows 
that the matrices that are assigned to the variables of this atomic formula make the corresponding indicator polynomial 
evaluate to −I . This means that the assignment to the X and Y -variables makes a satisfying operator assignment for the 
constraints of J that come from the constraint (Z , R) of I . As different constraints from I produce their own sets of 
Y -variables, these definitions of assignments do not conflict with one another, and the proof of the lemma is complete. �

The proof for the general case requires some new ingredients. Besides the need to take care of null sets of exceptions 
as in the proof of Lemma 3, a new complication arises from the need to build the operators for the new variables that are 
introduced by the reduction. Concretely we need to make sure that the functions of witnesses, in contraposition to the finite 
tuples of witnesses in the finite-dimensional case, are bounded and measurable. We go carefully through the argument.

Proof of Lemma 5, general case. Assume that A1, . . . , An are bounded self-adjoint linear operators on H for the variables 
of I . Suppose that the operators A1, . . . , Ar make a valid satisfying operator assignment for I . We need to define bounded 
self-adjoint linear operators for the new variables of J that were introduced by the construction. We define these operators 
simultaneously for all variables Y1, . . . , Yt that come from the same constraint (Z , R) of I .

By renaming the components of Z if necessary, assume without loss of generality that the variables in Z are X1, . . . , Xr , 
where r is the arity of R . By the commutativity condition of satisfying operator assignments, the operators A1, . . . , Ar

pairwise commute. As each Ai is self-adjoint, it is also normal, and the Strong Spectral Theorem (cf. Theorem 2) applies. 
Thus, there exist a measure space (�, M, μ), a unitary map U : H → L2(�, μ) and functions a1, . . . , ar ∈ L∞(�, μ) such 
that, for the multiplication operators Ei = Tai of L2(�, μ), the relations Ai = U−1 Ei U hold for each i ∈ [r]. Equivalently, 
U Ai U−1 = Ei . From A2

i = I we conclude E2
i = I . Hence, ai(ω)2 = 1 for almost all ω ∈ �; i.e., formally μ({ω ∈ � : ai(ω)2 
=

1}) = 0. Thus, ai(ω) ∈ {±1} for almost all ω ∈ �. The conditions of Lemma 1 apply, thus P R(A1, . . . , Ar) and P R(E1, . . . , Er)

are similar linear operators. Since P R(A1, . . . , Ar) = −I and the unique linear operator that is similar to −I is −I itself, 
we conclude that P R (E1, . . . , Er) = −I . Now, Ei is the multiplication operator given by ai , and ai(ω) ∈ {±1} for almost all 
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ω ∈ �, so P R(a1(ω), . . . , ar(ω)) = −1 for almost all ω ∈ �. Thus the tuple a(ω) = (a1(ω), . . . , ar(ω)) belongs to the relation 
R for almost all ω ∈ �. Now we are ready to define the operators for the variables Y1, . . . , Yt .

For each ω ∈ � for which the tuple a(ω) belongs to R , let b(ω) = (b1(ω), . . . , bt(ω)) ∈ {±1}t be the lexicographically 
smallest tuple of witnesses to the existentially quantified variables in φR (x1/a1(ω), . . . , xr/ar(ω)); such a vector of witnesses 
must exist since φR defines R , and the lexicographically smallest exists because R is finite. For every other ω ∈ �, define 
b(ω) = (b1(ω), . . . , bt(ω)) = (0, . . . , 0).

Note that each function bk : � →C is bounded since its range is in {−1, 0, 1}. We claim that such functions of witnesses 
bk are also measurable functions of (�, M, μ). This will follow from the fact that a1, . . . , ar are measurable functions them-
selves, the fact that R is a finite relation, and the choice of a definite tuple of witnesses of each ω ∈ �: the lexicographically 
smallest if a(ω) is in R , or the all-zero tuple otherwise. We discuss the details.

Since R is finite, the event Q = {ω ∈ � : bk(ω) = σ }, for fixed σ ∈ {+1, 0, −1}, can be expressed as a finite Boolean 
combination of events of the form Q i,τ = {ω ∈ � : ai(ω) = τ }, where i ∈ [r] and τ ∈ {±1}. Here is how: If σ 
= 0, then

Q =
⋃

a∈R:
b(a)k=σ

( ⋂
i∈[r]

Q i,ai

)
, (12)

where b(a) denotes the lexicographically smallest tuple of witnesses in {±1}t for the quantified variables in φR (x1/a1, . . . ,
xr/ar). If σ = 0, then Q is the complement of this set. Each Q i,τ is a measurable set in the measure space (�, M, μ) since 
ai is a measurable function and Q i,τ = a−1

i (B1/4(τ )), where B1/4(τ ) denotes the complex open ball of radius 1/4 centered 
at τ , which is a Borel set in the standard topology of C. Since the range of bk is in the finite set {−1, 0, 1}, the preimage 
b−1

k (S) of each Borel subset S of C is expressed as a finite Boolean combination of measurable sets, and is thus measurable 
in (�, M, μ).

We just proved that each bk is bounded and measurable, so its equivalence class under almost everywhere equality 
is represented in L∞(�, μ). We may assume without loss of generality that bk is its own representative; else modify it 
on a set of measure zero in order to achieve so. Let Fk = Tbk be the multiplication operator given by bk and let Yk be 
assigned the linear operator Bk = U−1 FkU , which is bounded because bk is bounded and U is unitary. Also because U
is unitary, each such operator is self-adjoint and squares to the identity since bk(ω) ∈ {±1} for almost all ω ∈ �. More-
over, E1, . . . , Er, F1, . . . , Ft pairwise commute since they are multiplication operators; thus A1, . . . , Ar, B1, . . . , Bt pairwise 
commute since they are simultaneously similar via U . Moreover, as each atomic formula in the quantifier-free part of φR
is satisfied by the mapping that sends xi �→ ai(ω) and yi �→ bi(ω) for almost all ω ∈ �, another application of Lemma 1
shows that the operators that are assigned to the variables of this atomic formula make the corresponding indicator poly-
nomial evaluate to −I . This means that the assignment to the X and Y -variables makes a satisfying operator assignment for 
the constraints of J that come from the constraint (Z , R) in I . As different constraints from I produce their own sets of 
Y -variables, these definitions of assignments are not in conflict with each other, and the proof of the lemma is complete. �
4.3. The extended construction

We proved so far that satisfying operator assignments for I lift to satisfying operator assignments for J . We do not 
know if the converse is true. One could try to just take the restriction of the satisfying assignment for J to the variables of 
I , but there is little chance that this will work because there is no guarantee that the operators that are assigned to any two 
variables that appear together in a constraint of I will commute. Instead of trying to modify the assignment, we modify the 
instance J . Let us discuss a slightly modified version of J , over a very minor extension of the constraint language B , that 
still allows lifting of solutions, and for which the naif projection works for the backward direction. Let us stress now that 
we plan to use this modified construction over a minor extension of the constraint language merely as a technical device to 
get other results. At the end of this section we also discuss a possible avenue for avoiding the technical device.

In the following, let T denote the full binary Boolean relation; i.e., T = {±1}2. Observe that the indicator polynomial 
PT(X1, X2) of the relation T is just the constant −1; the letter T stands for true.

Let A and B be the constraint languages such that A is pp-definable from B . Let I and J be the instances over A and B
as defined above. The modified version of J will be an instance over the expanded constraint language B ∪ {T}. We denote 
it Ĵ and it is defined as follows: the variables and the constraints of Ĵ are defined as in J , but we also add all the binary 
constraints of the form ((Xi, X j), T), ((Xi, Yk), T) or ((Yk, Y�), T), for every four different variables Xi , X j , Yk and Y� that 
come from the same block in J .

4.4. Correctness: operator solutions lift and also project

We argue that in this new construction, satisfying assignments not only lift from I to Ĵ , but also project from Ĵ to I .

Lemma 6. Let I and Ĵ be as above and let H be a Hilbert space. Then the following assertions are true.

1. For every f that is a satisfying operator assignment for I over H, there exists g that extends f and is a satisfying operator 
assignment for Ĵ over H,
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2. For every g that is a satisfying operator assignment for Ĵ over H, the restriction f of g to the variables of I is a satisfying operator 
assignment for I over H.

Proof. Statement 1 follows from Lemma 5: Fix f that is a satisfying operator assignment for I and let g be given by 
Lemma 5. This is also an assignment for the variables of Ĵ . The constraints of Ĵ that are already in J are of course 
satisfied by g . Next consider an additional constraint of the form ((Xi , X j), T), ((Xi, Yk), T) or ((Yk, Y�), T), for variables Xi , 
X j , Yk and Y� coming from the same block in J . By the “moreover” clause in Lemma 5, the operators Ai , A j , Bk and B�

associated to Xi , X j , Yk and Y� by g pairwise commute. Moreover, the associated polynomial constraints PT(Ai, A j) = −I , 
PT(Ai, Bk) = −I and PT(Bk, B�) = −I are trivial (i.e., void) since the indicator polynomial PT(X1, X2) of T is just the constant 
−1.

For statement 2, fix g that is a satisfying operator assignment for Ĵ over H, and let f be the restriction of g to the 
variables of I . Since g satisfies Ĵ , for every two variables Xi and X j that appear together in a constraint (Z , R) of I , the 
associated operators g(Xi) and g(X j) commute since Xi and X j appear in the same block of J . Hence f (Xi) and f (X j)

commute. We still need to show that the polynomial constraint PR( f (Z)) = −I is satisfied for every constraint (Z , R) of I . 
To do so, we use Lemma 3 on an appropriately defined system of polynomial equations.

Let r be the arity of R and let φR be the pp-formula as in (11) that defines R from B . The polynomials we define have 
variables X1, . . . , Xr, Y1, . . . , Yt, C−1, C+1 that correspond to the variables and constants in (11). For every k ∈ [m], let Q k be 
the polynomial P Sk (Wk) +1, so that the equation Q k = 0 ensures P Sk (Wk) = −1, where P Sk is the characteristic polynomial 
of Sk , and Wk is the tuple of components from X1, . . . , Xr, Y1, . . . , Ys, C−1, C+1 that appear in the atom Sk(wk) of (11). Here 
we use Xi and Y j in place of xi and y j , respectively, and C−1 and C+1 in place of the constants −1 and +1, respectively. 
Let also Q m+1 and Q m+2 be the polynomials C−1 + 1 and C+1 − 1, so that the equations Q m+1 = Q m+2 = 0 ensure that 
C−1 = −1 and C+1 = +1. Finally, let Q be the polynomial P R(X1, . . . , Xr) + 1, where P R is the characteristic polynomial 
of R . It follows from the definitions that every Boolean assignment that satisfies all equations Q 1 = · · · = Q m+2 = 0 also 
satisfies Q = 0. Thus Lemma 3 applies, and since g extended to g(C−1) = −I and g(C+1) = I satisfies all equations Q 1 =
· · · = Q m+2 = 0, it also satisfies Q = 0. It follows that P R ( f (Z)) = P R(g(Z)) = −I , as was to be proved. �
4.5. Discussion: the full binary relation and commutativity gadgets

The sole role of the full binary Boolean relation T = {±1}2 in the construction of Ĵ was to express the commutativity 
relations that are implied by ((Xi, X j), T), ((Xi, Yk), T) and ((Yk, Y�), T). These are needed for the proof of the second 
statement in Lemma 6. In some contexts, however, the infusion of the relation T in the target constraint language B can be 
avoided, as we discuss next.

