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ii. Abstract 

The Lewy body dementias, Parkinson’s disease dementia and dementia with Lewy bodies, are 

two of the most common causes of dementia worldwide, and share both a common clinical 

phenotype and underlying pathology. Despite their growing economic and societal disease 

burden, there are currently only a small number of limited symptomatic therapies available, 

while modern approaches to develop disease modifying biologic agents have so far produced 

little tangible effect. There is growing recognition of the need to explore alternative treatment 

avenues, and the success of deep brain stimulation (DBS) in modulating aberrant neural 

network processing to relieve symptoms in other neuropsychiatric diseases raises the 

possibility that this might be achievable in Lewy body dementias.  

The nucleus basalis of Meynert (NBM) provides the major source of ascending cholinergic 

innervation to the cortex, and is proposed to be a key node in multiple distributed cognitive 

networks. The nucleus degenerates significantly in Lewy body dementias, which correlates 

closely with the severity of cognitive decline. It is therefore proposed that deep brain 

stimulation to the NBM may be able to modulate cholinergic transmission to cortex, and 

thereby impact directly upon dementia symptoms. 

In this thesis I will present preliminary evidence from two experimental clinical trials of deep 

brain stimulation to the NBM in Lewy body dementias. I will present data showing that this 

invasive neurosurgical procedure is both safe and well tolerated in patients with advanced 

dementia, and that low frequency stimulation may be associated with improvements in both 

memory functions and neuropsychiatric symptomatology. Furthermore, I will present results 

from the first direct electrophysiological recordings from human NBM in vivo, showing that 

activity in the nucleus may reflect levels of sustained attention. Finally, I evaluate the overall 

clinical impact of this novel therapeutic approach in Lewy body dementias, and discuss how 

our electrophysiological findings may relate to this, and how they contribute to our existing 

understanding of the physiological function of NBM. 
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Chapter 1: Introduction 

1.1. The Lewy body dementias 

Dementia is a clinical syndrome comprising declining function across a number of cognitive 

domains including memory, attention, executive function, perception, praxis and language, 

which are not attributable to delirium or a psychiatric disorder. These features are 

accompanied by changes in personality and behaviour. The symptoms of dementia interfere 

with, and may preclude, occupational and social function, and cause distress to both the 

patient and their family (American Psychiatric Association 2000; Bouchard, 2007; McKhann 

et al., 2011).  

The term Lewy body dementias (LBDs) refers to two distinct dementia syndromes, 

Parkinson’s disease dementia (PDD) and dementia with Lewy bodies (DLB), which share 

both a common clinical phenotype and a common pathophysiological hallmark: Clinically 

both dementias are characterised by prominent impairment of executive and attentional 

functions, accompanied by episodic memory and visuoperceptual deficits, cognitive 

fluctuations and neuropsychiatric disturbances, particularly visual hallucinations (Emre et al., 

2007; Galvin et al., 2006; McKeith et al., 2005; Noe et al., 2004). Pathologically both are 

characterised by intracellular aggregates of a-synuclein protein (visualised microscopically as 

the eponymous ‘Lewy bodies’) across the neocortex (Lippa et al., 2007; McKeith and 

Mosimann, 2004). Although PDD and DLB share many common clinical and pathological 

features, not all are identical (Goldman, Williams-Gray, et al., 2014), nevertheless many 

consider separation of the two clinical syndromes to be artificial as it would imply they had 

differing pathologies  (Aarsland et al., 2004; McKeith and Mosimann, 2004). 

1.1.1.   Parkinson’s disease dementia 

Parkinson’s disease dementia is a late complication of the predominantly motor syndrome of 

Parkinson’s disease (PD), with a cumulative prevalence of 75-90% of those with a disease 
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duration of ten years or more (Aarsland and Kurz, 2010; Buter et al., 2008; Hely et al., 2008). 

It is the fourth most common cause of dementia worldwide, accounting for 2-5.6% of all 

cases (Aarsland et al., 2008; Aarsland, Zaccai, et al., 2005). The development of PDD 

negatively impacts activities of daily living (Rosenthal et al., 2010), and confers significantly 

increased morbidity and mortality to patients and their carers (G. Levy et al., 2002; Reid et 

al., 1996). It is now widely recognised that the clinical phenotype of PDD extends beyond the 

classical dysexecutive syndrome seen in early Parkinson’s disease to include additional 

deficits in recognition memory, attention processes and visual perception (Kehagia et al., 

2013; Pagonabarraga and Kulisevsky, 2012), as well as visual hallucinations and cognitive 

fluctuations (Emre, 2003). This constellation of features has been made explicit in the 

diagnostic criteria for PDD (Emre et al., 2007). 

1.1.2.   Dementia with Lewy bodies 

Dementia with Lewy bodies is the second most common neurodegenerative dementia, with a 

prevalence of 7.5% and annual incidence of 3.8% of dementia diagnoses (Vann Jones and 

O’Brien, 2013). The true disease burden is likely higher however since DLB accounts for 15-

25% of neuropathologically defined cases (McKeith et al., 1992, 1996; Taylor et al., 2013). 

The clinical phenotype of DLB is now well-recognised, characterized by prominent deficits in 

attention, executive functions and visuoperceptual abilities, while mnemonic abilities are less 

impaired (Calderon et al., 2001; Collerton et al., 2003a; Ferman et al., 2006; I. McKeith et al., 

2004). This cognitive symptomatology is accompanied by cardinal features of fluctuating 

cognition and complex formed visual hallucinations, which highlights the phenotypic 

similarity with PDD (McKeith et al., 1996, 2005). A third cardinal feature of DLB is 

parkinsonism, which is where distinction is drawn with PDD - current consensus criteria state 

that DLB can only be diagnosed clinically when motor symptoms of parkinsonism develop 

less than one year prior to onset of cognitive symptoms (McKeith et al., 2005). However, 

with increasing recognition of subclinical cognitive dysfunction in even premotor PD the 

validity of this arbitrary diagnostic rule is increasingly challenged by those who view both 
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dementia syndromes as part of a continuum of Lewy body diseases (Berg et al., 2014; 

Goldman, Williams-Gray, et al., 2014). 

 

1.2. The Lewy body dementias: clinical phenotype 

Both PDD and DLB display a common clinical phenotype, which is distinct from other 

dementia syndromes such as Alzheimer’s disease (AD, the most common cause of dementia 

(McKeith et al., 1992)). The cognitive profile shared by both LBDs is characterised by 

prominent deficits in executive functions, attention and visual perceptive abilities, with 

associated less prominent deficits in episodic memory (Aarsland et al., 2003; Collerton et al., 

2003b; Mosimann et al., 2004; Noe et al., 2004). This profile differs from AD in that 

mnemonic abilities are not as badly affected, while executive functions, attention deficits and 

visual perceptive abilities are more impaired (Aarsland et al., 2003; Collerton et al., 2003b; 

Doubleday et al., 2002; Noe et al., 2004). Both LBDs also characteristically display 

fluctuating levels of attention and confusion, which are again not typical of AD (Ballard et al., 

2002a; Ferman et al., 2004; Walker et al., 2000). Aside from cognitive symptomatology, 

LBDs are also associated with a number of neuropsychiatric disturbances, motor symptoms of 

parkinsonism, and other non-motor symptoms, which further differentiate them from other 

dementias (Emre, 2003; Emre et al., 2007; McKeith et al., 2005; Noe et al., 2004).  

Here we describe the cognitive profile and associated clinical features of the LBDs in greater 

detail. Of note the fifth cognitive domain, language, is relatively preserved in LBDs (the main 

deficit in this area, impaired verbal fluency, is actually part of the dysexecutive syndrome 

(impaired self-generated search, Emre, 2003). Consequently, the language domain is not 

discussed. 
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1.2.1 Executive dysfunction 

‘Executive function’ is an umbrella term encompassing several cognitive abilities, including 

problem solving, planning/sequencing, rule-shifting/maintenance, task switching, 

manipulation in working memory and response inhibition (Dubois and Pillon, 1997; Kehagia 

et al., 2010; Parker et al., 2013), see (Dirnberger and Jahanshahi, 2013) for review). Some 

also regard allocation of attention as an executive function (Kehagia et al., 2010), though here 

we will consider it within a separate cognitive domain. In PD executive dysfunction is often 

present from the point of diagnosis (Cooper et al., 1991; Foltynie, Brayne, et al., 2004; Lees 

and Smith, 1983; Muslimovic et al., 2005) and may even be part of a pre-motor prodromal 

syndrome (Goldman, Williams-Gray, et al., 2014). Executive dysfunction worsens with 

disease progression into PDD (Christopher et al., 2013; Pagonabarraga and Kulisevsky, 

2012), being predictive of dementia onset in some series, though this remains controversial 

(Janvin et al., 2005; J. E. Lee et al., 2013; Gilberto Levy et al., 2002; Mahieux et al., 1998; 

Williams-Gray et al., 2013; Woods and Tröster, 2003). In DLB however this prolonged 

dysexecutive prodrome is not present and progressive executive impairment develops 

alongside attentional and visual perceptual difficulties from the outset (Doubleday et al., 

2002; Ferman et al., 2006; I. McKeith et al., 2004; McKeith et al., 1996), which likely reflects 

differences in the pattern of spread of subcortical Lewy body pathology between PDD and 

DLB (see below). From the perspective of the patient with LBD worsening dysexecutive 

syndrome causes progressive difficulties with concentration, retaining information, planning 

and organisational skills, which interfere heavily with social and occupational function 

(Bronnick et al., 2006).  

1.2.2 Attention 

Attention is a heterogeneous construct which has been considered to comprise three different 

subsystems: executive control, orienting and alerting (Petersen and Posner, 2012; Posner and 

Petersen, 1990). It has been proposed that the executive control subsystem allocates 

attentional resources to tasks. It is the volitional focusing of attention and considered to 
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depend on ‘top-down’ signals derived from knowledge about task demands (Kastner and 

Ungerleider, 2000). ‘Orienting’ refers to attention being drawn to an environmental stimulus 

for focussed cognitive processing to the exclusion of other stimuli. It is automatic capture of 

attention and thought to be driven by ‘bottom-up’ signals from salient stimuli (Desimone and 

Duncan, 1995). Alerting is a heightened state of arousal and ‘vigilance’ is the maintenance of 

this aroused state over time (Parasuraman, 1998). Vigilance facilitates faster orienting and 

reaction time, whereas the opposite state, drowsiness, will impair these functions. 

Attention deficits are detectable in both LBDs from early in their disease courses, particularly 

on tests sensitive to deficits in executive control of attention, such as the digit span, cognitive 

reaction time, Trail Making Test Part B, Stroop interference test and attentional set-shifting 

tasks (Ballard, O’Brien, et al., 2001; Collerton et al., 2003b; Ferman et al., 2006; Muslimovic 

et al., 2005; Petrova et al., 2015; Williams-Gray et al., 2008). LBD patients also develop 

impaired orienting of visual and auditory attention, such as on the map search task, and 

difficulties on tasks of sustained attention, such as digit vigilance and elevator counting 

(Ballard et al., 2002b; Calderon et al., 2001; Poliakoff et al., 2003; Sharpe, 1992; Wright et 

al., 1990). With disease progression impaired vigilance gives way to fluctuating levels of 

attention, demonstrated by increased standard deviations on choice reaction time 

measurements (Ballard et al., 2002b; Ballard, O’Brien, et al., 2001). This fluctuating attention 

manifests in daily life as fluctuating cognition (Walker et al., 2000), characterised by short-

lived spontaneous lapses in awareness/alertness, which are clinically significant in up to 77% 

of patients (Bradshaw, 2004; Ferman et al., 2004). 

All of these attention deficits are significantly greater in LBDs than in AD patients of 

matched global severity (Ballard et al., 2002b; Ballard, O’Brien, et al., 2001; Calderon et al., 

2001) and worsen over the course of the disease, being the strongest predictor of both decline 

in activities of daily living and poorer quality of life (Ballard, Walker, et al., 2001; Bronnick 

et al., 2006). Such deficits are easily identifiable in the clinic: patients classically lose their 
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train of thought during a sentence, fail to follow the conversation, or display fluctuant 

alertness, and even stupor. 

1.2.3 Memory 

Memory is an all-encompassing term for the cognitive processes involved in the encoding, 

storage and retrieval of information. As with the other cognitive domains it is not a pure 

process, and is interdependent upon a person being able to direct attention to allow encoding 

of information, and use executive processes to allow retrieval in a particular context. As 

discussed above LBD patients exhibit deficits in each of these latter processes, which means 

that apparent memory impairments have a multifactorial basis in these disorders. For 

example, non-demented PD patients exhibit impaired free recall (spontaneous retrieval) but 

benefit substantially from cueing, demonstrating that externally triggered retrieval is intact 

(Costa et al., 2014; Lees and Smith, 1983). Recognition memory is also intact at this stage 

(Lees and Smith, 1983; Taylor et al., 1986) although there is some debate about this 

(Whittington et al., 2000). Overall, this indicates that in PD memories are encoded and stored, 

but not independently retrieved. Performance on free recall in this group is significantly 

predicted by scores on executive tests, indicating that executive dysfunction contributes to 

retrieval failure (deficient internal search strategies), and is responsible for the apparent 

mnemonic deficit rather than a dysfunction of storage (Costa et al., 2014; Pillon et al., 1993). 

This contrasts with Alzheimer’s disease where both recall and recognition are equally 

impaired from early on, implicating a temporal-limbic storage deficit (Helkala et al., 1988; 

Pillon et al., 1993). 

With progression from Parkinson’s disease to PDD, however, both a cross-sectional study and 

a meta-analysis have shown that difficulties with recognition memory also become apparent, 

implicating a supervening dysfunction of temporal lobe storage mechanisms upon pre-

existing executive retrieval deficits when patients convert to dementia (Whittington et al., 

2000, 2006). This is supported by data showing that PDD patients exhibit significant 
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impairments with confrontation naming (a test requiring visual recognition memory among 

other processes) and greater deficits in semantic than phonemic verbal fluency (both require 

efficient executive retrieval but the former has a greater dependence on temporal lobe 

storage) (Henry and Crawford, 2004). Both confrontation naming and semantic verbal 

fluency are dependent on retrieval of semantic information (previously learnt general factual 

information, (Tulving, 1972)) and therefore these tests are relatively resistant to attentional 

impairments since encoding of such information would have taken place in the pre-morbid 

state. Therefore, it seems likely that a true mnemonic storage deficit is present in PDD in 

addition to the problems with deficient attention/encoding and poor executive retrieval that 

manifest earlier in Parkinson’s disease. 

The neuropsychological profile with regard to memory is very similar in DLB: patients early 

in the disease course demonstrate impaired free recall compared to age matched controls, but 

benefit from cueing, again indicating that externally triggered retrieval remains relatively 

intact and therefore executive dysfunction may be primarily responsible for apparent 

mnemonic deficits at this stage (Ferman et al., 2006; Hamilton et al., 2004). DLB patients 

with more established disease demonstrate significant impairments in both recognition 

memory and semantic memory of similar severity to, or worse than, matched AD patients 

(Calderon et al., 2001; Lambon Ralph et al., 2001; Noe et al., 2004). However, many of these 

memory tests involve a visual component (e.g. recognition memory test for faces, Benton 

visual retention test), suggesting that DLB (and PDD) patients performed worse than AD 

patients due to the additional contribution of visual-perceptual impairments (see below) 

(Lambon Ralph et al., 2001; Metzler-Baddeley, 2007). Nevertheless, DLB patients perform 

significantly worse than healthy controls on memory tests with minimal visual demands 

(verbal recognition memory and confrontation naming tests)(Calderon et al., 2001; Lambon 

Ralph et al., 2001), suggesting that a true mnemonic storage deficit is present in DLB in 

addition to confounding impairments in attention, executive function and visual perception. 
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In the clinic, problems with memory are one of the most frequent non-motor symptoms 

reported by both LBD patients and their carers (Breen and Drutyte, 2013). However, the 

differentiation between apparent memory deficits due to attentional or executive impairments, 

and ‘true’ temporal-limbic storage deficits is rarely evident from the patients’ self-reported 

memory complaints, and this requires detailed questioning or cognitive testing to delineate. 

1.2.4 Visual perceptual dysfunction. 

Visual perception encompasses both sensory processes, i.e. the simple conscious experience 

associated with the physical aspects of a visual stimulus such as brightness (sensation), as 

well as the conscious experience of objects and object relationships (perception), i.e. how we 

form a conscious representation of the outside world (Metzler-Baddeley, 2007). From a 

cognitive point of view overall visual perceptive function can be subdivided into two 

components, visuospatial function (the perception of extra-personal space) and 

visuoperceptual function (recognising objects based on their physical aspects). Multiple 

studies have shown that LBD patients exhibit both marked visuospatial deficits (for example 

on object decision and cube analysis tasks) and visuoperceptive deficits (for example on 

fragmented letters and silhouette identification tasks) compared to both controls and matched 

AD patients (Calderon et al., 2001; Cormack, Aarsland, et al., 2004; Lambon Ralph et al., 

2001; Levin et al., 1991; Mori et al., 2000; Mosimann et al., 2004; Noe et al., 2004). 

Furthermore, in the case of PD patients the onset of visual perceptive dysfunction clinically 

has been shown to have a high sensitivity in detecting the transition to PDD (Biundo et al., 

2014; Kehagia et al., 2010; Zgaljardic et al., 2004), while early subclinical impairment on the 

pentagon copying test of the MMSE is predictive of PDD at 5-year follow up (Williams-Gray 

et al., 2009). 

Of course, apparent visual perceptual dysfunction in LBD patients could be confounded by 

concurrent deficits in selective attention. However (Cormack, Gray, et al., 2004) tested DLB 

patients in two visual search tasks, a parallel search condition (measuring automatic visual 
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search using a ‘pop-out’ effect, attention-independent) and a serial search condition 

(measuring selective attention-dependent search) and found that DLB patients were impaired 

in both conditions, performing significantly worse than AD patients in the parallel condition. 

This therefore indicates that LBD patients exhibit a true deficit in visual perceptive function, 

independent of concurrent deficits in selective attention.  

Clinically, there is a strong association between worsening visuospatial and visuoperceptual 

impairments in LBD patients, and the presence of visual hallucinations (see next subsection), 

suggesting an overlapping neural basis to these symptoms (Mori et al., 2000; Mosimann et al., 

2004; Ramírez-Ruiz et al., 2006). 

1.2.5 Neuropsychiatric features 

Patients with LBDs also suffer behavioural and neuropsychiatric symptoms, often from early 

in their disease course (Aarsland et al., 2007; Emre, 2003; Emre et al., 2007; McKeith et al., 

2005). In particular, recurrent complex visual hallucinations are highly prevalent in both 

LBDs, occurring in up to 70% of patients with PDD and 80% of patients with DLB, while 

they are comparatively rare in AD (D Aarsland, Cummings, et al., 2001; Ballard et al., 1999; 

Fénelon et al., 2000; McKeith et al., 2000). Patients commonly perceive well-formed people, 

animals or objects, which are often unpleasant and occur daily, lasting minutes at a time 

(Barnes and David, 2001; Mosimann et al., 2006). Although visual hallucinations can be 

induced by anti-parkinsonian drugs, correlations between use of these agents in LBDs and 

presence of hallucinations are actually relatively weak, and instead cognitive impairment has 

been shown to be the major risk factor, indicating that they are a core symptom of the 

dementing process (Fénelon et al., 2000; Williams and Lees, 2005). Although insight is 

initially maintained, 81% of LBD patients will lose insight over three years (Fénelon et al., 

2000; Goetz et al., 2006). The presence of visual hallucinations severely affects quality of life 

for both patients and caregivers, and is predictive of nursing home placement (Aarsland et al., 

2000, 2007; Goetz and Stebbins, 1993; Schrag et al., 2006; Svendsboe et al., 2016). 
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In addition delusions, depression, apathy and anxiety all occur more commonly in LBD 

patients compared to those with AD (Aarsland et al., 2007; Ballard et al., 1999; Huber et al., 

1989), and predict a poorer quality of life (Boström et al., 2007a; Mosimann et al., 2006; 

Schrag et al., 2000). 

1.2.6 Motor phenotype and other clinical features 

Both PDD and DLB are associated with the motor symptoms of parkinsonism, which 

constitutes a core diagnostic criterion for both diseases (Emre et al., 2007; McKeith et al., 

2005). In both cases parkinsonism is predominantly of akinetic-rigid type with associated 

postural instability and gait disturbance, without prominent tremor (Lippa et al., 2007; 

Pagonabarraga and Kulisevsky, 2012). This is consistent with the finding that motor features 

mediated by non-dopaminergic pathways (speech, postural and gait impairments) are more 

closely associated with dementia than those motor features which are predominantly 

dopaminergically-mediated, such as tremor and bradykinesia (Burn et al., 2003; Foltynie et 

al., 2002). Extrapyramidal signs in Lewy body diseases may thus be on a continuum, with a 

shift towards greater non-dopaminergic motor-system involvement from PD to LBD (I. 

McKeith et al., 2004). 

Saccadic eye movements are markedly slowed in LBDs compared to both PD and AD, 

possibly due to the combination of both cortical and subcortical pathology in the former 

(Mosimann et al., 2005). In addition, both PDD and DLB are frequently associated with 

dysautonomic symptoms, rapid eye movement (REM)-sleep behavioural disorder, anosima 

and severe hypersensitivity reactions to neuroleptic drugs, none of which are seen to an 

equivalent extent in AD (Aarsland, Perry, Larsen, et al., 2005; Boeve et al., 1998; McKeith et 

al., 1992). 
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1.2.7 Phenotypic differences between PDD and DLB and boundary issues 

As the data above illustrate, PDD and DLB share a common clinical phenotype. However 

important differences between the clinical features of the two conditions exist. The timing of 

onset of cognitive symptoms in relation to motor symptoms is a key differentiator made 

explicit in consensus guidelines: the diagnosis of PDD is made when dementia develops in 

the context of established PD, whereas DLB is diagnosed when dementia precedes or 

coincides within one year of the development of motor symptoms (Emre et al., 2007; 

McKeith et al., 2005). This distinction appears valid since longitudinal studies indicate that 

the majority of PD patients develop PDD after a decade or more of motor symptoms 

(Aarsland and Kurz, 2010; Buter et al., 2008; Hely et al., 2008; Hughes et al., 2000). 

However, some patients fall into an overlapping ‘grey zone’ since DLB patients may present 

with simultaneous onset of cognitive and motor change (Lippa et al., 2007), while early 

subclinical cognitive change is now well-recognised in PD (Foltynie, Brayne, et al., 2004; 

Muslimovic et al., 2005). In such cases the appropriate term depends on the clinical situation, 

or the use of a generic term such as Lewy body dementia is appropriate (Emre et al., 2007) 

since the arbitrary distinction in both consensus guidelines reflects diagnostic convenience 

rather than a truly significant biological or clinical difference (McKeith and Mosimann, 

2004). 

