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Summary Statement 

Compensatory endocytosis plays key roles in Weibel Palade body exocytosis. Inhibition of this 

process results in a change of exocytic mode and the release of Von Willebrands factor as tangled 

strings. 

 

Abstract 

Weibel Palade bodies (WPB), the storage organelles of endothelial cells, are essential to normal 

haemostatic and inflammatory responses. Their major content protein is Von Willebrands factor 

(VWF) that, following secretagogue-stimulation, is released into the blood vessel lumen as large 

platelet-catching strings. This exocytosis changes the protein composition of the cell surface and also 

results in a net increase in the amount of plasma membrane. Compensatory endocytosis is thought 

to limit changes in cell size and retrieve fusion machinery and other misplaced integral membrane 

proteins following exocytosis, however little is known about the extent, timing, mechanism and 

precise function of compensatory endocytosis in endothelial cells. Using biochemical assays, live cell 

imaging and correlative spinning disk microscopy and transmission electron microscopy assays we 

provide the first in-depth high-resolution characterisation of this process. We provide a model of 

compensatory endocytosis based on rapid clathrin and dynamin mediated retrieval. Inhibition of this 

process results in a change of exocytic mode:  WPB then fuse with previously fused WPB rather than 

the plasma membrane, leading in turn to formation of structurally-impaired tangled VWF strings.  
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Introduction 

 

Many cell types utilise regulated secretion as a means to release premade bioactive material from 

membranous carriers at the cell surface1. These include soluble factors for release into the 

extracellular milieu as well as integral membrane proteins that are then displayed for interaction 

with their cognate ligands. This is absolutely essential for a number of key physiological processes 

including cell-to-cell communication, immune cell function, digestion, inflammation and 

haemostasis1. The rate and frequency of carrier fusion with the plasma membrane can vary 

drastically, with the fastest occurring during neurotransmitter release and the slowest during 

surfactant release from lamellar bodies in pneumocytes2,3. 

 

Secondary to content release, exocytosis of secretory vesicles causes a net increase in the amount of 

membrane present at the cell surface. This is particularly apparent in cells with very large granules or 

cells that undergo rapid release3-5. Compensatory endocytosis provides a means to limit this 

membrane expansion to maintain cell size and membrane tension, as well as to return key integral 

membrane proteins back into the cell6,7. This retrieval process is best understood in neurons and 

neuroendocrine cells where a number of discrete mechanisms occur. In neurons the mode used 

depends on the stimulus received and includes full fusion (i.e. collapse) followed by clathrin 

mediated endocytosis at a separate site, kiss and run exocytosis (whereby a transient fusion event 

occurs and the granule reseals before collapse), clathrin independent ultrafast endocytosis (UFE) and 

activity-dependent bulk endocytosis5,8-10.  During neurotransmission, efficient and sustained 

neurotransmitter release is absolutely dependent on reformation of synaptic vesicles via clathrin-

mediated endocytosis (CME)6, either directly from the cell surface or from endosomes generated by 

other endocytic routes5. This is a tightly regulated process whereby membrane and specific cargo 

such as VAMP-2, synaptotagmin-1 and synaptophysin are retrieved in the appropriate ratio to allow 

reformation of a new synaptic vesicle5. During normal physiological stimulation this requires a 

number of adaptor proteins including AP-2, stonin-2 and AP18011. Retrieval in neuroendocrine cells 

is different; granules do not fully collapse and flatten out at the plasma membrane. Instead they 

maintain their shape and are re-internalized intact from the plasma membrane in a process referred 

to as cavicapture12 or fuse-pinch-linger13. These recaptured carriers can then either re-fuse with the 

plasma membrane at a later stage (if they still contain some cargo) or can be refilled with small 

transmitter molecules such as amines4. This process requires dynamin12,14,15 and calcium12 and in 

some cases allows differential release of cargo based on the size of the fusion pore4.  
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The purpose and mechanism of compensatory endocytosis in non-neuronal cell types is poorly 

characterised, especially in the case of the regulated secretory organelle of endothelial cells, the 

Weibel Palade body (WPB). WPB contain haemostatic and inflammatory mediators to be released 

into the vascular lumen16-18. The most abundant, and perhaps the most important, WPB cargo is Von 

Willebrand factor (VWF), a 220kDa glycoprotein that acts as a multifunctional mechanosensitive 

binding platform for blood components such as platelets. Following synthesis this protein dimerises 

in the endoplasmic reticulum before transferring to the Golgi. Once in the low pH environment of 

the trans-Golgi network (TGN) it forms a bouquet structure that stacks into extended coiled tubules. 

This process, alongside physical constraints imposed by the Golgi apparatus itself19, confers a unique 

rod shape and a remarkable length (up to 5µm) to the organelle18,20. Furin-mediated cleavage of the 

pro-peptide and formation of long disulphide-bonded concatemers is also initiated at the TGN and 

continues during organelle maturation.  

 

Following exocytosis into the pH neutral environment of the blood, and with the help of shear force 

generated by flow, VWF tubules unfurl and associate to form large platelet-catching strings21,22. VWF 

extrusion is further expedited by some agonists that trigger the formation of a contractile 

actomyosin ring around the fused WPB membrane23,24. Mutations in the VWF gene leading to 

reduced protein expression, loss of or alterations to its binding sites, or a failure to form 

concatamers cause Von Willebrand disease, the most common inherited bleeding disorder18,25. WPB 

also contain reservoirs of other proteins such as the type-1 integral membrane protein P-selectin 

which is trafficked to the plasma membrane to recruit leukocytes in the first step of the leukocyte 

adhesion cascade26,27. 

 

To our knowledge few publications have addressed the mechanism of post-exocytic membrane 

recapture in endothelial cells and none of them in any detail28,29. In 2002 Zupancic et al. confirmed 

that full fusion of WPB results in a marked increase in membrane capacitance of 2.5-9.0fF. This is 

followed by similar size stepwise reductions in membrane capacitance that most likely represent 

bulk retrieval of membrane29. It would therefore appear that at least a proportion of compensatory 

endocytosis in endothelial cells results from the “en bloc” internalisation of fused exocytic 

structures. Some, but not all of these events may represent “long lingering kiss” exocytic events 

where a smaller 12nm pore forms and eventually reseals following WPB fusion. This is thought to be 

the case for 10% of exocytic events during strong stimulation30. Clathrin-coated pits, which may 

represent compensatory endocytic structures have also been noted on large secretory pod-like 
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structures which are thought to result from intracellular fusion of WPB28. Whether these form 

before or after WPB fusion with the plasma membrane is unresolved28,31. 

 

It is unclear whether compensatory endocytosis in endothelial cells serves a purpose beyond 

retrieval of membrane. WPB by necessity must form at the TGN to allow normal release of 

functional strings32,33; once exposed to pH 7.4 and unfurled, the VWF cannot be refolded. 

Compensatory endocytosis following VWF release thus cannot lead to the regeneration of functional 

granules for re-use as in neuroendocrine or neuronal cells6. It is also unlikely to be required for 

retrieval of known integral membrane cargoes such as P-selectin and CD63 as these rapidly diffuse 

away from the WPB fusion site and can be retrieved through general endocytic pathways34,35. Finally 

if the purpose of WPB compensatory endocytosis is solely to retrieve membrane then this could be 

carried out anywhere on the plasma membrane and begs the question, why have clathrin-coated 

pits been noted on VWF containing fused-structures? 

 

To address these issues, we investigated this process in human umbilical cord endothelial cells 

(HUVEC) using biochemical assays, transmission electron microscopy (TEM) and correlative live cell 

imaging and TEM to define the extent, mode, mechanism and function of compensatory 

endocytosis. We demonstrate that changes in compensatory endocytosis affect the exocytic mode 

of WPB. 

 

Results 

A biochemical assay for monitoring compensatory endocytosis 

Generally throughout this study we use PMA as the stimulus for exocytosis for a number of reasons. 