Consider, for example, the constraint language 3LIN as defined in Section 2, and let R be one of the two relations 
in 3LIN, say, R is the relation XY Z = I . We claim that, whenever the target constraint language is 3LIN, the proof of 
Lemma 6 goes through with the commutativity relations that involve T in the definition of Ĵ replaced by the constraints 
((Xi, X j, Uij), R), ((Xi, Yk, V ik), R) and ((Yk, Y�, Wk�), R), respectively, where Uij , V ik and Wk� are fresh new variables. This 
follows by examining the proof of Lemma 6 and by using the following two facts: (i) if A, B, C is an operator assignment 
for X, Y , Z that satisfies the constraint ((X, Y , Z), R), then AB = B A; and (ii) if A, B is an operator assignment for X, Y that 
satisfies AB = B A, then there exists C such that A, B, C is an operator assignment for X, Y , Z that satisfies the constraint 
((X, Y , Z), R). The first of these two facts is an immediate consequence of the definitions. For the second of fact, it suffices 
to take C = B A and observe that, on one hand ABC = AB B A = A A = I since A2 = B2 = I , and on the other AC = AB A =
B A A = C A and BC = B B A = B AB = C B since AB = B A.

More generally, the use of the full binary Boolean relation T can be avoided whenever the target constraint language 
admits a so-called commutativity gadget, as defined next. Let K be an instance over the target constraint language that 
contains two distinguished variables X and Y , for a total of t +2 variables X, Y , Z1, . . . , Zt . We say that K is a commutativity 
gadget for X and Y if the following two conditions hold: (i) if A, B, C1, . . . , Ct in an operator assignment for X, Y , Z1, . . . , Zt
that satisfies K, then AB = B A; and (ii) if A, B is an operator assignment for X, Y that satisfies AB = B A, then there 
exist C1, . . . , Ct such that A, B, C1, . . . , Ct is an operator assignment for X, Y , Z1, . . . , Zt that satisfies K. The claim is that, 
whenever a commutativity gadget K exists, the commutativity relations that involve T in the definition of Ĵ can be replaced 
by copies of K with the appropriate X and Y variables, and fresh new variables Z1, . . . , Zt for each copy, and then the proof 
of Lemma 6 goes through. Again, this follows by examining the proof of Lemma 6 and observing that the only properties of 
the full Boolean binary relation T used are precisely the ones abstracted in the definition of a commutativity gadget.

The concept of commutativity gadget was introduced by Ji [15] in his proof that the operator version of 3SAT is NP-
hard. Obviously, the single-constraint instance ((X, Y ), T) is always a commutativity gadget. We already argued that, for 
the constraint language 3LIN, the single-constraint instance ((X, Y , Z), XY Z = I) is a commutativity gadget for X and Y . 
Similarly, it is not hard to see that the constraint language of 3SAT has a commutativity gadget that is also made of 
the single-constraint instance ((X, Y , Z), X ∨ Y ∨ Z). However, it is not always so easy to show that a constraint lan-
guage admits a commutativity gadget. For example, consider the constraint language 1-IN-3-SAT introduced in Section 2. 
In this case, the single-constraint instance ((X, Y , Z), R1/3), where R1/3 = {(−1, +1, +1), (+1, −1, +1), (+1, +1, −1)}, fails 
to satisfy the second property of the definition of commutativity gadget. Indeed, the partial assignment (X, Y ) �→ (−1, −1)

satisfies XY = Y X but it cannot be extended to a tuple in R1/3. It turns out, however, that if we let K be the more complex 
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instance (((X, Z1, Z4), R1/3), ((Y , Z2, Z4), R1/3), ((Z1, Z2, Z3), R1/3)), then both conditions are met. In this case, proving that 
the second condition in the definition of commutativity gadget holds is easy, but proving that the first condition holds re-
quires the use of some non-trivial identities on commutator polynomials that were discovered by Ji [15] through computer 
search. This construction will be discussed at length in Section 6, where it will play an important role.

5. Satisfiability gaps via operator assignments

Let A be a Boolean constraint language and let I be an instance over A. It is easy to see that the following inequalities 
hold:

ν(I) ≤ ν∗(I) ≤ ν∗∗(I). (13)

Indeed, the first inequality holds because if we interpret the field of complex numbers C as a 1-dimensional Hilbert space, 
then the only solutions to the equation X2 = 1 are X = −1 and X = +1. The second inequality is a direct consequence of 
the definitions. For the same reason, if I is satisfiable in the Boolean domain, then it is satisfiable via fd-operators, and if 
it is satisfiable via fd-operators, then it is satisfiable via operators. The converses are, in general, not true; however, finding 
counterexamples is a non-trivial task. For the Boolean constraint language LIN of affine relations, counterexamples are given 
by Mermin’s magic square [16,17] for the first case, and by Slofstra’s recent construction [24] for the second case. These 
will be discussed at some length in due time. In the rest of this section, we characterize the Boolean constraint languages 
that exhibit such gaps.

We distinguish three types of gaps. Specifically, we say that an instance I witnesses

1. a satisfiability gap of the first kind if ν(I) < 1 and ν∗(I) = 1;
2. a satisfiability gap of the second kind if ν(I) < 1 and ν∗∗(I) = 1;
3. a satisfiability gap of the third kind if ν∗(I) < 1 and ν∗∗(I) = 1.

As a mnemonic rule, count the number of stars ∗ that appear in the defining inequalities in 1, 2 or 3 to recall what kind 
the gap is.

We say that a Boolean constraint language A has a satisfiability gap of the i-th kind, i = 1, 2, 3, if there is at least one 
instance I over A that witnesses such a gap. Clearly, a gap of the first kind or a gap of the third kind implies a gap of the 
second kind. In other words, if A has no gap of the second kind, then A has no gap of the first kind and no gap of the third 
kind. A priori no other relationships seem to hold. We show that, in a precise sense, either A has no gaps of any kind or A
has a gap of every kind. Recall from Section 4 that T denotes the full binary Boolean relation; i.e. T = {±1}2. We are now 
ready to state and prove the main result of this section.

Theorem 3. Let A be a Boolean constraint language. Then the following statements are equivalent.

1. A does not have a satisfiability gap of the first kind.
2. A does not have a satisfiability gap of the second kind.
3. A ∪ {T} does not have a satisfiability gap of the third kind,
4. A is 0-valid, or A is 1-valid, or A is bijunctive, or A is Horn, or A is dual Horn.

The proof of Theorem 3 has two main parts. In the first part, we show that if A satisfies at least one of the conditions in 
the fourth statement, then A has no satisfiability gaps of the first kind or the second kind, and A ∪ {T} has no satisfiability 
gaps of the third kind. In the second part, we show that, in all other cases, A has satisfiability gaps of the first kind and 
the second kind, and A ∪ {T} has satisfiability gaps of the third kind. The ingredients in the proof of the second part are 
the existence of gaps of all three kinds for LIN, results about Post’s lattice [21], and gap-preserving reductions that use the 
results about pp-definability established in Section 4.

5.1. No gaps of any kind

Assume that A satisfies at least one of the conditions in the fourth statement in Theorem 3. First, we observe that the 
full relation T is 0-valid, 1-valid, bijunctive, Horn, and dual Horn. Indeed, T is obviously 0-valid and 1-valid. Moreover, it is 
bijunctive, Horn, and dual Horn because it is equal to the set of satisfying assignments of the Boolean formula (x ∨ ¬x) ∧
(y ∨ ¬y), which is bijunctive, Horn, and dual Horn. Therefore, to prove that the fourth statement in Theorem 3 implies the 
other three statements, it suffices to prove that if A satisfies at least one of the conditions in the fourth statement, then A
has no gaps of any kind. Towards this goal, we argue by cases.

We start with the trivial cases in which A is 0-valid or 1-valid. If an instance I of A contains a constraint of the form 
(Z , F), where F is an empty relation (of some arity), then I is not satisfiable by any operator assignment. Otherwise, I is 
satisfiable in the Boolean domain, hence it is satisfiable by assigning the identity operator I to every variable, if A is 0-valid, 
or by assigning the operator −I to every variable, if A is 1-valid.
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Next, we have to show that if A is bijunctive or Horn or dual Horn, then A has no gaps of any kind. As discussed earlier, 
it suffices to show that A does not have a gap of the second kind (since a gap of the first kind or a gap of the third kind 
implies a gap of the second kind).

Ji [15] proved that if I is a 2SAT instance or a HORN SAT instance that is satisfiable via fd-operators, then I is also 
satisfiable in the Boolean domain. In other words, Ji showed that 2SAT and HORN SAT have no gaps of the first kind. 
This is quite close to what we have to prove, but there are two differences. The first difference is that we cannot apply 
Ji’s argument directly to bijunctive or Horn constraint languages. The reason is that it is by no means obvious that if an 
operator assignment satisfies a constraint expressed by a bijunctive relation (or a Horn relation) R , then this operator 
assignment also satisfies every clause of the 2CNF-formula (or of the Horn formula) that defines R . While the preceding 
property is true, proving it requires an application of the Strong Spectral Theorem, which is somewhat delicate in the infinite 
dimensional case. For this, however, the full generality of the statement of Lemma 3 will come in handy. The second and 
main difference is that, at first glance, Ji’s proof for 2SAT and HORN SAT does not seem to extend to operator assignments 
of arbitrary (finite or infinite) dimension. The reason for this is that Ji’s argument relies on the existence of eigenvalues and 
associated orthogonal eigenspaces for the linear operators, which are not guaranteed to exist in the infinite-dimensional 
case, even for self-adjoint bounded linear operators. Note, however, that in our case we have the additional requirement 
that the operators satisfy A2 = I , and in such a case their eigenvalues and associated eigenspaces can be reinstated. This 
observation could perhaps be used to give a proof along the lines of Ji’s that 2SAT and HORN SAT have no gaps of the 
second kind. Nonetheless, we prefer to give an alternative and more direct proof that does not rely at all on the existence 
of eigenvalues. Our proof is based on the manipulation of non-commutative polynomial identities, a method that has been 
called the substitution method (see, e.g., [7]).

Lemma 7. Let I be a 2SAT instance or a HORN SAT instance or a DUAL HORN SAT instance. Then the following statements are 
equivalent.

1. I is satisfiable in the Boolean domain;
2. I is satisfiable via fd-operators;
3. I is satisfiable via operators.

We split the proof into two: one for 2SAT and another one for HORN SAT; the proof for DUAL HORN SAT is analogous to 
the proof for HORN SAT, and it is omitted.

Proof of Lemma 7 for 2SAT. Let I be a 2CNF-formula. The implications 1 =⇒ 2 and 2 =⇒ 3 follow from the definitions. 
To prove the implication 3 =⇒ 1, assume that f is a satisfying operator assignment for I over a (finite-dimensional or 
infinite-dimensional) Hilbert space H, and, towards a contradiction, assume that I is unsatisfiable in the Boolean domain. 
We will make use of the well-known characterization of unsatisfiable in the Boolean domain 2SAT instances in terms of a 
reachability property of their associated implication graph. For I , the implication graph is the directed graph G that has one 
vertex for each literal x or ¬x of every variable x in I , and two directed edges for each clause (�1 ∨ �2) of I , one edge 
from �1 to �2, and another one from �2 to �1. The well-known characterization states that I is unsatisfiable in the Boolean 
domain if and only if there exists a variable x and two directed paths in G , one from the variable x to the literal ¬x, and 
another one from the literal ¬x to the variable x (see, e.g., [19]). Accordingly, let �1, . . . , �r and m1, . . . , ms be literals such 
that x, �1, . . . , �r, ¬x and ¬x, m1, . . . , ms, x are the vertices in the paths from x to ¬x and from ¬x to x, respectively, in the 
order they are traversed.