However, subtle phenotypic differences exist between the two dementias. DLB patients 

display greater executive and attentional impairments than PDD patients, even after 

controlling for global dementia severity (Aarsland et al., 2003; Downes et al., 1999). This 

suggests that frontal cortical involvement might occur slightly earlier in DLB compared to 

PDD (Aarsland et al., 2003). Cognitive fluctuations are also more pronounced in DLB than 

PDD of matched severity (Bonanni et al., 2008). Psychiatric symptoms differ quantitatively 

more than qualitatively, with DLB patients experiencing a greater frequency of 
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hallucinations, delusions (including Capgras syndrome)2 and neuroleptic sensitivity reactions 

than PDD patients (Aarsland, Perry, Larsen, et al., 2005; D Aarsland, Ballard, et al., 2001; 

Goldman, Williams-Gray, et al., 2014; Mosimann et al., 2006; Noe et al., 2004). In terms of 

motor features PDD patients display greater asymmetry of parkinsonian symptoms, while 

DLB patients tend to have milder parkinsonism, although eventually with disease progression 

these become equally severe and symmetrical in both (Dag Aarsland et al., 2001; Lippa et al., 

2007). PDD patients demonstrate greater responsiveness to levodopa therapy (Molloy et al., 

2005), and consequently have a higher propensity for developing dyskinesias and motor 

fluctuations as side-effects (Goldman, Williams-Gray, et al., 2014). 

Nevertheless, these minor differences aside, PDD and DLB are two common dementia 

syndromes with overlapping clinical phenotypes, supporting the view that they likely 

represent different points on a spectrum of Lewy body disease. We now examine how closely 

the two syndromes share a common underlying pathophysiology.  

 

1.3. The Lewy body dementias: Pathophysiology 

1.3.1 Genetic factors 

Several genes have been shown to confer increased risk for development of both PDD and 

DLB, including the E46K and A53T/G209A mutations in the α-Synuclein gene (SNCA) and 

glucocerebrosidase (GBA) mutations (Halliday et al., 2014; Morfis and Cordato, 2006; Nalls 

et al., 2013; Shiner et al., 2016; Zarranz et al., 2004). This highlights the genetic overlap 

between both dementias (see also (Meeus et al., 2012)) and further supports the view that they 

represent different points on a spectrum of Lewy body diseases. In addition, the 

                                                        

2 Capgras syndrome is a delusional misidentification syndrome in which the patient thinks a close 

family member or friend has been replaced by an identical-looking imposter (Todd et al., 1981). 
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apolipoprotein ε4 (APOE4) allele and the microtubule-associated protein tau (MAPT) H1 

haplotype have been shown to confer increased risk for PDD (reviewed in (Halliday et al., 

2014), while the P123H and V70M mutations in the β-synuclein gene (SNCB) and the A85V 

mutation in the presenilin 2 gene (PSEN2) confer increased risk for DLB (Ohtake et al., 2004; 

Piscopo et al., 2008). All these genetic factors likely contribute to cognitive decline in LBDs 

by different mechanisms, and recent studies have begun to investigate this; for example newly 

diagnosed PD patients carrying the APOE4 allele show reduced activity in the medial 

temporal lobe (MTL) network during memory tasks, while MAPT H1 homozygotes instead 

show reduced activity in the posterior visual network during visuospatial tasks (Nombela et 

al., 2014). In addition, parkinsonian patients with GBA1 mutations exhibit a specific resting 

hypometabolism in the precuneus, part of the posterior visual network, which correlates 

closely with severity of cognitive decline (Goker-Alpan et al., 2012). However, the exact 

mechanisms by which these genes influence the dementing process remain to be fully 

elucidated. 

1.3.2 Molecular and cellular pathology 

The histopathological hallmark of both PDD and DLB is the presence of widespread cortical 

Lewy bodies (Emre et al., 2007; McKeith et al., 2005), which differentiates them from other 

dementia subtypes (Lippa et al., 2007). Lewy bodies are the name given to eosinophilic 

intracytoplasmic inclusions first described by Friedrich Lewy in an early neuropathological 

study of Parkinson’s disease (Lewy, 1912). Lewy neurites are similar inclusions located in 

neural processes, which preferentially affect limbic and temporal structures (Dickson et al., 

1994, 1996; Ferman and Boeve, 2007). Lewy bodies and neurites are composed of fibrillar 

aggregates of the insoluble form of the presynaptic protein a-synuclein (Baba et al., 1998). 

Lewy bodies initially affect the brainstem and olfactory system in PD, then spread up to the 

substantia nigra and other midbrain nuclei, at which point the clinical manifestations of the 

motor disorder become apparent (Lippa et al., 2007). Further spread of Lewy bodies to 
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cortical regions characterises conversion to PDD, and the extent of neocortical spread 

correlates closely with severity of cognitive decline (Aarsland, Perry, Brown, et al., 2005; 

Hurtig et al., 2000). A similar relationship between cortical burden of Lewy pathology and 

cognitive decline is also present in DLB, however the relationship is not as robust (Gomez-

Tortosa et al., 1999; Harding and Halliday, 2001). However, in specific brain regions the 

correlation between pathology and symptomatology in PDD and DLB is almost identical, for 

example visual hallucinations in both dementias are closely associated with density of Lewy 

bodies in the temporal cortices (Harding et al., 2002; Williams and Lees, 2005). Thus PD, 

PDD and DLB appear to represent different points on a continuum of Lewy body disease with 

motor, cognitive and psychiatric features reflecting the regional distribution and burden of 

Lewy body pathology (McKeith and Mosimann, 2004). 

However, despite this considerable pathological heterogeneity exists both between PDD and 

DLB, and amongst individual cases with either syndrome. Co-existent neuronal loss, 

Alzheimer-type neurofibrillary tangles and plaques, microvascular disease, argyrophilic 

inclusions and tau pathology can all be found to varying degrees amongst individual cases 

(Ballard et al., 2006; Edison et al., 2008; Gungor et al., 2015; Halliday et al., 2014; Harding 

and Halliday, 2001; Horvath et al., 2013; Irwin et al., 2012; Jellinger and Attems, 2006; Lippa 

et al., 2007; I. McKeith et al., 2004; Del Tredici and Braak, 2013). These variations in 

underlying pathology in turn impact upon the clinical phenotype, for example in DLB co-

existent AD pathology can delay onset of visual hallucinations and parkinsonism (Merdes et 

al., 2003; Del Ser et al., 2001). Meanwhile in PDD the presence of combined Lewy body and 

Alzheimer-type pathology is associated with development of dementia within ten years of PD 

diagnosis, whereas less pronounced morphologic changes and a greater cortical cholinergic 

deficit is associated with later dementia onset (Ballard et al., 2006). Indeed severity of 

cognitive decline appears better correlated with combined cortical Lewy body and senile 

plaque pathology in both LBDs (Compta et al., 2011; Samuel et al., 1996). Furthermore, the 

anatomical distribution of the various contributory pathologies varies between different cases 
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(Colosimo et al., 2003; Galvin et al., 2006) and does not always correspond with clinical 

symptoms: for example, in one large neuropathological series, 55% of PD cases with Braak 

stage 5-6 pathology (i.e. limbic and neocortical Lewy bodies) lacked clinical evidence of 

dementia (Parkkinen et al., 2008). 

Given this complex and varying milieu of neuropathological and genetic factors underlying 

the development of LBDs it is difficult to provide a generalised pathophysiological 

mechanism across patients from this perspective to account for the common clinical picture 

seen. However, diverse molecular and cellular pathologies can give rise to common patterns 

of dysfunction at the neural systems level, and addressing LBDs from this perspective can 

better bridge the gap to clinical symptomatology. Indeed, the need to understand 

neurodegenerative diseases at this dysfunctional systems-level is increasingly acknowledged 

(van Dellen et al., 2015; Pievani et al., 2011; Seeley et al., 2009; Stam, 2014). 

1.3.3 Neural network dysfunctions 

From a systems-level perspective the LBD syndromes are caused by variable and interacting 

dysfunction in a number of diffusely distributed, yet inter-related, neural networks which 

contribute to distinct cognitive and behavioural processes, including fronto-striatal, 

mesocortical, corticopetal cholinergic, fronto-parietal, medial temporal and noradrenergic 

networks. These are in turn differentially influenced by dopaminergic, cholinergic, and 

noradrenergic neurotransmitter deficits.  

To provide conceptual order to an otherwise anarchic dataset I will approach discussion of 

these networks by addressing in turn each of the major cognitive domains affected by LBD 

(executive function, attention, memory and visual perceptual ability) and describing the major 

network dysfunctions underlying deficits in those areas. However, the reader must bear in 

mind that the division of cognitive ability into these compartmentalised domains is inherently 

artificial, which in turn renders the assignment of neural networks to the subservience of a 

constrained domain equally so. The reality is that all these cognitive networks interact and 
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overlap in a complex manner, and the generation of any conceptualised cognitive function 

such as ‘memory' is ultimately influenced by many of their individual distributed actions. 

Nevertheless, evidence suggests that particular neural networks are more strongly implicated 

in mediating certain cognitive functions than others, which gives validity to approaching the 

discussion in this manner. 

1.1.1.1 Executive dysfunction is due to disruption of the fronto-striatal dopamine 

network 

The prefrontal cortices are implicated in executive function (Fuster, 2008; Milner, 1982, 

1995; Norman and Shallice, 1986), and distinct areas of prefrontal cortex have strong 

functional connections with the striatum via parallel dopamine-dependent cortico-striatal 

loops (Alexander et al., 1986; Middleton and Strick, 2000) (Figures 1 and 3). In line with this, 

healthy subjects demonstrate increased striatal dopamine neurotransmission on PET scanning 

while performing executive tasks (Monchi et al., 2006). 

Functional MRI (fMRI) imaging in PD patients relates executive impairments on set shifting 

and working memory tasks to hypo-activation within the fronto-striatal loops connecting 

dorsolateral and ventrolateral prefrontal cortices, striatum and thalamus (Au et al., 2012; 

Lewis et al., 2003; Monchi et al., 2004, 2007). However, such hypo-activation was only 

present during task phases that specifically required co-activation with the striatum in 

controls, indicating that striatal dysfunction was the determining factor in executive 

impairment in PD rather than frontal dysfunction. Both the globus pallidus internus (GPi) and 

caudate are heavily affected by dopaminergic degeneration in PD (Taylor et al., 1986), and 

PET studies have specifically implicated dysfunction of these two structures in interruption of 

normal processing in the fronto-striatal network. For example, PD patients demonstrating 

executive impairments on tasks involving planning (Owen et al., 1998) or random number 

generation (Dirnberger et al., 2005) show significantly altered outflow activity from the 

pallidum to the frontal cortices. In addition, other studies have shown strong correlations 
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between dopamine depletion in the head of the caudate and deficits on executive tasks such as 

object alternation, planning and the Stroop test (Brück et al., 2001; Marié et al., 1999; 

Rektorova et al., 2008; Rinne et al., 2000). 

Both DLB and PDD patients demonstrate similar patterns of significant atrophy of the 

caudate nucleus and frontal regions on voxel-based morphometric (VBM) MRI compared to 

both PD patients and healthy controls, indicating that degeneration of the fronto-striatal 

network is both specific to and comparable in both LBDs (Borroni et al., 2015). DLB patients 

also similarly demonstrate a significant correlation between increasing striatal dopamine 

deficiency on dopamine SPECT imaging and worsening executive impairments (Siepel et al., 

2015). This is supported by another study in DLB patients which showed a significant 

correlation between density of striatal vesicular monoamine type 2 transporters (which 

transport dopamine into synaptic vesicles, thus an indirect measure of dopaminergic 

degeneration) on PET imaging and cognitive impairment on the MMSE, though executive 

functions were not specifically tested (Siderowf et al., 2014). 

Therefore, evidence from structural and functional imaging studies support the prevailing 

view that executive dysfunction in LBDs is primarily due to dopaminergic depletion in the 

striatum disrupting transmission in the fronto-striatal network. (Dubois et al., 1994; Kehagia 

et al., 2013; Mortimer et al., 1982; Owen, 2004; Owen et al., 1995; Pagonabarraga and 

Kulisevsky, 2012; Zgaljardic et al., 2003). 
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Figure 1: The major subcortical neural networks affected in LBDs (according to their dominant 
neurotransmitters). In this 3D representation the medial surface of the right hemisphere of the human 
brain is closest to the viewer in both images. A = amygdala; AC = anterior commissure (lateral 
aspect); C = caudate; Cg = cingulate gyrus; DLPFC = dorsolateral prefrontal cortex; GPi = globus 
pallidus (internus); IN = insular cortex; LC = locus ceruleus; P = putamen; SN = substantia nigra; T = 
thalamus; VLPFC = ventrolateral prefrontal cortex; VTA = ventral tegmental area. Adapted from 
Gratwicke J, Jahanshahi M, Foltynie T. Parkinson’s disease dementia: a neural network perspective. 
Brain 2015; 138: 1454-76.  

 

1.1.1.2 Degeneration in the mesocortical dopamine network contributes to executive 

dysfunction 

However, dopamine-dependent neural circuitry underlying executive deficits in LBDs may 

not be limited to the fronto-striatal network alone. The mesocortical dopamine network 

originates in the midbrain VTA (ventral tegmental area, A10) and projects diffusely to 

neocortical areas, particularly prefrontal, insular and cingulate cortices (Oades and Halliday, 

1987) (Fig. 1. Fig. 3.). Release of dopamine from this network modulates prefrontal D2 

receptors and thereby facilitates cognitive flexibility, a core feature of executive processing 

(Floresco and Magyar, 2006). Insular cortex in particular is considered to mediate such 
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flexibility, acting as a hub to recruit other cognitive circuits such as the fronto-parietal 

network (Menon and Uddin, 2010). In support of this, insular lesions in human patients have 

been shown to impair performance on tasks requiring cognitive flexibility (Hodgson et al., 

2007). 

Post-mortem studies have shown degeneration of the mesocortical network in both PDD and 

DLB patients (Hall et al., 2014; Javoy-Agid and Agid, 1980; Scatton et al., 1983; Seidel et al., 

2015). In vivo PET imaging studies confirm dopaminergic dysfunction in this network in PD 

(Ouchi et al., 1999; Yagi et al., 2010), with a specific reduction of D2 receptor availability in 

insular cortex occurring in cognitively impaired patients and correlating closely with 

impairment on executive tests (Christopher et al., 2013). Furthermore, volumetric MRI 

studies have shown close correlations between atrophy of insular cortex and conversion to 

PDD (J. E. Lee et al., 2013; Melzer et al., 2012). Therefore, evidence implicates a concurrent 

dysfunction in the mesocortical dopamine network in the pathophysiology of LBDs, with 

specific disruption of projections to insular cortex shown to contribute to worsening executive 

impairments, possibly by impairing the ability to recruit other cognitive networks. 

1.1.1.3 Disruptions in non-dopaminergic brain networks contribute to executive 

dysfunction 

Levodopa administration does not improve all executive deficits in LBD (Jubault et al., 2009; 

Pillon et al., 1989; Poewe et al., 1991), or even in early Parkinson’s disease (Lewis et al., 

2005; Muslimovic et al., 2005). In fact the relationship between dopamine replacement and 

executive performance is complex (Cools, 2006), in that either too high or too low levels of 

prefrontal dopamine are associated with poor executive performance, and this may relate 

partly to COMT (catechol O-methyltransferase) genotype (Foltynie, Goldberg, et al., 2004; 

Nombela et al., 2014; Williams-Gray et al., 2007). Furthermore, levodopa does not restore 

dysfunctional cognitive network patterns to normal as it does motor network patterns on 

either fMRI (Jubault et al., 2009), or PET (Huang et al., 2007). Therefore, it seems likely that 
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impairments in other brain networks and neurotransmitter systems also contribute to 

executive dysfunction in LBDs (Zgaljardic et al., 2004).  

The noradrenergic network projecting from the locus coeruleus (LC) to the thalamus, 

amygdala and cortex (Fig. 1. Fig. 3.) is also compromised in LBDs (Bertrand et al., 1997; 

Scatton et al., 1983; Seidel et al., 2015), with the extent of neuronal loss in this system shown 

to correlate with development of PDD (Cash et al., 1987; Del Tredici and Braak, 2013; Zweig 

et al., 1993). Noradrenalin release in prefrontal cortex increases the responsiveness of neurons 

to diverse inputs, thereby facilitating cognitive flexibility (Vazey and Aston-Jones, 2012). 

Therefore, damage to this system in LBD patients may underlie deficits in executive functions 

reliant on cognitive flexibility, such as rule-shifting, response inhibition and working 

memory, and indeed administration of noradrenergic agonists reverses these deficits (Bédard 

et al., 1998; Riekkinen et al., 1999).  

It must also be borne in mind that executive function is interdependent upon other cognitive 

faculties, such as the ability to maintain an alert and attentive state in order to concentrate on 

a task. Thus concurrent dysfunction in brain networks mediating these other functions will 

also contribute to the overall level of executive disability. For example, the nucleus basalis of 

Meynert (NBM) cholinergic network is strongly implicated in maintenance of an attentive 

state (discussed below), and degenerates significantly in LBDs, leading to widespread cortical 

cholinergic dysfunction (Bohnen et al., 2003; Gratwicke et al., 2013; Kuhl et al., 1996; Perry 

et al., 1985), demonstrated in vivo by a 30% reduction in cholinergic ligand binding on PET 

across all cortical areas, compared to only 10-12% in non-demented Parkinson’s disease 

(Hilker et al., 2005; Shimada et al., 2009). Close correlations have been demonstrated 

between this cortical cholinergic dysfunction in LBDs and worsening scores on tests of 

working memory, rule-switching and response inhibition (Bohnen et al., 2006a), all of which 

require a strong attentional component. Therefore, this suggests that damage to the NBM 

attention network indirectly contributes to the executive dysfunction of LBDs. 
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In summary, executive dysfunction in LBDs is a complex phenomenon, mediated primarily 

by dysfunction in fronto-striatal and mesocortical dopaminergic circuitry, but with interacting 

influences from dysfunctional noradrenergic and cholinergic networks too. 

1.1.1.4 Dysfunction in the fronto-parietal network impairs “top-down” control of 

attention 

A distributed fronto-parietal cortical network is thought to control attention, the key nodes of 

which include the frontal eye fields, dorsolateral prefrontal cortex, posterior parietal cortices 

and the temporoparietal junction (Petersen and Posner, 2012) (Figures 2 and 3). 

Synchronization of neural oscillations between these key nodes selects competing stimuli for 

focused cognitive processing (Miller and Buschman, 2013). This shared circuitry mediates 

both ‘top-down’ executive control of attention and ‘bottom-up’ orienting of attention, 

dependent upon whether activity is driven by prefrontal or parietal regions respectively 

(Buschman and Miller, 2007; Corbetta and Shulman, 2002; Kincade et al., 2005; Li et al., 

2010; Rossi et al., 2009).  

Imaging studies using FDG-PET have shown that both PD-MCI and PDD patients 

demonstrate extensive hypometabolism in frontal and parietal cortices compared to 

cognitively normal PD patients (Hosokai et al., 2009; Huang et al., 2007, 2008; Liepelt et al., 

2009; Yong et al., 2007), while fronto-parietal cortices are particularly affected by amyloid 

deposition in DLB (Edison et al., 2008). In addition, VBM MRI analyses and diffusion tensor 

imaging (DTI) studies have shown that LBD patients demonstrate extensive grey matter 

atrophy and white matter microstructural alterations respectively within the above cortical 

regions (Borroni et al., 2015; Burton et al., 2004; Hattori et al., 2012; Lee et al., 2010; Melzer 

et al., 2012; Song et al., 2011; Summerfield et al., 2005). To investigate this relationship, one 

center co-registered MRI and FDG-PET scans in individual patients with cognitively intact 

PD, PD-MCI or PDD, and compared cortical metabolism and atrophy amongst these 

cognitive groups (González-Redondo et al., 2014). They found that cognitive decline 
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correlated closely with a progressive pattern of sequential hypometabolism followed by 

atrophy in both frontal and parietal cortices. Furthermore the spatial pattern of fronto-parietal 

hypometabolism has been shown to correlate closely with deficits on a test of executive 

control (Trail Making Test Part B), and can be reliably used to predict test scores in other 

cognitively impaired PD patients (Huang et al., 2007). Therefore, these studies highlight a 

progressive degeneration in frontal and parietal cortices in LBDs, which correlates closely 

with deficits in the executive control of attention.  

In Alzheimer’s disease it has been shown that atrophy in specific cortical regions damages 

structural connections and leads to loss of functional connectivity within brain networks (He 

et al., 2007). Given the extensive atrophy within frontal and parietal cortices seen in LBDs 

then the same may hold true for the fronto-parietal network, and indeed functional imaging 

evidence supports this. fMRI studies show that non-demented PD activate the fronto-parietal 

network while performing attentional set-shifting tasks (Williams-Gray et al., 2008). 

However, activation of the network during such volitional shifts of attention is not as strong 

as in control subjects due to reduced connectivity within prefrontal cortical regions (Rowe et 

al., 2002). With progression to PDD, resting-state magnetonecephalography (MEG) imaging 

demonstrates a significant reduction in functional connectivity across cortical regions in the 

beta-frequency band compared to PD patients (Ponsen et al., 2012). In the healthy state it has 

been shown that an increase in beta band synchrony within the fronto-parietal network drives 

the executive control of attention (Buschman and Miller, 2007), so loss of such synchrony in 

PDD may represent the functional mechanism underlying impairment in this mode of 

attention. Similarly, DLB patients undergoing resting state electroencephalography (EEG) or 

MEG demonstrate reduced long-range cortical functional connectivity in the alpha-frequency 

band compared to control subjects (Andersson et al., 2008; van Dellen et al., 2015; Franciotti 

et al., 2006), which correlates closely with worsening impairments on a test of executive 

control of attention, the Trail Making Test (van Dellen et al., 2015).  



 39 

Therefore, substantial structural and functional evidence exists to support the hypothesis that 

dysfunction in the fronto-parietal network impairs top-down control of attention in LBDs. 

However, further studies directly exploring the contribution of cortical structural changes to 

functional connectivity and relating this to attentional impairments in LBDs are needed to 

confirm these observations. Furthermore, the contribution of different neurotransmitters to 

fronto-parietal network dysfunction remains to be elucidated. PD patients with low activity 

COMT genotypes (who have higher cortical dopamine levels) appear to under-activate the 

fronto-parietal network with consequent poorer performance on set-shifting tasks (Williams-

Gray et al., 2008), while the pattern of cortical atrophy seen within the network in LBDs 

correlates closely with areas showing cholinergic hypofunction on PET imaging (Hilker et al., 

2005; Shimada et al., 2009) (and see section 1.3.1.6 below). 