Firstly, there are a large number of secretagogues that stimulate WPB exocytosis (more than 30) 

some of which trigger a Ca2+ dependent release and some of which act via cAMP36 and PMA uses 

both: we wanted to monitor the effect on endocytosis irrespective of the route of stimulation. 

Indeed  during physiological stimulation endothelial cells are likely to be stimulated by multiple 

secretagogues at once and this often has a synergistic effect on release37. Secondly, later in this 

study we use a number of approaches to limit content release and endocytosis and as such it is 

important to use a secretagogue that will be unperturbed by such manipulations. As PMA is a lipid it 

doesn’t require cell surface receptor binding for its action. Therefore when we analyse results we 

can exclude effects of pH on receptor ligand binding (e.g. Histamine activates endothelial cells less 

efficiently at low pH35), similarly we can exclude effects due to changes in receptor down regulation 

(as might occur during inhibition of endocytosis). Thirdly, PMA provides a strong stimulation and this 
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makes monitoring its effect on endocytosis by biochemical or electron microscopy approaches as 

unequivocal as possible.  

 

To characterise the extent of compensatory endocytosis in endothelial cells we began by comparing 

the rate of incorporation of fluid phase markers into unstimulated and phorbol 12-myristate 13-

acetate (PMA) stimulated HUVEC. An assay monitoring horse-radish peroxidase (HRP) uptake 

provided the most robust data. This is likely because even small amounts of HRP can be detected 

with great sensitivity using the Tyramide Signal Amplification (TSA) system. After 15 minutes of 

uptake, HRP can be found generally in early endocytic organelles as shown by partial co-localisation 

with EEA-1, an early endosomal marker (Fig. 1A). Similarly transferrin internalised for 2 min and then 

chased for 15 min parallels the endocytic trafficking of the HRP (Fig. 1B). To show that HRP 

internalisation follows the fate of WPB components after exocytosis, we looked at its co-localisation 

with P-selectin, a WPB cargo. In unstimulated cells, P-selectin localised to rod-shaped structures 

throughout the cytosol and did not exhibit any significant co-localisation with HRP. However, 

following PMA stimulation, P-selectin appeared in small surface patches as well as in intracellular 

punctate structures which frequently, but not always, co-localised with HRP and were therefore 

endocytic (Fig. 1C) (Table S1). Importantly, treating HUVEC with PMA or a cocktail of Histamine and 

adrenaline for 15 minutes to stimulate WPB exocytosis resulted in a significant and reproducible 

increase in the amount of internalised HRP (Fig. 1D, Fig. S1A) suggesting endocytosis was 

upregulated. To determine the proportion of this increase that was dependent on the exocytosis of 

WPB, and to confirm that it was not an off-target effect of the secretagogue treatment, we knocked 

down (kd) VWF and measured HRP uptake in depleted cells. Post kd cells lack VWF (Fig. 1E) and 

recognisable WPB and show negligible increase in HRP incorporation following stimulation 

compared to controls (Fig. 1D). From this we can conclude that almost a third of HRP incorporation 

post stimulation labels compensatory endocytic structures.  

 

We did attempt to use live cell imaging to monitor compensatory uptake in real time by following 

the incorporation of lipophilic dyes FM1-43 and FM4-64 into fused WPB (as denoted by the loss of 

GFP-tagged VWF). This proved difficult to characterise and quantify due to the high background 

noted both with spinning disk and point scanning confocal microscopy. Functional exocytic events 

(that release VWF strings into the blood flow) occur at the apical surface and this precluded our use 

of approaches such as TIRF microscopy. We did have some limited success by assaying the 

incorporation of 10kDa dextran-tetramethylrhodamine into fully fused WPB live, but again it was 

difficult to use this approach robustly as it labelled such vast numbers of structures with such a high 
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background of fluorescence that quantification was inconsistent. Preliminary evidence from this 

work did, however, indicate that fusion of the WPB at the cell surface creates a compartment open 

to fluid phase markers, which at least in the few instances we characterised, do not collapse into the 

membrane during the time of imaging (Fig. S1B) 

 

Ultrastructural time-resolved analysis of compensatory endocytosis 

To characterise the route of compensatory endocytosis, as well as the timing and localisation of such 

events, we exploited a previously published assay to monitor the ultrastructure of exocytic sites in a 

time-resolved manner24. We co-transfected endothelial cells with a GFP-tagged version of VWF and 

a truncated version of P-selectin lacking the transmembrane domain and cytoplasmic tail (mCherry-

PselectinLum). The former construct allows monitoring of VWF content release while the latter 

allows precise timing of the point of WPB fusion as it diffuses away rapidly in the medium24. Cells 

were plated on gridded coverslip-bottomed dishes to allow precise localisation in x and y (Fig. 2A-D). 

Following stimulation with PMA we imaged transfected cells using high speed spinning disk confocal 

microscopy and added fix at arbitrary time points (Fig. 2E). We then correlated the light microscopy 

with an EM analysis (correlated light and electron microscopy-CLEM) using serial sections. By 

monitoring the loss of mCherry-PselectinLum we could precisely define how long from the point of 

fusion each exocytic event was fixed and thus correlate any compensatory endocytic structures seen 

by EM with time post fusion (Fig. 2Eii). All events characterised by this approach are full fusion 

events as the mcherry-PselectinLum construct is too big to be released by the 12nm pore reported 

as present during lingering kiss fusion30. 

 

In total we carried out such analyses in six separate experiments. Compensatory events (defined as 

endocytic budding profiles present on fused WPB) were first seen 20 seconds after fusion, and fully 

invaginated endosomes were apparent as early as 30 seconds post fusion (Fig. 3). These early 

retrieval events took place whilst the exocytic pore was open and continued at later time points (60-

75s) as the pore closed. All events examined were clathrin-coated and occurred directly on the 

exocytic structure. The compensatory endocytic structures also often contained electron dense 

material that in most cases appeared to be near the membrane of the vesicle (Fig. 3). Fully fused 

WPB contained some VWF and there were apparent attachment sites between the internal VWF and 

the exocytic membrane. Note, endocytic events were not present on all exocytic structures (we 

quantified this more fully in fixed CLEM experiments Fig. 5 & 6).  
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These results indicate that retrieval of WPB membrane, and presumably membrane proteins, begins 

very soon after fusion, and can occur while a pore (which can last over a minute) is open. 

Capacitance data indicates that, at least in some cases, the whole WPB membrane is retrieved intact 

from the plasma membrane after fusion29. This combined with our ultrastructural data suggests a 

model whereby there is some immediate retrieval following WPB fusion, then the plasma membrane 

reseals and the internalised vacuolar structure is further “nibbled” by smaller clathrin-coated buds 

to retrieve yet more membrane and integral membrane proteins.  

 

Low pH prevents unfurling of VWF 

The large stepwise decrements recorded by capacitance analysis suggest pore sealing and bulk 

retrieval of WPB membrane is a general consequence of exocytosis of these huge granules29. This 

should be sufficient to maintain cell size homeostasis yet we observed a number of retrieval events 

that occur before pore closure (Fig. 3). This strongly suggests there is an urgent requirement for the 

removal of membrane content introduced by exocytosis from the cell surface. To determine the 

relationship between pore closure and retrieval we sought ways to limit the former by preventing 

the unfurling of VWF into strings. One way to do this is by minimising the pH change associated with 

exocytosis. When release of VWF occurs at lower pH, such as might occur during acidosis (pH 6.5), 

the rate of VWF unfurling is significantly slower and thus its release through the pore is delayed, 

blocking closure35. The internal pH of WPB is 5.522. We therefore reduced the pH in the bathing 

medium of HUVEC to mirror this and stimulated exocytosis using PMA before labelling external and 

total VWF. At neutral pH we saw collapsed WPB releasing VWF as pronounced strings as well as rod-

shaped WPB that are yet to fuse with the membrane (Fig. 4A). At pH 5.5 most of the WPB remained 

rod-shaped (we did see some collapsed or more rounded WPB but they were markedly less 

common) and no strings of VWF were seen (Fig. 4B).  We also monitored fusion using live cell 

imaging. At pH 7.4 we noted a rapid loss of mCherry-PselectinLum and a transient increase in GFP-

VWF intensity, followed by a more gradual diffusion away of the content as expected (Fig. 4C). 