The existence of the path x, �1, . . . , �r, ¬x from the variable x to the literal ¬x in the implication graph G means that the 
clauses

(¬x ∨ �1), (�1 ∨ �2), . . . , (�r−1 ∨ �r), (�r ∨ ¬x) (14)

are clauses of the instance I . Symmetrically, the existence of the path ¬x, m1, . . . , ms, x from the literal ¬x to the variable 
x in the implication graph G means that the clauses

(x ∨ m1), (m1 ∨ m2), . . . , (ms−1 ∨ ms), (ms ∨ x) (15)

are clauses of the instance I .
In the case of satisfiability in the Boolean domain, one reasons that the instance I is unsatisfiable, because if it were 

satisfiable by some truth assignment, then the path of implications from x to ¬x forces x to be set to false, while the path 
of implications from ¬x to x forces x to be set to true. In what follows, we will show that, with some care, essentially the 
same reasoning can be carried out for operator assignments that satisfy the instance I .

Extend the operator assignment f to all literals by setting f (�) = sg(�) f (x), where x the variable underlying �. Since f
is a quantum satisfying assignment for I , Lemma 2 implies that

(I − f (x))(I + f (�1)) = 0 (16)
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(I − f (�i))(I + f (�i+1)) = 0, 1 ≤ i ≤ r − 1. (17)

(I − f (�r))(I − f (x)) = 0 (18)

We now claim that

(I − f (x))(I + f (�i)) = 0, 1 ≤ i ≤ r. (19)

We prove the claim by induction on i. For i = 1, what we need is just equation (16). By induction, assume now that

(I − f (x))(I + f (�i−1)) = 0 (20)

holds for some i with 2 ≤ i ≤ r − 1. By (17), we have that

(I − f (�i−1))(I + f (�i)) = 0 (21)

holds. First, by multiplying equation (20) from the right by (I + f (�i)), we get

(I − f (x))(1 + f (�i−1))(1 + f (�i)) = 0 (22)

Second, by multiplying equation (21) from the left by (I − f (x)), we get

(I − f (x))(1 − f (�i−1))(1 + f (�i)) = 0 (23)

By adding equations (22) and (23), we obtain

(I − f (x))(I + f (�i)) = 0, (24)

as desired. In particular, by considering the case i = r, we get

(I − f (x))(I + f (�r)) = 0, (25)

which, after multiplying out the left-hand side, becomes

I + f (�r) − f (x) − f (x) f (�r) = 0. (26)

Furthermore, by multiplying out the left-hand side of equation (18), we get

I − f (x) − f (�r) + f (�r) f (x) = 0. (27)

Since the variable x and the literal �r appear in the same clause of the instance I , namely, the clause (�r ∨ ¬x), we have 
that f (x) f (�r) = f (�r) f (x). Therefore, by adding equations (26) and (27), we get that 2I − 2 f (x) = 0, which implies that 
f (x) = I .

An entirely symmetric argument using the path from ¬x to x, instead of the path from x to ¬x, gives f (x) = −I , which 
contradicts the previous finding that f (x) = I . �
Proof of Lemma 7 for HORN SAT. Let I be a Horn formula. As with the proof for 2SAT, the only non-trivial direction is 
3 =⇒ 1. To prove the implication 3 =⇒ 1, assume that f is a satisfying operator assignment for I over a (finite-dimensional 
or infinite-dimensional) Hilbert space H, and, towards a contradiction, assume that I is unsatisfiable in the Boolean domain. 
As in the proof for 2SAT, let f be extended to all literals by f (�) = sg(�) f (x), where x is the variable underlying x. We will 
make use of the characterization of unsatisfiable in the Boolean domain Horn instances in terms of unit resolution. For this, 
we need to first introduce some terminology and notation. If C and C ′ are two clauses such that C contains a literal � and 
C ′ contains the complementary literal � of �, then the resolution rule produces in one step the resolvent clause D that is 
the disjunction of all literals in the premises C and C ′ other than � and �. The unit resolution rule is the special case of the 
resolution rule in which (at least) one of the clauses C and C ′ is a single literal. It is well known (see, e.g., [23]) that a 
Horn formula I is unsatisfiable if and only if there is a unit resolution derivation of the empty clause from the clauses of I , 
i.e., there is a sequence C1, . . . , Cm of clauses such that, for each i ∈ {1, . . . , m}, we have that Ci is one of the clauses of I
or Ci is obtained from earlier clauses C j and Ck in the sequence via the unit resolution rule. Clearly, in a unit resolution 
derivation of the empty clause, the last application of the unit resolution rule involves two clauses each of which is the 
complementary literal of the other.

In what follows, we will show that a unit resolution derivation can be “simulated” by a sequence of equations involving 
operator assignments. We begin by formulating and proving the following claim.

Claim 1: Let (�1 ∨ · · · ∨ �r) be clause and let � j be the complementary literal of some literal � j in that clause. If f satisfies 
both the clause (�1 ∨ · · · ∨ �r) and the literal � j , then f also satisfies the resolvent (�1 ∨ · · · ∨ � j−1 ∨ � j+1 ∨ · · · ∨ �r) of 
(�1 ∨ · · · ∨ �r) and � j ; equivalently, the operators { f (�i) : i 
= j} pairwise commute and
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j−1∏
i=1

(I + f (�i))

r∏
i= j+1

(I + f (�i)) = 0. (28)

Observe that for the unit resolution rule, as is the case here, the resolvent is always a subclause of one of the premises. In 
particular, since f satisfies both premises, all the operators involved in the premises commute, and so do the ones involved 
in the resolvent clause. To complete the proof of the claim observe that, since f satisfies both the clause (�1 ∨ · · · ∨ �r) and 
the literal � j , the corresponding operators commute, and the identity of polynomials in commuting variables of Lemma 2
implies that

r∏
i=1

(I + f (�i)) = 0 (29)

(I − f (� j)) = 0. (30)

By multiplying equation (30) by 
∏ j−1

i=1 (I + f (�i)) from the left, and by 
∏r

i= j+1(I + f (�i)) from the right, we get⎛⎝ j−1∏
i=1

(I + f (�i))

⎞⎠ (I − f (� j))

⎛⎝ r∏
i= j+1

(I + f (�i))

⎞⎠ = 0. (31)

By adding equations (29) and (31), we get (28), which completes the proof of Claim 1.
Consider now a unit resolution derivation C1, . . . , Cm of the empty clause from the clauses of I . Since the operator 

assignment f satisfies every clause of I , we can apply Claim 1 repeatedly and, by induction, show that f satisfies each 
clause in this derivation. Since Cm is the empty clause, it must have been derived via the unit resolution rule from two 
earlier clauses each of which is the complementary literal of the other, say, � and �. So, we must have f (�) = −I and 
f (�) = −I , which is a contradiction since f (�) = − f (�). �

In what follows, we will use Lemma 7 to show that if A is bijunctive or Horn or dual Horn, then A has no gaps of any 
kind.

Assume that A is bijunctive. Note that we cannot apply Lemma 7 directly to conclude that A has no gaps of any 
kind, because the relations in the constraint-language A are defined by conjunctions of 2-clauses, but need not be defined 
by individual 2-clauses. In order to be able to apply Lemma 7, first we need to verify the following claim. Assume that 
(Z , R) is a constraint in which R is a relation in A defined by a conjunction C1 ∧ · · · ∧ Cm , where each Ci is a 2-clause 
on the variables in Z . Then a satisfying operator assignment for the instance consisting of the single constraint (Z , R)

will also satisfy each of the 2-clause constraints (W1, C1), . . . , (Wr, Cr) individually, where W i = (Zci , Zdi ) is the tuple of 
components of Z = (Z1, . . . , Zr) that appear in Ci . To prove this claim, first note that the commutativity condition on the 
operators assigned to the variables in W i is guaranteed by the commutativity condition on the variables in Z . Thus, we just 
need to check that the characteristic polynomial of Ci evaluates to −I , and to do so we use Lemma 3 for an appropriately 
defined system of polynomial equations. In the remaining, fix i ∈ [m].

Our polynomials have variables X1, . . . , Xr . Let Q 1 be the polynomial P R(X1, . . . , Xr) + 1, so that the equation Q 1 = 0
ensures P R(X1, . . . , Xr) = −1, where P R is the characteristic polynomial of R . Let Q be the polynomial P Ci (Xci , Xdi ) + 1, 
so that the equation Q = 0 ensures P Ci (Xci , Xdi ) = −1, where P Ci is the characteristic polynomial of Ci , and ci and di are 
the indices of the components of Z in W i . Then, every Boolean assignment that satisfies the equation Q 1 = 0 belongs to 
R , from which it follows that the Boolean assignment satisfies the conjunct Ci in the bijunctive definition of R , and hence 
it also satisfies the equation Q = 0. Thus, Lemma 3 applies and every operator assignment that satisfies P R (Z) = −I also 
satisfies P Ci (W ) = −I , as was to be proved.

We are now ready to complete the proof that if A is bijunctive, then A has no gaps. Let I be an instance over A that is 
satisfiable via operators. The preceding paragraph shows that the 2SAT instance that results from replacing each constraint 
in the instance I by its defining conjunction of 2-clauses is also satisfiable via operators. By Lemma 7, this 2SAT instance is 
also satisfiable in the Boolean domain. But then I itself is satisfiable in the Boolean domain, as was to be shown.

If A is Horn or dual Horn, then the proof is entirely analogous.

5.2. Background on Post’s lattice

Before we start with the second part in the proof of Theorem 3, we need to introduce some basic terminology and basic 
results from universal algebra; we devote this section to that.

Let R ⊆ {±1}r be a Boolean relation of arity r and let f : {±1}m → {±1} be a Boolean operation of arity m. The relation 
R is invariant under f if, for all sequences of m many r-tuples (a1,1, . . . , a1,r), . . . , (am,1, . . . , am,r) in {±1}r , the following 
holds:

if (a1,1, . . . ,a1,r), . . . , (am,1, . . . ,am,r) are tuples in R,

then ( f (a , . . . ,a ), . . . , f (a , . . . ,a )) is also a tuple in R.
(32)
1,1 m,1 1,r m,r
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Note that the tuple in the second line is obtained by applying the m-ary operation f to the m many tuples in the first line 
componentwise. If A is a Boolean constraint language, we say that A is invariant under f if every relation in A is invariant 
under f . Whenever A is invariant under f we also say that f is a closure operation of A.

The importance of the closure operations of a constraint language stems from the fact that they completely determine 
the relations that are pp-definable from it. This semantic characterization of the syntactic notion of pp-definability was 
discovered by Geiger [13] and, independently, Bodnarchuk et al. [3], for all constraint languages of arbitrary but finite 
domain. Here we state the special case of this characterization for the Boolean domain, since only this special case is 
needed in our applications.

Theorem 4 ([13,3]). Let A be a Boolean constraint language and let R be a Boolean relation. The following statements are equivalent:

1. R is pp-definable from A by a pp-formula without constants,
2. R is invariant under all Boolean closure operations of A.

In the following we refer to Theorem 4 as Geiger’s Theorem.
Recall from Section 4 that a pp-formula without constants is one in which the constants +1 and −1 do not appear in 

its quantifier-free part of the formula. Although it will not be used until a later section, it is worth pointing out here that a 
similar characterization of pp-definability with constants exists. Indeed, it is easy to see that Geiger’s Theorem implies that 
a Boolean relation R is pp-definable from the Boolean constraint language A by a pp-formula with constants if and only 
if R is invariant under all idempotent Boolean closure operations of A, or equivalently, invariant under all Boolean closure 
operations of the Boolean constraint language A+ that is obtained from A by adding the two unary singleton relations {+1}
and {−1}; i.e., A+ = A ∪ {{+1}, {−1}}. We return to the issue of definability with constants in Section 7.