 

 

Figure 2: The major cortical neural networks affected in LBDs. Areas of cortical atrophy associated 
with visuospatial and visuoperceptual deficits in PDD (coloured green and purple, respectively) are 
based on the data presented in Pereira et al. (2009). Areas of cortical atrophy specifically associated 
with the presence of visual hallucinations in PDD (coloured blue) are based on the data presented in 
Goldman et al. (2014a). Functional cortical regions comprising the fronto-parietal attention network 
(highlighted red) are based on the data presented in Williams-Gray et al. (2008). Cortical regions are 
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identified according to the Allen Brain Atlas for the human brain, and manually drawn onto the 
corresponding 3D brain image. In this representation the same cortical regions are affected 
symmetrically in both hemispheres, however in the original studies above the extent of atrophy in these 
regions was not symmetrical between hemispheres, and varied between individual patients. In the 
inferior view of the cortex the cerebellum has been removed to expose the fusiform gyri more clearly. 
DLPFC = dorsolateral prefrontal cortex; PPC = posterior parietal cortex; VLPFC = ventrolateral 
prefrontal cortex. Adapted from Gratwicke et al., 2015. 

 

1.1.1.5 Dysfunction in cholinergic and noradrenergic networks impairs “bottom-up” 

orienting 

One view of automatic orienting of attention considers it to be mediated by “bottom-up” or 

stimulus-driven signals from the NBM in the basal forebrain (Sarter et al., 2005). This 

nucleus consists of 90% cholinergic neurons and its’ widespread projection axons provide the 

main cholinergic innervation to the entire cortical mantle (‘corticopetal’ innervation) 

(Gratwicke et al., 2013; Mesulam et al., 1983; Mufson et al., 2003) (Fig. 1. Fig. 3.). Selective 

activation of the NBM network causes an increase in acetylcholine levels in the cortical target 

field, which boosts the signal to noise ratio for salient stimuli, thereby enhancing the strength 

of their neural representations (Bentley et al., 2011; Goard and Dan, 2009; Pinto et al., 2013; 

Soma et al., 2013). In facilitating this process the NBM effectively amplifies detection of 

salient stimuli by posterior regions of the fronto-parietal network and ensures their attentional 

significance (Buschman and Miller, 2007; Sarter et al., 2006). Animal experiments have 

shown that this NBM-driven cortical signal enhancement is responsible for generating event-

related potentials (ERPs) on the EEG (Nguyen and Lin, 2014b). These can be measured on 

the human EEG as negative deflections occurring 80-100 ms after an unpredictable stimulus 

(the N1 ERP), and have long been regarded as the electrophysiological correlate of orienting 

of attention (Hillyard et al., 1973). 

The NBM degenerates in LBDs, with human neuropathological series showing 32% cell loss 

in non-demented PD patients, rising to 54-70% in both PDD and DLB, which is closely 

associated with increasing cortical cholinergic deficits and worsening cognitive impairment 
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(Gaspar and Gray, 1984; Hall et al., 2014; Perry et al., 1985; Whitehouse et al., 1983). This is 

supported by both volumetric MRI and PET imaging studies which demonstrate significant 

NBM atrophy and cortical cholinergic binding reductions respectively in LBD patients 

compared to both cognitively intact PD and controls (Bohnen et al., 2006b; Choi et al., 2012; 

Grothe et al., 2014; Hanyu et al., 2002; Hilker et al., 2005; Shimada et al., 2009; Whitwell et 

al., 2007). Furthermore, in one volumetric MRI study DLB patients were shown to have up to 

25% reduction in volume of the Ch4a and Ch4i subsectors of the NBM (which project to 

parietal cortices, see below) compared to controls, which correlated closely with worsening 

impairments on the Trail Making Test part A, a test incorporating visual pop-out stimuli 

which is sensitive to orienting deficits (Grothe et al., 2014). This is explained by the fact that 

disruption of NBM cholinergic input to cortex attenuates cortical signal processing (Pinto et 

al., 2013), demonstrated by the fact that LBD patients performing orienting of attention tasks 

display increased N1 ERP latencies compared to both non-demented PD patients and 

controls, which correlate with behavioural errors (Goodin and Aminoff, 1987; Hautecoeur et 

al., 1991; Stam et al., 1993). Therefore, evidence suggests that disruption of bottom-up signal 

enhancement in the NBM network underlies the deficits in orienting seen in LBDs. 

Interestingly, direct prefrontal cortical projections to the NBM may modulate activity of its 

cholinergic inputs to sensory cortices and has been suggested to represent a component of the 

top-down fronto-parietal attention network (Sarter et al., 2005). Thus depending on the type 

of stimulus and task characteristics, activity in the NBM network may reflect the combined 

effects of top-down and bottom-up modes of attention (Bentley et al., 2004; Sarter et al., 

2006), meaning that degeneration in this network in LBDs may play a key role not only in 

orienting deficits but in deficits in executive control of attention as well (Fig. 3.). 

Finally, the ascending noradrenergic network is also implicated in orienting of attention 

(Aston-Jones et al., 1999) and, as described above, this network degenerates progressively in 

LBDs. Administration of the selective alpha-1 noradrenergic agonist naphtoxazine to PD-

MCI patients improves performance on an orienting of attention task accompanied by 
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improved lateralization of the N1 ERP (Bédard et al., 1998). This suggests that lack of bottom 

up noradrenergic input from the locus coeruleus may also play a role in orienting deficits in 

LBDs, however, its interaction with the cholinergic system and their relative contributions 

remain unclear. 

 

 

Figure 3: Hypothetical model of the neural networks affected in LBDs and corresponding cognitive 
deficits. Solid arrows correspond to direct neural connections and colours are indicative of the 
primary neurotransmitter involved as shown in the key. Dashed arrows connect the relevant 
dysfunctional neural network to its putative cognitive effects. Purple arrows indicate that a deficit in 
one cognitive domain contributes to the development of impairment in another domain. Black crosses 
indicate damage to a neural pathway. The red dashed arrow represents direct projections from 
prefrontal cortex to the NBM, permitting top-down control of attention from the fronto-parietal 
network via recruitment of this latter structure and its cortical projections. The limbic, orbitofrontal 
and associative circuits in the prefrontal cortex correspond to the dissociable fronto-striatal loops of 
Alexander et al. (1986). Note effects of levodopa therapy at improving and worsening executive 
functions reliant on cognitive flexibility and learning from feedback, respectively. Electrocortical 
activation refers to cortical EEG desynchonization indicative of the awake/alert state as described in 
the text, and is driven by corticopetal cholinergic input from the NBM only. Both cholinergic input 
from NBM and noradrenergic input from the locus ceruleus (LC) modulate processing in sensory 
cortices to facilitate orienting of attention to stimuli. Cx = cortex; DLPFC = dorsolateral prefrontal 
cortex; fx = function; GPi = globus pallidus (internus); PPC = posterior parietal cortex; SNpc = 
substantia nigra pars compacta; VLPFC = ventrolateral prefrontal cortex; VTA = ventral tegmental 
area. Adapted from Gratwicke J, Jahanshahi M, Foltynie T. Parkinson’s disease dementia: a neural 
network perspective. Brain 2015; 138: 1454-76. 
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1.1.1.6 Slowed cortical rhythms on the EEG reflect impaired vigilance and underlie 

cognitive fluctuation 

As mentioned above the onset of impaired vigilance and fluctuating attention/cognition is 

particularly characteristic of LBDs (Emre et al., 2007; McKeith et al., 2005). In tandem with 

its role in enhancing processing of salient stimuli the NBM cholinergic network also plays a 

key role in the ascending arousal network. The NBM receives noradrenergic afferents from 

the locus coeruleus (Fig. 1.) and glutamatergic afferents from the reticular formation and acts 

as an extra-thalamic relay to the cortex and limbic system (Jones, 2004; Szymusiak, 1995). Its 

cholinergic projections can directly desynchronize the neocortical EEG, replacing slow 

synchronised delta waves (0.1-4 Hz, indicative of the non-aroused state) with fast beta and 

gamma waves (15-30 and 30+ Hz respectively, indicative of arousal) (Kalmbach et al., 2012; 

Lee et al., 2005; Metherate et al., 1992).  

Awake resting EEG studies in LBD patients consistently show an increase in slow delta wave 

activity across the cortex, with a progressive gradient of increasing delta wave activity seen 

when comparing cognitively intact PD, PD-MCI and PDD patients, or when comparing 

patients with AD to those with DLB (Andersson et al., 2008; Caviness et al., 2007; Kai et al., 

2005; Neufeld et al., 1994; Soikkeli et al., 1991). In agreement with this, resting state MEG 

studies have also shown a relative increase in cortical delta oscillatory power in PDD and 

DLB patients compared to non-demented PD and controls respectively, alongside a relative 

decrease in faster beta and gamma activity (Bosboom et al., 2006; Franciotti et al., 2006; 

Ponsen et al., 2012). Administration of the AChEI Rivastigmine to LBD patients undergoing 

EEG/MEG returns these slowed cortical rhythms towards normal (Bosboom et al., 2009; Kai 

et al., 2005). This, therefore, supports the hypothesis that dysfunction in the NBM cholinergic 

network underlies the electrocortical depression characteristic of LBDs. Rodents with NBM 

lesions have similar slow delta activity on the EEG and concurrently display reduced arousal 

or coma (Buzsaki et al., 1988; Fuller et al., 2011). Therefore, NBM cholinergic dysfunction 
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leading to progressive electrocortical depression in LBDs may represent the 

pathophysiological correlate of impaired vigilance (Fig. 3.).  

In addition, Bonnani and colleagues have shown that both PDD and DLB patients with 

significant cognitive fluctuations (measured by the CAFS [Clinician Assessment of 

Fluctuation Scale]) demonstrate pseudocyclic patterns of slow wave activity on the EEG in 

the delta-theta-pre-alpha range (1-7.9 Hz), whereas PDD patents without fluctuations do not 

(Bonanni et al., 2008). This, therefore, implies that development of slow EEG rhythms 

cycling between relatively greater and lesser states of cortical arousal represent the 

pathophysiological basis of cognitive fluctuation in LBDs. Furthermore, DLB patients display 

disrupted fronto-parietal network activations on both SPECT and fMRI functional imaging 

which correlate significantly with worsening CAFS scores (Peraza et al., 2014; Taylor et al., 

2013). These findings were specific to DLB, since they were not seen in matched AD patients 

with fluctuating cognition (Taylor et al., 2013). Moreover, those DLB patients taking AChEIs 

displayed both significantly reduced fronto-parietal network disruption and significantly 

lower CAFS scores, once again implicating cholinergic dysfunction as an underlying driving 

factor (Taylor et al., 2013). Taken together, this evidence suggests that dysfunction in the 

NBM cholinergic network contributes to dysfunction in the fronto-parietal attention network, 

consequently allowing the generation of abnormal slow cyclical cortical rhythms in LBD 

patients, which are the neurobiological basis of cognitive fluctuations. However, further work 

is needed to establish how such rhythms are generated at a cellular and/or network level, and 

why some LBD patients develop them while others do not. 

 

1.1.1.7 Atrophy within the medial temporal lobe is associated with memory deficits in 

LBDs 

Medial temporal lobe structures (hippocampus, parahippocampus, entorhinal and perirhinal 

cortices and amygdala, see Fig. 3.) are involved in memory storage and retrieval (Lech and 
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Suchan, 2013; Squire et al., 2004). PD patients demonstrate hypoactivation of these structures 

during visual memory tasks from the point of diagnosis (although mnemonic deficits are 

subclinical at this time) (Nombela et al., 2014). However, previous volumetric MRI studies 

have provided conflicting results as to whether significant MTL atrophy occurs in PDD 

(Burton et al., 2004; Camicioli et al., 2003; Ibarretxe-Bilbao et al., 2008; Junqué et al., 2005; 

Tam et al., 2005). These discrepancies are likely due to the differing criteria for dementia 

used, and the fact that results were not co-varied by motor scores to determine atrophy 

specific to cognitive decline. To address these issues, a recent study used the MDS 

(Movement Disorders Society) Task Force Criteria for PDD (Emre et al., 2007) and recent 

criteria for PD-MCI (Dalrymple-Alford et al., 2011) to select representative patient groups for 

VBM MRI analysis (Melzer et al., 2012). Having adjusted results by individual UPDRS 

(Unified Parkinson’s Disease Rating Scale, part III) motor scores they showed that cognitive 

progression from PD to PD-MCI to PDD specifically correlated with increasing grey matter 

atrophy in MTL structures including the hippocampi, parahippocampi and amygdalae. A 

recent meta-analysis of six VBM MRI studies involving a total of 105 PDD patients and 131 

controls confirms this (Pan et al., 2013). 

DLB patients show either similar or greater MTL atrophy on VBM MRI compared to PDD 

patients matched for global cognitive decline, and the degree of MTL atrophy correlates 

closely with impairments in both verbal and visual memory in DLB patients (Barber et al., 

1999; Burton et al., 2004; Sanchez-Castaneda et al., 2009; Tam et al., 2005). 

Although these data confirm that LBDs are associated with worsening MTL atrophy, further 

studies are needed to specifically demonstrate a link between damage to this network and 

worsening memory storage deficits (assessed by decline on tests of recognition or semantic 

memory). At present, we can only hypothesise that this is the case based on the known 

functional anatomy of the MTL network (Squire et al., 2004). 
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1.1.1.8 Dysfunction of the NBM cholinergic network impairs encoding of memories 

Aside from its role in orienting of attention the NBM cholinergic network has also been 

implicated in memory encoding. The release of acetylcholine from its end terminals has been 

shown to induce plastic re-organisation of cortical receptive field maps, representing the 

putative encoding of a 'physiological memory' (Bakin and Weinberger, 1996; Kilgard and 

Merzenich, 1998; McLin et al., 2002). Simultaneously, as described above, this transmitter 

release directly desynchronises the neocortical EEG by inducing fast gamma, beta and theta 

oscillations (Kalmbach et al., 2012; Lee et al., 2005), and evidence suggests that phase 

coupling of these oscillations between cortical and MTL regions is necessary for memory 

encoding in humans (Fell and Axmacher, 2011; Huerta and Lisman, 1993; H. Lee et al., 

2013). Conversely, NBM lesions in animals have been shown to block this electro-cortical 

activation (Buzsaki et al., 1988; Fuller et al., 2011), and cause impairments of learning and 

memory (Bartus et al., 1985; Butt and Hodge, 1995; Leanza et al., 1996; Mandel et al., 1989), 

as well as impairments in orienting of attention (Voytko, 1996; Voytko et al., 1994). 

As described in the previous section, the NBM cholinergic network degenerates significantly 

in LBDs with up to 70% cell loss (Perry et al., 1985; Whitehouse et al., 1983), which 

correlates with progressive electro-cortical depression on MEG (Bosboom et al., 2006; 

Franciotti et al., 2006; Ponsen et al., 2012). Therefore, we hypothesise that dysfunction in this 

network impairs both orienting of attention to a stimulus and (in conjunction with dysfunction 

in the MTL network) the induction of electrocortical synchrony necessary for the successful 

encoding of that stimulus into memory (Fig. 3.). Further electrophysiological studies in LBD 

patients are needed to investigate this further, however, it is not surprising that dysfunction of 

the NBM cholinergic network is implicated in both attention and memory deficits since 

neuroimaging and computational studies in healthy humans suggest that cholinergic 

enhancement of cortical signal detection (orienting of attention) facilitates formation of novel 

input associations (memory encoding) (Bentley et al., 2009; Hasselmo and McGaughy, 2004). 
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Thus these cognitive functions are inter-related and actually part of a continuous process for 

recording salient environmental stimuli into memory (Sarter et al., 2003). 

1.1.1.9 Visual perceptual dysfunction correlates with atrophy in posterior visual cortices 

Few studies have specifically looked at in vivo neuroanatomical correlates of visual 

perceptual dysfunction in LBDs. Using VBM MRI analysis, Pereira and colleagues showed 

that PD-MCI patients have greater grey matter atrophy in both occipito-temporal and dorsal 

parietal cortices compared to controls, and that these patterns correlated with impairments on 

tests of visuoperceptual and visuospatial abilities respectively (Pereira et al., 2009) (Fig. 2.). 

In parallel to these findings, Bozzali and colleagues used DTI imaging to demonstrate that 

DLB patients have significantly greater white matter microstructural damage in both temporal 

and occipito-parietal lobes compared to controls, and that the degree of damage to these 

connections significantly predicted impairments on visuoperceptual and visuospatial tests 

respectively (Bozzali et al., 2005). These findings correspond to VBM MRI studies in DLB 

patients showing focal atrophy in temporal and parietal cortices compared to AD patients 

matched for global cognitive decline (Watson et al., 2015). These associations agree with the 

dual stream hypothesis of visual processing, wherein the ventral stream from occipital lobe to 

temporal and limbic structures processes object recognition while the dorsal stream from the 

occipital to the parietal lobe processes spatial location (Ungerleider and Mishkin, 1982). 

Indeed functional imaging in PD patients performing visuospatial tasks shows reduced 

parietal activation which correlates with increasing errors (Nombela et al., 2014). The above 

patterns of cortical atrophy/white matter damage show spatial congruence with cortical areas 

showing significant hypometabolism and cholinergic deficits in LBD patients, in line with 

deafferentation from the NBM network (Hilker et al., 2005; Klein et al., 2010; Shimada et al., 

2009). Indeed the areas of significant white matter microstructural alterations seen in the DLB 

patients compared to controls comprise the same fibre tracts through which cholinergic 

projections from NBM to visual cortices travel (Gratwicke et al., 2013), and damage to these 
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same tracts is also seen on DTI imaging in PDD patients compared to non-demented PD 

(Matsui et al., 2007). Since bottom-up NBM cholinergic input is known to enhance visual 

cortical responses and thereby improve visual discrimination ability (Bhattacharyya et al., 

2013; Pinto et al., 2013; Soma et al., 2013), dysfunction in this network due to NBM 

degeneration may underlie the visual perceptual dysfunction seen in LBDs (Figure 3). 

 

1.1.1.10 Independent dysfunction in posterior visual processing networks underlies visual 

hallucinations 

The mechanisms underlying the generation of visual hallucinations in LBDs is more complex 

and likely represents interacting dysfunction between several different brain networks. Since 

the presence of visual hallucinations is closely correlated with visuospatial and 

visuoperceptual deficits in both PDD and DLB (Mori et al., 2000; Mosimann et al., 2004; 

Ramírez-Ruiz et al., 2006; Sinforiani et al., 2006), dysfunction in associative visual cortices 

within the dorsal and ventral processing streams has long been implicated in their generation. 

This is supported by neuropathological studies which have demonstrated strong correlations 

between Lewy body burden in parietal and temporal lobes (particularly precuneus, cuneus 

and limbic structures) and the presence of hallucinations in LBDs (Gallagher et al., 2011; 

Harding et al., 2002; Kalaitzakis et al., 2009; Papapetropoulos et al., 2006; Yamamoto et al., 

2006). Nevertheless, MRI studies comparing brain atrophy patterns between PD patients with 

and without visual hallucinations have not consistently supported these pathological 

associations, differentially implicating medial temporal (Ibarretxe-Bilbao et al., 2008, 2010; 

Shin et al., 2012), insular (Shine et al., 2014), pedunculopontine nucleus (Janzen et al., 2012) 

and frontal atrophy (Ibarretxe-Bilbao et al., 2010; Sanchez-Castaneda et al., 2010). All may 

play a part in generation of hallucinations, however the degree of cognitive impairment 

between patients with and without hallucinations was not controlled for in these studies, 

meaning that atrophy patterns may have related to cognitive differences rather than the 
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presence of hallucinations per se. In addition, the use of differing classification criteria for 

PDD (including MMSE < 24, Diagnostic Statistical Manual (DSM) IV-TR or MDS Task 

Force criteria) further complicates interpretation of these results.  

A recent study overcame these problems, by using MDS criteria to select PDD patients with 

and without visual hallucinations and ensured they were matched for antiparkinsonian 

medications, global cognitive decline and scores on all cognitive sub-domains, including 

visuoperceptual impairments (Goldman, Stebbins, et al., 2014). Structural MRI scans from 

both groups were analysed using VBM, then compared. PDD hallucinators exhibited 

significant grey matter atrophy in the cuneus, lingual and fusiform gyri, middle occipital lobe 

and inferior parietal lobule compared to non-hallucinators (Fig. 2. Fig. 3.). These results 

confirm that discrete areas of atrophy in the posterior visual processing networks specifically 

underlie the generation of hallucinations in PDD, and thereby provide an in vivo correlate to 

neuropathological data. Of note, these atrophy patterns were independent of visuoperceptual 

impairments, suggesting that generation of visual hallucinations in PDD does not merely 

represent a progression of such impairments but is instead dependent on different 

mechanisms. 

Much fewer studies have so far addressed the in vivo neuroanatomical correlates of visual 

hallucinations in DLB patients. However, in the couple that have, cortical thickness analysis 

of MRI scans shows significant correlations between worsening atrophy of the precuneus and 

superior parietal lobule and greater severity of visual hallucinations (Delli Pizzi et al., 2014; 

Sanchez-Castaneda et al., 2010). These results are similar to those seen in PDD patients, and 

again support the hypothesis that specific additional damage to posterior visual networks 

underlies generation of visual hallucinations, beyond that responsible for visuoperceptual 

cognitive impairments. 

Functional neuroimaging studies provide further evidence that specific dysfunction in 

posterior visual processing networks underlies generation of visual hallucinations in LBDs. 
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Resting state SPECT (single-positron emission computed tomography) and FDG-PET studies 

have shown decreased perfusion and metabolic rates respectively in posterior visual cortices 

in LBD patients with visual hallucinations compared to those without, particularly in the 

inferior parietal lobules, posterior cingulate gyrus, precuneus and cuneus (Boecker et al., 

2007; Matsui et al., 2006; O’Brien et al., 2005; Oishi et al., 2005). In parallel with these 

findings, fMRI studies during visual stimulation paradigms confirm hypoactivation of inferior 

parietal lobules, posterior cingulate gyrus, precuneus, cuneus and fusiform gyri in Parkinson’s 

disease patients with hallucinations in comparison to those without (Meppelink et al., 2009; 

Stebbins et al., 2004). Importantly, administration of procholinergic medication to LBD 

patients in the form of AChEIs restores perfusion in these posterior visual areas, with a 

consequent reduction in the severity of their visual hallucinations (O’Brien et al., 2005). This, 

therefore, supports the hypothesis that loss of cortical cholinergic input from the NBM 

network in LBDs underlies the additional dysfunction in posterior visual processing networks 

which contributes to the generation of visual hallucinations.  