During exocytosis at pH 5.5, however, mCherry-PselectinLum exits more slowly and the GFP-VWF 

signal initially increases then remains largely the same for extended periods (Fig. 4D). 

 

VWF content release is required for normal compensatory endocytosis and WPB fusion 

To determine what happened to compensatory endocytosis at these unresolved fusion pores, we 

carried out CLEM of PMA-stimulated cells undergoing exocytosis at pH 7.4 (Fig. 5A & C) and at pH 5.5 

(Fig. 5B, D-G). Following fixation we labelled external VWF with 10nm gold to demonstrate 

conclusively that VWF had been exocytosed and carried out serial sectioning. As we and others have 
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previously found22,24,38, at pH 7.4 collapse of the WPB from a rod- to a round-shaped structure is 

apparent, as is the release of VWF as strings (Fig. 5A & C). Fusion at pH 5.5 results in varying degrees 

of collapse from structures that remain almost entirely rod-shaped (Fig. 5D), to slightly swollen fused 

structures (Fig. 5F) and WPB that have actually collapsed (Fig. 5E). In all instances, at pH 5.5 we saw 

much more highly structured VWF that also showed some filamentous attachment to the organelle 

membrane.  

 

When we quantified the number of compensatory endocytic structures on fused WPB under each 

condition we noted an increase in events at lower pH (Fig. 5H). At pH 7.4, 25% of events seen by 

CLEM have compensatory profiles (between 1 and 3) whilst the remaining 75% lack obvious 

structures. In contrast, 70% of fused structures have up to 5 compensatory events at pH 5.5. This 

could indicate that either compensatory structures are taking longer to resolve at pH 5.5 or that 

more endocytic events are occurring.  

 

Importantly, we also saw a change in the exocytic mode at pH 5.5, namely a marked increase in what 

appeared to be cumulative exocytosis whereby a fused WPB acts as an exocytic site for a second 

such organelle. In some situations we saw up to four WPB in close apposition with each other, such 

that their membranes are touching (Fig. 5G). Such apparent cumulative fusion was a relatively rare 

occurrence under control conditions with only 10% of fusing WPB exhibiting some membrane to 

membrane contact with another WPB. In contrast, following a reduction in the pH of the bathing 

medium this increased to more than 50% of events (Fig. 5I). 

 

WPB exocytic mode is influenced by VWF content release 

To determine if the change in exocytic mode and the number of compensatory endocytic profiles 

was due to a failure to unfurl VWF tubules at low pH or a more general effect of delaying content 

release we identified other approaches to inhibit the latter. We have previously demonstrated that 

an actomyosin ring is required for efficient expulsion of VWF following PMA stimulation24. Inhibition 

of this mechanism can thus be used to prevent resolution of fusion at normal pH. Under control 

conditions, VWF was released from the fused WPB and projected as strings above the plasma 

membrane in serial EM sections (Fig. 6A). However, in conditions where actin polymerisation was 

inhibited using cytochalasin E (CCE), we saw fused structures with pieces of membrane still covering 

parts of the open pore (Fig. 6B). We have previously shown that these structures can persist for over 

300s24. When we analysed the number of compensatory vesicles present on these fused WPB we 

saw only a small increase following CCE treatment (Fig. 6E). This had no effect on the rate of 
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cumulative fusion (Fig. 6F). In fact in some CCE treated cells we saw multiple exit sites occurring in 

very close proximity with no evidence of cumulative fusion (Fig. S2). This demonstrates that the 

presence of a fused structure alone does not affect the exocytic mode.  

 

As a third alternative approach to prevent VWF unfurling, we stimulated cells in the presence of an 

anti-VWF antibody in the bathing medium. Under these conditions we noted an arrest of VWF near 

the exocytic site (as has been published previously39) and no strings were formed. This method had a 

greater effect on the number of compensatory structures seen than CCE and a minor effect on 

cumulative fusion (Fig 6C, E & F). The most marked effects were apparent when we combined the 

anti-VWF antibody and CCE (Fig. 6D). Here we noted multiple compensatory endocytic profiles on 

almost all events (90%) (Fig. 6E) and a marked increase in cumulative fusion, similar to the effects of 

low pH (Fig. 6F). Generally, therefore, we noted a correlation between the number of compensatory 

endocytic structures and cumulative exocytosis. There was a threshold effect, with marked amounts 

of cumulative fusion only occurring when more than 70% of events had compensatory structures. 

This demonstrates that cumulative fusion is increased in situations where VWF cannot fully exit the 

cell and the pore is prevented from closing normally.  

 

Compensatory endocytosis is required for normal WPB fusion 

The increase in frequency with which we observe compensatory structures by EM could be due to an 

increase in the number of events occurring or in the time it takes to resolve the structure and 

complete scission. To address this question we interfered with the endocytic process directly. We 

know that compensatory endocytic events require clathrin from our electron microscopy 

experiments (Fig. 2 & 3) and we could also see clathrin co-localising with the sites of VWF exocytosis 

(Fig. S3). We therefore chose to target this molecular aspect of the endocytic process. Blocking 

clathrin function on a long-term basis interferes with constitutive endocytosis and the formation of 

WPB32, so we used the dynamin inhibitor dynasore40. To corroborate the effects of this treatment we 

also knocked down (kd) the likely adaptor protein AP-2 (by transfecting siRNA targeting the alpha 

subunit41,42). Dynamin is required for both clathrin-dependent and some clathrin-independent 

pathways and is necessary for fluid phase HRP uptake15 whereas AP-2 is required solely for clathrin 

mediated endocytosis41,42. Dynasore allows an acute inhibition of this process whereas siRNA 

treatment required 3 or 4 days.  AP-2 alpha kd cells had on average 74% the levels found in mock-

treated cells by western blot (Fig S4A & B). We did see some co-localisation of dynamin II and 

external VWF by confocal microscopy but perhaps due to the transient nature of dynamin function 

such events were relatively rare (Fig. S3).  
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Treatment of HUVEC with 25µM dynasore or AP-2 alpha siRNA blocked transferrin uptake as 

expected (Fig. 7C) and in the case of dynamin treatment caused a marked change in the exocytic 

mode as revealed by electron microscopy (Fig. 7A & B). We often noted chains of large mostly empty 

vacuoles in close apposition, stretching from the plasma membrane into the cytoplasm. These often 

contained some remnants of VWF cargo. We also noted the presence of unfused WPB touching 

some of these vacuoles (Fig. 7A & B). As expected many more clathrin-coated endocytic profiles 

were apparent and these often exhibited wide necks, presumably due to the inhibited pinch-ase 

function of dynamin (Fig. 7B). Definition and therefore accurate quantification of exactly which 

vacuoles unambiguously represented previously fused WPB was difficult as not all such vacuoles 

contained obvious VWF content (previous analysis was possible due to arrested VWF secretion or by 

using gold conjugated anti-VWF labelling at the cell surface). To corroborate the electron microscopy 

we also carried out live cell imaging of the exocytosis of WPB labelled with VWF-GFP in the presence 

or absence of 25µM dynasore or following treatment with siRNA targeting the AP-2 alpha subunit. In 

control cells WPB fused in close proximity without merging (Fig. 7D & E). Following dynasore 

treatment (Fig. 7D & F) or AP-2 alpha siRNA treatment (Fig. 7D & G) a greater proportion of exocytic 

events merged into one another suggesting cumulative fusion. Dynasore treatment did not affect 

the rate of granule collapse or the extent of lingering kiss fusion. The difference in cumulative fusion 

quantified by live cell imaging although significant is lower than from EM quantification. This is likely 

due to an underestimation of cumulative fusion events due to the release of VWF-GFP (it is 

impossible to tell if fused structures merge if the content has already been released from one of 

these structures). This data supports the conclusion that the increase in cumulative exocytosis 

shown by blocking content release is due to an inhibition of compensatory endocytosis.  

