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About two decades ago, the concept of sparsity emerged independently in several

disciplines, e.g., statistics [20], signal processing [5] and imaging and inverse problems

[19], and has proved to be very successful in a number of applications. The idea is

to look for a “sparse” solution whose expansion with respect to a certain basis/frame

has many zeros coefficients. Statistically, the sparsity of solutions often leads to better

model interpretability and prediction [20], and empirically the sparsity of the signals

have been observed. Thus sparsity constraint represents a natural piece of a priori

knowledge for solving inverse problems. In the framework of Tikhonov regularization,

such a priori knowledge can be effectively enforced by an `p penalty on the expansion

coefficients. The exponent p in the penalty is often chosen to be p ∈ [1, 2), with the

choice p = 1 especially popular, but a choice p ∈ [0, 1) is also possible.

In 2004, Daubechies, Defrise and De Mol [7] provided a first theoretical treatment

on sparsity regularization for ill-posed inverse problems, and established the convergence

of an iterative algorithm, i.e., iterative soft thresholding algorithm, for computing

regularized solutions. This piece of work has inspired many subsequent developments

on sparsity regularization and more general variational regularization (with nonsmooth

penalties), and the approach itself has also been established as one of the most powerful

tools for solving inverse problems. See the monographs [16, 18] and the special issue

[17] for many theoretical developments on variational regularization and the survey [10]

on sparsity regularization for parameter identification problems.
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Today, sparsity regularization as a paradigm for solving inverse problems has gained

much popularity. The aim of this special issue is to provide a forum for ongoing works

on this topic. We have been lucky enough to obtain a number of excellent papers,

and we would like to thank all contributors for making the special issue possible. The

special issue consists of one perspective paper [8] and twelve research papers, with topics

covering theoretical developments [1, 13, 3, 9], computational techniques, [6, 11, 21] and

novel applications [4, 2, 12, 14, 15]. Next we give a brief overview of the contributions

included in this issue.

In the perspective paper [8], Daubechies, Defrise and De Mol present an overview

of early developments of sparsity regularization, including motivations from sparse

representation and denoising by thresholding. The perspective centers around the

celebrated iterative soft thresholding algorithm, and discusses its derivation, convergence

analysis and acceleration techniques. It also contains a complete proof of a previously

announced extension of the original algorithm to multiple components and mixed

penalties (i.e., multipenalty regularization).

Conventionally, sparsity constraint is enforced by an `p penalty in variational

regularization. The article [1] studies an alternative formulation for sparse recovery

based on discretization, also known as least error method or dual least-square method.

The work analyzes the convergence of the method for both a priori and a posteriori

rules for choosing the proper discretization level. Further, it establishes sublinear /

linear convergence rates under a suitable source condition, and discusses the structure

of the source element and approximate solutions.

The issue of choosing an optimal exponent p in the `p penalty is scarcely studied

in the literature, but nonetheless always fixed in practice. Motivated by parallel MRI,

the article [13] explores a “flexible” way of sparse regularization by varying exponents

with the index, and gives the proper functional analytic framework, i.e., the so-called

F -norms instead of the usual setting of normed spaces. One interesting observation is

that there are F -norms which generate the `1 space, but they are strictly convex, which

contrasts the convex `1 penalty.

In the absence of a range type source condition and nonlinearity conditions of

tangential cone type, convergence rates results for Tikhonov regularization of nonlinear

inverse problems are missing in the literature. This is exactly the situation that arises

in deautoconvolution in a complex-valued L2 space over a finite interval. The article

[3] shows that a sparse Fourier representation assumption on the solution implies a

variational source condition, which directly yields a convergence rate. Thus surprisingly,

the sparsity assumption on the solution enables error estimates, even though the used

norm square is not sparsity-promoting.