Thus, recent structural and functional neuroimaging evidence supports earlier 

neuropathological data to implicate dysfunction in additional posterior visual processing 

networks in the pathogenesis of visual hallucinations in LBD patients. Furthermore, it 

suggests that dysfunction in the NBM cholinergic network may underlie the aberrant 

processing in these additional visual cortices and thereby contribute to generation of 

hallucinations. This is supported by clinical studies showing that treatment of LBD patients 

with AChEIs markedly reduces visual hallucinations (Litvinenko et al., 2008; Mori et al., 

2006). Since NBM activation alters cortical acetylcholine levels and thereby enhances 

neuronal signal-to-noise ratios (Goard and Dan, 2009; Pinto et al., 2013; Soma et al., 2013) 

then damage to this network in LBDs could decrease the signal-to-noise ratio of salient 

stimuli. This might then allow irrelevant intrinsic and sensory information which would 

normally be suppressed to enter perceptual awareness in the form of hallucinations (Perry and 

Perry, 1995). 
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1.1.1.11 Concomitant dysfunction in frontal and arousal networks contributes to 

generation of visual hallucinations 

Overlapping dysfunctions in a number of other cognitive networks are also likely to 

contribute to the generation of visual hallucinations in LBDs. For example, VBM MRI 

analysis shows that LBD patients with visual hallucinations have greater atrophy in frontal 

areas compared to those without (Sanchez-Castaneda et al., 2010), while fMRI studies 

comparing Parkinson’s disease patients with hallucinations to those without during 

performance of visual paradigms demonstrate not only dysfunction in visual cortical areas in 

the former, but also simultaneous disruption of activity in frontal areas (Meppelink et al., 

2009; Shine et al., 2014; Stebbins et al., 2004). The presence of hallucinations in LBDs is 

closely associated with worsening impairments on tests of attentional control (Bronnick et al., 

2011; I. G. McKeith et al., 2004; Meppelink et al., 2008), as well as impairments on tests of 

inhibitory control such as the Stroop test and go/no-go task (Barnes and Boubert, 2008), 

deficits attributable to dysfunctions in the fronto-parietal and noradrenergic networks 

respectively (as described earlier). This, therefore, suggests that breakdown in these frontal 

networks may play a contributory role in the generation of visual hallucinations in LBDs, 

perhaps by reducing attentional and inhibitory control of perceptual errors arising from 

dysfunction in posterior visual cortices, allowing them to enter conscious perception as 

hallucinations (Shine et al., 2011) (Fig. 3.). Indeed electrophysiological experiments support 

this view by demonstrating severe disturbances of prepulse inhibition in both PDD and DLB 

patients compared to AD patients and controls, the electrophysiological correlate of an 

organisms’ ability to filter out irrelevant sensory or cognitive information (Perriol et al., 

2005). 

In addition, disrupted sleep-wake cycling and REM (rapid eye movement) sleep behavioural 

disorder are also strongly associated with the presence of visual hallucinations in LBDs 

(Nomura et al., 2003; Whitehead et al., 2008). Interestingly, PET studies in healthy humans 

during sleep show hypoperfusion of the precuneus and posterior cingulate cortices during 
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REM sleep (Maquet, 2000). Given the above findings of strong correlations between relative 

hypoperfusion of these areas in awake LBD patients and the presence of visual hallucinations, 

this supports the hypothesis that intrusion of episodes of REM sleep during wakefulness may 

contribute to generation of hallucinations (Diederich et al., 2005). Control of both arousal and 

REM sleep appears to be regulated by the NBM (Lee et al., 2005, and as discussed above) 

and therefore dysfunction in this network may contribute to generation of visual 

hallucinations in LBDs not only by disrupting visual perception as above, but also by 

deregulating arousal mechanisms. 

Overall, therefore, concomitant dysfunction in a number of brain networks involved in visual 

perception, inhibitory control and arousal may all play a role in the generation of visual 

hallucinations in LBDs, which is supported by clinical data indicating that the strongest 

determinants of hallucinations in PD are impairments of visuoperceptual and frontal functions 

combined with the presence of REM sleep behavioural disorder (Gallagher et al., 2011). 

However, the relative contributions of these network dysfunctions and how they interact to 

produce visual hallucinations remains unclear, and further studies are needed to examine this. 

 

1.4. The global impact of Lewy body dementias 

Dementia is a serious global health issue with an increasing prevalence (Ferri et al., 2005; 

Llibre Rodriguez et al., 2008). It is estimated that 24.3 million people suffer from dementia 

worldwide, with 4.6 million new cases diagnosed every year. The number of individuals 

affected is projected to increase to 81.1 million by 2040 (Ferri et al., 2005). After AD, DLB is 

the second most common type of dementia (Aarsland et al., 2008) with a prevalence of 7.5% 

and annual incidence of 3.8% of dementia diagnoses (Vann Jones and O’Brien, 2013). Point 

prevalence estimates of PDD in those with PD range up to 40% (Aarsland, Zaccai, et al., 

2005; Aarsland and Kurz, 2010; Caballol et al., 2007). However, as mentioned above, the 

cumulative prevalence is very high at 75-90% of those with a decade or more of disease 
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(Aarsland and Kurz, 2010; Buter et al., 2008; Hely et al., 2008), thereby accounting for 2-

5.6% of all dementia diagnoses (Aarsland et al., 2008; Aarsland, Zaccai, et al., 2005). 

LBDs are associated with significantly increased morbidity, reduced quality of life and 

increased care giver burden compared to AD patients of similar severity (Aarsland et al., 

2012; Boström et al., 2007a; McKeith et al., 2006; Reid et al., 1996; Ricci et al., 2009). They 

also carry a significantly increased risk of nursing home placement and increased mortality 

(G. Levy et al., 2002; Williams et al., 2006). Both LBDs are also associated with significant 

societal and economic costs; for example, in 2006, the average cost of care in Europe for a 

patient with DLB was €37,500 per annum, significantly greater than the cost of €18,200 per 

annum for the average AD patient (Boström et al., 2007b). The annual costs associated with 

dementia have been estimated to be between €105-160 billion in Europe (Olesen et al., 2012; 

Wimo et al., 2011), and $183-385 billion in the United States (Thies and Bleiler, 2011). 

 

1.5.  Current treatment of the Lewy body dementias 

Despite their high prevalence, clinical impact and economic burden no effective treatments 

exist for LBDs (Aarsland et al., 2012; Ihl et al., 2011). Recognition of the key role of 

cholinergic network deficits in the pathophysiology of LBDs has lead to the current 

management strategy of using acetylcholinesterase inhibitors (ACEIs: Rivastigmine, 

Donepezil and Galantamine) to treat cognitive symptoms. However, these medications only 

provide modest general symptomatic improvements at best, and are associated with limiting 

side-effects, possibly due to their generalised mechanism of action (Emre et al., 2004, 2014; 

Litvinenko et al., 2008; Ravina et al., 2005; Rolinski et al., 2012). NMDA-receptor 

antagonists are the only other current mainstream treatment option, but likewise produce only 

modest symptomatic improvement with a high risk of debilitating side effects (Aarsland et al., 

2009; Emre et al., 2010; Qaseem et al., 2008). There is, therefore, an urgent need for novel 

therapeutic interventions for LBDs. 
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Given the complex milieu of neuropathological changes, genetic influences and 

neurotransmitter deficits underlying LBDs, it is perhaps not surprising that attempting to treat 

these dementia syndromes with drugs targeting single neurotransmitter systems with 

generalised mechanisms of action have thus far shown only modest results. An alternative 

therapeutic approach could be to address cognitive deficits through targeted intervention at 

the neural network level. This approach has distinct advantages over the traditional model of 

single-ligand-targeted drug therapy. First, to compensate for deficits in all the 

neurotransmitter systems involved in the pathophysiology of LBDs using replacement 

pharmacotherapy would necessitate polypharmacy for patients, with the associated risks of 

multiple side effects. Second, the heterogeneity of the underlying molecular pathology means 

that pharmacologic agents aiming to reduce aggregation of abnormal proteins, such as α-

synuclein, may be either inappropriate or insufficiently effective in a substantial number of 

patients. Network-targeted therapies can avoid these difficulties by attempting to modulate 

the disease process downstream at a systems-level to restore normal neural processing 

patterns and thereby relieve symptoms. 

Therapies which are able to reversibly modulate neural network activity to ameliorate clinical 

symptoms already exist. Deep brain stimulation (DBS) has proven safety and efficacy in 

treating the movement symptoms of PD by altering aberrant processing patterns in motor 

networks (Deuschl et al., 2006; McConnell et al., 2012; Williams et al., 2010). Evidence 

indicates that it achieves this by altering brain functional and structural connectivity via 

neural plastic mechanisms to return dysfunctional motor network processing back to its 

natural state (Fenoy et al., 2014; van Hartevelt et al., 2014; Kahan et al., 2014).  

We hypothesise that this same approach could be applied to the treatment of cognitive and 

behavioural symptoms in LBDs, through direct modulation of neural processing in the 

cognitive networks described above. Several lines of evidence highlight the NBM as a 

potential cognitive node to target in this respect. First, animal studies strongly implicate NBM 

activity in cognitive and behavioural functions, including arousal, attention, perception and 
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memory (discussed below), all of which are particularly impaired in LBDs. Second, as 

discussed above, the NBM degenerates significantly in LBDs, and dysfunction in its 

corticopetal cholinergic network is strongly implicated in the pathophysiology of all the major 

cognitive deficits which characterise these syndromes. Finally, as detailed below, the NBM is 

a discrete anatomical structure, and therefore an amenable cognitive node to target surgically 

compared to more diffuse cognitive networks, such as the fronto-parietal network, where the 

optimum site of network modulation is currently unclear. 

I will now discuss the structure and function of the nucleus basalis of Meynert in greater 

detail. 

 

1.6. The nucleus basalis of Meynert 

1.6.1. Anatomy and histology of the NBM 

Theodor Meynert first described a group of magnocellular hyperchromic neurones located in 

the human basal forebrain in 1872, naming it the nucleus of the ansa lenticularis (Meynert, 

1872). Kölliker later renamed it the nucleus basalis of Meynert (Kölliker, 1896). Detailed 

human anatomical studies show that the NBM is a flat, nearly horizontal structure extending 

from the olfactory tubercle anteriorly to the level of the uncal hippocampus at its most caudal 

extent, spanning a distance of 13-14 mm in the sagittal plane. It reaches its greatest cross-

sectional diameter under the anterior commissure in a region known as the substantia 

innominata, with a medio-lateral width of 16-18 mm (Mesulam and Geula, 1988). In its 

anterior portion the nucleus is limited inferiorly by the horizontal limb of the nucleus of the 

diagonal band of Broca, supero-medially by the ventral globus pallidus, and supero-laterally 

by the lateral extension of the anterior commissure (Figs. 4 & 5). In its posterior portion it 

abuts the ansa lenticularis superiorly, the putamen laterally, the posterior tip of the amygdala 

inferiorly, and the optic tract medially (Fig. 5) (Mesulam and Geula, 1988; Rossor et al., 
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1982). There are striking interspecies differences in the anatomy of the NBM; according to 

comparative anatomy studies by Gorry (1963) the NBM in rodents is rudimentary and 

considerably interdigitated with the globus pallidus, whereas in primates and humans the 

nucleus attains its greatest developments in size as well as differentiation from surrounding 

cell groups. This may be explained by the massive expansion of the cortical mantle in higher 

species, which is the main innervation target of the NBM (Divac, 1975; Gorry, 1963). 

Immunocytochemical analysis of the human NBM indicates the total number of neurons is 

approximately 210,000 per hemisphere (Gilmor et al., 1999). Histologically there is a 

predominance of magnocellular hyperchromic neurons containing conspicuous nucleoli and 

predominant lipofuscin causing displacement of the nuclei (Mesulam and Geula, 1988). 

These are fusiform to multipolar in shape and 40–50 × 60–70 µm in size (Mufson et al., 

2003). There is no characteristic pattern of dendritic arborisation with the dendritic trees of 

adjacent neurons overlapping and lacking a common orientation (Mesulam and Geula, 1988). 

Staining shows that 90% of all NBM neurons are choline acyl-transferase (ChAT) positive, 

and therefore cholinergic, although smaller non-staining galaninergic and GABAergic 

neurons are also present (Gritti et al., 1993; Mesulam and Geula, 1988; Mufson et al., 2003). 

The heteromorphic shapes and isodendritic morphologies of NBM neurons have lead some to 

suggest that they constitute a telencephalic extension of the brainstem reticular formation 

(Mesulam et al., 1983) since very similar neuronal morphologies are seen there (Ramón-

Moliner and Nauta, 1966). Interestingly, both areas are thought to be involved in cortical 

activation and alertness (see below) (Fuller et al., 2011; Saper et al., 2005). Based on 

cytoarchitectonics, cytochemistry and connectivity patterns Mesulam et al. (1983, 1988) 

designated NBM neurons as the Ch4 cell group in their classification of human basal 

forebrain cholinergic nuclei (Mesulam et al., 1983; Mesulam and Geula, 1988). For the 

remainder of this manuscript the terms NBM and Ch4 will be used interchangeably. 
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Figure 4: Anatomical diagram of the left hemisphere demonstrating location of the nucleus basalis 
of Meynert and its major projecting cholinergic pathways in the human brain. The medial surface of 
the left hemisphere is closest to the viewer. A coronal section is presented at approximately 6 mm 
posterior to the midpoint of the anterior commissure. The diagram is based on anatomical 
observations in the human brain by Selden et al. (1998) and human diffusion tensor imaging studies by 
Hong and Jang (2010). A = amygdala; AC = anterior commissure (lateral aspect); C = caudate; Cg = 
Cingulate gyrus; F = frontal lobe (medial surface); GPi = globus pallidus (internus); IN = insular 
cortex; NBM = nucleus basalis of Meynert; Oc = occipital lobe (medial surface); OF = orbitofrontal 
cortex; P = putamen; Pr = parietal lobe (medial surface). Adapted from Gratwicke J, et al. The 
nucleus basalis of Meynert: A new target for deep brain stimulation in dementia? Neurosci. Biobehav. 
Rev. 2013; 37:2676-88. 

 

1.6.2. Intrinsic organization of the NBM 

According to human anatomical studies the constituent neurons of the NBM/Ch4 can be 

divided into six sectors based on topographical features, which relate to their individual 

connectivity patterns (described below). The anterior sector, Ch4a, appears just posterior to 

the olfactory tubercle and extends to the crossing of the anterior commissure (Fig. 5). A 

rarefaction in neuronal density in the centre divides this into anteromedial (Ch4am) and 

anterolateral (Ch4al) subsectors. An anterointermediate sector (Ch4ai) then passes from the 

anterior commissure to the anterior limit of the ansa peduncularis (present in the human but 



 58 

not the primate). The passage of the ansa peduncularis (ventral amygdalofugal pathway) 

defines the intermediate sector (Ch4i) and at the same time divides it into superior/dorsal 

(Ch4id) and inferior/ventral (Ch4iv) subsectors. The most posterior sector (Ch4p) is limited 

by the structures described above (Mesulam et al., 1983; Mesulam and Geula, 1988). In 

addition anatomical studies in both humans and primates show a group of cells known as the 

nucleus subputaminalis (NSP), which lies supero-lateral to the main body of NBM and infero-

lateral to the putamen. This has the same cytoarchitectural and cytochemical properties as the 

Ch4 cell group (Ayala, 1915) and it is proposed that this represents a further subsector of the 

NBM (Boban et al., 2006). Interestingly the human NSP has a lateral subdivision not present 

in the primate which appears to be more phylogenetically advanced than all other cholinergic 

basal forebrain regions (Simić et al., 1999). 
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Figure 5: Representation of the major anatomical structures and fibre tracts related to the nucleus 
basalis of Meynert (Ch4, in red) in the human basal forebrain region. Overlying structures have been 
lifted upward to expose the NBM, as indicated by dashed grey lines. The major subsectors of the NBM 
are shown within the nucleus; their approximate anatomical boundaries are indicated by dashed black 
lines. The diagram is based on anatomical observations in the human brain by Mesulam and Geula 
(1988) and Rossor et al. (1982). A = amygdala; AC = anterior commissure (lateral aspect); AL = ansa 
lenticularis; Ch3 = horizontal limb nucleus of the diagonal band of Broca (cholinergic cell group 3 of 
the basal forebrain); GPi = globus pallidus internus; GPe = globus pallidus externus; OT = optic 
tract; P = putamen; uH = uncal hippocampus. Subsectors of NBM as described in the main text, NSP 
= nucleus subputaminalis. Adapted from Gratwicke J, et al. The nucleus basalis of Meynert: A new 
target for deep brain stimulation in dementia? Neurosci. Biobehav. Rev. 2013; 37:2676-88. 

 

1.6.3. Connectivity: afferent projections to the NBM 

Direct axonal tracing experiments in non-human primates show that despite widespread 

efferent projections from the NBM to the entire neocortex, reciprocal afferent connections 

from cortex to NBM are not symmetrical and are restricted to limbic and paralimbic areas. 

The piriform, orbitofrontal, insular, temporopolar, parahippocampal, entorhinal and cingulate 

regions provide its main cortical afferents (Fig. 6) (Mesulam and Geula, 1988; Mesulam and 

Mufson, 1984; Russchen et al., 1985). Subcortical limbic structures provide additional input, 
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such as the amygdala, hypothalamus, septal nuclei and nucleus accumbens (Jones et al., 1976; 

Mesulam and Geula, 1988; Mesulam and Mufson, 1984). Diencephalic cells projecting to the 

NBM have been identified in the midline thalamic nuclei and in the region between the 

peripeduncular and subparafascicular nuclei (Russchen et al., 1985). 

Immunohistochemical analysis in rodents shows that the NBM also receives substantial 

projections from nuclei within the pontomesencephalic tegmentum. These include 

catecholaminergic projections from the ventral tegmental area, substantia nigra pars 

compacta, retrorubral field, raphe nuclei and the locus coeruleus, serotonergic projections 

from the dorsal raphe nucleus and ventral tegmentum, and cholinergic projections from 

pedunculopontine and laterodorsal tegmental nuclei (Fig. 6) (Jones and Cuello, 1989). In the 

primate NBM projections also arrive from the brainstem reticular formation and nucleus of 

the solitary tract, as well as many reciprocal connections with other surrounding cholinergic 

nuclei of the basal forebrain (Russchen et al., 1985). 

Retrograde axonal tracing experiments cannot be performed in human subjects, therefore at 

the present time we assume that the afferent and efferent (described below) connections of the 

human NBM are very similar to those demonstrated in the primate. The cytoarchitecture of 

the NBM, its size and its degree of differentiation from the globus pallidus are similar in both 

species (Gorry, 1963; Mesulam et al., 1983; Mesulam and Geula, 1988), and the only minor 

anatomical differences are the presence of the Ch4ai subsector and the lateral subdivision of 

the NSP in the human nucleus (Mesulam and Geula, 1988; Simić et al., 1999). Therefore, 

drawing inferences on human NBM connectivity from that in the primate appears valid, and 

indeed human pathological data gives indirect support to this assumption (Mesulam and 

Geula, 1988). The ongoing development of Diffusion Tensor Tractography techniques will 

allow confirmation of these anatomical relations from in vivo imaging of human subjects in 

the near future.  
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Figure 6: The major proposed connections of the human NBM with cortical and subcortical 
structures. Major afferent projections (bright green arrows) are inputs to NBM as a whole: 
catecholaminergic projections from VTA, SNpc, retrorubral field, raphe nuclei and locus coeruleus; 
serotonergic projections from dorsal raphe nuclei and VTA; cholinergic projections from 
pedunculopontine nucleus. Major efferent projections (bright red arrows) are shown according to their 
principle NBM subsector of origin. Most NBM subsectors have additional minor projections which 
overlap with the cortical target fields of other subsectors, creating redundancy in the topographical 
arrangement of projections (these are not shown but are detailed in the text). The major efferent 
projections to the caudate/putamen and thalamus are from NBM as a whole (dark red arrow). All 
efferent projections are cholinergic. The diagram is based on axonal tracing experiments in primates 
(Mesulam et al., 1983; Russchen et al., 1985), immunohistochemical studies in rodents (Jones and 
Cuello, 1989) and pathological observations in human tissue (Mesulam and Geula, 1988). Cx = 
abbreviation for ‘cortex’; NBM = nucleus basalis of Meynert (subsectors of NBM as described in main 
text); retic. formation = brainstem reticular formation; SNpc = substantia nigra pars compacta; VTA 
= ventral tegmental area. Adapted from Gratwicke J, et al. The nucleus basalis of Meynert: A new 
target for deep brain stimulation in dementia? Neurosci. Biobehav. Rev. 2013; 37:2676-88. 

 

1.6.4. Connectivity: efferent projections from the NBM 

The human NBM provides the single major source of cholinergic innervation to the entire 

cortical mantle (Mesulam et al., 1983). Indeed, release of ACh in neocortex can be directly 

evoked by electrical stimulation of the rodent NBM or optogenetic stimulation of its 

projection axons (Kalmbach et al., 2012; Kurosawa et al., 1989). The efferent connectivity 

between individual subsectors of NBM and cortical areas displays a topographic specificity 
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according to both retrograde tracer experiments in the primate and neuropathological studies 

in human AD patients (Fig. 6): Ch4am provides the major cholinergic projection to frontal, 

parietal and cingulate cortices situated along the medial wall of the hemisphere. Lesser 

projections are directed to the hypothalamus, hippocampal formation, ventral somatosensory 

cortex, amygdala, ventrolateral orbital, middle insular, periarcuate, peristriate, 

parahippocampal regions and the inferior parietal lobule. The Ch4al subsector is the principal 

source of cholinergic projections to frontoparietal opercular regions and the amygdala. 

Additional projections are directed to the olfactory bulb, medial frontal pole, dorsomedial 

motor cortex, ventrolateral orbital cortex, insular, inferotemporal area and parahippocampal 

regions. The Ch4id and Ch4iv subsectors have similar projection patterns: they give 

prominent projections to ventrolateral orbital, insular, periarcuate, peristriate, inferotemporal, 

and parahippocampal areas as well as to the inferior parietal lobule. Minor projections occur 

to the medial frontal pole, dorsomedial motor cortex, frontoparietal opercular areas, the 

amygdala, anterior auditory cortex, and the temporal pole. Lastly the Ch4p subsector has a 

more restricted major projection to the superior temporal gyrus and the temporal pole. Its 

lesser projections are confined to adjacent inferotemporal and posterior insular regions (Jones 

et al., 1976; Mesulam and Geula, 1988; Mesulam et al., 1983). Efferent cholinergic fibres 

from the human NSP course in the external capsule towards the inferior frontal gyrus, which 

lead Simic et al. to propose that it projects to the cortical speech area in man (Simić et al., 

1999). 

The complex topographical arrangement of Ch4 efferent connectivity also contains 

considerable overlap between individual subsectors according to primate tracing studies. 

Some cortical areas, such as the ventrolateral orbital, insular, parahippocampal and peristriate 

cortices, receive projections of comparable size from many different Ch4 subsectors 

(Mesulam et al., 1983). This may allow for some redundancy in the system, which could 

prevent these cortical areas from substantial cholinergic denervation should one Ch4 

subsector be preferentially affected by disease. On the other hand, other cortical regions such 
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as medial frontoparietal, superior temporal and temporopolar regions receive Ch4 projections 

from a much more restricted number of subsectors, and could therefore be much more 

vulnerable to cholinergic denervation following limited NBM cell loss in those areas. This is 

supported by observations in human post-mortem brain tissue which show that there is 

secondary degeneration in the nucleus basalis following temporal lobe lesions, but not after 

frontal or parietal lobe lesions (Kodama, 1929). 