 

Cumulative fusion of WPB results in improper release of VWF strings 

To investigate whether the switch toward cumulative fusion would have functional consequences, 

we analysed the release of VWF and the formation of platelet-catching VWF strings under different 

conditions. Live cell imaging indicated no difference in the number of WPB fusions events per cell 

following dynamin inhibition (Fig. 8A), yet we noted a small but significant decrease in the amount of 

VWF secreted (approximately 29.2%+/-2.4, Fig. 8B). The depletion of AP-2 alpha by siRNA resulted in 

a similar reduction in the fraction of total cellular VWF released (approximately 21.15%+/-4.0, Fig. 

8B), yet an overall increase in the number of fusion events. Further analysis revealed this was due to 

a significant increase in WPB number (Fig. S4C) and VWF levels (Fig. S4D & E) in AP-2 kd cells. This 
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most likely reflects a long term-effect of AP-2 depletion (see discussion below). Despite this increase 

in WPB number we still see the same effects on cumulative fusion and the fraction of VWF released. 

 

The analysis of VWF string number and length under flow demonstrated that there was a marked 

reduction (more than 2 fold) on the number of strings/cell following dynasore treatment (Fig. 8C) 

with little overall effect on string length (Fig. 8D) (apart from perhaps for very long VWF strings). This 

indicates that cumulative exocytosis results in aberrant release of VWF, most probably due to its 

inefficient release as tangled strings. Interpretation of the effect of the longer term AP-2 kd on string 

length was impossible due to the increase in WPB number relative to the mock transfected control 

(Fig S4C-E), so that we were unable to separate the effects on string length of tangled VWF from the 

effects on WPB number. 

 

Discussion 

 

The work described here demonstrates that compensatory endocytosis in endothelial cells is a major 

endocytic route and is likely to significantly influence a normal haemostatic response. By measuring 

the incorporation of fluid phase HRP in the presence or absence of WPB we have determined that 

approximately one third of endocytic uptake by volume – as measured by HRP uptake - following 

PMA stimulation is internalised by compensatory pathways (Fig. 1). Essentially all of this stimulated 

endocytosis was due to WPB exocytosis, with a minimal contribution via fusion of other organelles 

such as lysosomes. We also provide the first ultrastructural characterisation of compensatory 

endocytosis in endothelial cells. We show that the majority of WPB exocytic events, not just the 

minority comprising lingering-kiss (endothelial kiss and run30) events, do not result in full fusion i.e. 

total collapse of the organelle into the plasma membrane (Fig. 2, 3). Instead, fused empty WPB 

persist as distinct structures on which clathrin-coated budding vesicles assemble as early as 20 

seconds post exocytosis. The formation of clathrin-coated vesicles occurs irrespective of whether the 

pore is open and they often contain membrane associated electron dense cargo. Fusion pores close 

after approximately 60-75s whilst clathrin-mediated budding continues. This model of retrieval is in 

line with the cavicapture events seen in chromaffin cells4,43, i.e. recapture of the profile followed by 

continued CME “nibbling” to break down the structure. Such a model agrees with published analysis 

of capacitance changes during regulated release in endothelial cells29. Over extended 

measurements, symmetrical distribution of positive (exocytic) and negative (endocytic) event 

amplitudes have been characterised indicating that a similar amount of membrane is added to the 

plasma membrane as is retrieved. The proportion of events resolved between 0.5-110fF account for 
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approximately 33% of the capacitance change and this is in line with the changes we note in HRP 

uptake on PMA stimulation. Our ultra-structural approaches only monitor events that occur directly 

on the exocytic structure and we are only addressing one stimulus. As such we can’t rule out the 

presence of additional compensatory endocytosis at discrete sites including events such as ultrafast 

endocytosis and activity dependent bulk endocytosis5 in this study. Given that the rate of WPB 

fusion (relative to synaptic vesicle release) is relatively slow and the exocytic capacitance changes 

approximately mirror endocytic changes their contributions are likely to be relatively minor.  

 

We didn’t note any clathrin coated pits on mature WPB (typified by electron dense tubules of VWF) 

or on fusion events earlier than 20s post fusion. Indicating such events occur post exocytosis. 

Clathrin coated buds have been noted on immature (electron lucent) WPB near the TGN, 

presumably reflecting the retrieval of mis-sorted granule components44. 

 

The function of compensatory endocytosis in endothelial cells is likely to be very different from 

other systems, such as in neurons, where the primary purpose is to quickly replenish synaptic 

vesicles to maintain exocytic output. Functional WPB can only be formed at the TGN16,32,44,45 thus any 

direct replenishment by compensatory endocytosis would be impossible. Also we have shown that 

direct inhibition of endocytosis using dynamin inhibitors had little effect on the extent of WPB fusion 

(Fig. 8A). Despite this, the assembly of clathrin-coated structures directly on the WPB membrane so 

soon after fusion does suggest a requirement for rapid retrieval of certain proteins or lipids (Fig. 3). 

Our data suggest a link between content release, compensatory endocytosis and exocytic mode. We 

manipulated conditions to drive incomplete VWF release, using either bathing medium at low pH, 

the presence of anti-cargo antibody in the bathing medium, or inhibition of actin remodelling. These 

treatments all resulted in an increased number of compensatory profiles. All of these approaches 

have their own particular limitations (more gross effects of the pH change, global effects on the 

cytoskeleton etc.) but despite these differing limitations the same consensus effect is apparent i.e. a 

change in exocytic mode is coupled to a change in clathrin coated structures. This change in exocytic 

mode is also phenocopied by more specific approaches; the acute inhibition of endocytosis using the 

dynamin inhibitor dynasore or the longer term siRNA mediated depletion of Ap-2 alpha, together 

indicating this is an endocytosis specific phenomenon (Fig. 7).  

 

Importantly, the changes in content release that drive the increase in compensatory structures also 

produced a change in exocytic mode, with cumulative fusion events becoming markedly more 

common. We noted a correlation between the number of compensatory structures seen and the 
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incidence of cumulative fusion (Fig. 5 & 6); the greatest effects on cumulative exocytosis occurred 

when compensatory structures were present on more than 70% of events. This suggests there may 

be some sort of threshold effect involved. It is unclear precisely how inhibition of VWF content 

release influences compensatory endocytosis. Perhaps this is simply a physical constraint due to 

difficulty retrieving membrane from a structure still containing content or perhaps resealing of the 

granule is necessary for efficient endocytosis. Alternatively, it might be that signalling events are 

triggered following content clearance that acts upon the endocytic machinery. We also noted an 

increase in the total amount of VWF within AP-2 alpha kd cells by western blot (Fig. S4D) and ELISA 

(Fig. S4E). The reasons for this increase are unclear. Clathrin and AP-1 are required for WPB 

formation32 and long-term inhibition of Ap-2 may therefore result in increased pools of unused 

clathrin and consequently an increase in WPB number. Alternatively inhibition of AP-2 might have 

interfered with a signal required to limit WPB formation or control the basal release of WPB.  