For every set F of Boolean operations, let Inv(F ) denote the set of all Boolean relations that are invariant under all 
operations in F . Conversely, for every set of Boolean relations A, let Pol(A) denote the set of all Boolean operations under 
which all relations in A are invariant. Geiger’s Theorem implies that the mappings A �→ Pol(A) and F �→ Inv(F ) are the 
lower and upper adjoints of a Galois connection [8] between the partially ordered set of sets of Boolean relations ordered 
by inclusion, and the partially ordered set of sets of Boolean operations, also ordered by inclusion.

Note that for every constraint language A, the set Pol(A) contains all projection operations: all operations f : {±1}r →
{±1} for which there exists an index i ∈ [r] such that f (x1, . . . , xr) = xi for all (x1, . . . , xr) ∈ {±1}r . Also, Pol(A) is closed 
under compositions: if f : {±1}s → {±1} and g1, . . . , gs : {±1}r → {±1} are operations from Pol(A), then the operation 
h = f ◦ (g1, . . . , gs) defined by h(x1, . . . , xr) = f (g1(x1, . . . , xr), . . . , gs(x1, . . . , xr)) for all (x1, . . . , xr) ∈ {±1}r is also in Pol(A). 
Any set of operations that contains all projection operations and that is closed under compositions is called a clone.

Post [21] analyzed the collection of all clones of Boolean operations and completely determined the inclusions between 
them. In particular, he showed that this collection forms a lattice under inclusion, which is known as Post’s lattice. In 
denoting clones in Post’s lattice, we will follow the notation and terminology used by Böhler et al. [4]. The lattice is 
represented by the diagram in Fig. 1, which is also borrowed from [4] (we thank Steffen Reith for allowing us to reproduce 
the diagram here).

Each circle in the diagram of Fig. 1 represents a clone of Boolean operations, and a line between two circles denotes 
inclusion of the clone of the lower circle into the clone of the upper circle. Post showed that every clone of Boolean 
operations is represented in the diagram. Post also identified a finite basis of operations for each clone, which means that 
the clone is the smallest class of operations that contains the operations in the basis and all the projections operations, and 
that is closed under composition. For our application, we need only the bases for the eight clones called I2 , I0, I1, D2, E2, 
V2, L2 and N2. These are listed in the table in Fig. 2.

The final ingredient we need from Post’s lattice is a characterization of the tractable Boolean constraint languages from 
Schaefer’s Theorem in terms of their closure operations.

Theorem 5 (see Section 1.1 in [5]). Let A be a Boolean constraint language. The following statements hold.

1. A is 0-valid if and only if A is invariant under the constant false operation.
2. A is 1-valid if and only if A is invariant under the constant true operation.
3. A is bijunctive if and only if A is invariant under (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z).
4. A is Horn if and only if A is invariant under x ∧ y.
5. A is dual Horn if and only if A is invariant under x ∨ y.
6. A is affine if and only if A is invariant under x ⊕ y ⊕ z.

For the connection with Post’s lattice, note that, by Fig. 2, the six conditions listed on the right of the entries 1 through 
6 in Theorem 5 are equivalent to Pol(A) containing the clones I0, I1, D2, E2, V2 and E2, respectively.
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Fig. 1. Graph of all Boolean clones (diagram by Steffen Reith).

I2 ∅ E2 {x ∧ y}
I0 {false} V2 {x ∨ y}
I1 {true} L2 {x ⊕ y ⊕ z}
D2 {(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)} N2 {¬x}

Fig. 2. Bases of some selected clones from Fig. 1. Here ∧, ∨, ¬ and ⊕ denote Boolean conjunction, Boolean disjunction, Boolean negation, and Boolean 
exclusive or, respectively.

5.3. Gaps of every kind

We are ready to proceed with the second part in the proof of Theorem 3. Assume that A satisfies none of the conditions 
in the fourth statement in Theorem 3, i.e., A is not 0-valid, A is not 1-valid, A is not bijunctive, A is not Horn, and A is not 
dual Horn. We will show that A has a satisfiability gap of the first kind (hence, A also has a satisfiability gap of the second 
kind) and A ∪ {T} has a satisfiability gap of the third kind.
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As a stepping stone, we will use the known fact that LIN has gaps of every kind. We now discuss the proof of this fact 
and give the appropriate references to the literature.

Recall that LIN is the class of all affine relations, i.e., Boolean relations that are the set of solutions of a system of 
linear equations over the two-element field. In the ±1-representation, every such equation is a parity equation of the form ∏r

i=1 xi = y, where y ∈ {±1}.
Mermin [16,17] considered the following system M of parity equations:

X11 X12 X13 = 1 X11 X21 X31 = 1
X21 X22 X23 = 1 X12 X22 X32 = 1
X31 X32 X33 = 1 X13 X23 X33 = −1.

(33)

Graphically, this system of equations can be represented by a square, where each equation on the left of (33) comes from a 
row, and each equation on the right of (33) comes from a column.

X11 X12 X13

X21 X22 X23

X31 X32 X33

+1

+1

+1

+1 +1 −1

It is easy to see that this system of equations has no solutions in the Boolean domain. Indeed, by multiplying the left-hand 
sides of all equations, we get 1 because every variable Xij occurs twice in the system and X2

i j = 1. At the same time, by 
multiplying the right-hand sides of all equations, we get −1, hence the system has no solutions in the Boolean domain. 
Observe, however, that this argument used the assumption that variables commute pairwise, even if they do not appear 
in the same equation. Thus, this argument does not go through if one assumes only that variables occurring in the same 
equation commute pairwise. Mermin [16,17] showed that the system M has a solution consisting of linear operators on a 
Hilbert space of dimension four. Thus, in our terminology, Mermin established the following result.

Theorem 6 ([16,17]). M witnesses a satisfiability gap of the first kind for LIN.

Cleve and Mittal [7, Theorem 1] have shown that a system of parity equations has a solution consisting of linear op-
erators on a finite-dimensional Hilbert space if and only if there is a perfect strategy in a certain non-local game in the 
tensor-product model. Cleve, Liu, and Slofstra [6, Theorem 4] have shown that a system of parity equations has a solution 
consisting of linear operators on a (finite-dimensional or infinite-dimensional) Hilbert space if and only if there is a perfect 
strategy in a certain non-local game in the commuting-operator model. Slofstra [24] obtained a breakthrough result that 
has numerous consequences about these models. In particular, Corollary 3.2 in Slofstra’s paper [24] asserts that there is a 
system S of parity equations whose associated non-local game has a perfect strategy in the commuting-operator model, 
but not in the tensor-product model. Thus, by combining Theorem 1 in [7], Theorem 4 in [6], and Corollary 3.2 in [24], we 
obtain the following result.

Theorem 7 ([6,7,24]). S witnesses a satisfiability gap of the third kind for LIN.

LIN has a rather special place among all classes of Boolean relations that are not 0-valid, are not 1-valid, are not bi-
junctive, are not Horn, and are not dual Horn. This special role is captured by the next lemma, which follows from Post’s 
analysis of the lattice of clones of Boolean functions from Section 5.2.

Lemma 8. Let A be a Boolean constraint language. If A is not 0-valid, not 1-valid, not bijunctive, not Horn, and not dual Horn, then 
LIN is pp-definable from A.

Proof. Assume that A is a Boolean constraint language satisfying the hypothesis of Lemma 8. We consider the clone Pol(A)

and distinguish several cases using Post’s lattice.
If Pol(A) is the smallest clone I2 in Post’s lattice, then Pol(A) contains only the projection functions; hence, every Boolean 

relation is closed under every function in Pol(A). Geiger’s Theorem implies that every Boolean relation and, in particular, 
every relation in LIN, is pp-definable from A (and, in fact, it is pp-definable without using constants).

If Pol(A) is not the smallest clone I2 in Post’s lattice, then it must contain one of the seven minimal clones I0, I1, D2, 
E2, V2, L2, N2 that contain I2. Recall that these clones have bases of operations as described in Fig. 2. Since A is not i-valid, 
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where i = 0, 1, and since the clone Ii is generated by the constant function ci(x) = i, it must be the case that Pol(A) does 
not contain the clone I0 or the clone I1. Since A is not bijunctive, there is a relation in A that is not closed under the 
majority function maj(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z). Since the clone D2 is generated by the function maj(x, y, z), it 
must be the case that Pol(A) does not contain the clone D2. Since A is not Horn, there is a relation in A that is not closed 
under the function and(x, y) = x ∧ y. Since the clone E2 is generated by the function and(x, y), it must be the case that 
Pol(A) does not contain the clone E2. Since A is not dual Horn, there is a relation in A that is not closed under the function 
or(x, y) = x ∨ y. Since the clone V2 is generated by the function or(x, y), it must be the case that Pol(A) does not contain 
the clone V2.

The preceding analysis shows that there are just two possibilities: Pol(A) contains the clone L2 or Pol(A) contains the 
clone N2. Assume first that Pol(A) contains the clone L2. Since L2 is generated by the exclusive or function ⊕(x, y, z) =
x ⊕ y ⊕ z and since a relation is affine if and only if it is closed under the function ⊕, Geiger’s Theorem implies that 
a relation is pp-definable without constants from A if and only if it is an affine relation. Thus, LIN is pp-definable from 
A (and, in fact, it is pp-definable without constants). Finally, assume that Pol(A) contains the clone N2. Since Pol(A) is 
generated by the function not(x) = ¬x, Geiger’s Theorem implies that a relation is pp-definable without constants from A if 
and only if it is closed under the function not(x). In particular, for every n ≥ 1 and for i = 0, 1, the affine relation that is the 
set of solutions of the equation x1 + · · · + x2n = i mod 2 is pp-definable without constants from A. By using the constant 0
in these equations, we have that for every n ≥ 1 and for every i = 0, 1, the affine relation that is the set of solutions of the 
equation x1 + · · · + x2n−1 = i mod 2 is pp-definable from A (recall that pp-definitions allow constants). It follows that LIN is 
pp-definable from A. �

The final lemma in this section asserts that reductions based on pp-definitions preserve satisfiability gaps upwards.

Lemma 9. Let B and C be Boolean constraint languages such that B is pp-definable from C.

1. If B has a satisfiability gap of the first kind, then so does C.
2. If B has a satisfiability gap of the third kind, then so does C ∪ {T}.

Proof. For the first part, assume that B is pp-definable from C and that I is an instance that witnesses a satisfiability gap of 
the first kind for B . Thus, I is satisfiable via fd-operators, but is not satisfiable in the Boolean domain. Let J be the instance 
over C as defined in Section 4.1. On the one hand, by Lemma 5, the instance J is also satisfiable via fd-operator. On the 
other hand, by Lemma 4, the instance J is also not satisfiable in the Boolean domain. Thus, J witnesses a satisfiability gap 
of the first kind for C .

For the second part, assume that B is pp-definable from C and that I is an instance that witnesses a satisfiability gap 
of the third kind for B . Thus, I is satisfiable via operators, but it is not satisfiable via fd-operators. Let Ĵ be the instance 
over C ∪ {T} as defined in Section 4.3. By Lemma 6, the instance Ĵ is satisfiable via operators, but it is not satisfiable via 
fd-operators. Thus, Ĵ witnesses a satisfiability gap of the third kind for C ∪ {T}. �

We now have all the machinery needed to put everything together.
Let A be a Boolean constraint language that is not 0-valid, not 1-valid, not bijunctive, not Horn, and not dual Horn. By 

Lemma 8, we have that LIN is pp-definable from A. Since, by Theorem 6, LIN has a satisfiability gap of the first kind, the 
first part of Lemma 9 implies that A has a satisfiability gap of the first kind. Since, by Theorem 7, LIN has a satisfiability 
gap of the third kind, the second part of Lemma 9 implies that A has a satisfiability gap of the third kind. The proof of 
Theorem 3 is now complete.