Immunohistochemical mapping in post-mortem brain tissue from healthy human subjects 

shows that efferent cholinergic projections from the NBM leave the nucleus in two highly 

discrete organized fibre bundles which form the medial and lateral cholinergic pathways (Fig. 

4) (Selden et al., 1998). The cholinergic axons in these bundles are mostly unmyelinated 

(Wainer and Mesulam, 1990). Both the human post-mortem studies and MRI Diffusion 

Tensor Tractography in healthy volunteers demonstrate that the medial pathway leaves the 

NBM anteriorly and joins the white matter of the gyrus rectus. It curves round the rostrum of 

the corpus callosum to enter the cingulum, travels posteriorly to the splenium and enters the 

retrosplenial white matter to merge with fibres of the lateral pathway in the occipital lobe 

(Hong and Jang, 2010; Selden et al., 1998). Individual axons radiate from this pathway to 

supply the medial orbitofrontal, subcallosal, cingulate, pericingulate and retrosplenial 

cortices. The lateral pathway subdivides into a capsular division, travelling within the external 

capsule, and a perisylvian division, travelling within the claustrum (Selden et al., 1998). On 

leaving the lateral aspect of NBM the capsular division gives off a bundle of fibres ventrally 

which travel in the white matter of the uncinate fasciculus to supply the amygdala and 

temporal lobe cortices. The rest of the capsular division ascends in the external capsule 

adjacent to the putamen and its individual fibres radiate out to supply the dorsal frontoparietal 

cortex, middle and inferior temporal gyri, inferotemporal cortex and the parahippocampal 

gyrus. The perisylvian division courses within the claustrum into the white matter of the 

inferior frontal and superior temporal gyri. From here its fibres radiate out to supply the 

frontoparietal opercular cortices, superior temporal gyrus and the insula. The medial and 
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lateral cholinergic pathways merge anteriorly in the white matter of the orbitofrontal gyri. 

These cortical projections from the NBM also have a weak contralateral component 

(Mesulam et al., 1983). 

These cholinergic projection fibres form a dense plexus in all regions of the human neocortex, 

displaying numerous end-terminal swellings which likely represent synaptic specializations as 

they are often in intimate contact with cortical cholinoceptive neurons (Mesulam and Geula, 

1988). There are differences in the regional densities of NBM cortical innervations: limbic 

and paralimbic areas (particularly hippocampal, amygdala and piriform regions) receive 

substantially higher levels of cholinergic input than adjacent neocortical association areas. 

Apart from the cortex and amygdala both primate and human pathological studies show that 

the NBM also sends substantial efferent projections to a number of diencephalic structures, 

including the caudate nucleus, putamen, thalamus (Fig. 6) and habenular nucleus (via the stria 

medullaris)(Jones et al., 1976; Mesulam and Geula, 1988; Mesulam et al., 1992). 

Overall, the heterogeneous neural input to NBM from predominantly limbic structures 

combined with its dominant cholinergic output to the entire neocortex places it in a unique 

position in the brain where it can influence all aspects of complex behaviour according to the 

prevailing emotional or motivational state (Mesulam, 1987). 

1.6.5. Pharmacology of the NBM 

As mentioned above 90% of neurons in the human NBM are cholinergic, staining intensely 

for both acetylcholinesterase (AChE) and choline acyl-transferase (ChAT) (Mesulam and 

Geula, 1988; Mufson et al., 2003). Their cortical projections provide the main source of these 

two enzymes in neocortical areas, with loss of NBM neurons in dementia correlating with 

decreased cortical enzyme activity (Etienne et al., 1986; Gaspar and Gray, 1984; Perry et al., 

1985). However only 6% of human NBM neurons co-express the m2 muscarinic 

acetylcholine receptor, and they are therefore not the major cortical source of this receptor, 

which also shows reduced cortical levels in dementia (Mufson et al., 1998). 



 65 

Cholinergic NBM neurons in both rodent and primate also express significant levels of both 

high (trkA) and low (p75NTR) affinity nerve growth factor (NGF) receptors (Bothwell, 1995; 

Sobreviela et al., 1994), as well as retrograde transported NGF (Mufson et al., 1999), which 

promotes cell survival and upregulates ChAT activity (Hefti, 1986). Studies on post-mortem 

human brain tissue show that NBM neurons are the only CNS neurons that continue to 

express high levels of p75NTR during adulthood (Mesulam et al., 1992), and it is 

hypothesized that disruption of NGF signalling could underlie the selective degeneration of 

NBM neurons in AD (Counts and Mufson, 2005). In addition, human NBM cholinergic 

neurons express both the calcium binding protein calbindin, and the glutamate receptor 

subunit GluR2, both of which are involved with intracellular calcium homeostasis (Geula et 

al., 2003; Ikonomovic et al., 2000). Interestingly, the expression of each of these receptors in 

NBM neurons undergoes a selective reduction in elderly humans and in AD: the combined 

effects may cause deregulation of intracellular calcium and resultant excitotoxic cell death 

(Geula et al., 2003; Ikonomovic et al., 2000; Mufson et al., 2003). 

Aside from magnocellular cholinergic neurons, immunocytochemical studies in rodents and 

humans show that the NBM also contains a mixture of smaller non-cholinergic perikarya: 

gamma amino butyric acid (GABA) interneurons, which may potentially exert inhibitory 

influences on neighbouring cholinergic projection neurons, and small interneurons expressing 

the inhibitory neuropeptide galanin (GAL) (Gritti et al., 1993; Mufson et al., 2003). In AD 

there is a hyper-innervation of galaninergic fibres on remaining NBM cholinergic neurons 

(Mufson et al., 2003), and it is therefore proposed that GAL down-regulates NBM cholinergic 

function, particularly in dementia (Bowser et al., 1997). Finally, other fibres immunoreactive 

for somatostatin, neuropeptide Y, neurotensin, pro-opiomelanocortic peptides, substance P, 

vasoactive intestinal polypeptide (VIP) and oxytocin interdigitate with NBM cholinergic 

neurons in primates and humans, suggesting that they all contribute to the regulation of 

cholinergic function within the nucleus (Mufson et al., 2003). 
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1.6.6.  Function: the role of the NBM in memory 

The function of the NBM has been investigated extensively over the last forty years and the 

most widely held view is that it plays a key role in the formation of memory. Indeed, as 

mentioned above, the NBM is uniquely positioned to provide the cortex with information 

about the behavioural importance of stimuli in order to affect learning, and it provides the 

main cholinergic projection to the amygdala (Nagai et al., 1982; Selden et al., 1998), which 

mediates adversely motivated learning and is known to modulate memory formation in other 

regions (McGaugh, 2002). 

Experiments in rodents, primates and humans have established that cortical cholinergic 

function is essential to the acquisition of new memories (Croxson et al., 2011; Fisher et al., 

1998; Murray and Fibiger, 1985; Petersen et al., 1977). Lesions of the NBM cholinergic 

system in rodents and primates reduce cortical cholinergic function and thereby impair 

learning and memory on a variety of tasks (Bartus et al., 1985; Butt and Hodge, 1995; Irle and 

Markowitsch, 1987; Leanza et al., 1996; Mandel et al., 1989;  Roberts et al., 1992). 

In addition, stimulation of the rodent NBM directly induces cortical plasticity and re-

organizes receptive field maps (the region of auditory frequencies detected by a group of 

cortical sensory neurons) in relation to stimuli (Bakin and Weinberger, 1996; Kilgard and 

Merzenich, 1998), representing a “physiological memory” (McLin et al., 2002). This 

phenomenon is dependent on cholinergic function as it is blocked by anti-cholinergic agents 

(Bakin and Weinberger, 1996) or by selective lesions of the NBM (Baskerville et al., 1997; 

Webster et al., 1991). Moreover, induction of these plastic changes is associated with cortical 

EEG desynchronisation (change from slow synchronized delta waves to fast gamma and theta 

waves) (Bakin and Weinberger, 1996), which is itself associated with plasticity and learning 

(Huerta and Lisman, 1993; Lee et al., 2005; Raghavachari et al., 2001). Therefore, the NBM 

has been shown to directly induce cortical plasticity and electrophysiological correlates of 

learning and memory via the release of ACh from its cortical projections. 
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Miasnikov et al. (2009) take this further, demonstrating that the physiological changes 

induced in the cortex of rats by NBM stimulation do not represent simply plastic re-

organisation but actually have all the attributes of true natural associative memory: 

associativity, specificity, rapid acquisition, consolidation, long term retention and extinction 

(McLin et al., 2002; Miasnikov et al., 2009). Thus, compelling evidence exists that the NBM 

plays an integral role in the formation of memories. 

1.6.7. Function: the role of the NBM in attention 

A parallel line of investigation into the functions of the NBM hypothesizes a role in the 

mediation of attention. Pharmacological manipulations in humans show that the central 

cholinergic system is intimately involved in the mediation of attention (Bentley et al., 2004; 

Dunne and Hartley, 1985) and selective basal forebrain lesions in animal studies provide 

extensive evidence that the NBM and its cholinergic projections are key in mediating a range 

of attention functions (McGaughy et al., 2002; Muir et al., 1992; Robbins et al., 1989; 

Voytko, 1996; Voytko et al., 1994). 

Both rodent and primate experiments show that increasing cortical ACh levels, either by 

NBM stimulation or by iontophoretic application, dynamically modulates cortical coding of 

sensory inputs, producing more reliable coding of stimuli associated with a background 

suppression of contextual information (Goard and Dan, 2009; Pinto et al., 2013; Roberts et 

al., 2005; Soma et al., 2013). In agreement with this, electrophysiological recordings from 

parietal and sensory cortices in rodents and primates performing attention tasks show that 

cholinergic input disproportionately increases weighting of task-relevant versus task-

irrelevant inputs (Broussard et al., 2009; Herrero et al., 2008). Therefore, this modulation of 

cortical sensory processing by the NBM cholinergic system serves to increase the signal to 

noise ratio for salient stimuli, thereby enhancing the strength of their neural representations 

(Bentley et al., 2011). As discussed earlier, in facilitating this process the NBM effectively 

amplifies perception of salient stimuli by posterior regions of the fronto-parietal network and 
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ensures their attentional significance, the neurobiological correlate of ‘bottom-up’ orienting 

of attention (Buschman and Miller, 2007; Sarter et al., 2006). 

Attention and memory functions are not mutually exclusive, especially as every step in the 

process of learning (input selection, manipulation in working memory, construction of 

associations for recall) is dependent upon attention (Sarter et al., 2003). Indeed, both human 

neuroimaging studies and computational modeling suggest that cholinergic influences on 

sensory cortex serve both to enhance signal detection (and thus attentional significance) and 

by doing so facilitate the formation of novel input associations (memory formation) (Bentley 

et al., 2009; Hasselmo and McGaughy, 2004). 

1.6.8. Function: the role of the NBM in modulating the behavioural state 

It has long been known that the cholinergic projections of the NBM to the cortex are 

intimately involved in the regulation of cortical activation and arousal. Electrical stimulation 

of the rodent NBM, or optogenetic stimulation of its projection axons, can directly 

desynchronize the neocortical EEG and induce fast gamma oscillations indicative of the 

awake and alert state (Kalmbach et al., 2012; Metherate et al., 1992). Conversely lesions in 

the rodent NBM prevent cortical EEG desynchronisation and instead produce slow 

synchronized delta waves (typical of the sleep state) with corresponding behavioural 

unresponsiveness/coma (Buzsaki et al., 1988; Fuller et al., 2011). 

This has led many (Buzsaki et al., 1988; Freund et al., 2009) to propose that the NBM may be 

the structural basis for the concept of generalized ascending activation to the cortex as 

originally proposed by Moruzzi and Magoun (1949). The NBM occupies a key position in the 

arousal network to fulfill such a role, receiving noradrenergic projections from the locus 

coeruleus (Gaspar et al., 1985) and appearing to have a reciprocal relationship with the 

orexinergic neurons of the hypothalamus, with an interplay between the two appearing to 

control the wakeful/aroused state (Jones, 2008).  
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Lee et al. demonstrate that basal forebrain cholinergic neurons in the rat discharge maximally 

in awake states (Lee et al., 2005), and that their activity strongly correlates with both cortical 

gamma activity (which reflects cortical arousal (Maloney et al., 1997)), and cortical theta 

oscillations (which can promote synaptic plasticity (Huerta and Lisman, 1993)). These results 

suggest that the NBM can indeed drive cortical activation via gamma rhythms and, in 

conjunction with the discussion above, simultaneously induce cortical plasticity via theta 

rhythms during attentive waking periods. 

Drawing all these lines of evidence together, one can hypothesize that the function of the 

NBM is to modulate the overall behavioural state of the animal to one of activation or 

“readiness”, during which there is perceptual enhancement and a lowered threshold to induce 

memory for salient stimuli (Hasselmo and Sarter, 2011). The behavioural correlate of this 

would be a state of enhanced cognitive function, with improved attention, perception and an 

improved ability to process and learn new information. It follows that degeneration of the 

NBM would impair the induction of this activated state, making orienting of attention, 

accurate perception of stimuli and forming new memories more difficult, as is the case in 

patients with Lewy body dementias. 

 

 

1.7. Deep brain stimulation 

1.7.1.  Overview of deep brain stimulation and current clinical applications 

Deep brain stimulation emerged as a therapy for PD at the end of the twentieth century, 

following the demonstration that electrical stimulation of the basal ganglia-thalamo-cortical 

motor network could markedly improve motor symptoms (Benabid et al., 1987; Limousin et 

al., 1995). DBS to either the globus pallidus internus (GPi), or more commonly the 

subthalamic nucleus (STN) are now well established as safe and effective therapies for the 



 70 

motor symptoms associated with PD, and their long-term efficacy and associated 

improvement in quality of life is well documented (Deuschl et al., 2006; Follett et al., 2010; 

Krack et al., 2003; Limousin et al., 1998; Williams et al., 2010). Modulation of the motor 

network using DBS is also an effective therapy for other movement disorders including 

essential tremor (Deuschl et al., 2011) and dystonia (Vidailhet et al., 2012), and has also 

shown encouraging results in the treatment of Gilles de la Tourette syndrome (Ackermans et 

al., 2011; Kefalopoulou et al., 2015). 

More recently DBS has shown promise in treating the symptoms of several psychiatric 

disorders, including obsessive-compulsive disorder and depression, through neuromodulation 

of cognitive-motor circuits within the fronto-striatal network and affective circuits within a 

limbic-cortical network respectively (Blomstedt et al., 2012; Lozano et al., 2012). This 

highlights the fact that invasive neuromodulation of different large scale brain networks can 

be effectively applied to attenuate different clinical symptoms. 

The surgical procedure for DBS involves permanent implantation of multicontact titanium 

electrodes (usually bilaterally) within the target anatomical structure(s) and subsequently 

connecting these subcutaneously to a neurostimulator/pulse generator (IPG) implanted in the 

chest wall (Foltynie and Hariz, 2010) (see Fig. 7). Given its invasive neurosurgical nature 

DBS implantation to any target carries generic risks for patients, including possible 

intracerebral haemorrhage (0-10%), infection (0-15%) and seizures (0-1%), but when 

performed in experienced units these are rare, and the procedure is generally regarded as very 

safe (Foltynie et al., 2011; Foltynie and Hariz, 2010). Nevertheless, when considering the 

case for DBS in an individual patient the potential beneficial effects must be weighed against 

all potential risks. Once a DBS system is implanted, physicians with expertise in the area can 

program the IPG (using an external programmer device) to deliver electrical stimulation to 

the target brain structure at a specific amplitude, pulsewide and frequency in order to 

modulate its neural activity (see (Volkmann et al., 2006) for practical detail on common 

programming parameters). Which of the four contacts on each DBS electrode is active, and 
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whether the stimulation is delivered in a monopolar (IPG as anode, contact as cathode) or 

bipolar (individual contacts on each electrode assigned as anode and cathode) configuration is 

also customisable, and guided by clinical response to stimulation (Foltynie and Hariz, 2010; 

Volkmann et al., 2006).  

 

Figure 7: A diagram illustrating the hardware components for deep brain stimulation. A multi-
contact titanium electrode is implanted into a target deep brain nucleus (the NBM in the case of the 
trials detailed in this manuscript) and is connected by subcutaneous wiring to a stimulator 
(implantable pulse generator, IPG) implanted in the left chest wall. 

 

1.7.2. Mechanisms of action of DBS 

The mechanism by which DBS relieves symptoms in PD and other conditions is not well 

understood. It is currently thought that high frequency stimulation (HFS, 100-180 Hz) of 

subcortical nuclei inhibits pathologically synchronized low frequency network oscillations 

(McConnell et al., 2012; McIntyre and Hahn, 2010; Rosin et al., 2011). This may represent an 

“informational lesion”, disrupting errant signals from being propagated downstream in a 

neural network as a result of upstream disease processes such as dopaminergic depletion 

(Grill et al., 2004). 
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In contrast to the inhibition of neural signals caused by HFS, converging evidence suggests 

that low frequency stimulation (LFS, 5-40 Hz) has the opposite effect and can excite neural 

elements. For example, Nandi et al. (2008) show that LFS to the pedunculopontine nucleus in 

parkinsonian monkeys can overcome afferent inhibition of the nucleus from the basal ganglia 

(Jenkinson et al., 2004; Nandi et al., 2008) while Wu et al. (2008) demonstrate that LFS of the 

tuberomammiliary nucleus in the rat can potentiate seizures induced by amygdaloid-kindling 

(Wu et al., 2008). Most relevant to the current manuscript, Kurosawa et al. (1989) 

demonstrate that LFS in the range of 20-50 Hz in the rat NBM produces large direct increases 

in cortical ACh release from its cholinergic terminals (Kurosawa et al., 1989). This 

corresponds with the fact that neuronal discharge rates of around 20 Hz are normally seen in 

the NBM of rats during active behaviour in the aroused/awake state (Buzsaki et al., 1988).  

However, conceptualising the effects of DBS on different neural networks as simply 

inhibitory or excitatory is too simplistic a view, especially since electrical stimulation at any 

particular frequency has been shown to have simultaneous differential effects on different 

neural tissues (e.g. inhibiting soma and exciting axons) (McIntyre et al., 2004). Instead, a 

recent study using dynamic causal modelling of neuroimaging data shows that acute 

application of DBS differentially modulates the strength of functional connections between 

distributed nodes within a brain network (i.e. the ‘effective’ connectivity within the network 

is altered), which in turn predicts clinical response to therapy (Kahan et al., 2014). 

Furthermore, preliminary evidence suggests that long-term application of DBS may have 

superadded effects on network function by inducing structural changes to network 

connectivity through neural plastic mechanisms, which shifts network dynamics back towards 

a healthy state (van Hartevelt et al., 2014). Thus the general mechanism of action of DBS 

appears to be its ability to modulate the functional and structural dynamics of a brain network 

as a whole, though its specific effects on different target neural networks is still being 

elucidated (McIntyre and Hahn, 2010).  
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With specific regard to the NBM cholinergic network, the experiments by Kurosawa et al. 

(1989) and others clearly indicates an overall activating effect of LFS on corticopetal 

cholinergic projections from NBM, which could potentially be harnessed for therapeutic 

benefit (Kalmbach et al., 2012; Kurosawa et al., 1989). 

 

 

1.8. Deep brain stimulation of the nucleus basalis of Meynert for cognitive 

neuromodulation 

1.8.1. Effects of NBM DBS on cognitive processes in animal studies 

Investigating potential therapeutic effects of NBM DBS in Lewy body dementias has been 

limited by a lack of good animal models of the cholinergic deficits in LBDs. Transgenic 

mouse models using a-synuclein overexpression have well characterized nigro-striatal 

dopaminergic deficits, but NBM cholinergic deficits have not been examined in sufficient 

detail (Chesselet and Richter, 2011; Nuber et al., 2008). However, new transgenic models of 

LBDs have recently been developed which better approximate the human disease in terms of 

both cholinergic pathology and cognitive deficits (Laursen et al., 2013; Magen et al., 2012), 

which will open up new possibilities for investigating the effects of NBM DBS in LBDs. 

On the other hand, evidence that low frequency NBM DBS can enhance cognition in healthy 

animals does exist. Mclin et al. show that pairing brief NBM stimulation (unilateral, bipolar, 

50-100 µA, single pulse, 0.2s pulsewidth) with 6kHz tones in freely moving rats induces a 

cardio-respiratory behavioural response, which is reproducible when the 6kHz tone is 

presented alone afterwards. This response is specific to the conditioned tone only, not to 

others, thus indicating that NBM DBS induces an associative memory in the animal (McLin 

et al., 2002). Additionally, Montero-Pastor et al. implanted DBS systems in the NBM of rats 

and stimulated them at low frequency (unilateral, monopolar, 60-100 µA, 1Hz, 0.5ms) during 
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acquisition and testing on a two-way active avoidance task (a test of associative memory) 

(Montero-Pastor et al., 2001, 2004).  At pre-training, NBM DBS resulted in significantly 

faster learning of the task, indicating enhancement of memory acquisition. Post-training DBS 

improved performance on a test of retention of information in memory, indicating 

enhancement of memory consolidation, and was sensitive to both the duration and amplitude 

of NBM DBS. Overall, the group found that the greatest improvements in performance with 

NBM DBS were in those rats that had been identified as poor learners prior to the trial rather 

than those who were designated as cognitively normal. 

Thus, although these animal models are not representative of the neurodegenerative processes 

occurring in LBDs, these data do support the concept that low frequency NBM DBS may 

modulate cognitive functioning. 

1.8.2. Studies of NBM DBS for dementia symptoms in humans to date 

The first case report describing NBM DBS for dementia in a human was performed over 

thirty years ago. In 1984, Turnbull et al. implanted a single electrode into the left NBM (via a 

frontal approach) in a 74-year old man with clinically moderate AD. Stimulation was 

delivered at relatively low frequency (bipolar, 3V, 50Hz, pulse width 210ms) in cycles of 15 

seconds on followed by 12 minutes off (Turnbull et al., 1985). After nine months of 

stimulation no clinical improvement in cognition was observed. However, a PET scan six 

months post-implant demonstrated preserved cortical metabolic activity in the stimulated 

hemisphere compared to the unstimulated side. The relevance of these metabolic changes 

remains questionable, however, given the lack of clinical improvement. Methodological 

factors possibly limiting the clinical effect included the unilateral short-lasting and 

intermittent stimulation, and the fact that NBM targeting was neither image nor 

pathologically verified, and therefore, whether the electrode was accurately placed in NBM 

cannot be certain. In addition, the particular stimulus cycle chosen was unusual by today’s 
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standards given that stimulation was only delivered for a total of 30 minutes in every twenty-

four hours. 