 

Our data indicates the change in exocytic mode is due to compensatory events that are arrested, or 

resolve more slowly. We propose that this affects exocytosis by causing a failure to release for re-

distribution membrane proteins required for exocytosis (see model Fig. 8E). This leads to an 

accumulation of the fusion machinery and associated components at sites that then drives 

cumulative exocytosis.  In neurons compensatory endocytosis has been shown to play a role in 

clearing exocytic machinery from release sites5,46,47. We hypothesise that this is also the purpose of 

the early clathrin-mediated events on fused WPB membranes. Failure to resolve compensatory 

endocytic events increases cumulative fusion to over 50% (from TEM characterisation) (Fig. 4-7). We 

have yet to determine the integral membrane proteins that are retrieved from WPB (this research is 

in progress). During neurotransmission, the molecules retrieved include vSNAREs, synaptotagmin 

and synaptophysin5. In endothelial cells the only analogous characterised membrane bound 

machinery shown to be localised to WPB are the v-SNARES VAMP-3 and -848. Interestingly, 

sequential fusion of granules in pancreatic acinar cells has shown to be dependent on the retrieval of 

VAMP-8. Mice lacking this SNARE exhibit a specific reduction in secondary fusion events (granule to 

granule) with no difference in the fusion of granules with the plasma membrane49. Other factors that 

are likely to play a role in the amount of cumulative fusion are the number of WPB and the rate of 

exocytosis. Live cell imaging of WPB exocytosis following dynamin inhibition demonstrated 

cumulative exocytosis was most common when the fusion rate was high.  

 

Control of the exocytic mode is important to allow the release of a normal complement of VWF 

strings under flow (Fig. 8). Acute inhibition of compensatory endocytosis does not affect the extent 
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of WPB fusion (Fig. 8A) but does result in a small inhibition of VWF release (Fig. 8B). However, the 

effect on the number of VWF strings is much more marked. (Fig. 8C) indicating that cumulative 

fusion is significantly less effective for releasing strings of VWF under flow. This mode of release 

results in a greater amount of VWF being released through one pore, the strings are therefore much 

more likely to be tangled and the shear force would presumably less efficiently act to pull strings out 

at the cell surface. This is likely to have a negative effect on platelet recruitment, and thus 

haemostatic function. 

 

Generally, and in various cell types, two different mechanisms of bulk exocytosis can occur50. In mast 

cells compound exocytosis results from granules fusing with each other before fusing with the 

plasma membrane51 whereas during cumulative exocytosis, as occurs in the pancreatic acinar, 

granules fuse with others that have already exocytosed. Both mechanisms allow for focussed 

content release at a very small plasma membrane region52,53. Our experiments at low pH strongly 

suggest a cumulative rather than a compound mode of content release for WPB. The WPB are more 

rod-shaped at low pH even after fusion and we can tell that this fusion is sequential as the most 

collapsed structure is always adjacent to the plasma membrane and the WPBs fusing with this 

become progressively more rod-shaped deeper within the cell. Cumulative fusion events in 

endothelial cells have been suggested to occur previously by monitoring the transfer of 

overexpressed CD63-GFP from sequentially fusing WPB54, but such events have never been 

previously characterised at the TEM level nor quantified. Compound exocytosis has also been 

reported to occur in endothelial cells by the formation of a pre-fusion structure termed a secretory 

pod28. This is thought to form by fusion of WPB with each other before subsequent fusion with the 

cell surface. Interestingly these structures also exhibit apparent compensatory structures. If such a 

model is correct it would require a pH change as the WPB that form the pod are collapsed and 

contain disordered VWF. As to how this occurs is as yet unresolved. Capacitance analysis of WPB 

undergoing stimulation does to some extent support compound exocytosis, as steps which represent 

more than a single WPB have been noted, although infrequently29. In our experiments we noted that 

the presence of antibody in the bathing medium alters exocytic mode. Given that the initial 

characterisation of the secretory pod was carried out in medium with anti-VWF antibody to capture 

and label exocytic sites, we suggest that this will likely have affected the interpretation of the 

results28. An alternate model for pod formation supported by our data would be cumulative fusion of 

WPB with resealed lingering kiss structures. This would result in large internal structures and, due to 

the frustrated nature of VWF release, these would also be decorated with more compensatory 
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endocytic structures. The authors of the paper describing secretory pods highlight the possibility of 

this model in a more recent publication31. 

 

We also noted attachment of VWF to the sides of exocytic structures. This has been seen before28 

and its purpose is as yet unclear. VWF attachment occurs at both pH 5.5 and pH 7.4 suggesting that 

it is present before the tubules unfurl and the granule collapses. It may therefore represent a means 

to anchor strings to support orderly unravelling of content. Interestingly, in immature WPB the VWF 

tubules are clearly spaced away from each other and especially from the membrane along the 

organelles longitudinal axis, whereas inter-tubule structures can occasionally be seen, and the 

tubules appear to touch the limiting membrane at the organelles tips. Whether the attachment sites 

of VWF content to the fused structure involves the same elements is not yet clear. 

 

Overall we provide the first characterisation of compensatory endocytosis in endothelial cells using 

biochemical and novel ultrastructural techniques. By fully characterising this pathway, we were able 

to demonstrate that it influences the exocytic mode of WPB. This is a novel function for this poorly 

understood process in endothelial cells, and is particularly important for VWF exocytosis whereby 

orderly release of untangled VWF strings is a prerequisite for effective platelet recruitment and thus 

haemostasis.  

 

Materials and Methods 

Cell culture and transfection 

Human Umbilical Vein Endothelial Cells (HUVEC, promocell, Heidelberg, Germany) were cultured as 

previously described33. Plasmid transfections were performed by nucleofection (Nucleofector II, 

programme U-001, Amaxa Biosystems, Gaithersburg, MD) using 2-5μg DNA. GFP-VWF55 was a gift 

from J. Voorberg and A. Van Mourik (Sanquin Research Laboratory, Amsterdam, Netherlands). The 

synthesis of C-terminal–tagged mCherry-PselectinLum fusion construct was described in Nightingale 

et. al. 201124. Mock, VWF and Ap-2 alpha siRNA transfections were performed as in Ferraro et. al. 

201419 using firefly luciferase siRNA 5′-CGUACGCGGAAUACUUCG-3′, VWF siRNA 5’ 

GGGCUCGAGUGUACCAAAATT 3’ and AP-2 alpha siRNA 5’AAGAGCAUGUGCACGCUGGCCA41 (Qiagen, 

Hilden, Germany). 

 

Antibodies and reagents for immunofluorescence 

Rabbit anti-VWF was purchased from DAKO, Ely, UK. Sheep anti-VWF and sheep anti-TGN46 were 

purchased from BIORAD, Oxford, UK. Sheep polyclonal anti-P-selectin was from R&D systems, 
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Abingdon, UK, mouse monoclonal anti-EEA1 (clone 14) and mouse anti-adaptin alpha was from BD 

Pharmingen, Oxford, UK and mouse anti-clathrin light chain (CON.1) and mouse anti-tubulin were 

from Sigma, Gillingham, UK.  

 

HRP assays 

HUVEC were incubated with 1mg/ml HRP (Sigma, Dorset, UK) +/- 100ng/ml phorbol 12-myristate 13-

acetate (PMA) for 15 minutes at 37oC, then washed thoroughly on ice and fixed in 4% formaldehyde 

(PFA, Polysciences, Edenkoben, Germany). HRP was visualized by fluorescein-tagged tyramide signal 

amplification; TSA-fluorescein (Perkin-Elmer, Beaconsfield, UK) was diluted 1:150 in the provided 

diluent and incubated with coverslips for 2 minutes before stopping the reaction with a 30 second 

incubation with 0.2% (w/v) sodium azide. Cells were then washed with PBS, antibody labelled and 

imaged as above. For co-localisation with transferrin, 20μg/ml Alexa Fluor 568-conjugated 

transferrin (Life Technologies, Paisley, UK) was included in the incubation medium. For 

quantification, 10 fields of view were taken at random per experiment and HRP positive objects 

quantified using Image J software; background subtraction was performed using a rolling ball 

algorithm (2 pixels) and a threshold manually applied prior to performing particle analysis to count 

objects over 0.1μm. 