6. Further applications

In this section we discuss two applications of the results from Sections 4 and 5. The first application is about classification 
theorems in the style of Schaefer. The second application builds on Slofstra’s results to answer some open questions from [1]
on the quantum realizability of contextuality scenarios. While these open questions were solved earlier by Fritz also using 
Slofstra’s results (see [12]), our alternative perspective may still add some value since, as we will see, we obtain improved, 
and indeed optimal, parameters.

6.1. Dichotomy theorems

For a Boolean constraint language A, let SAT(A) denote the following decision problem:

Given an instance I over A, is I satisfiable in the Boolean domain?

Similarly, let SAT∗(A) and SAT∗∗(A) be the versions of the problem in which the questions are whether I is satisfiable via 
an operator assignment on a finite-dimensional Hilbert space, or on an arbitrary Hilbert space, respectively. We say that a 



A. Atserias et al. / Journal of Computer and System Sciences 105 (2019) 171–198 189
problem poly-m-reduces to another if there is a polynomial-time computable function that transforms instances of the first 
problem into instances of the second in such a way that the answer is preserved.

Recall that T denotes the full binary Boolean relation {±1}2. The construction in Section 4.3 and Lemma 6 give the 
following:

Lemma 10. Let A and B be Boolean constraint languages and let A′ = A ∪ {T} and B ′ = B ∪ {T}. If A is pp-definable from B, then

1. SAT(A′) poly-m-reduces to SAT(B ′), SAT∗(B ′), and SAT∗∗(B ′),
2. SAT∗(A′) poly-m-reduces to SAT∗(B ′).
3. SAT∗∗(A′) poly-m-reduces to SAT∗∗(B ′).

Slofstra’s Corollary 3.3 in [24] in combination with Theorem 4 in [6] gives the undecidability of SAT∗∗(LIN) which, from 
now on we denote by LIN SAT∗∗ .

Theorem 8 ([24], [6]). LIN SAT∗∗ is undecidable.

In combination with Lemmas 7, 10, and 8, we get the following dichotomy theorem:

Theorem 9. Let A be a Boolean constraint language and let A′ = A ∪ {T}. Then, exactly one of the following holds:

1. SAT∗∗(A′) is decidable in polynomial time,
2. SAT∗∗(A′) is undecidable.

Moreover, the first case holds if and only if A is 1-valid, or A is 0-valid, or A is bijunctive, or A is Horn, or A is dual Horn.

Proof. If A is 1-valid, 0-valid, bijunctive, Horn, or dual Horn, then A′ is also of the same type; indeed T is both 1-valid and 
0-valid, and it is also bijunctive, Horn and dual Horn since it is defined by the empty conjunction of any kind of clauses. 
Thus SAT∗∗(A′) is the same problem as SAT(A′) by Lemma 7, which is solvable in polynomial time.

If on the contrary A is neither 1-valid, nor 0-valid, nor bijunctive, nor Horn, nor dual Horn, then Lemma 8 applies and 
LIN has a pp-definition from A. In such a case Lemma 10 applies and SAT∗∗(LIN′) reduces to SAT∗∗(A′), where LIN′ denotes 
LIN ∪ {T}. Since every instance of LIN SAT∗∗ is also an instance of SAT∗∗(LIN′), the undecidability of SAT∗∗(A′) follows from 
Theorem 8. �

Note that, in case 2, Theorem 9 states that SAT∗∗(A′) is undecidable but it says nothing about SAT∗∗(A). Luckily, in most 
cases it is possible to infer the undecidability of SAT∗∗(A) from the undecidability of SAT∗∗(A′). This is the case, for example, 
for both

3SAT = {{±1}3 \ {(a1,a2,a3)} : a1,a2,a3 ∈ {±1}},
3LIN = {{(a1,a2,a3) ∈ {±1}3 : a1a2a3 = b} : b ∈ {±1}}.

In the following we write 3LIN SAT∗ and 3LIN SAT∗∗ to denote the problems SAT∗(A) and SAT∗∗(A) for A = 3LIN. Similarly, 
we use 3SAT∗ and 3SAT∗∗ to denote SAT∗(A) and SAT∗∗(A) for A = 3SAT.

Theorem 10. 3LIN SAT∗∗ and 3SAT∗∗ are both undecidable.

Proof. Let A be the Boolean constraint language of 3LIN or 3SAT. It follows from Theorem 9 that SAT∗∗(A′) is undecidable. 
Now we reduce this problem to SAT∗∗(A). Take any instance I over A′ and replace each constraint of the type ((Z1, Z2), T)

by an equation Z1 Z2Y = −1 in the case of 3LIN, and a clause Z1 ∨ Z2 ∨ Y in the case of 3SAT, where Y is a fresh variable not 
used anywhere else in the instance. Let J be the resulting instance. If f is a satisfying operator assignment for I , then we 
claim that an appropriate extension g of f is a satisfying operator assignment for J . For 3LIN, set g(Y ) = − f (Z2) f (Z1). For 
3SAT, set g(Y ) = −I . To see that this works, first note that g(Z1) = f (Z1) and g(Z2) = f (Z2) commute since they appear 
together in a constraint of I . Thus, in both cases g(Z1), g(Z2) and g(Y ) pairwise commute. Moreover, in the 3LIN case the 
assignment g(Y ) = − f (Z2) f (Z1) is chosen so that the equation g(Z1)g(Z2)g(Y ) = −I is satisfied; to check this, multiply 
g(Y ) = − f (Z2) f (Z1) by g(Z1)g(Z2) from the right and use g(Z2) f (Z2) = f (Z2)

2 = I and g(Z1) f (Z1) = f (Z1)
2 = I . Also, 

in the 3SAT case the assignment g(Y ) = −I annihilates the product in the expression of the characteristic polynomial of the 
clause Z1 ∨ Z2 ∨ Y in see Lemma 2, which makes the characteristic polynomial evaluate to −I regardless of what g(Z1) and 
g(Z2) are. Thus, the new constraints are satisfied by g and the claim is proved.

Conversely, if g is a satisfying operator assignment for J , then the restriction of g to the variables of I is a satis-
fying operator assignment for I , just because the commutativity of f (Z1) and f (Z2) is enforced by the fact that they 
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appear together in the constraint Z1 Z2Y = −I or Z1 ∨ Z2 ∨ Y of J , and because the characteristic polynomial of T is the 
constant −1. �

The same construction and argument that we used in Theorem 10 starting at a gap instance over the constraint language 
3SAT ∪ {T} gives a gap instance over 3SAT that will be useful later on.

Corollary 1. There is an instance over the Boolean constraint language 3SAT that witnesses a satisfiability gap of the third kind; it is 
satisfiable via operator assignments over some Hilbert space but not over a finite-dimensional Hilbert space.

6.2. Quantum realizability of contextuality scenarios

We follow the terminology in the paper by Acín, Fritz, Leverrier and Sainz [1]. A contextuality scenario is a hypergraph 
H with set V (H) of vertices and set E(H) ⊆ 2V (H) of edges such that 

⋃
e∈E(H) e = V (H). Given a contextuality scenario 

H , a quantum model for it is, informally, an assignment of probabilities to the vertices of H that are reproduced as the 
observation probabilities of a collection of projective measurements associated to the edges of H , when the measurements 
are applied to some quantum state. When a contextuality scenario has at least one quantum model, one says that H allows 
quantum models. As argued in [1], this can be equivalently stated formally, without any reference to measurements or 
quantum states, as follows.

We say that a contextuality scenario H allows a quantum model, or is quantum realizable, if there exists a Hilbert space H
and an assignment of bounded linear operators P v on H to each vertex v in V (H) in such a way that:

1. P v is self-adjoint,
2. P 2

v = P v for each v ∈ V (H),
3.

∑
v∈e P v = I for each e ∈ E(H).

Note that 1 and 2 together say that each P v is an orthogonal projection operator,3 and 3 says that the projection operators 
associated to the vertices of each edge resolve the identity. In [1] the question was raised whether there exist contextuality 
scenarios that are quantum realizable but only over infinite-dimensional Hilbert spaces (see Problem 8.3.2 in [1]). A related 
computational question was also raised: Is it decidable whether a contextuality scenario given as input allows a quantum 
state? (see Conjecture 8.3.3 in [1]). Following the notation in [1], this problem is called ALLOWS-QUANTUM. The restriction 
of the problem in which the input hypergraph has edges of cardinality at most k we call k-ALLOWS-QUANTUM. See [1] for 
a discussion on why these problems are important, and their relationship to Connes Embedding Conjecture in functional 
analysis.

Soon after Slofstra published his results, both questions raised in [1] were answered by Fritz by reduction from Slofstra’s 
Theorems 7 and 8 (see [12]). In particular, Fritz proved that ALLOWS-QUANTUM is undecidable. In the following we illustrate 
the methods developed in the previous sections to give alternative proofs of these results. As a bonus, our proof also gives 
optimal parameters; we get hypergraphs with edges of size at most 3 that separate infinite-dimensional realizability from 
finite-dimensional realizability, and we show that already 3-ALLOWS-QUANTUM is undecidable. In contrast, Fritz’ reduction 
incurs an exponential loss in the size of the edges of the hypergraphs with respect to the arity of the constraints in Slofstra’s 
result, which is a priori not bounded, and the best it can achieve is size 4 anyway. Moreover, as we will see, our 3 in the 
maximum size of the edges is optimal since it turns out that 2-ALLOWS-QUANTUM is decidable (and even solvable in 
polynomial time).

Next we show how our methods can be used to answer these questions. First, notice that there is a clear similarity 
between the requirements 1, 2 and 3 in the definition of quantum realization of H and the requirements that an operator 
assignment for a collection of variables {Xv : v ∈ V (H)} associated to the vertices of H must satisfy. For one thing, if we 
define Av = I − 2P v for every v ∈ V (H), then each Av is a bounded self-adjoint linear operator such that A2

v = I . Moreover, 
the fact that the projections associated to an edge of H resolve the identity implies that they pairwise commute. Thus, the 
operators Av associated to the vertices of e also pairwise commute for every edge e of H . This means that the assignment 
Xv �→ Av thus defined is a valid operator assignment to any instance with constraint scopes given by the hyperedges of H .

However, the condition 
∑

v∈e
1
2 (Av − I) = I implied by condition 3 through the inverse transformation P v = 1

2 (Av −
I) does not correspond directly to a constraint of the form P R(Av : v ∈ e) = −I for any Boolean relation R . This means 
that we cannot interpret the quantum realizability problem directly as an instance of a satisfiability problem via operator 
assignments over a Boolean constraint language. However, as it turns out, the problem that we called 3-ALLOWS-QUANTUM 
is literally the same as the arbitrary Hilbert space version 1-IN-3 SAT∗∗ of the problem called 1-IN-3 SAT∗ by Ji.4 Ji proved 

3 Acín et al. refer to orthogonal projection operators as projections. In the following we will also refer to them as projections in order to avoid confusion 
with the fact that two orthogonal projection operators P and Q could fail to satisfy P Q = 0. It may also be worth pointing out that linear-algebraic 
projection operators of this section are unrelated to the universal-algebraic projection operations from Section 5.2.