NBM DBS was recently revisited by Freund and colleagues, this time to treat LBDs. Their 

patient was a 71-year-old man suffering from severe PDD with marked executive 

dysfunction, memory impairment and visual perceptual difficulties. At baseline, he could only 

recall 12 words in the Rey Auditory Verbal Learning Test (AVLT(sum) - a test of immediate 

episodic verbal memory and learning) and was unable to perform the delayed conditions of 

the test at all (AVLT(recall) and (recog) – tests of long term episodic and recognition memory 

respectively) (Freund et al., 2009). He scored 4 points on the Clock Drawing Task (CDT – a 

test of visuoperceptual ability) and took 5.5 minutes to complete the Trail Making Test 

(TMT-A – a test of executive control of attention, visual scanning and executive function 

(working memory and sequencing)). Qualitatively, he displayed poor attention span, rigid 

thinking, bradyphrenia and marked ideational apraxia. He underwent implantation of bilateral 

DBS electrodes into the Ch4i subsector of NBM, chosen as it is the largest subsector (Fig. 5) 

(Mesulam and Geula, 1988), therefore, giving the highest possibility of successful electrode 

placement. Moreover, it has the most widespread cortical projections, giving the potential to 

modulate more cortical regions (Fig. 6) (Mesulam et al., 1983). Both the surgical procedure 

and stimulation were safe and well tolerated. With initiation of bilateral low frequency NBM 

DBS (monopolar, 1.0V, 20 Hz, 120 µs) score on the AVLT(sum) doubled to 25, indicative of 

a marked improvement in immediate episodic memory and learning. The patient was also 

able to perform AVLT(recog) for the first time, recognizing six words, demonstrating some 

improvement in retention of information in memory. The CDT score rose to 9, and TMT-A 

completion time halved to 2.5 minutes, indicating improvements in visuoperceptual and 

executive/attentional functions respectively. Performance also improved on tests of 

processing speed and praxis, with additional subjective benefits observed in attention, 

alertness, drive and spontaneity (Barnikol et al., 2010; Freund et al., 2009). All these 

cognitive benefits were sustained for two months during constant stimulation and were shown 
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to be time-locked to the cessation and re-introduction of NBM stimulation, and thus 

dependent upon it. The authors also reported that the patient demonstrated an overall 

qualitative improvement in personality and social communication with NBM DBS, which 

improved his overall quality of life, however this was not formally measured. 

This case report provides preliminary evidence that low frequency NBM DBS can be 

performed safely in individuals with advanced LBDs, and may improve cognitive functioning 

across a number of domains. However, the results must be regarded with caution as this was 

only performed in a single patient. 

The only formal clinical trial of NBM DBS to date has been conducted in AD patients; Kuhn 

and colleagues performed a double-blind randomised crossover trial of bilateral low 

frequency NBM DBS in six patients with AD (J Kuhn et al., 2015). Patients with mild to 

moderate AD (MMSE range 18-26) were selected and inclusion criteria included a stable 

dose of acetylcholinesterase medication for at least three months, typical cerebrospinal fluid 

changes of tau protein and amyloid beta42 levels and retained capacity to give informed 

consent to surgery. Electrodes were implanted bilaterally into NBM, though due to surgical 

planning constraints subsector targeting varied across patients from Ch4im anteriorly to Ch4p 

posteriorly. All patients received the same NBM stimulation parameters (monopolar contacts 

0- 8-, 2.5V, 90 µs, 20Hz) during an initial one month randomised double-blind cross-over 

phase (two weeks with NBM DBS on followed by two weeks off, or vice versa), then had 

individual parameter adjustments made (all still at 20Hz) during a subsequent eleven month 

open label phase. Both the surgical procedure and stimulation were safe and well tolerated. 

Results showed that global cognitive functioning (as measured by the MMSE and the 

Alzheimer’s Disease Assessment Scale (ADAS-Cog)) remained stable in all patients over the 

four-week double-blind period, and stable in four of six patients after one year of subsequent 

open-label stimulation. At one year the group’s average scores on the MMSE and ADAS-Cog 

worsened by 0.3 points and 3 points respectively, which is a slower rate of decline than that 

seen in comparable pharmacologically treated AD patients (2.4 points and 4.5 points per year 
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respectively), although direct comparison is difficult since the latter figures were averaged 

over much larger sample populations. FDG-PET imaging at one year compared to baseline 

also showed a 2-5% increase in cortical glucose metabolism with low frequency NBM DBS, 

deviating from the average 5.2% decrease per year seen in untreated AD patients. However, a 

detailed neuropsychological battery did not not show any changes in specific cognitive 

functions throughout the trial period. 

This study provides further evidence that low frequency NBM DBS appears safe and well 

tolerated in dementia patients, and also preliminary evidence that it may slow the rate of 

cognitive decline in AD. However, again the data should be interpreted cautiously given that 

no changes in specific cognitive functions were seen. This may have been due to several 

limitations, including the relatively short double-blind period (due to ethical constraints) and 

the variation in NBM subsector target amongst patients (due to constraints on surgical 

implant trajectories due to concomitant brain pathologies). 

Overall, human clinical trials to date have provided preliminary evidence to show that low 

frequency NBM DBS is both technically feasible and safe in demented patients, and that the 

therapy may be associated with a slowing in the rate of cognitive decline in AD patients. 

However, there is currently a paucity of evidence regarding the use of NBM DBS for the 

treatment of dementia, particularly with regard to the specific treatment of LBDs. There is, 

therefore, a need for randomised controlled trials, utilising double-blind periods of substantial 

length and detailed assessments of all cognitive sub-domains and behavioural disturbances in 

LBD patients. Such trials will help address major unresolved issues, including the technical 

feasibility and safety of NBM DBS in LBDs, the efficacy of this treatment for specific 

cognitive and/or behavioural symptoms, the optimal target site(s) within the NBM and 

stimulation settings. 
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1.9. Aims of this thesis 

In this thesis, I will explore the safety and efficacy of bilateral nucleus basalis of Meynert 

deep brain stimulation as a potential therapy for patients with Parkinson’s disease dementia 

and dementia with Lewy bodies (from Chapter 4 onwards both dementia syndromes are 

collectively referred to as Lewy body dementias). More specifically I aim to: 

1) Evaluate the safety and tolerability of low frequency NBM DBS in patients with PDD 

and evaluate the effects of stimulation on specific cognitive impairments and 

behavioural symptoms (Chapter 2). 

2) Evaluate the safety and tolerability of low frequency NBM DBS in patients with DLB 

and evaluate the effects of stimulation on specific cognitive impairments and 

behavioural symptoms (Chapter 3). 

3) Record local field potentials from the NBM in these patient groups, both in the 

resting state and during two attention tasks, to investigate the physiological function 

of the NBM in vivo (Chapter 4). 

4) Perform combined resting state NBM LFP and magnetoencephalography recordings 

in these patient groups to investigate the functional connectivity of NBM at the brain 

network level, and thereby gain further insight into its physiological function in vivo 

(Chapter 5). 

 

 

 

 



 79 

Chapter 2: Deep brain stimulation of the nucleus basalis of Meynert 

for Parkinson’s disease dementia 

 

2.1   Patients and methods 

2.1.1 Experimental design 

We conducted a randomised, double-blind, crossover trial of bilateral NBM DBS to compare 

deficits on a short battery of cognitive tests after six weeks of active stimulation and six 

weeks of sham stimulation. NBM DBS was achieved using electrodes which straddled the 

GPi, thus allowing the potential for subsequent conventional DBS for co-existing motor 

impairments (Follett et al., 2010). The study was sponsored by University College London, 

and was performed at the National Hospital for Neurology and Neurosurgery, London, UK. 

2.1.2 Patients 

Participants were recruited from the population of Parkinson’s disease patients referred to our 

clinic. Patients were eligible for inclusion if they: met Queen Square Brain Bank Criteria for 

the diagnosis of Parkinson’s disease (Hughes et al., 1992); had motor fluctuations (off periods 

and/or levodopa-induced dyskinesias) known to improve with GPi DBS (so that if they did 

not experience subjective benefit from NBM DBS at trial end they could opt to switch to GPi 

DBS for co-existing motor symptoms (Follett et al., 2010); were appropriate candidates for 

GPi DBS aside from the co-existence of dementia; were aged 35-80 years; were able to give 

informed consent; met diagnostic criteria for PDD (Emre et al., 2007); had an MMSE score 

between 21-26 (in order to select those with moderate dementia severity with retained 

capacity to give informed consent); had minimal atrophy on MRI brain scans (to ensure 

technical feasibility of electrode implantation); were living at home with a carer-informant; 

were willing to comply with the trial protocol and attend necessary clinic visits. In addition, 
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all patients were already receiving a stable dose of AChEI medication at the time of 

recruitment (with either an established suboptimal response to this medication or intolerance 

of higher dosage) and this was continued throughout the trial. Changes in AChEI dose were 

not permitted during the trial period to avoid confounding any cognitive effects of NBM 

DBS. 

Exclusion criteria were: diagnosis or suspicion of other cause for parkinsonism or dementia; 

known abnormality on CT or MRI brain imaging considered likely to compromise 

compliance with the trial protocol; prior intra-cerebral surgical intervention for Parkinson’s 

disease.  

2.1.3 Ethics and consent 

The trial conformed to the Seoul revision of the Declaration of Helsinki (2008) and Good 

Clinical Practice guidelines, and was approved by the East of England Research Ethics 

Committee. All potential participants were assessed for their capacity to provide written 

informed consent by an experienced neuropsychologist independent from the trial team. This 

trial is registered with ClinicalTrials.gov, Identifier: NCT01701544. 

2.1.4 Randomisation and blinding 

We randomly assigned participants to either the stimulation off-first group (sham stimulation 

for six weeks, followed by active stimulation for six weeks) or the stimulation on-first group 

(vice versa). We used computer-generated pairwise randomisation according to order of 

enrolment, so that equal numbers of patients were recruited to each group and the order of 

those receiving on- followed by off- stimulation and vice-versa was counterbalanced. The 

randomisation sequence was held by an unblinded clinician who was also responsible for 

programming the stimulation. Participants and assessing clinicians were blinded to the 

stimulation condition. The unblinded clinician spent the same time adjusting each patient’s 

stimulator at the start of both active and sham stimulation periods. The stimulation parameters 
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were selected to avoid any immediate or long-lasting side effect that could be perceived by 

the patient or blinded clinicians, and thus have the potential to unblind them. 

2.1.5 Baseline procedures 

All enrolled participants underwent a baseline assessment (Fig. 8) which included a detailed 

neuropsychological battery, and motor, non-motor and psychiatric symptom scales (discussed 

in detail below). During baseline assessment the participants also completed two separate 

measures of IQ; the two subtest form of the Wechsler Abbreviated Scale of Intelligence gives 

a brief estimate of current IQ by combining scores on a measure of crystallised3 verbal 

intelligence, the vocabulary subtest for measuring word knowledge, and a measure of fluid4 

performance intelligence, the matrix reasoning subtest for measurement of visual information 

processing and abstract reasoning skills (Wechsler, 1999). In comparison, the National Adult 

Reading Test estimates pre-morbid intelligence in English speaking patients with dementia 

(Nelson and Wilson, 1991). It is an untimed measure consisting of 50 words with atypical 

phonemic pronunciation, thereby testing the patient’s vocabulary rather than their ability to 

apply regular pronunciation rules. The pronunciation of previously learnt words is thought to 

be spared in cognitive decline, allowing it to be used as a proxy for estimating pre-morbid 

crystallised verbal intelligence. Comparing the scores on these two IQ tests at baseline 

allowed us to estimate the degree of cognitive decline in each individual participant relative to 

their pre-morbid state. 

                                                        

3 In psychology, crystallised intelligence is the ability to use knowledge and experience gained across 
one’s lifetime. It does not equate to memory, but may rely on accessing information from long term 
memory (Catell, 1971). 
 
4 Fluid intelligence is the capacity to solve novel problems independent of knowledge from the past. 
These terms, crystallised and fluid intelligence, are conceptualised as separate mental systems and are 
interdependent, and thus highly correlated with one another (Catell, 1971). 
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Figure 8: PDD trial study design. Black arrows indicate study time points, green arrows indicate 
assessments at those time points as per protocol. Patients remain under follow-up in University 
College London to enable reporting of long term outcomes. 

 

2.1.6 Neurosurgical procedure 

Within one month of completing baseline assessments participants underwent stereotactic 

implantation of bilateral DBS electrodes. All patients were operated under general anaesthesia 

(average time anaesthetised was 3-4 hours) using a Leksell stereotactic frame (Elekta 

Instrument AB, Stockholm), without microelectrode recording. Following attachment of the 

frame the NBM was visualised in each patient using pre-operative stereotactic axial and 

coronal proton-density MRI scans on which the pallidum, optic tract, anterior commissure 

and the adjacent NBM were visible (1.5T Siemens Espree, PDw Turbo Spin-echo; 1.0 x 1.0 x 

2.0 mm; TR 4000ms TE 13ms). Target selection for placement of the deepest contact/s was at 

the level of maximal NBM diameter, the Ch4i subsector (around 5mm below the AC-PC 

plane), with more dorsal contacts positioned in the overlying GPi. Ch4i was chosen as it is 

both the largest subsector of NBM, giving highest probability of successful electrode 

placement, and has the most widespread cortical projections, thus potentially influencing 
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more cortical areas (see Section 1.6.4. above and (Gratwicke et al., 2013)). However, 

targeting this subsector of NBM meant that some compromise had to be made with regard to 

the optimal anteroposterior location of contacts within overlying GPi. Planning of the surgical 

trajectory in each individual patient was undertaken using commercially available software 

(Framelink, Medtronic, Minneapolis, USA). The NBM was visualised as the hyperintense 

signal lateral to the hypointense optic tract and medial to the hypointense anterior commissure 

(lateral extension) on proton density MRI. The entry point was chosen to ensure a trajectory 

which avoided both sulci and the ventricular system, while maximising the length of the 

trajectory within the visible NBM hyperintensity.  

During surgery several methods were employed to avoid brain shift: minimal CSF loss was 

achieved by placing the 14 mm burr hole and 3-4 mm dural opening on a gyrus rather than a 

sulcus; the burr hole was flooded with saline irrigation after opening the dura; the time from 

dural opening to final DBS electrode implantation was limited by sealing the dural defect 

with fibrin glue as soon as the electrode was in situ; surgery was performed in a similar 

position to that adopted during image acquisition in order to minimise postural movement of 

intracranial structures (though a slight head-up tilt was employed during surgery to encourage 

venous drainage). 

A 1.5 mm diameter blunt-tip radiofrequency electrode (Leksell RF electrodes, Elekta, 

Stockholm) was introduced to the target while performing dynamic impedance monitoring. 

Care was taken to avoid electrode deviation by contact with either the burr hole or the dural 

edges. After withdrawal of the radiofrequency electrode a quadripolar DBS electrode (model 

3387 [Patient A] or 3389 [Patients B-F], Medtronic, Minneapolis, MN, USA) was soft-passed 

down the same track. This has four platinum- iridium cylindrical surfaces of diameter 

1.27mm, length 1.5mm, and centre- to-centre separation of 2mm. The contacts were 

numbered 0 (lowermost/most ventral, which was intended to lie in the the body of NBM) to 3 

(uppermost/most dorsal, which was intended to lie in the GPi). Depth of implantation was 

controlled by a depth stop positioned a defined length along the electrode shaft. The 
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electrodes were then secured in place using a Stimloc skull fixation device. The accuracy of 

DBS lead contact location was confirmed immediately with postoperative stereotactic MRI 

(Fig. 9): The distance between the intended MRI target and the actual position of the 

implanted electrode was calculated and surgery was not considered complete until acceptable 

placement of the electrodes had been image-confirmed. In all six cases (twelve electrode 

implants) actual position of the most ventral electrode contact was within 1mm of intended 

MRI target location. 

 

 

Figure 9: Determining DBS lead contact location from stereotactic, proton density MR images 
(Siemens Espree, 1.5T): First column (above: axial image; below: coronal reconstruction along lead 
trajectory, magnified): Stereotactic MR images obtained after lead implantation were imported into a 
dedicated software platform (FrameLink, Medtronic). Images were reconstructed along the axis of the 
lead and a template placed on the lead artefact to determine the stereotactic coordinates of each 
contact. Second column (above: axial; below: coronal): The stereotactic coordinates for each contact 
were then transposed onto preoperative stereotactic images, allowing an accurate assessment of lead 
location (white dot). Third column (above: axial; below: coronal): The heavily myelinated optic tract 
and anterior commissure (lateral extension), hypointense on proton density MR images, are coloured 
light blue. The intervening hyperintense nucleus basalis of Meynert (NBM) lies between these two 
structures and is coloured yellow. In the coronal image the NBM is seen to lie superior to the temporal 
lobe (amygdala / supra amygdala complex) and inferior to the internal (green) and external (red) 
segments of the globus pallidus. The active contact (black dot) is seen to lie within the NBM. 

 

Disposable extension connectors were attached to the end terminals of both subcutaneous 

leads, and these extensions were externalised though the scalp. Patient’s leads were 

externalised in this manner for a five-seven day period in order to allow trials of external 
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stimulation to take place, as well as direct recording of LFPs from NBM and GPi, and also 

combined LFP-MEG recordings (see Chapters 4 and 5 below). Prophylactic systemic 

antibiotics (Cefuroxime 1.5 g) were administered intra-operatively, and three more doses 

administered within the following 24 hours. Patients were reviewed in the recovery suite both 

by the operating neurosurgeon and a neurologist (myself) to confirm that there was no new 

neurological deficit following surgery. Once awake the patients were transferred back to the 

main ward to recover. 

Following recovery on the ward over the interval five-seven day period each patient 

underwent a second shorter operation (average time under general anaesthesia two hours): the 

existing scalp wounds were re-opened, and the disposable extension connecters removed and 

discarded. Two 60 cm extension cables were connected to the subcutaneous end-terminals of 

the DBS leads, and tunnelled down through the subcutaneous soft tissue on the left side of the 

neck. A 5-6 cm incision was made in the left pectoral area and an Activa PC IPG (Medtronic, 

Minneapolis, MN, USA) was implanted sub-muscularly. The distal terminals of the extension 

cables were connected to the IPG ports. Following thorough irrigation and careful 

haemostasis all wounds were closed (vicryl sutures to subcutaneous tissues, galea and nylon 

sutures to skin). Prophylactic systemic antibiotics (Cefuroxime 1.5 g) were again 

administered intra-operatively, and three more doses were administered over the subsequent 

24 hours. Patients were reviewed in the recovery suite both by the operating neurosurgeon 

and a neurologist (myself) to confirm that there was no new neurological deficit following 

surgery. Once awake the patients were transferred back to the main ward to recover over the 

following few days. Patients were only discharged home once they had fully recovered to 

their baseline pre-operative level of functioning (on average 3-4 days post-operative). DBS 

systems remained switched off during this period, and on discharge. 

All adverse events were recorded immediately post-operatively, throughout the rest of the 

trial period, and beyond into the open label follow up period. 
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2.1.7 Externalised assessments 

As mentioned above, following electrode implantation all patients had their electrodes 

externalised on the ward for five to seven days before IPG implantation. During this time 

three types of assessment were performed on each patient: 

1. Trial simulation: this was performed both to assess for any side effects of acute 

simulation (which might have the potential to unblind the patient later on at the 

randomisation stage), and also to ascertain that stimulation would be both safe and 

tolerable for each patient during MEG recordings performed during subsequent days. 

Two days after electrode implantation, when the patient was fully awake and had largely 

recovered to baseline level of function on the ward, the externalised electrodes were each 

connected to an external stimulator in turn. Frequency was kept constant at 20 Hz and 

pulsewidth constant at 60 µs during all assessments. With the left electrode connected 

first, monopolar stimulation was tested first using each of the two deepest contacts in turn 

(0-, then 1-) with escalating amplitudes up to a maximum of 3.0 V. Bipolar stimulation 

was then tested using the same electrode, first using the deepest contact pair (0-1+), and 

then the second deepest pair (1-2+) with escalating amplitudes up to a maximum of 3.0 V. 

The same procedure was then repeated for the right electrode. Any subjective symptoms 

reported by the patient or observed by the assessing neurologist at a particular stimulation 

setting were meticulously recorded. 

2. Local field potential (LFP) recordings: the patients attended our research laboratory 

during the daytime having taken their usual medications. Their externalised electrodes 

were connected to an amplifier and we recorded bilateral LFPs simultaneously from 

NBM and GPi in each patient, first at rest, then while they performed customised versions 

of Posner’s covert attention test (a test of orienting of visual attention) and the sustained 

attention to response task (SART, a test of sustained attention or vigilance). These LFP 

recordings are described in detail in Chapter 4. 
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3. Magnetoencephalography (MEG) recordings: patients attended our MEG scanning suite 

during the daytime having taken their usual medications. Their externalised electrodes 

were connected to an amplifier, while the patient was seated in a 275 channel CFT MEG 

system (VSM Medtech Ltd., Vancouver, Canada). We simultaneously recorded bilateral 

NBM and GPi LFPs and cortical MEG at rest. We then connected each electrode in turn 

to a custom-built stimulation-record amplifier and simultaneously recorded contralateral 

NBM and GPi LFPs and cortical MEG during ipsilateral monopolar NBM stimulation at 

20Hz. Finally, we simultaneously recorded bilateral NBM and GPi LFPs and cortical 

MEG during ipsilateral bipolar NBM stimulation at 20Hz, for each hemisphere in turn. 

These combined LFP and MEG recordings are described in detail in Chapter 5. 

2.1.8 Post-operative procedures 

All participants underwent their first post-operative assessment one week after pulse 

generator implantation (Fig. 8). An abbreviated cognitive battery was performed, consisting 

of: California Verbal Learning Test-II (CVLT-II), the Wechsler Adult Intelligence Scale-III 

(WAIS-III) digit span, verbal fluency, Posner’s covert orienting of attention test and Simple 

and Choice Reaction Times (these tests are discussed in more detail below in 2.1.9 Primary 

outcome measures). These selected tests from the detailed neuropsychological battery are 

amenable to repeated administration due to tests being either less susceptible to practice 

effects or parallel versions being available.  

Three weeks later patients attended for 24 hours and were screened for the effects of 

stimulation in an open label manner, using the WAIS-III digit span (a test of attention and 

executive function) as an objective measure. Only low frequency stimulation at 20Hz was 

used (for the reasons discussed above in Chapter 1). Only monopolar stimulation was used at 

a pulsewidth of 60 µs. Optimum stimulation voltages were determined as those producing 

highest digit spans with the lowest energy, without side-effects, and these were adopted for 

the blinded phase (Table 1). DBS was subsequently turned off for two weeks, and then 
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patients were randomised into the simulation off-first or on-first group for the subsequent six 

weeks. Following this there was a two-week washout period (DBS off), then patients were 

switched over to the opposite condition for a further six weeks. All assessments performed at 

baseline were repeated at the end of each six-week period, except for measures of IQ (Fig. 8). 