Practical signals often exhibit multiple desirable features that cannot be adequately

described by one single penalty. This calls for more flexible regularization techniques

with multiple penalties. The article [9] analyzes optimal support recovery in unmixing

with multipenalty regularization, where the regularized functional consists of a data-

fidelity term, a sparsity-promoting term, and a quadratic penalty term to model the



Sparsity Regularization in Inverse Problems 3

noise, and shows that compared with the single-parameter counterpart, the multipenalty

approach can significantly enhance support identification.

Inverse problems for partial differential equations (PDEs) are computationally

demanding, and there have been intensive activities in leveraging well established

techniques in numerical PDEs, e.g., multilevel, adaptive and domain decomposition,

to inversion procedures. To estimate the discretization error, the article [6] explores

functional error estimators for Tikhonov regularization, which are given in terms of

residuals in the optimality system and can be estimated by conventional techniques. A

convergence analysis of the resulting adaptive algorithm is provided.

Sparsity regularization for nonlinear inverse problems remain computationally

challenging, despite many recent efforts. The works [11, 21] aim at addressing this

challenge. The article [11] proposes a variant of the Landweber-Kaczmarz method with

inexact solver at each iteration for solving nonlinear inverse problems in Banach spaces

using general convex penalty, and analyzes its convergence based on the ε-subdifferential

calculus. This work improves existing convergence theory, and makes the algorithm

more practical. Meanwhile, the article [21] proposes a globally convergent algorithm

for computing a minimizer of the Tikhonov-type functional with the p-convex (p ≥ 2)

penalty terms. It employs a dual gradient descent method in the inner iteration, and

linearly decreases the regularization parameter in the outer iteration.

Inverse scattering of recovering the shape, locations and medium property from

the scattered field underlies many important applications. The article [4] analyzes

the resolution and stability properties of sparsity regularization for narrow band

array imaging of localized scatterers in several practical scenarios, and discusses

reconstruction methods for each scenario. For example, for strong multiple scattering

within homogeneous media, it proposes a two-step noniterative method to recover the

locations and reflectivities of the scatterers, and to improve its robustness using top

singular vectors of the response matrix as optimal illuminations.

Dynamic inverse problems of retrieving time-dependent information from time-

dependent data are evolving in medical imaging, e.g., PET and SPECT. The article [2]

proposes a variational method for simultaneously reconstructing the labelling functions

of the subregions and the tracer concentration within each region of dynamic SPECT

images. The work provides an analysis of the variational model (e.g., the existence

of minimizers and error estimates), a computational algorithm based on alternating

direction minimization, and numerical test on synthetic datasets.

Spectral CT using energy-resolved photon-counting detectors can provide the

unprecedented material compositions when compared with conventional CT. However,

accurate spectral CT needs to account for the detector response function. The article [12]

proposes a reconstruction method for spectral CT with a total variation type penalty,

i.e., sparse gradient, to take care of the detector response function, which numerically

yields more accurate reconstructions than conventional ones.

Image restoration often requires a precise knowledge of the point spread function

(PSF). It is spatially variable in large-scale spatial surveys and has to be calibrated
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for postprocessing. The article [14] proposes a resolved component analysis based on

matrix factorization to estimate PSFs from a given set of aliased and noisy star images.

It exploits the spatial correlation of PSFs across the field of view through sparsity, and

is tested on simulated monochromatic PSFs of Euclid telescope.

The article [15] addresses an inverse problem of recovering the scattering and

absorption coefficients in a 2D time-dependent radiative transfer equation, which arises

in diffuse optical tomography. It discusses the performances and relative merits of three

reconstruction algorithms, i.e., sparsity regularization, Landweber-Kaczmarz method,

and level set method, in certain practically relevant situations where the diffusion

approximation is unsuitable, for either known or unknown layer structures.

Finally, we would like to thank the Inverse Problems team, especially David Jones

and Sarah Whitehouse, for their extraordinarily smooth and productive cooperation, as

well as Simon R. Arridge for his kind support of our initiative.
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