4 There is an unfortunate clash in notation in that the problem 1-IN-3 SAT∗ studied by Ji [15] is not the same as the problem that we would call 
SAT∗(1-IN-3 SAT), where 1-IN-3 SAT is the Boolean relation {{(−1, +1, +1), (+1, −1, +1), (+1, +1, −1)}}. Note that P1-IN-3 SAT(X1, X2, X3) = 3

4 X1 X2 X3 +
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that 3SAT∗ reduces to 1-IN-3 SAT∗ , and in view of Theorem 10, the question arises whether 3SAT∗∗ also reduces to 1-IN-3 
SAT∗∗ , or to 3-ALLOWS-QUANTUM, which is the same. We show that it does.

Before we can do it, though, we need the following lemma that Ji proved for finite-dimensional Hilbert spaces (see 
Lemma 5 in [15]), and that we prove for all Hilbert spaces:

Lemma 11. Let H a Hilbert space. For every two projection operators P1 and P2 of H that commute, there exist projection operators 
Q 1 , Q 2 , Q 3 and Q 4 of H such that

P1 + Q 1 + Q 4 = I

P2 + Q 2 + Q 4 = I

Q 1 + Q 2 + Q 3 = I.

Conversely, if P1, P2, Q 1, Q 2, Q 3, Q 4 are projection operators of H that satisfy these equations, then P1 and P2 commute.

Proof. To prove the first claim, consider the pp-formula

φ(Z1, Z2) = ∃U1∃U2∃U3∃U4(R1/3(Z1, U1, U4) ∧ R1/3(Z2, U2, U4) ∧ R1/3(U1, U2, U3)), (34)

where R1/3 = {(−1, +1, +1), (+1, −1, +1), (+1, +1, −1)}. It is straightforward to check that this formula defines the full 
binary Boolean relation T = {±1}2. Now, let I be the instance ((Z1, Z2), T) and let J be the instance obtained from I as 
in Section 4.1. Let f be defined by f (Z1) = 1 − 2P1 and f (Z2) = 1 − 2P2. Since P1 and P2 commute and the characteristic 
polynomial of T is the constant −1, the assignment f is a satisfying operator assignment for the instance ((Z1, Z2), T). 
By Lemma 5, there exists g that extends f and is a satisfying operator assignment for J over H. Moreover, g is pair-
wise commuting on each block of J . Take Q i = (1 − g(Ui))/2 for i = 1, 2, 3, 4. Then Q 1, . . . , Q 4 are projection operators, 
and P1, P2, Q 1, . . . , Q 4 pairwise commute. We claim that they satisfy the equations in the lemma. To see this we apply 
Lemma 3. Since the equation P R1/3 (Z1, U1, U4) = −1 entails the equation (1 − Z1)/2 + (1 − U1)/2 + (1 − U4)/2 = 1 over the 
Boolean domain {±1}, and at the same time P1, Q 1, Q 4 pairwise commute, the equation P R1/3 (g(Z1), g(U1), g(U4)) = −I
implies P1 + Q 1 + Q 4 = I by Lemma 3. For the other two equations, the argument is the same.

For the converse, we use the following easy to verify identities discovered via a computer search by Ji (see the proof of 
Lemma 5 in [15]):

[P1 + Q 1 + Q 4 − I,−P1 + Q 1 + Q 3] = [P1, Q 3] + [Q 4, Q 3]
[P2 + Q 2 + Q 4 − I,−P1] = [P1, P2] + [P1, Q 2]

[Q 1 + Q 2 + Q 3 − I, P1 + Q 4] = [Q 2, P1] + [Q 3, P1] + [Q 3, Q 4],
where [X, Y ] denotes the commutator polynomial XY − Y X . Note that the equations in the lemma imply that the left-hand 
sides are all 0. On the other hand, using the identity [X, Y ] + [Y , X] = 0, the sum of the right-hand sides is [P1, P2]. This 
gives [P1, P2] = 0 and thus P1 and P2 commute. �
Lemma 12. 3SAT∗∗ poly-m-reduces to 3-ALLOWS-QUANTUM.

Proof. Schaefer proved that 3SAT is pp-definable from the constraint language given by the single relation R1/3 =
{(−1, +1, +1), (+1, −1, +1), (+1, +1, −1)}. If in addition to R1/3 we allow also the relations R1/2 = {(−1, +1), (+1, −1)}
and R1/1 = {−1}, then the pp-definition can be assumed to have the property that each atom involves different variables and 
no constants. For example, an atom of the form R1/3(X, X, Z) can be replaced by R1/3(X, Y , Z) ∧ R1/2(X, Y ′) ∧ R1/2(Y ′, Y ), 
where Y and Y ′ are fresh quantified variables that do not appear anywhere else in the formula.

We use this for the construction in Section 4.3. Let I be a 3SAT instance and let Ĵ be the instance over the Boolean 
constraint language A = {R1/3, R1/2, R1/1, T} given by the construction in Section 4.3, using the pp-definition of 3SAT from 
A. Starting at Ĵ we produce an instance of 3-ALLOWS-QUANTUM as follows: Each variable in Ĵ becomes a vertex in the 
hypergraph. Each constraint of the type ((Z1, Z2, Z3), R1/3) becomes a hyperedge {Z1, Z2, Z3}, each constraint of the type 
((Z1, Z2), R1/2) becomes a hyperedge {Z1, Z2}, each constraint of the type (Z , R1/1) becomes a singleton hyperedge {Z}, 
and each constraint of the type ((Z1, Z2), T) introduces four fresh vertices U1, U2, U3, U4 and three hyperedges {Z1, U1, U4}, 
{Z2, U2, U4} and {U1, U2, U3} in correspondence with the equations of Lemma 11 with Z1, Z2 playing the role of P1, P2, and 
U1, U2, U3, U4 playing the role of Q 1, Q 2, Q 3, Q 4. Let H be the hypergraph that results from this construction. We claim 

1
4 X1 X2 + 1

4 X2 X3 + 1
4 X1 X3 − 1

4 X1 − 1
4 X2 − 1

4 X3 + 1
4 , so the difference is that, even though the characteristic polynomial equation P1-IN-3 SAT(X1, X2, X3) = −I

is satisfied by an operator assignment if and only if the resolution of the identity equation 1
2 (1 − X1) + 1

2 (1 − X2) + 1
2 (1 − X3) = −I is satisfied by the 

same operator assignment, the two polynomials P1-IN-3 SAT(X1, X2, X3) and 1
2 (1 − X1) + 1

2 (1 − X2) + 1
2 (1 − X3) are by no means the same.
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that for every Hilbert space H, the instance I is satisfiable via operator assignments over H if and only if the hypergraph 
H is quantum realizable over H.

In the forward direction, let f be a satisfying operator assignment for I over H. By Lemma 6, there is a g that extends 
f and is a satisfying operator assignment for Ĵ over H. Recall now that each vertex of H is indeed a variable of Ĵ , or 
an additional vertex of the type U1, U2, U3, U4 introduced by a constraint of the form ((Z1, Z2), T). For each v of the first 
type, let P v be the projection operator given by (1 − g(v))/2. For each v of the second type, let P v be the projection given 
by Lemma 11 for the projection assignment P1 = P Z1 and P2 = P Z2 with U1, U2, U3, U4 corresponding to Q 1, Q 2, Q 3, Q 4. 
Note that P1 and P2 commute, since Z1 and Z2 appear together in ((Z1, Z2), T) and hence g(Z1) and g(Z2) commute, so 
the lemma applies. We claim that this assignment of operators does the job.

We just need to check that the projection operators resolve the identity on every edge of H . For edges of the type 
{Z1, Z2, Z3} introduced by a constraint ((Z1, Z2, Z3), R1/3) we show this with an application of Lemma 3: the equation 
P R1/3(Z1, Z2, Z3) = −1 entails the equation (1 − Z1)/2 + (1 − Z2)/2 + (1 − Z3)/2 = 1 over the Boolean domain {±1}, and 
therefore, since g(Z1), g(Z2), g(Z3) pairwise commute, the equation P R1/3 (g(Z1), g(Z2), g(Z3)) = −I implies P Z1 + P Z2 +
P Z3 = I by Lemma 3. For edges of the types {Z1, Z2} or {Z} introduced by constraints of the types ((Z1, Z2), R1/2) or 
(Z , R1/2), respectively, the argument is the same. Finally, for the three edges that come from a constraint of the form 
((Z1, Z2), T), the claim follows from Lemma 11. This completes one direction of the reduction.

For the other direction, let v �→ P v be an assignment of projection operators of H that witnesses that H is quantum 
realizable. Recall again that each vertex v of H is a variable of Ĵ , or an additional vertex of the type U1, U2, U3, U4 coming 
from a T-constraint. For each v of the first type, let Av = I − 2P v . Each Av is a self-adjoint bounded linear operator that 
squares to the identity. Moreover, any two variables of Ĵ that appear together in a constraint that is not a T-constraint 
appear together as vertices in some edge of H . Therefore the corresponding operators belong to the resolution of the 
identity of that edge, and a set of projection operators that resolve the identity are pairwise orthogonal and hence commute. 
Also, for any two variables of Ĵ that appear together in a constraint of the form ((Z1, Z2), T), the corresponding operators 
commute thanks to the “conversely” clause in Lemma 11. Thus, the only thing left to do is checking that each constraint of 
Ĵ is satisfied.

For constraints of the type ((Z1, Z2, Z3), R1/3) this follows also from an application of Lemma 3: the equation (1 −
Z1)/2 + (I − Z2)/2 + (I − Z3)/2 = 1 entails the equation P R1/3 (Z1, Z2, Z3) = −1 over the Boolean domain {±1}, and since 
A Z1 , A Z2 , A Z3 pairwise commute, the equation P Z1 + P Z2 + P Z3 = I implies P R1/3(A Z1 , A Z2 , A Z3 ) = −I by Lemma 3. For 
constraints of the type ((Z1, Z2), R1/2) and (Z , R1/1) the argument is the same. �

In combination with Theorem 10 we get the following.

Corollary 2. 3-ALLOWS-QUANTUM and ALLOWS-QUANTUM are undecidable.

The same construction as in Lemma 12 starting from Corollary 1 gives the next.

Corollary 3. There exists a hypergraph with edges of size at most three that is quantum realizable on some Hilbert space, but not on a 
finite-dimensional Hilbert space.

It was mentioned earlier that 2-ALLOWS-QUANTUM is decidable in polynomial time. One way to see this is by arguing 
that a hypergraph with edges of size two (i.e., a graph) is quantum realizable if and only if it is bipartite. Another is by 
reduction to 2SAT∗∗ , which is decidable in polynomial time by Theorem 9. A close look reveals that, indeed, both proofs are 
the same.

Theorem 11. 2-ALLOWS-QUANTUM is decidable in polynomial time.

Proof. We reduce to 2SAT∗∗ . Given a hypergraph H , build the 2SAT instance that has one variable Xv for each vertex in 
V (H), two clauses Xu ∨ Xv and ¬Xu ∨ ¬Xv for every edge {u, v} ∈ E(H), and one unit clause Xu for each singleton edge 
{u} in E(H). It is straightforward to check that this reduction works through the usual conversion from projection operators 
to involutions P v �→ 1 − 2P v , and the usual conversion from involutions to projection operators Av �→ (1 − Av)/2. �
7. Closure operations

In this section we develop a generalization of the concept of closure operation from Section 5.2 for sets of operator 
assignments. For every Boolean r-ary relation R , let R∗ denote the set of fully commuting r-variable operator assignments 
over finite-dimensional Hilbert spaces that satisfy the equation P R (X1, . . . , Xr) = −I . We show that every closure operation 
for R gives a suitable closure operation for R∗ . As an application, we show that the set of Boolean relations that are 
pp-definable from a Boolean constraint language is not enlarged when we allow the existential quantifiers to range over 
operator assignments.
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7.1. Closure operations and pp∗-definitions

Let A be a Boolean constraint language and let R be a Boolean relation of arity r. Let ψ = R1(z1) ∧ · · · ∧ Rm(zm) be a 
conjunction of atoms with relations from A; i.e. each Ri is a relation from A, and each zi denotes a tuple of the appropriate 
arity made of first-order variables or constants in {±1}. Each such formula can be thought of as an instance over A. Con-
cretely, it can be thought of as the instance I = ((Z1, R1), . . . , (Zm, Rm)), where each Zi is obtained from the corresponding 
zi by replacing each first-order variable x by a corresponding variable X , and leaving all constants untouched.