The abbreviated cognitive battery was performed immediately prior to each change in DBS 

condition, as well as 24 hours afterwards. All trial assessments were performed by a clinician 

blinded to stimulation status. Minor adjustments to concomitant licenced medications were 

permitted throughout the blinded trial period, aside from changes to the doses of any AChEIs 

being taken. 

After the blinded crossover phase patients were given the option of having NBM stimulation 

permanently switched on, or receiving conventional GPi DBS (through the superior electrode 

contacts) for motor symptoms. Patients were invited to routine follow-up with 

neuropsychological assessments and open-label DBS adjustments at least every six months. 

2.1.9 Primary outcome measures 

The pre-specified primary outcomes were the differences in scores on each item of the 

abbreviated cognitive battery between the two blinded stimulation conditions (after six weeks 

on-stimulation vs after six weeks off-stimulation). These included: 

• CVLT-II: A list of 16 nouns, with four items drawn from each of four semantic categories, 

is read to the patient, who then attempts to recall as many words as possible in any order. 

Performance on this single first trial gives a measure of attention/working memory which 

is relatively free of the influence of fatigue (immediate free recall Trial 1). This task is 

repeated four more times, making a total of five learning trials. Learning efficiency is 

approximated by the sum of the scores of all five learning trials (immediate free recall T 

score). Ability to access newly learned information is assessed by the number of words 

retained by the patient after a 20 minute interval (long delay free recall) and the 

percentage of words retained from those previously learnt (retention) (Delis et al., 2000). 
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• Digit span: in this subtest from the WAIS-III patients are first required to listen to and 

verbally repeat number sequences of increasing length (digits forwards), a test of auditory 

attention span. Secondly patients are asked to listen to and verbally reverse number 

sequences of increasing length presented (digits backwards), a test of manipulation in 

working memory (executive function) (Wechsler, 1997). 

• Verbal fluency: the verbal fluency subtest from the Delis-Kaplan Executive Function 

System measures the ability to generate words meeting phonemic or semantic criteria, 

thereby testing executive retrieval of verbal information (Delis et al., 2001). 

• Posner’s covert orienting of attention test: measures reaction speed to a lateralised visual 

target, preceded by a cue prompting to either the correct or incorrect side of upcoming 

target presentation. This measures speed of orienting of attention (Posner, 1980). We used 

a customised computerised version of this test, described in detail in Chapter 4. The 

proportion of correct responses is also measured as a percentage of total targets presented. 

• Simple and Choice Reaction Times: these tests measure the speed of psychomotor 

responses to visual targets where the stimulus is either predictable (simple reaction time) 

or unpredictable (choice reaction time), providing surrogate measures of alertness. We 

used the computerised version of this test included in the Cambridge Neuropsychological 

Test Assessment Battery (CANTAB). 

 

Higher scores on all these tests indicate better performance, aside from measures of reaction 

speed (Posner’s covert orienting of attention test and Simple and Choice Reaction Times). 

2.1.10 Secondary outcome measures 

Secondary outcomes included changes in the following neuropsychological tests (which 

together with the abbreviated battery above comprised the detailed neuropsychological 

battery). Higher scores are better on all these neuropsychological tests. 
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• MMSE: a brief general screening instrument for cognitive impairment (Folstein et al., 

1975). Although it is the most commonly used screening instrument for dementia 

worldwide, its dependence on age and educational level hinders the use of a rigid cut-off 

score (Crum et al., 1993). 

• Mattis Dementia Rating Scale 2: a test of global cognitive function (Jurica et al,. 2001), 

shown to sensitively measure the degree of cognitive deficits in patients with PD/PDD 

(Kulisevsky and Pagonabarraga, 2009). 

• Short recognition memory test for faces: in this test of recognition memory for faces 

patients are presented with a series of 25 photographs of faces at the rate of one face 

every 3 s, and for each face the subject is required to judge the presented stimulus as 

‘pleasant’ or ‘unpleasant’ to ensure that they are attending to the stimulus items. The 

patient is then presented with a series of 25 pairs of faces and the task is to identify which 

of the two faces came from the target list (Warrington, 1996). 

• WAIS-III arithmetic and letter-number sequencing subtests: in the former patients are 

asked mental arithmetic problems of increasing difficulty, a test of manipulation in 

working memory (executive function). In the latter patients listen to a series of numbers 

and letters in random order and must recall them in numerical followed by alphabetical 

order, a test of auditory attention span and manipulation in working memory (executive 

function). The age-adjusted scaled scores for both tests are combined with that for digit 

span to give an overall working memory index (Wechsler, 1997).  

• Trail making test: this subtest from the Delis-Kaplan Executive Function System is an 

expanded version of the original trail making test and includes five conditions: visual 

search, number sequencing, letter sequencing, number-letter switching and motor speed. 

In each condition patients must draw to connect numbers and/or letters on a page in a 

specific order as fast as possible. Number sequencing and letter sequencing scores are 

measures of psychomotor processing speed, while number-letter sequencing score is a 

measure of behavioural regulation/set shifting (executive function). The visual search and 
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motor speed scores provide indexes of deficits in visual attention and motor control 

respectively, and can be used to control for the confounding effects of such deficits on the 

other task conditions. (Delis et al., 2001). 

• WAIS-III symbol search and digit-symbol coding subtests: in the former patients are 

presented with a series of target symbols and must identify whether these are present in 

corresponding rows of symbols under a strict time limit. In the latter a key containing 

nine digit-symbol pairs is presented, followed by a table of digits. Under each digit in the 

table the patient must write down the corresponding symbol (according to the key) as fast 

as possible, within a strict time limit. Both are tests of executive control of 

attention/processing speed, and from their combined age-adjusted scaled scores a 

processing speed index is derived (Wechsler, 1997). 

• Florida Apraxia Screening Test: a test of ideational praxis wherein patients must produce 

15 gestures to command. A score of nine or below on the FAST has previously been 

shown to demonstrate good sensitivity for a diagnosis of apraxia (Rothi and Heilman, 

1984). 

 

 

Additional secondary outcome measures included changes on the following validated scales. 

Higher scores indicate greater functional impairment on all scales except for the EuroQol 

VAS. 

o MDS Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): a comprehensive 

assessment of the severity of all motor and non-motor symptoms in PD, comprising sixty-

five items (score range 0-260) (Movement Disorder Society Task Force on Rating Scales 

for Parkinson’s Disease, 2003). We evaluated motor symptoms using Part III (the motor 

subscale), both in the absence of dopaminergic medications (OFF state) and one hour 

after administration of dopaminergic medications (ON state). 
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o Freezing of Gait (FOG) Questionnaire: this six–item scale (range 0–24) consists of four 

items that assess FOG frequency and duration, and two that assess the impact of gait 

difficulties in general (Giladi et al., 2000). It was found that the FOG questionnaire has 

high test-retest reliability, internal consistency and moderately high correlations with 

MDS-UPDRS motor and ADL scores (Giladi et al., 2009).  

o Parkinson’s Disease Questionnaire (PDQ-39): a self-reported questionnaire consisting of 

39 questions assessing quality of life in PD patients (score range 0-156, summary index 

expressed as %).  

o Scales for Outcomes in Parkinson’s Disease (SCOPA)-Sleep: a self-reported 

questionnaire consisting of 11 questions assessing problems with day and night sleeping 

in PD patients (score range 0-33) (Marinus et al., 2003). 

o SCOPA-Autonomic symptoms scale: a self-reported questionnaire consisting of 23 

questions assessing symptoms of autonomic dysfunction in PD patients (score range 0-

69) (Visser et al., 2004). 

o Non-motor symptoms questionnaire: a self-reported questionnaire consisting of 30 

questions assessing presence of a range of non-motor symptoms in PD patients 

(Chaudhuri et al., 2006). 

o Starkstein Apathy Scale: a clinician-administered 14 item questionnaire assessing apathy 

symptoms in PD patients (score range 0-42) (Starkstein et al., 1992). 

o EuroQol visual analogue scale (VAS): generic self-reported measure of overall health 

state on a visual analogue scale of 0-100 

o The Neuropsychiatric Inventory: a clinician-administered caregiver-reported 

questionnaire assessing 12 psychiatric symptoms/behavioural disturbances which may be 

present in dementia patients, capturing frequency and severity of each and distress caused 

to the caregiver (Cummings et al., 1994). 
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o Blessed dementia scale: a clinician-administered caregiver-reported questionnaire 

assessing presence or absence of 22 functional impairments and behavioural disturbances 

due to dementia (score range 0-28) (Blessed et al., 1968). 

o Hamilton Depression Scale: a clinician-assessed 21 item inventory measuring severity of 

depressive symptoms (score range 0-68) (Hamilton, 1960). 

o Hamilton Anxiety Scale: a clinician-assessed 14 item inventory measuring severity of 

anxiety symptoms (score range 0-56) (Hamilton, 1959). 

Throughout the blinded trial period and subsequent open-label follow up period adverse 

events were systematically recorded. 

 

2.1.11 Statistical analysis 

The sample size of this study was based on practical considerations. We planned to recruit six 

patients on the basis of (1) an estimate of the number of eligible patients under active follow 

up in our clinics, and (2) the fact that the safety of NBM DBS implantation in this vulnerable 

patient group is currently unknown, necessitating a cautious approach to recruitment. This is 

therefore a pilot trial with a small sample size and even the primary outcomes are principally 

exploratory in nature. To maximise transparency of the results, all individual outcome data 

are presented. Statistical comparisons are performed simply to highlight the most consistent 

differences at group level according to on- vs off-stimulation, and are not corrected for 

multiple comparisons. Two-tailed Wilcoxon signed ranks tests were used in paired 

observations when the distribution of differences was symmetrical, and two-tailed related-

samples Sign tests otherwise. For comparisons according to randomisation sequence two-

tailed Mann-Whitney U tests were performed. All data were analysed using Statistical 

Package for the Social Sciences version 22.0 software.  
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2.2 Results 

Between 26th October, 2012, and 15th July, 2015, we assessed 25 patients and enrolled eight 

into the study. Two patients passed inclusion/exclusion criteria but were subsequently 

excluded prior to surgery: one decided he wanted GPi DBS for motor symptoms only. The 

other was determined unsafe for anaesthesia due to severe postural hypotension. Six patients 

(all male, mean age 65.17 years (SD 10.74)) therefore proceeded to NBM DBS implantation. 

Table 1 summarises their clinical characteristics and also details the stereotactic coordinates 

of their active NBM contacts and the stimulation parameters used for the blinded period. Fig. 

10 shows Schaltenbrand atlas locations of active NBM contacts in all patients (Schaltenbrand 

and Wahren, 1977), demonstrating that the most ventral active contact was successfully 

placed in the Ch4i subsector of NBM in each patient. In all patients with a second active 

contact per hemisphere (Patients A, B, C and F), this was located on the NBM/GPi border. 

Surgery was well tolerated and all patients were ambulatory within 24 hours and fully 

oriented within 48 hours. All six patients completed the blinded crossover phase and were 

included in analysis. 

Four patients had medication changes during the blinded trial period: Patient A had his 

levodopa increased by 300 mg at the start of the second blinded condition (off-stimulation) 

due to worsening limb rigidity - an increase in daily levodopa equivalent dose (LED, 

(Tomlinson et al., 2010))to 800 mg. His fludrocortisone dose was also increased by 50 

micrograms halfway through the second condition due to worsening postural hypotension. 

Patient C commenced oxybutynin 5 mg after surgery for urinary frequency, and continued on 

this throughout both blinded conditions. Patient E commenced fludrocortisone 100 

micrograms after surgery for postural hypotension, and continued on this throughout both 

blinded conditions. Patient F switched from Duodopa® to levodopa 400 mg during the first 

blinded condition (on-stimulation) due to jejunal tube blockage (a reduction in LED to 700 

mg).
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Table	1:		 Baseline	clinical	characteristics	of	the	PDD	study	sample,	and	parameters	used	during	the	blinded	stimulation	period

Patient Sex Age	at	
surgery	
(yrs)

Disease	
duration	
(yrs)

Hoehn	&	
Yahr	
stage

Dementi
a	
duration	
(yrs)

Visual	
hallucin-	
ations?

NART	
estimated	
premorbid	
IQ

WASI	
measured	
current	IQ				
(95%	CI)

MMSE Mattis	Dementia	
Rating	Scale	2											
(Raw,	Scaled)

Co-morbidities Concomitant	medications	at	
enrolment	(total	daily	doses)

Daily	levodopa	
equivalent	
dose	(LED,	
mg/day)†

Daily	total	
cholinesteras
e	inhibitor	
dose											
(mg/day)

Active	
contacts	
(monopolar)

Stereotactic						
coordinates							
(x,y,z)◊

Stimulation	
parameters

A M 61 14 3 4 yes 122							

(superior)

97	(91-103)	

(average)

25 124,	Scaled	5	

(moderately	

impaired)

Psoriasis,	renal	

calculi,	prolapsed	

intervertebral	disc

L-dopa	500	mg,	rivastigmine	

3	mg,	fludrocortisone	100	

mcg

500 3 0,1,8,9 -17.6,	8.5,	-6.1				

19.3,	9.5,	-4.8

1.5	V,	60	µs,	

20Hz

B M 65 11 2 3 no 95*										

(average)

65	(61-72)*	

(impaired)

24 116,	Scaled	3							

(severely	

impaired)

None L-dopa	525	mg,	CR	L-dopa	

300	mg,	entacapone	600	mg,	

rivastigmine	4.6	mg,	

simvastatin	40	mg

923.25 4.6 0,1,8,9 -19.0,	5.0,	-2.9			

18.5,	5.6,	-3.8

3.0	V,	60	µs,	

20Hz

C M 75 11 2 2 yes 101							

(average)

81	(76-87)					

(low	

average)

25 126,	Scaled	6											

(mildly	impaired)

Cholelithiasis,	renal	

calculi

L-dopa	500	mg,	pramipexole	

0.7	mg,	rasagaline	1mg,	

venlafaxine	75	mg,	

rivastigmine	6	mg,	

lansoprazole	30	mg

670 6 0,1,8,9 -19.0,	5.0,	-3.8			

17.9,	5.0,	-3.9	

3.0	V,	60	µs,	

20Hz

D M 73 15 3 1 yes 120						

(superior)

98	(92-104)	

(average)

25 110,	Scaled	3						

(severely	

impaired)

Benign	prostatic	

hypertrophy

CR	L-dopa	400	mg,	

ropinirole	4mg,	propranolol	

160	mg,	rivastigmine	6mg,	

pantoprazole	20	mg,	

simvastatin	10	mg,	alfuzosin	

10	mg,	finasteride	5	mg	

380 6 1,9 -21.4,	5.8,	-5.8			

23.0,	5.3,	-3.8

3.0	V,	60	µs,	

20Hz

E M 46 10 2 5 no 113															

(high	

average)

71	(67-78)	

(impaired)

22 108,	Scaled	2							

(severely	

impaired)

None L-dopa	500	mg,	CR	L-dopa	

100	mg,	rivastigmine	12	mg,	

fesoterodine,	citalopram	10	

mg

575 12 0,8 -22.2,	5.2,	-5.2			

20.2,	5.4,	-6.2

3.0	V,	60	µs,	

20Hz

F M 71 15 3 3 no 114															

(high	

average)

63	(59-70)	

(impaired)

21 101,	Scaled	2						

(severely	

impaired)

None CR	L-dopa	400	mg,	Duodopa	

24	mls,	quetiapine	12.5	mg,	

rivastigmine	9mg

833 9 0,1,8,9 -20.8,	4.9,	-6.4		

19.7,	7.0,	-5.5

3.0	V,	60	µs,	

20Hz

Group	
Mean

65.17 12.67 2.50 3.00 110.83 79.17 23.67 114.17 646.88 6.77 -20,	6,	-5

Group	
SD 10.74 2.25 0.55 1.41 10.68 15.52 1.75 9.68 204.71 3.24 20,	6,	-5

†	LED	calculation	as	per	protocol	in	Tomlinson	et	al.,	2010.			◊	Mean	stereotactic	co-ordinates	of	the	active	contacts	in	left	and	right	hemispheres	respectively,	with	reference	to	the	mid-commissural	point	of	the	AC-PC	plane.

Dementia	duration	was	estimated	by	examining	the	patient's	medical	notes	and	collateral	history	from	the	caregiver	to	determine	the	time	at	which	cognitive	decline	began	to	interfere	with	normal	occupational	or	social	function.	The	Mattis	

Dementia	Rating	Scale	2	Scaled	score	is	corrected	for	age	but	not	education.	CR	=	controlled	release	preparation.	SD	=	standard	deviation.

*	English	was	not	the	first	language	for	Patient	B,	therefore	premorbid	and	actuaI	IQs	may	be	underestimated.	
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Figure 10a: Coronal sections from Schaltenbrand atlas taken 7.5mm and 5.0mm anterior to the 
midcommissural point to indicate location of active DBS contacts during the blinded phase (Patients 
A through F). The optic tract (II) and the lateral extension of the anterior commissure (Cm.a) are 
coloured light blue. The Nucleus Basalis of Meynert (B) lies between these two structures (yellow) and 
inferior to the globus pallidus (Pars medialis interna, medialis externa and lateralis: P.mi, P.me and 
P.l). Figure adapted from Schaltenbrand and colleagues (plates 25–26) by permission of Thieme.
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Figure 10b: Location of active DBS contacts for each patient on their individual MRI images (Patients A through F). The locations of the most ventral active contacts (in 
NBM) are shown on representative coronal and axial post-operative MRI images for each patient, and correspond to those shown in Figure 10a above.  

 

Patient	A Patient	B Patient	C

Patient	D Patient	E Patient	F
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Trial stimulation through the externalised electrodes in the immediate post-operative period 

did not produce any subjective or objective side effects in the majority of the patients (B, C, 

D, E, F). In Patient A however, bipolar stimulation of the right NBM (0-, 1+, 60µs, 20Hz) at 

0.4V induced subjective paraesthesias in the left toes. As stimulation voltage was increased 

the subjective paraesthesias increased and spread up the left leg to include the thigh. These 

were described by the patient as a “feeling of quivering” in the left leg, though no actual 

movement of the left leg was observed. Increasing the frequency of stimulation to the right 

NBM to 130Hz induced visual illusions between 1.5-3.0V: across these voltages the patient 

perceived his bedclothes to be “billowing”, when in reality they were motionless on his bed. 

We then switched over to bipolar stimulation of the left NBM (0-, 1+, 60µs, 20Hz). At 3.0V 

the patient reported seeing a figure dressed as Aladdin at the end of his bed. This was 

followed after a couple of minutes by the perception of a watering can on his bed, and 

thereafter by the perception of a blue fish swimming near the end of his bed. On cessation of 

NBM stimulation these visions abruptly disappeared. Increasing the frequency of stimulation 

to the left NBM to 130Hz produced a feeling of inner unease in the patient up to 3.0V, but no 

visual misperceptions. Bipolar stimulation of right and then left GPis (2-, 3+, 60µs), first at 

20Hz (up to 3.0V) and then at 130Hz (up to 3.0V) produced no perceptible side effects on 

either side. Therefore, stimulation of the left NBM in this patient appeared to reversibly 

induce complex formed visual hallucinations, which were specific to bipolar stimulation at 

low frequency. However, trial stimulation was conducted only one day post-operative in 

Patient A, and it seems likely that anaesthetic side effects would still have been present and 

might have contributed to the observations described above. 

When he returned for open-label parameter screening one month later, Patient A did not 

experience any perceptible side effects from low frequency NBM stimulation at all, and no 

objective side effects were observed by the trial team. None of the other patients experienced 

any perceptible side effects from low frequency NBM DBS at parameter screening either, and 
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again no objective side effects were observed by the trial team. In light of this it seems likely 

that patient and carer blinding was adequately maintained throughout the blinded trial period. 

Table 2 summarises the pre-specified primary outcome data at group level, while individual 

results for all patients are presented in Tables 3 and 10. None of the blinded on- vs off- 

primary outcome comparisons achieved conventional threshold for statistical significance. 