 

Immunofluorescence staining 

Fixation and staining proceeded as in Lui-Roberts et al.32. Fixed cell images were taken on a Leica SPE 

scanning confocal microscope system with a 63x objective (NA 1.3) as confocal z-stacks with 0.5μm 

step size. Acquisition was performed using LAS-AF software with a 1024x1024 pixel resolution. 3-4 

frame average and 1x zoom. To image clathrin recruitment, confluent HUVEC were stimulated +/- 

100ng/ml PMA for 5 minutes then fixed in 4% PFA and stained for external VWF prior to 

permeabilising cells and staining for total VWF and clathrin. Cells were imaged as cross-sectional 

confocal y-stacks with a 0.5μm step size on a Leica SPE scanning confocal microscope system as 

above. For fixation following changes in pH, cells were cultured as before but stimulated in serum 

free media buffered with either 0.1M HEPES or 0.1M MES. Cells were fixed at 37°C in 4% methanol-

free formaldehyde (TAAB Laboratories Equipment, Ltd.) in cytoskeleton buffer (10 mM MES, pH 6.1, 

3 mM MgCl2, 138 mM KCl, and 2 mM EGTA) with 0.32M sucrose and then permeabilized in 0.5% 

Triton X-100 (Sigma) and incubated with Alexa Fluor 488–conjugated phalloidin (Life Technologies, 

Paisley, UK) and a relevant primary antibody.  
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Western blotting 

Proteins were separated by SDS-PAGE, transferred to Whatman nitrocellulose membranes 

(PerkinElmer), and then probed with primary antibody followed by the appropriate HRP-conjugated 

secondary antibody (1:5000) purchased from Jackson ImmunoResearch Laboratories, Inc. (West 

Grove, PA, USA). 

 

Imaging live dextran uptake 

Transfected cells were seeded onto 8-well LabTek sterile borosilicate coverglass chamber slides (Life 

Technologies). After 24h chambers were rinsed with Ringer’s solution (140mM NaCl, 5mM KCl, 

1.8mM CaCl2, 2mM MgCl2, 10mM glucose, 20mM HEPES-NaOH pH 7.4) then mounted on a Leica TCS 

SP5 inverted microscope on a heated stage set at 37oC. Cells were stimulated with 100ng/ml PMA in 

the presence of 1mg/ml dextran-tetramethylrhodamine (Life Technologies,) and immediately 

imaged through a 63x oil immersion lens (NA 1.4) using an 8000hz high resonance scanner. Single 

confocal plane images (1024x1024 pixels) were taken every 5-10 seconds for 3-5 minutes using a 

single line and frame average.  

 

Live cell imaging 

For live cell imaging cells kd and untreated cells were transfected with GFP-VWF and mCherry-

PselectinLum onto a glass bottom dish or for live cell CLEM a gridded coverslip bottom dish (in 

situations where exocytosis from kd cells was being monitored 300pmol AP-2 alpha siRNA was also 

included during the transfection). Imaging proceeded using a 100x oil immersion lens (NA 1.4) on a 

spinning-disk system (UltraVIEW VoX; Perkin-Elmer) mounted on an inverted microscope (TiE; Nikon, 

Kingston Upon Thames, UK) with an EM charge-couple device camera (512x512 pixels; C9100-13; 

Hamamatsu Photonics, Welwyn Garden City, UK) and 488 and 568 solid-state lasers. Z-stacks were 

acquired every 5s using a piezo (NanoSanZ; Prior Scientific, Cambridge, UK) with a step size of 0.4-

0.5μm, comprising 9-14 images with an exposure of 30ms at either pH 7.4, pH 5.5 and in the 

presence or absence of 25μM dynasore (Sigma).  

 

Correlative EM 

Exocytic site labelling assays were carried out using a modified method described by Knop and 

Gerke, 200239. Cells were cultured on gridded coverslip bottomed dishes (MatTek, Bratislava, Slovak 

Republic) and 24h later incubated for 10 minutes in the presence of rabbit anti-VWF +/- PMA 

(100ng/ml) either in the presence or absence of cytochalasin E (CCE) 1 μM or in the presence or 

absence of dynasore (25 μM) at pH 7.4 or at pH 5.5 (see IF protocol above, all from Sigma). In 
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experiments in which CCE was used the cells were pretreated for 15 minutes prior to stimulation. 

CLEM was carried out as in Nightingale et al.24 For live cell imaging CLEM cells were transfected and 

imaged as above but beforehand the cell to be imaged was localised and DIC images acquired at 10x 

air (NA 0.3), 20x air (NA 0.7) and 40x (NA 0.75-1.25). At arbitrary time points 4X fix was added to the 

cells and images were acquired post fixation to confirm efficacy. The remainder of the TEM 

preparation was carried out as conventional CLEM. 

 

Quantification of compensatory endocytic profiles by electron microscopy 

Serial sections were arranged in order. Fused WPB were denoted by demonstrable loss of the 

mCherry-PselectinLum (in the case of correlative movie to electron microscopy) or the presence of 

gold labelled anti-VWF antibody at the cell surface and the presence of a collapsed structure (in non-

correlative and correlative microscopy). Any ambiguous structures were excluded from the analysis. 

To be denoted as bona fide compensatory endocytic structures the budding vesicles had to have a 

demonstrable connection to the fused structure in at least one section. Tubular membrane 

structures such as endoplasmic reticulum (which are also often found near fusing WPB) were 

excluded as they occur in more than 1 or 2 sections and lack a clathrin coat.  

 

String Analysis 

HUVECs were seeded onto µ-slides (Ibidi, Munich, Germany) with a 5mm-wide channel 24 hours 

before experiments. HUVECs were pre-treated with 25µM dynasore for 15 minutes or left untreated 

and slides subsequently attached to a syringe pump (Harvard Apparatus, Holliston, MA, USA) to 

draw fluid over the cells at a constant wall shear stress of 0.25MPa (2.5 dynes/cm2). Cells were 

maintained at 37°C and were perfused with buffer (Hanks balanced salt solution (HBSS, Life 

Technologies) containing Ca2+, Mg2+ and 0.2% BSA) for two minutes to remove debris before being 

stimulated with PMA (100ng/ml) in the presence or absence of dynasore for five minutes in HBSS 

buffer (as above). Cells were fixed with 4% PFA under decreasing rates of flow for 10 minutes until 

static and left in PFA for a further 10 minutes. Samples were prepared for immunofluorescence 

without permeabilisation, and stained for surface-bound VWF via incubation with rabbit anti-VWF 

(DAKO) followed by Alexa 488-conjugated anti-rabbit secondary antibody and stained for the 

nucleus with Hoechst 33342 (Life Technologies). VWF strings were imaged by confocal microscopy 

(Leica TCS SPE) using a 40x (NA 1.15) oil objective. Maximum intensity projections were generated of 

confocal stacks in Fiji that were used to manually count VWF strings.  
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Figures 

 

 

 

 

Figure 1. Analysis of the extent of WPB specific compensatory endocytosis  

(A) HUVEC were fed for 15 minutes with soluble HRP then fixed and stained for HRP (green) and EEA-

1 (magenta). The nucleus is labelled with DAPI (Blue). HRP and EEA1 co-localise, as indicated by 
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white pixels, demonstrating HRP is within endosomes. (B) HUVEC were incubated with Alexa 568nm 

fluorescently tagged transferrin (magenta) for two minutes, washed and then uptake chased for 15 

minutes in the presence of HRP (green). HRP and transferrin co-localise. (C) HUVEC fed with HRP 

(green) in the absence (left) or presence (right) of 100ng/ml PMA for 10 minutes were fixed and 

stained for P-selectin. In unstimulated cells, P-selectin is stored within rod-shaped WPBs and does 

not localize with HRP. Following stimulation, P-selectin is present on round endocytic vesicles 

positive for HRP demonstrating it has been retrieved from the cell surface. (A-C) Images shown are 

maximum intensity projections and boxed areas contain zooms of the regions of interest denoted by 

dashed outline. Scale bars are 20 μm. (D) Cells transfected with control or VWF siRNA were 

incubated with HRP +/- 100ng/ml PMA for 15 minutes and then treated as above. A 70% increase in 