Let H be a finite-dimensional Hilbert space. We say that R is pp∗-definable from A over H if there is a pp-formula 
φ(x1, . . . , xr) = ∃y1 · · · ∃ys(ψ(x1, . . . , xr, y1, . . . , ys)) over A, where ψ is a conjunction as above, such that, for every 
a1, . . . , ar ∈ {±1}, the tuple (a1, . . . , ar) is in R if and only if the instance

ψ(x1/a1, . . . , xr/ar, y1/Y1, . . . , ys/Ys) (35)

is satisfiable via operator assignments over H. We say that R is pp∗-definable from A if it is pp∗-definable from A over a 
finite-dimensional Hilbert space. One of the goals of this section is to prove the following conservativity theorem:

Theorem 12. Let A be a Boolean constraint language and let R be a Boolean relation. If R is pp∗-definable from A, then R is pp-
definable from A.

In order to prove this we need to develop the concept of closure operation for sets of operator assignments. Let r be 
a positive integer and let X1, . . . , Xr be variables. Recall that an operator assignment for X1, . . . , Xr is a tuple A1, . . . , Ar

of self-adjoint bounded linear operators that square to the identity, all taken from a common Hilbert space. The operator 
assignment is fully commuting if Ai A j = A j Ai holds for each i, j ∈ [r]. A relation of operator assignments of arity r is a 
set of fully commuting operator assignments for a fixed set of r variables. Note that we do not require that all operator 
assignments come from the same Hilbert space. The relation is called Boolean if all assignments in it come from a Hilbert 
space of dimension 1; i.e., from C. If H is a Hilbert space and R ⊆ {±1}r is a Boolean relation of arity r, we write RH for the 
set of fully commuting operator assignments for X1, . . . , Xr over H that satisfy the polynomial equation P R (X1, . . . , Xr) =
−I , where P R is the characteristic polynomial of R . We write R∗ for the union of RH over all finite-dimensional Hilbert 
spaces. If A is a set of Boolean relations, define A∗ = {R∗ : R ∈ A}.

Let H1, . . . , Hm and H be Hilbert spaces, and let f be a function that takes as inputs m many linear operators, one 
on each Hi , and produces as output a linear operator on H. We say that f is an operation if the following conditions are 
satisfied.

1. If Ai is a 1-variable operator assignment over Hi for i = 1, . . . , m, then f (A1, . . . , Am) is a one-variable operator assign-
ment over H.

2. If Ai,1, Ai,2 is a fully commuting 2-variable operator assignment over Hi for i = 1, . . . , m, then f (A1,1, . . . , Am,1),

f (A1,2, . . . , Am,2) is a fully commuting 2-variable operator assignment over H.

Let R be a relation of operator assignments of arity r and let F be a collection of operations as above. We say that R is 
invariant under F if for each f ∈ F the following additional condition is also satisfied.

3. If Ai,1, . . . , Ai,r is a fully commuting r-variable operator assignment over Hi that belongs to R for i = 1, . . . , m, then 
f (A1,1, . . . , Am,1), . . . , f (A1,r, . . . , Am,r) is a fully commuting r-variable operator assignment over H that belongs to R .

If A is a set of relations of operator assignments, we say that A is invariant under F if every relation in A is invariant under 
F . We also say that F is a closure operation of A. A Boolean closure operation of A is one in which the dimensions of all 
Hilbert spaces involved are 1; i.e., they are C. Before we prove the main technical result of this section, we work out a 
motivating example.

7.2. Example: LIN

In this section we study whether R∗ for R = LIN has some closure operation. In the 0-1-representation of Boolean values, 
the function (X1, X2, X3) �→ X1 ⊕ X2 ⊕ X3 is a Boolean closure operation of LIN. In the ±1-representation of Boolean values, 
this is (X1, X2, X3) �→ X1 X2 X3. It is tempting to think that the map (X1, X2, X3) �→ X1 X2 X3 applied to linear operators on 
a Hilbert space could already be a closure operation for LIN∗ . However, the solution to the Mermin-Peres magic square 
equations (33) is a counterexample: each row equation is a parity equation with even right-hand side that is satisfied, but 
the composition of columns by the operation X1 X2 X3 gives an operator assignment that satisfies a parity equation with 
odd right-hand side.

It turns out that the correct way of generalizing the Boolean closure operation is not by taking ordinary products, but 
Kronecker products. Let F be the function that takes any three linear operators X1, X2, X3 over the same finite-dimensional 
Hilbert space and is defined by
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F (X1, X2, X3) = X1 ⊗ X2 ⊗ X3. (36)

Now let (A1, . . . , Ar), (B1, . . . , Br) and (C1, . . . , Cr) be three fully commuting r-variable operator assignments over a finite-
dimensional Hilbert space, say Cd . We think of all operators as matrices. Take Di = F (Ai, Bi, Ci) for i = 1, . . . , r. These are 
Hermitian matrices since the operations of conjugate transposition and Kronecker product commute. Also

Di D j = (Ai A j) ⊗ (Bi B j) ⊗ (Ci C j) = (A j Ai) ⊗ (B j Bi) ⊗ (C jCi) = D j Di (37)

so D1, D2, D3 pairwise commute. Equation (37) also gives D2
i = (A2

i ) ⊗ (B2
i ) ⊗ (C2

i ) = I ⊗ I ⊗ I = I , so (D1, . . . , Dr) is a fully 
commuting r-variable operator assignment. Next we consider a relation in LIN, say R = {(a1, . . . , ar) ∈ {±1}r : a1 · · ·ar = b}, 
with b ∈ {±1}. Note that its characteristic polynomial is P R (X1, . . . , Xr) = −b · X1 · · · Xr . We show that if P R (A1, . . . , Ar) =
P R(B1, . . . , Br) = P R(C1, . . . , Cr) = −I , then also P R(D1, . . . , Dr) = −I . We have

r∏
i=1

Di =
(

r∏
i=1

Ai

)
⊗

(
r∏

i=1

Bi

)
⊗

(
r∏

i=1

Ci

)
= (bI) ⊗ (bI) ⊗ (bI) = b3 I = bI. (38)

Hence P R(D1, . . . , Dr) = −b2 I = −I . This shows that F is a closure operation of LIN∗ .
One consequence of the existence of F as a closure operation of LIN∗ is that the binary OR relation OR2 = {±1}2 \

{(+1, +1)} is not pp∗-definable from LIN.

Theorem 13. OR2 is not pp∗-definable from LIN.

Note that this follows from the more general statement in Theorem 12 since it is known that the Boolean relation OR2
is not pp-definable from LIN. Indeed, OR2 is not closed under the (idempotent) Boolean closure operation (X1, X2, X3) �→
X1 X2 X3 of LIN, since (−1, −1), (+1, −1) and (−1, +1) are all three in the relation OR2, but (+1, +1) is not in OR2. The 
undefinability of OR2 from LIN by a pp-formula (with or without constants) follows from the easy direction in Geiger’s 
Theorem 4. Since we prove Theorem 12 below, we omit a proof of Theorem 13 at this point.

7.3. Generalization

We show that every Boolean closure operation gives a closure operation for relations of operator assignments over 
finite-dimensional Hilbert spaces. In the following, if Xi is a linear operator on a Hilbert space, X0

i and X1
i are to be 

interpreted as the identity operator and Xi itself, respectively. If S is a set, we write S(i) for the 0-1-indicator of the fact 
that i is in S; i.e. S(i) = 1 if i is in S , and S(i) = 0 if i is not in S .

Theorem 14. Let A be a Boolean constraint language and let f : {±1}m → {±1} be a Boolean closure operation of A. Then the function 
on linear operators on finite-dimensional Hilbert spaces defined by

F (X1, . . . , Xm) =
∑

S⊆[m]
f̂ (S)

⊗
i∈[m]

X S(i)
i (39)

is a closure operation of A∗. Moreover, F (a1 I, . . . , am I) = f (a1, . . . , am)I holds for every (a1, . . . , am) ∈ {±1}m.

Proof. First we show that F is an operation; i.e., it satisfies conditions 1 and 2 in the definition of operation. Let X1, . . . , Xm

be 1-variable operator assignments over H1, . . . , Hm . In particular, X1, . . . , Xm are all self-adjoint linear operators. Thus, for 
S ⊆ [m] we have(⊗

i∈[m]
(Xi)

S(i)

)∗
=

⊗
i∈[m]

(X∗
i )S(i) =

⊗
i∈[m]

(Xi)
S(i). (40)

From this it follows that F (X1, . . . , Xm) is self-adjoint since each f̂ (S) is a real number. Next we want to show that 
F (X1, . . . , Xm)2 = I . First note that for S, T ⊆ [m], their symmetric difference U = S�T and their intersection V = S ∩ T , we 
have (⊗

i∈[m]
X S(i)

i

)(⊗
i∈[m]

X T (i)
i

)
=

(⊗
i∈[m]

X U (i)
i

)(⊗
i∈[m]

(X2
i )V (i)

)
=

(⊗
i∈[m]

X U (i)
i

)
, (41)

where the last equality follows from the fact that X2 = I for all i ∈ [m]. Now we can expand F (X1, . . . , Xm)2 as follows
i
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F (X1, . . . , Xm)2 =
∑

S⊆[m]

∑
T ⊆[m]

f̂ (S) f̂ (T )

(⊗
i∈[m]

X S(i)
i

)(⊗
i∈[m]

X T (i)
i

)
(42)

=
∑

S⊆[m]

∑
U⊆[m]

f̂ (S) f̂ (S�U )

(⊗
i∈[m]

X U (i)
i

)
(43)

=
∑

U⊆[m]

∑
S⊆[m]

f̂ (S) f̂ (S�U )

(⊗
i∈[m]

X U (i)
i

)
(44)

=
∑

U⊆[m]

(⊗
i∈[m]

X U (i)
i

) ∑
S⊆[m]

f̂ (S) f̂ (S�U ). (45)

By the Convolution Formula (3) we have∑
S⊆[m]

f̂ (S) f̂ (S�U ) = f̂ 2(U ). (46)

Since the range of f is {±1}, the function f 2 is identically 1, from which it follows that

f̂ 2(U ) =
{

1 if U = ∅
0 if U 
= ∅ (47)

by the uniqueness of the Fourier transform. Back into (45), this gives

F (X1, . . . , Xm)2 =
(⊗

i∈[m]
X∅(i)

i

)
= I (48)

as was to be proved. Finally, if S ⊆ [m] and (X1, Y1), . . . , (Xm, Ym) are such that Xi and Yi commute for every i ∈ [m], then(⊗
i∈[m]

X S(i)
i

)(⊗
i∈[m]

Y S(i)
i

)
=

⊗
i∈[m]

(Xi Yi)
S(i) = (49)

=
⊗
i∈[m]

(Yi Xi)
S(i) =

(⊗
i∈[m]

Y S(i)
i

)(⊗
i∈[m]

X S(i)
i

)
. (50)

It follows that F (X1, . . . , Xm) and F (Y1, . . . , Ym) commute. This completes the proof that F is an operation.
Next we show that for every relation R in A, the operator assignment relation R∗ is invariant under F . Let r be the arity 

of R and let P R(X1, . . . , Xr) be the characteristic polynomial of R . Let Ai,1, . . . , Ai,r be an r-variable operator assignment 
over a finite-dimensional Hilbert space Hi for i = 1, . . . , m. We may assume that Hi = Cdi where di is the dimension of 
Hi . From now on we switch to the language of matrices.

Assume that all the assignments (A1,1, . . . , A1,r), . . . , (Am,1, . . . , Am,r) are in R∗ . In particular, each sequence Ai,1, . . . , Ai,r

is a fully commuting assignment of Hermitian matrices and P R (Ai,1, . . . , Ai,r) = −I . The Strong Spectral Theorem (i.e. The-
orem 1) applies, so Ai,1, . . . , Ai,r simultaneously diagonalize. Let Ui be a unitary matrix of Hi that achieves that, and 
let Di, j = U Ai, j U∗ for j ∈ [r] be the resulting diagonal matrices. From A2

i, j = I and U∗U = U U∗ = I we conclude that 
D2

i, j = I and hence each entry in the diagonal of Di, j is +1 or −1. For c ∈ [di], let Di, j(c) denote the entry in position c
of the diagonal of Di, j . The hypotheses of Lemma 1 apply to the pairs (Ai,1, Di,1), . . . , (Ai,r, Di,r), so P R(Ai,1, . . . , Ai,r) and 
P R(Di, j, . . . , Di,r) are similar matrices. As P R(Ai,1, . . . , Ai,r) = −I , and the only matrix that is similar to −I is −I itself, we 
get P R(Di,1, . . . , Di,r) = −I . In particular

P R(Di,1(c), . . . , Di,r(c)) = −1 (51)

for every c ∈ [di]. This will be of use later.
Our next goal is to show that P R (F (A1,1, . . . , Am,1), . . . , F (A1,r, . . . , Am,r)) = −I and we do so by showing that∑

T ⊆[r]
R̂(T )

∏
j∈T

F (A1, j, . . . , Am, j) = −I. (52)

For fixed T ⊆ [r], let AT = ∏
j∈T F (A1, j, . . . , Am, j) be the matrix product appearing in the left-hand side of (52). Let t = |T |. 

By first expanding on the definition of F and then distributing the product over the sum we get
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AT =
∏
j∈T

∑
S⊆[m]

f̂ (S)
⊗
i∈[m]

(Ai, j)
S(i) =

∑
S:T →2[m]

∏
j∈T

f̂ (S(t))
∏
j∈T

⊗
i∈[m]

(Ai, j)
S(t)(i). (53)

For fixed T ⊆ [r] and S : T → 2[m] , let BT ,S = ∏
j

⊗
i(Ai, j)

S(t)(i) be the matrix product appearing in the right-hand side 
of (53). By distributing 

∏
over 

⊗
and applying Ai, j = U∗

i Di, j U i in (53) we get

BT ,S =
⊗
i∈[m]

(∏
j∈T

(U∗
i Di, j U i)

)S(t)(i)

=
⊗
i∈[m]

(
U∗

i

(∏
j∈T

Di, j

)S(t)(i)

Ui

)
. (54)

Hence

AT = U∗
( ∑

S:T →2[m]

∏
j∈T

f̂ (S( j))
⊗
i∈[m]

(∏
j∈T

Di, j

)S(t)(i))
U , (55)

for U = ⊗
i∈[m] Ui . Let M denote the matrix sitting within U∗ and U in line (55). As each Di, j is a di × di diagonal matrix, 

M is a d × d diagonal matrix with d = ∏
i∈[m] di . We think of the entries in the diagonal of M as indexed by tuples c =

(c1, . . . , cm) from [d1] × · · · × [dm]. Let M(c) denote the entry in position c of the diagonal of M . Then

M(c) =
∑

S:T →2[m]

∏
j∈T

f̂ (S(t))
∏

i∈[m]

∏
j∈T

(
Di, j(ci)

)S(t)(i)
. (56)

Factoring the product over j ∈ T back, the right-hand side in (56) reads∏
j∈T

∑
S⊆[m]

f̂ (S)
∏

i∈[m]
(Di, j(ci))

S(i) =
∏
j∈T

f (D1, j(c1), . . . , Dm, j(cm)). (57)

For fixed j ∈ [r] and c ∈ [d1] × · · · × [dm], let X j,c = f (D1, j(c1), . . . , Dm, j(cm)) so that equations (56) and (57) give M(c) =∏
j∈T X j,c . From (51) and the fact that f is a Boolean closure operator of R , the tuple (X1,c, . . . , Xr,c) belongs to the relation 

R . Thus∑
T ⊆[r]

R̂(T )M(c) =
∑

T ⊆[r]
R̂(T )

∏
j∈T

X j,c = P R(X1,c, . . . , Xr,c) = −1. (58)

Since this holds for every diagonal entry of M , we get 
∑

T ⊆[r] R̂(T )M = −I . Putting it all together, the left-hand side of our 
goal (52) evaluates to∑

T ⊆[r]
R̂(T )U∗MU = U∗

( ∑
T ⊆[r]

R̂(T )M

)
U = U∗(−I)U = −I. (59)

This gives (52) as desired.
In order to prove the ‘moreover’ clause of the theorem, observe that if S ⊆ [m] and (a1, . . . , am) ∈ {±1}m , then⊗

i∈[m]
(ai I)S(i) =

(∏
i∈S

ai

)
I, (60)

where in the left hand side the identity matrices have dimensions d1, . . . , dm , respectively, and in the right-hand side the 
identity matrix has dimension d × d for d = ∏

i∈[m] di . It follows that

F (a1 I, . . . ,am I) =
( ∑

S⊆[m]
f̂ (S)

∏
i∈S

ai

)
I = f (a1, . . . ,am)I. (61)

This completes the proof of the theorem. �
7.4. Finale

Before we prove Theorem 12, we need the following straightforward fact about the role of constants in pp-definitions.

Lemma 13. Let A be a Boolean constraint language, let R be Boolean a relation, and let A+ = A ∪ {{+1}, {−1}}. The following two 
statements hold.

1. R is pp-definable from A if and only if it is pp-definable without constants from A+.
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2. R is pp∗-definable from A if and only if it is pp∗-definable without constants from A+.

Proof. In both cases, for the ‘only if’ part it suffices to replace each occurrence of a constant in the quantifier-free part 
of the pp-formula by a new existentially quantified variable Z , and force it to belong to the corresponding new unary 
relation in A+ by an additional conjunct: if Z replaces the constant −1, we force Z to belong {−1} by a new conjunct, 
and it Z replaces the constant +1, we force it to belong {+1} by a new conjunct. In both cases too, the ‘if’ part follows 
from the reverse construction: replace each occurrence of a variable that appears within the scope of one of the new 
unary relations in A+ by the corresponding constant, and remove the conjuncts that involve the new unary relations. That 
these transformations are correct follows directly from the definitions and the fact that both I and −I commute with any 
operator. �

We are ready to prove Theorem 12.

Proof of Theorem 12. Assume R is pp∗-definable from A. By Lemma 13, the relation R is also pp∗-definable without 
constants from A+ = A ∪ {{+1}, {−1}}. Let r be the arity of R and let φ(x1, . . . , xr) be the pp-formula without constants 
that pp∗-defines R from A+ . By Geiger’s Theorem 4 and Lemma 13 it suffices to show that R is invariant under all Boolean 
closure operations of A+ .

Let f : {±1}m → {±1} be a Boolean closure operation of A+ . By Theorem 14, the function F is a closure operation of 
A+∗ . Let (a1,1, . . . , a1,r), . . . , (am,1, . . . , am,r) be tuples in R and let a j = f (a1, j, . . . , am, j) for every j ∈ [m]. We need to show 
that (a1, . . . , ar) is also in R . Let ψ(x1, . . . , xr, y1, . . . , ys) be the quantifier-free part of φ and consider the instance over A+
that is given by

ψ(x1/ai,1, . . . , xr/ai,r, y1/Y1, . . . , ys/Ys) (62)

as described in the beginning of this section. Since the tuple (ai,1, . . . , ai,r) is in R and φ pp∗-defines R , the instance 
in (62) is satisfiable via operator assignments over a finite-dimensional Hilbert space for every i ∈ [m]. Let Bi,1, . . . , Bi,s

be such a satisfying operator assignment for every i ∈ [m]. Since I and −I commute with any operator, this means that 
ai,1 I, . . . , ai,r I, Bi,1, . . . , Bi,s is a satisfying operator assignment of

ψ(x1/X1, . . . , xr/Xr, y1/Y1, . . . , ys/Ys) (63)

for every i ∈ [m]. Let A j = F (a1, j I, . . . , am, j I) and B j = F (B1, j, . . . , Bm, j). As F is a closure operation of A+∗ , the tuple 
A1, . . . , Ar, B1, . . . , Bs is a satisfying operator assignment for (63). Moreover, from the ‘moreover’ clause in Theorem 14 we 
know that A j = f (a1, j, . . . , am, j)I = a j I for every j ∈ [m]. Thus, the instance

ψ(x1/a1, . . . , xr/ar, y1/Y1, . . . , ys/Ys) (64)

is satisfiable via operator assignments over a finite-dimensional Hilbert space; the finite-dimensional operator assignment 
B1, . . . , Bs satisfies it. As φ pp∗-defines R , it follows that (a1, . . . , ar) is in R , as was to be shown. �
8. Concluding remarks

Motivated by considerations in the foundations of quantum mechanics, we investigated a relaxation of Boolean satis-
fiability in which the variables are assigned linear operators on some Hilbert space as values. Among other results, we 
characterized completely the classes of Boolean constraint languages in Schaefer’s framework for which there are instances 
that are unsatisfiable in the Boolean domain, but become satisfiable under this relaxation. Moreover, we explored the dif-
ference between satisfiability via linear operators on some Hilbert space of finite dimension and satisfiability via linear 
operators on some Hilbert space of arbitrary dimension. The main tool used was a careful adaptation of the notion of pp-
definability, which gave rise to reductions that preserve gaps between satisfiability in the Boolean domain and satisfiability 
via linear operators on some Hilbert space.

Several technical questions remain unanswered, including the following two.
In Section 4.5, we discussed the role of the full binary relation T and how its use can be avoided when the Boolean 

constraint language at hand admits a commutativity gadget. If it were the case that every Boolean constraint language 
admits a commutativity gadget, then all the results of this paper that require the inclusion of T to the constraint language 
would hold also without this requirement. Is it true that every Boolean constraint language admits a commutativity gadget?

In Section 7 we proved Theorem 12 which asserts that, as regards Boolean constraint languages and Boolean re-
lations, there is no difference between pp-definability and pp∗-definability, where in pp∗-definability the existential 
quantifiers range over operators on a finite-dimensional Hilbert space. Is there a difference between pp-definability and 
pp∗∗-definability, where in pp∗∗-definability the existential quantifiers range over operators on a Hilbert space of arbitrary 
(finite or infinite) dimension?

More broadly, the work reported here paves the way for the investigation of general constraint satisfaction problems 
under this relaxation of satisfiability. In particular, do the concepts and the results (for example, Theorem 3) about Boolean 
constraint satisfaction problems obtained here extend to q-valued constraint satisfaction problems, for q ≥ 3?
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