HRP positive objects is seen upon stimulation in control, but not VWF KD, cells (n=3). Error bars 

represent SEM. Stats shown derived from student’s T test (P=<0.05) (E) Mock treated and cells 

depleted for GRK2, the AP-1 subunit μ1A or VWF were lysed and the levels of VWF and actin 

determined by SDS PAGE and western blot. GRK-2 is required for controlling regulation of GPCR 

signaling whilst the AP-1 subunit μ1A is required for normal WPB formation. Only depletion of VWF 

itself effects total VWF levels.  
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Figure 2. Correlative live cell imaging and electron microscopy to monitor kinetics and 

ultrastructure of compensatory endocytosis 

HUVEC were transfected with mCherry-PselectinLum (magenta) and GFP-VWF and plated on gridded 

coverslip bottomed dishes. (A) Fluorescent cells were identified (maximum intensity projection is 

shown) and DIC images acquired at (B) 40x (C) 20X and (D) 10X magnifications to define localisation 

in x and y as denoted by the boxed region. Scale bar (A & B) 20 (C) 50 (D) 100 μm. Transfected cells 

were then stimulated with 100ng/ml PMA and the same cell imaged by spinning disc microscopy 

before fixation at arbitrary time points. (E) Images show the cell at (i) 0s and (ii) 210s. Fused WPB 

release the mCherry (magenta) marker at the point of fusion and then more gradually release GFP-

VWF during content release. (Eii) Inserts show TEM images of the specific exit sites indicated. Time 

points shown represent time between loss of fusion marker and point of fixation. Scale bar 10 μm. 
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Figure 3. Ultrastructure of compensatory endocytic events following WPB fusion 

HUVEC were co-transfected with mCherry-PselectinLum and GFP-VWF before performing live cell 

imaging and CLEM. All images shown are 70nm thick serial sections through individual fused WPB 

fixed at different timepoints post-fusion as shown at the top left of each image series. Asterisks 

indicate examples of compensatory structures. Inserts show zoom of compensatory structures. The 

earliest time that compensatory structures are noted is 20s post fusion and all such structures are 

clathrin coated. Representative images are taken from n=6 experiments, scale bar 200nm.  
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Figure 4. Effect of low pH on WPB fusion 

(A & B) HUVEC were stimulated with PMA (100ng/ml) for 10 minutes in (A) pH 7.4 or (B) pH 5.5 

medium. Cells were labelled for external VWF (magenta) total VWF (blue) and for the actin 

cytoskeleton (green). Images shown are maximum intensity projections. Scale bar 10 μm. The boxed 

area is shown magnified in the inserts. Scale bar 5 μm. (C & D) HUVEC were co-transfected with 

mCherry-PselectinLum and GFP-VWF before PMA stimulation (100ng/ml) at (C) pH 7.4 or (D) pH 5.5. 

Graphs indicate changes in mean fluorescent intensity 20 seconds before fusion and 200 seconds 

post fusion for the representative individual WPB shown below at each time point. At pH 7.4 WPB 

collapse and lose content. At pH 5.5 fused WPB lose the marker for fusion but retain VWF and stay 

rod shaped. Images show individual slices and scale bar is 1 μm. 
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Figure 5. Correlative electron microscopy of WPB fusion at low pH 

HUVEC were stimulated with PMA (100ng/ml) for 10 minutes in pH 7.4 (A & C) or pH 5.5 (B & D-G) 

medium. Cells were then fixed and external VWF labelled with anti-VWF antibodies and a 
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combination of Alexa 488nm and 10nm protein A gold before imaging by confocal microscopy (A & 

B, maximum intensity projections, scale bar 10 μm), and preparation for CLEM (C-G, 70 nm serial 

sections, scale bar 200nm). (A & C) At neutral pH WPB collapse and strings of VWF are clearly visible. 

(B & D-F) At pH 5.5 WPB retain tubulated VWF and WPB vary from completely collapsed to entirely 

rod shaped (all WPB shown were fused as indicated by the presence of external gold labelling-not 

shown, arrows show compensatory encocytic structures). (G) Cumulative fusion events are apparent 

at pH5.5. Arrows show compensatory endocytic structures, asterisks indicate fused collapsed WPB.  

(H) Quantification of the distribution of compensatory endocytic profiles at pH 7.4 and pH 5.5. At pH 

7.4 most profiles lack compensatory structures but at pH 5.5 nearly 70% still have compensatory 

endocytic structures present. Data is pooled from n=4 experiments. (I) EM quantification of the 

prevalence of cumulative exocytosis at pH 5.5 and pH 7.4. TEM images in which fused (as evidenced 

by gold labelling) WPB membranes were clearly touching other collapsed or unfused WPB were 

classed as cumulative. Data is pooled from n=4 experiments. 
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Figure 6. Reduction in the rate of content release is correlated with increased compensatory 

endocytosis and cumulative exocytosis 

HUVEC were stimulated with PMA (100ng/ml) for 10 minutes (A) in media, or media supplemented 

with  (B) 1μM cytochalasin E (CCE), (C) anti-VWF antibody (1 in 500) or (D) both agents together. 

Cells were then fixed and external VWF labelled with anti-VWF antibodies before preparation for 

TEM. Image series are from serial sectioning, scale bar A & B-200nm, C & D-500nm. Arrows with 

solid heads show pieces of membrane still covering the pore, open arrows show compensatory 

endocytic structures, asterisks indicate fused collapsed WPB. (E) Quantification of the distribution of 

compensatory endocytic profiles following stimulation in control conditions and in the presence of 

CCE, antibody (Ab) or Ab + CCE. (F) EM quantification of the prevalence of cumulative exocytosis in 

the presence of CCE, Ab or Ab + CCE. TEM images in which fused (as evidenced by gold labelling) 

WPB membranes were clearly touching other collapsed or unfused WPB were classed as in the 

process of cumulative fusion. Data is pooled from n=10 control, n=6 CCE and n=3 Ab + CCE 

experiments. Cumulative exocytosis is associated with an increase in compensatory exocytosis and is 

most prevalent when antibody is present in the medium and the actin ring is depolymerised. 
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Figure 7. Inhibition of compensatory endocytosis increases the likelihood of cumulative exocytosis 

(A-F) HUVEC were pre-incubated with control media or 25μM dynasore supplemented media for 15 

minutes before stimulation with 100ng/ml PMA. (A, B) Cells were fixed after 10 minutes and 

prepared for TEM. Representative serial sections show multiple collapsed WPB (denoted by 

asterisks) with membranes touching projecting from the cell surface into the cytoplasm. Unfused 
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WPB (denoted by solid arrow heads) are also seen touching these collapsed structures. Open arrows 

show compensatory endocytic structures (B) The boxed area is shown at a higher magnification 

showing two clathrin coated compensatory endocytic structures with wide necks. This likely reflects 

inhibited dynamin pinch-ase function. Scale bar A-1μm, B-500nm & B insert-200nm. (C) Untreated, 

dynasore or AP-2 alpha kd cells treated cells were fed with Alexa 568nm labelled transferrin for 15 

minutes. The mean fluorescence intensity of each cell over background was determined using Image 

J software (control=45 cells, dynasore=40 cells, mock=69 cells, Ap-2= 75 cells pooled from 4 

experiments, error bars represent SEM, t-test, *P<0.05, ****P<0.0001). (D-G) control (E, F) or AP-2 

alpha kd (G) HUVEC were transfected with GFP-VWF and pre-incubated with (E & G) control media 

or (F) 25μM dynasore supplemented media for 15 minutes, before stimulation with 100ng/ml PMA 

and imaging for 10 minutes on a scanning confocal microscope. (D) Quantification of cumulative 

exocytosis in the presence and absence of 25μM dynasore (n=13 control n=13 dynasore treated 

cells, n=15 mock treated cells and n=19 AP-2 alpha kd cells from 4 experiments). Error bars represent 

SEM. Stats shown derived from student’s T test (P=<0.005). Representative images of (E) untreated 

cells at 0 and 265s, (F) Dynasore treated cells at 0 and 190s post stimulation are shown (G) AP-2 

alpha kd cells at 0 and 195s. Scale bar 10μm. Insets show the boxed region magnified (scale bar 

2μm), with the time in the top left representing the time of the first fusion event. Arrows indicate 

point of WPB fusion. (E) In control cells, despite fusion events occurring in close proximity, and 

within 80s, the sites remain separate. (F) Fusion events occurring in close proximity and within 75s in 

dynasore treated or within 125s in AP-2kd cells merge in what appears to be cumulative exocytosis. 
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Figure 8. Cumulative fusion of WPB results in improper release of VWF strings 

(A-B) Control, mock, 25μM dynasore treated or AP-2 alpha kd HUVEC were stimulated with 

100ng/ml PMA. (A) The number of fusion events were monitored over a 10 minute period by 

scanning confocal microscopy. There was no significant difference in the extent of fusion between 

dynasore treated and untreated cells (n=13 control and drug treated cells from 4 experiments). A 

significant difference in the amount of fusion was noted in AP-2 kd compared to mock, control and 

dynasore treated cells. Error bars represent SEM. Stats shown derived from student’s T test, 

P=<0.005. (B) Treated, dynasore treated mock and AP-2 alpha kd cells were incubated in the 

presence or absence of PMA (100ng/ml) and the amount of VWF release determined by ELISA as a 

fraction of total VWF. Data is normalised to control and there is a small but significant inhibition of 

VWF release noted. Error bars represent SEM, 1-way ANOVA with Kruskall-Wallis post-test, p<0.001, 

data shown represents 6 individual measurements from n=7 dynasore or n=5 AP-2 kd experiments. 

(C & D) Dynasore treated or untreated cells were stimulated under flow with 100ng/ml PMA and (C) 

the number and (D) length of VWF strings determined. Representative data shown from n=3 

experiments error bars represent SEM. Stats shown derived from unpaired student’s T test 

(P=<0.0001).  (E) Model of the mechanism and function of compensatory endocytosis in endothelial 

cells: (a) WPB dock and fuse with the plasma membrane releasing VWF strings as well as smaller 

soluble and membrane bound cargo. The majority of WPB exocytic events do not result in full fusion 

i.e. total collapse of the organelle into the plasma membrane. Instead, fused empty WPB persist as 

distinct structures on which clathrin-coated budding vesicles assemble as early as 20 seconds post 

exocytosis. The formation of AP-2 mediated clathrin-coated vesicles occurs irrespective of whether 

the pore is open and such events serve to retrieve fusion machinery in a dynamin and AP-2 

dependent manner. The fusion pores close after approximately 60-75s whilst clathrin-mediated 

budding continues; (b) When clathrin mediated endocytosis is inhibited either via inhibition of AP-2 

or dynamin this causes WPB fusion machinery to build up on the post-fusion granule membrane. 

This makes such sites favourable for WPB fusion causing cumulative exocytosis. VWF released from 

such cumulative events cannot unfurl properly under flow and becomes tangled, resulting in shorter 

strings. 
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Supplementary Figures 

Figure S1. Live cell imaging of dextran incorporation into fused WPB 

(A) HUVEC were incubated with HRP +/- a cocktail of Histamine (100μM), Adrenaline (10μM) and 

IBMX (100 μM) for 15 minutes. The number of HRP positive objects/cell was determined and plotted 

relative to time. (B) HUVECs expressing VWF-GFP (green) were imaged live in the presence of PMA 

(100ng/ml) and dextran-tetramethylrhodamine (red). One representative exocytic event is 

presented, which occurs at relative time 0 (time indicated underneath pictures in seconds). Images 

are single confocal planes. The fusion pore can be seen to fill with dextran, whereas a second WPB, 

which comes into focus and does not fuse, does not co-localise with dextran. 
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(i)

(iii)

(ii)

Figure S2. Multiple incomplete fusion events are apparent even in close proximity following actin 

depolymerisation 

HUVEC were stimulated with PMA (100ng/ml) for 10 minutes in media supplemented with 1μM 

cytochalasin E (CCE). Cells were then fixed and external VWF labelled with anti-VWF antibodies 

before preparation for TEM. Serial sections are shown. Arrows show pieces of membrane still 

present around the fused exocytic structure, scale bar 500nm. 

J. Cell Sci. 130: doi:10.1242/jcs.200840: Supplementary information
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Figure S3. Clathrin and sometimes dynamin II co-localise with sites of string release 

(A) Confluent HUVECs were stimulated with 100ng/ml PMA for 5 minutes at 370C then fixed and 

stained for external VWF (blue), dynamin II (green) and CLC (red). Cells were then imaged by 

confocal microscopy in the longitudinal plane to examine co-localisation between exocytosed VWF 

and clathrin at the exocytic pore. Single plane images are presented. Scale bar 5 μm. (B) Confluent 

HUVECs were stimulated with 100ng/ml PMA for 5 minutes at 370C then fixed and stained for 

external VWF (blue), total VWF (green) and CLC (red). Cells were then imaged by confocal 

microscopy in the longitudinal plane to examine co-localisation between exocytosed VWF and 

clathrin at the exocytic pore. Single plane images are presented. Scale bar 5 μm.  
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Figure S4. siRNA mediated knockdown of AP-2 alpha increases the number of WPB in endothelial 

cells.  

(A-E) HUVEC were transfected with 300 pmol siRNA targeting AP-2 alpha for one or two rounds. (A & 

B) The extent of kd was determined by SDS PAGE and western blot. (A) Examples of western blots

from 5 separate experiments showing AP-2 kd vs. the loading control β-tubulin. (B) Quantification of 

kd normalised to β-tubulin and relative to the mock, kd efficiency was on average 74% over 19 
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experiments. Error bars show SEM and statistics shown derived from unpaired student’s T test on  

raw data (P=<0.0001). (C) At the second round of AP-2 alpha kd transfection 5µg GFP-VWF was  

incorporated and the cells were imaged live on a scanning confocal microscope. Images were taken 

and the number of WPB determined using Fiji and an arbitrary threshold. The number of WPB 

following AP-2 alpha kd was significantly increased. Error bars show SEM and statistics shown  

derived from unpaired student’s T test (P=<0.005) n=5 experiments. (D) Quantification of VWF levels  

normalised to β-tubulin and relative to the mock, error bars show SEM n=5 experiments. (E) VWF  

levels as determined by ELISA. The amount of unreleased VWF in lysates was higher in AP-2 alpha kd  

cells compared to mock treated controls, error bars show SEM for n=5 experiments.  

Table S1 – Co-localisation between internalised fluid-phase HRP and other proteins   

SD = standard deviation. Data is the mean of 8-12 fields of view  

Marker  Unstimulated cells Stimulated cells Student’s t-test 

EEA1 tM1 0.182 (SD = 0.046) 0.161 (SD = 0.038) P = 0.285 

 tM2 0.166 (SD = 0.038) 0.147 (SD = 0.063) P = 0.278 

P-selectin tM1 0.195 (SD = 0.137) 0.207 (SD = 0.091) P = 0.745 

 tM2 0.03 (SD = 0.054) 0.111 (SD = 0.068) P = 0.000063 *** 

Transferrin tM1 0.162 (SD = 0.037) 0.117 (SD = 0.117) P = 0.421 

 tM2 0.162 (SD = 0.030) 0.175 (SD = 0.063) P = 0.261 

J. Cell Sci. 130: doi:10.1242/jcs.200840: Supplementary information
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