The most consistent finding was that three of six patients (Patients D, E and F) showed an 

improvement in CVLT-II retention in memory Z scores on-stimulation compared to both off-

stimulation and baseline, with no between-group differences according to randomisation 

order (p= 0.7 and p=0.4 for scores off- and on-stimulation respectively). Comparison at group 

level of retention in memory Z scores between baseline and on-stimulation conditions showed 

a significant median improvement of 1.5 (p=0.042). A similar pattern was seen with acute 

NBM stimulation, with four of six patients showing improvement in retention in memory Z 

scores after 24 hours on-stimulation (Table 9). In contrast however, percentage accuracy on 

Posner’s covert attention test was worse on-stimulation in five of the six patients (Table 3).  
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Table	2: 		Group	level	primary	and	selected	secondary	outcome	measures

Primary	Outcome	Measures

California	Verbal	Learning	Test	II

Immediate	free	recall	(Trial	1)	(Z	score) -2.67 (0.98) -1.33 (1.78) -1.25 (1.29)

Immediate	free	recall	(T	score) 37.83 (8.33) 38.17 (13.23) 31.17 (8.45)

Long	delay	free	recall	(Z	score) -1.50 (0.95) -0.42 (1.11) -1.25 (0.61)

Retention	(Z	score) -1.00 (0.89) 0.50 (0.95) 0.50 (0.63)

WAIS-III	digit	span	(raw	scores)

Digits	forwards		(range	0-16) 9.00 (2.00) 8.67 (0.82) 7.50 (0.84)

Digits	backwards	(range	0-14) 4.00 (1.67) 4.17 (0.75) 4.33 (1.63)

D-KEFS	Verbal	Fluency	Test	(scaled	scores)

Letter	Fluency 4.00 (2.00) 3.83 (2.23) 3.17 (1.94)

Category	Fluency 2.67 (2.07) 2.00 (0.63) 2.50 (2.81)

Category	Switching	Total	Correct 2.00 (1.67) 1.50 (0.84) 2.00 (1.67)

Posner's	covert	attention	test

Total	accuracy	(0-100%) 62.03 (22.44) 56.89 (29.05) 46.91 (18.35)

Posner	effect	-	reorienting	time	(ms)◊ 4.52 (57.81) -28.55 (52.41) -5.72 (37.33)

CANTAB	Reaction	Time	Test

Simple	Reaction	Time	(ms) 552.80 (209.44) 604.83 (230.47) 526.20 (158.52)

Choice	Reaction	Time	(ms) 490.50 (4.95) 551.50 (96.87) 547.50 (34.65)

Selected	Secondary	Outcome	Measures

Mini-Mental	State	Examination	(MMSE) 23.67 (1.75) 21.83 (2.23) 22.83 (3.25)

Mattis	Dementia	Rating	Scale	2	(raw	score) 114.17 (9.68) 116.83 (9.64) 116.17 (7.39)

Neuropsychiatric	Inventory

Total	score	(0-144) 14.00 (6.54) 18.00 (12.51) 12.50 (10.31)

Caregiver	distress	score	(0-60) 8.17 (6.15) 7.33 (5.99) 6.83 (6.08)

Hallucinations	subscale	(0-12) 2.33 (3.39) 1.83 (1.60) 1.00 (1.26)

MDS	-UPDRS	Part	IV	score	(range	0-24) 7.17 (3.87) 5.50 (2.17) 4.00 (1.26)

Group	mean	 (standard	deviation)

Baseline OFF ON

All	scaled	scores/Z	scores/T	scores	are	age-adjusted.	Posner	task	total	accuracy	is	%	of	
presented	targets	correctly	responded	to.	Higher	scores	are	better	on	all	tests,	except	for	
measures	of	reaction	time,	Neuropsychiatric	Inventory	subscales	and	MDS-UPDRS	
(Movement	Disorders	Society	Unified	Parkinson's	Disease	Rating	Scale)	Part	IV	scores,	in	
which	lower	scores	are	better.	◊	=	scores	closer	to	zero	are	better	for	Posner	reorienting	
time.
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Table	3:		 Primary	outcome	measures	at	baseline,	end	of	the	blinded	off-stimulation	period	and	end	of	the	blinded	on-stimulation	period

Patient

B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON

A -1.50 -3.00 -2.00 50.00 27.00 28.00 0.00 0.00 -1.00 -0.50 2.00 1.00 13 8 8 4 4 4 6 3 3 6 3 1 1 1 1 1 1 1 48 54 32 25 16 10 792 433 564 577 626 NA

B -3.00 -2.00 -2.00 26.00 31.00 30.00 -2.50 -1.50 -2.00 0.00 0.50 0.00 8 10 8 3 3 5 3 2 1 1 1 1 5 2 5 6 3 6 82 94 66 17 -22 -43 693 523 515 487 620 572

C -3.00 2.00 1.00 42.00 62.00 46.00 -1.00 1.50 -1.00 -1.50 1.00 -0.50 8 9 6 4 5 4 5 8 6 3 2 3 1 1 3 1 1 1 82 81 73 71 42 -9 332 523 326 494 483 523

D -1.50 -1.50 -1.50 41.00 45.00 26.00 -2.50 -0.50 -2.00 -2.50 -0.50 0.50 8 8 8 7 5 7 6 4 4 4 2 8 3 3 1 4 1 1 31 17 43 -74 -65 -14 610 1040 761 NA 896 NA

E -4.00 -2.50 -0.50 35.00 30.00 35.00 -1.50 -0.50 -0.50 -1.00 0.50 1.00 9 8 7 4 4 4 1 4 4 1 2 1 1 1 1 1 3 1 81 64 40 46 -41 59 337 436 NA 329 499 NA

F -3.00 -1.00 -2.50 33.00 34.00 22.00 -1.50 -1.50 -1.00 -0.50 -0.50 1.00 8 9 8 2 4 2 3 2 1 1 2 1 1 1 1 1 1 1 48 32 28 -57 -101 -38 NA 674 465 NA NA NA

Group	
Mean -2.67 -1.33 -1.25 37.83 38.17 31.17 -1.50 -0.42 -1.25 -1.00 0.50 0.50 9.00 8.67 7.50 4.00 4.17 4.33 4.00 3.83 3.17 2.67 2.00 2.50 2.00 1.50 2.00 2.33 1.67 1.83 62.03 56.89 46.91 4.52 -28.55 -5.72 552.80 604.83 526.20 490.50 551.50 547.50

Group	
SD 0.98 1.78 1.29 8.33 13.23 8.45 0.95 1.11 0.61 0.89 0.95 0.63 2.00 0.82 0.84 1.67 0.75 1.63 2.00 2.23 1.94 2.07 0.63 2.81 1.67 0.84 1.67 2.16 1.03 2.04 22.44 29.05 18.35 57.81 52.41 37.33 209.44 230.47 158.52 4.95 96.87 34.65

Choice	Reaction	Time	
(ms)*

B	=	Baseline,	OFF	=	end	of	blinded	off-stimulation	period.	ON	=	end	of	blinded	on-stimulation	period.	All	scaled	scores/Z	scores/T	scores	are	age-adjusted.	Posner	task	total	accuracy	is	%	of	presented	targets	correctly	responded	to.	Higher	scores	are	better	on	all	tests,	except	for	measures	of	reaction	time	and	
reorienting	time.	Results	highlighted	in	green	indicate	those	where	ON	stimulation	score	was	better	than	both	OFF	stimulation	and	baseline	scores,	by	at	least	one	Z	score/one	T	score/one	scaled	score/10%	raw	score/50	ms	increase	compared	to	both.	Results	highlighted	in	red	indicate	those	where	ON	
stimulation	score	was	worse	than	both	OFF	stimulation	and	baseline	scores,	by	at	least	one	Z	score/one	T	score/one	scaled	score/10%	raw	score/50	ms	decrease	compared	to	both.	*	=	lower	scores	better.	◊	=	scores	closer	to	zero	are	better.	NA	=	performance	too	poor,	no	normative	data	available	to	standardise	
score.	SD	=	standard	deviation.	WAIS-III	=	Wechsler	Adult	Intelligence	Scale-III.

Letter	Fluency Category	
Fluency

Category	
Switching	Total	
Correct

Total	accuracy					(0-
100%)

Posner	effect	-	
reorienting	time	
(ms) ◊

Simple	Reaction	Time	
(ms)*

Immediate	free	recall												
Trial	1	(Z	score)

Long	delay	free	recall												
(Z	score)

Retention																																	
(Z	score)

Digits	forwards		
(range	0-16)

Digits	
backwards	
(range	0-14)

Category	
Switching	
Accuracy

immediate	free	recall												
(T	score)

California	Verbal	Learning	Test	II WAIS-III	digit	span	(raw	scores) D-KEFS	Verbal	Fluency	Test	(scaled	scores) Posner's	covert	attention	test CANTAB	Reaction	Time	Test
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Figure 11: Effects of nucleus basalis of Meynert DBS on selected primary and secondary outcome measures. All graphs show individual results for all patients 
(dotted lines) and superimposed group mean results (solid lines) as per key. Please note that in both Graphs A and B (left side of figure) higher scores are better, 
whereas in Graphs C and D (right side of figure) lower scores are better. In Graph A all Z-scores are age-adjusted. CVLT-II = California Verbal Learning Test II, 
MDS-UPDRS = Movement Disorders Society Unified Parkinson's Disease Rating Scale, MMSE = mini-mental state examination. 
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Tables 2, 4 and 10 present secondary outcome cognitive measures. There was no consistent 

advantage on-stimulation vs off-stimulation on global cognitive measures, or on focal 

measures of working memory, psychomotor speed, facial recognition memory, task-switching 

or praxis. 

Tables 2, 5 and 10 present secondary outcome psychiatric measures. Four of six patients 

(Patients A, C, D and E) showed improvement in Neuropsychiatric Inventory total scores 

(NPI total, Tables 2 and 5) on-stimulation compared to both off-stimulation and baseline (see 

also Fig. 11). Comparison at group level between on- and off-stimulation conditions showed a 

significant median improvement of -5 points with NBM DBS on (p=0.027). There were no 

between-group differences in NPI total scores according to randomisation sequence (p=1.0 

and p=0.7 for scores off- and on-stimulation respectively). The improvement in NPI total 

score with NBM DBS on was primarily driven by a reduction in hallucinations subscale 

scores in Patients A and D (Table 5). At baseline Patients A, C and D reported daily complex 

visual hallucinations while Patient B reported regular extracampine hallucinations only. 

Patients A and D both experienced near complete cessation of visual hallucinations after 

surgery when NBM stimulation was turned on, followed by a resurgence of hallucinations 

when stimulation was subsequently turned off (Fig. 12). There was no effect of either surgery 

or stimulation on the more minor visual or extracampine hallucinations of Patients C and B 

respectively. There was no consistent advantage on-stimulation vs off-stimulation on 

measures of anxiety, depression or apathy (Tables 5 and 10). 
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Table	4:		 Secondary	outcome	measures	(cognitive)	at	baseline,	end	of	the	blinded	off-stimulation	period	and	end	of	the	blinded	on-stimulation	period

Patient

B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON

A 25 24 24 124 122 114 75 73 75 71 66 60 24 24 23 8 1 1 1 1 1 15 15 14

B 24 25 24 116 130 125 82 73 75 63 63 63 20 19 21 1 1 3 1 1 1 14 13 13

C 25 22 22 126 112 114 73 80 78 63 60 60 21 21 17 4 1 1 NC NC NC 15 15 15

D 25 20 28 110 112 122 80 67 94 69 71 66 21 20 19 1 1 1 1 1 1 15 14 15

E 22 20 19 108 122 118 63 65 61 57 57 57 21 21 20 1 1 1 1 1 1 15 13 13

F 21 20 20 101 103 104 63 71 67 63 63 NC 17 19 20 1 1 1 1 1 1 14 15 15

Group	
Mean 23.67 21.83 22.83 114.17 116.83 116.17 72.67 71.50 75.00 64.33 63.33 61.20 20.67 20.67 20.00 2.67 1.00 1.33 1.00 1.00 1.00 14.67 14.17 14.17

Group	
SD 1.75 2.23 3.25 9.68 9.64 7.39 8.16 5.28 11.22 5.01 4.84 3.42 2.25 1.86 2.00 2.88 0.00 0.82 0.00 0.00 0.00 0.52 0.98 0.98

MMSE
Mattis	Dementia	
Rating	Scale	2	(total	 WAIS-III	(indices	of	scaled	scores)

Short	Recognition	
Memory	for	Faces

B	=	Baseline,	OFF	=	end	of	blinded	off-stimulation	period.	ON	=	end	of	blinded	on-stimulation	period.	All	scaled	scores	are	age-adjusted.	Higher	scores	are	better	on	all	tests.	Results	highlighted	
in	green	indicate	those	where	ON	stimulation	score	was	better	than	both	OFF	stimulation	and	baseline	scores,	by	at	least	one	scaled	score/10%	raw	score	increase	compared	to	both.	Results	
highlighted	in	red	indicate	those	where	ON	stimulation	score	was	worse	than	both	OFF	stimulation	and	baseline	scores,	by	at	least	one	scaled	score/10%	raw	score	decrease	compared	to	both.	
NC	=	not	completed.	SD	=	standard	deviation.

Florida	Apraxia	
Screening	Test

(range	0-30) (range	0-144) Working	memory	
index

Processing	speed	
index

(range	0-25) number	
sequencing

number-letter	
switching

(range	0-15)
D-KEFS	Trail	Making	Test	(scaled	scores)
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Table	5:		 Secondary	outcome	measures	(psychiatric)	at	baseline	and	at	ends	of	the	blinded	off-	and	on-stimulation	periods

Patient

B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON

A 3 6 3 4 6 2 13 19 17 5 8 4 7 4 3 1 4 0 9 11 9

B 2 2 2 2 2 2 5 5 5 14 29 24 10 15 15 2 3 3 10 8 13

C 2 2 2 2 2 2 13 4 5 12 10 4 0 0 1 2 2 2 14 10 9

D 5 7 7 4 4 4 17 19 13 16 14 13 10 7 5 9 2 1 10 11 10

E 7 6 6 3 2 2 7 10 14 12 9 4 4 4 3 0 0 0 8 9 10

F 8 9 8 4 8 4 24 13 16 25 38 26 18 14 14 0 0 0 13 15 11

Group	Mean 4.50 5.33 4.67 3.17 4.00 2.67 13.17 11.67 11.67 14.00 18.00 12.50 8.17 7.33 6.83 2.33 1.83 1.00 10.67 10.67 10.33

Group	SD 2.59 2.80 2.66 0.98 2.53 1.03 6.88 6.56 5.35 6.54 12.51 10.31 6.15 5.99 6.08 3.39 1.60 1.26 2.34 2.42 1.51

hallucinations	
subscale	(0-12)

(range	0-28)

B	=	Baseline,	OFF	=	end	of	blinded	off-stimulation	period.	ON	=	end	of	blinded	on-stimulation	period.	 L ower	scores	are	better	on	all	above	measures.	
Results	highlighted	in	green	indicate	those	where	ON	stimulation	score	was	10%	better	than	both	OFF	stimulation	and	baseline	scores.	Results	
highlighted	in	red	indicate	those	where	ON	stimulation	score	was	10%	worse	than	both	OFF	stimulation	and	baseline	scores.	SD	=	standard	deviation.

Hamilton	
Depression	
Scale	score

Hamilton	
Anxiety									
Scale	score

Starkstein	Apathy										
Scale	score Neuropsychiatric	Inventory	(12	item	version)

Blessed	Dementia	
Scale

(range	0-68) (range	0-56) (range	0-42) total	score	(0-144) caregiver	
distress						(0-
60)
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Figure 12: Effect of nucleus basalis of Meynert DBS on hallucinations subscale scores on the 
Neuropsychiatric Inventory (NPI). For clarity of viewing, separate graphs of NPI hallucination 
subscale scores are presented above one another for those patients in the stimulation on-first group 
(Patients A and D, above) and those in the stimulation off-first group (Patients B and C, below). Lower 
scores indicate lower frequency and severity of hallucinations. Please note the re-starting of 
numbering on the y-axis between graphs. Patients E and F are not shown as they did not suffer from 
hallucinations at baseline or at any point during the trial. 
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state) on-stimulation compared to both off-stimulation and baseline. Patients B and F reported 

no change, and Patient C reported a decline. This pattern was mirrored by the subjective 

reporting of distress levels by their carers on the NPI (Table 5). 

Other secondary outcome measures relating to non-motor symptoms (SCOPA-sleep, SCOPA-

Aut, Non-motor symptoms questionnaire) are reported in Table 10. There were no consistent 

differences seen across the group with regard to these measures with NBM DBS off- vs on-. 
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Table	6:		 Secondary	outcome	measures	(motor	symptoms	and	quality	of	life)	at	baseline	and	ends	of	the	blinded	off-	and	on-stimulation	periods

Patient

B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON

A 20 18 18 30 40 31 56 68 71 27 24 37 8 8 5 85 90 91 9 15 15 61 66 46 75 50 80

B 20 16 19 15 13 15 50 42 40 33 33 28 3 3 3 71 65 65 10 4 10 46 42 56 53 50 50

C 24 24 20 23 23 21 39 49 42 26 28 37 7 3 2 80 78 80 5 1 0 31 37 37 70 50 46

D 21 16 17 30 28 26 62 68 69 42 54 66 14 7 5 107 105 114 9 7 9 47 49 49 75 80 85

E 12 16 19 31 31 36 49 51 51 37 42 39 7 5 5 87 94 99 14 18 17 46 49 47 56 30 60

F 31 26 24 36 42 40 24 47 39 16 22 22 4 7 4 87 97 90 16 21 22 65 77 69 50 30 50

Group	
Mean 21.33 19.33 19.50 27.50 29.50 28.17 46.67 54.17 52.00 30.17 33.83 38.17 7.17 5.50 4.00 86.17 88.17 89.83 10.50 11.00 12.17 49.33 53.33 50.67 63.17 48.33 61.83

Group	
SD 6.19 4.50 2.43 7.40 10.82 9.37 13.50 11.13 14.59 9.20 12.21 15.12 3.87 2.17 1.26 11.87 14.41 16.63 3.94 8.12 7.63 12.21 15.19 10.86 11.44 18.35 16.74

(range	0-24) (range	0-100%) (range	0-100)

B	=	Baseline,	OFF	=	end	of	blinded	off-stimulation	period.	ON	=	end	of	blinded	on-stimulation	period.	Lower	scores	are	better	in	all	cases,	except	EQ-VAS	health	state	where	a	higher	score	is	better.	
Results	highlighted	in	green	indicate	those	where	ON	stimulation	score	was	10%	better	than	both	OFF	stimulation	and	baseline	scores.	Results	highlighted	in	red	indicate	those	where	ON	stimulation	
score	was	10%	worse	than	both	OFF	stimulation	and	baseline	scores.	EQ-VAS	=	EuroQol	five	dimensions	questionnaire	visual	analogue	scale.	PDQ-39	=	Parkinson's	Disease	Questionnaire,	39	item.	SD	
=	standard	deviation.

Movement	Disorders	Society	Unified	Parkinson's	disease	Rating	Scale
Freezing	of	Gait	
Questionnaire	

PDQ	-	39	summary	
index

EQ-VAS																																
Health	state

Part	I	score																									
(range	0-52)

Part	II	score																								
(range	0-52)

Part	III	score																							
OFF	medication																
(range	0-132)

Part	III	score																							
ON	medication																					
(range	0-132)

Part	IV	score									
(range	0-24)

Total	score																										
ON	medication																								
(range	0-260)
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No serious adverse events occurred during the trial period, however in Patient C erosion of 

the right electrode cap through the scalp occurred 15 months after trial start date (during open 

label follow up), necessitating surgical removal. This event caused inconvenience to the 

patient as he had to undergo a further daycase surgical procedure, but the event caused no 

extra morbidity and there were no harmful sequelae. Table 7 lists all adverse events. Scores 

on the abbreviated cognitive battery one week after NBM DBS implant did not show any 

significant worsening on primary outcome measures as a result of surgery (Table 8). In fact 

there were median improvements at group level in both CVLT-II immediate free recall and 

CVLT-II retention in memory scores after surgery (+1.25 Z scores, p=0.041, and +1.00 Z 

scores, P=0.026, respectively). 
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All	
adverse	
events

Resolved	
adverse	
events

Serious	adverse	events

Related	to	surgery	or	device

Erosion	of	right	electrode	cap	through	scalp 1 ◊ 1 ◊

Total 1	(17%)* 1	(100%)**

Non-serious	adverse	events

Related	to	surgery	or	device

Superficial	scalp	wound	infection 1 1

Urethral	tear	from	traumatic	catheterisation 1 1

Post-operative	transient	confusion/paranoia 1 1

Burr	hole	cap	discomfort 4 2

Related	to	stimulation

Visual	hallucinations 1 1

Other

Increased	limb	rigidity 1 1

Worsened	postural	hypotension 2 2

Worsened	urinary	frequency 1 1

Jejunal	tube	blockage 1 1

Total 13	(100%)* 11	(85%)**

Table	7: 	Adverse	events	in	the	six	patients	during	and	beyond	the	study	period

Data	are	n	or	n	(%).	 ◊	 Erosion	of	the	right	electrode	cap	through	the	scalp	
occurred	in	patient	3	fifteen	months	after	trial	start	date,	during	open	label	
follow	up.	This	necessitated	surgical	removal	of	the	right	electrode	for	
safety.	*Proportion	of	patients.	**	Proportion	of	events.  
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Table	8: 		Effect	of	the	surgical	procedure	on	primary	outcome	measures	at	one	week	post-operative

Patient
Simple	
Reaction	Time	
(ms)*

Choice	
Reaction	Time	
(ms)*

Simple	Movement	
Time	(ms)*

Choice	
Movement	
Time	(ms)*

Letter	Fluency Category	
Fluency

Category	
Switching	
Total	Correct

Category	
Switching	
Total	Accuracy

Total	accuracy	
(%)

Posner	effect	-	
reorienting	time	
(ms)	◊

Immediate	free	
recall	(Trial	1)

Long	delay	
free	recall

Retention Digits	forwards			
(range	0-16)

Digits	
backwards			
(range	0-14)

California	Verbal	Learning	Test	II	(Z	scores)
WAIS-III	digit	span	(raw	
scores) D-KEFS	Verbal	Fluency	Test	(scaled	scores) Posner's	covert	attention	test CANTAB	Reaction	Time	Test

B P B P B P B P B P B P B P B P B P B P B P B P B P B P B P

A -1.50 -1.50 0.00 -2.00 -0.50 0.00 13 10 4 3 6 3 6 1 1 1 1 1 48 NC 25.00 NC 792 NC 577 NC 1005 NC 855 NC

B -3.00 -2.00 -2.50 -2.00 0.00 1.00 8 9 3 3 3 2 1 1 5 1 6 2 82 80 16.51 2.43 693 890 487 683 441 1122 428 658

C -3.00 0.00 -1.00 -0.50 -1.50 -0.50 8 7 4 3 5 9 3 3 1 1 1 1 82 82 71.00 40.90 332 443 494 607 625 775 513 674

D -1.50 0.00 -2.50 -1.00 -2.50 -1.00 8 8 7 3 6 2 4 3 3 1 4 1 31 32 -74.44 -247.26 610 677 NA NA 3119 1765 NC NC

E -4.00 -3.00 -1.50 -1.50 -1.00 0.00 9 5 4 2 1 3 1 1 1 1 1 2 81 NC 45.95 NC 337 579 329 NA 1482 2779 686 NA

F -3.00 -1.50 -1.50 -2.00 -0.50 0.00 8 8 2 4 3 1 1 1 1 1 1 1 48 33 -56.93 -3.04 NA 687 NA NA NC 2232 NC NC

Group	
Mean -2.67 -1.33 -1.50 -1.50 -1.00 -0.08 9.00 7.83 4.00 3.00 4.00 3.33 2.67 1.67 2.00 1.00 2.33 1.33 62.03 56.75 4.52 -51.74 552.80 655.20 471.75 644.81 1334.40 1734.45 620.50 666.07

Group	
SD 0.98 1.17 0.95 0.63 0.89 0.66 2.00 1.72 1.67 0.63 2.00 2.88 2.07 1.03 1.67 0.00 2.16 0.52 22.44 27.83 57.81 131.80 209.44 164.20 103.57 53.47 1074.30 811.84 189.64 11.05

B	=	Baseline	asssesments.	P	=	Assessments	at	one	week	post-operative	(off-stimulation).	All	scaled	scores/Z	scores	are	age-adjusted.	Higher	scores	are	better	on	all	tests,	except	for	measures	of	reaction	time	and	reorienting	time.	Results	highlighted	in	green	indicate	
those	where	one	week	post-operative	score	was	better	than	baseline	score,	by	at	least	one	Z	score/one	scaled	score/10%	raw	score/50	ms	increase.	Results	highlighted	in	red	indicate	those	where	one	week	post-operative	score	was	worse	than	baseline	score,	by	at	
least	one	Z	score/one	scaled	score/10%	raw	score/50	ms	decrease.	*	=	lower	scores	better.	◊	=	scores	closer	to	zero	are	better.	NA	=	performance	too	poor,	no	normative	data	available	to	standardise	score.	NC	=	not	completed.
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Table 9 presents data showing the effects of acute NBM stimulation over 24 hours on the 

primary outcome measures. The data for each patient is taken from the visits when they 

performed the abbreviated cognitive battery immediately before and 24 hours after simulation 

was switched on during the blinded period, whether this was at the start of Condition 1 or 

Condition 2. None of these blinded off- vs 24 hours on- primary outcome comparisons 

achieved conventional threshold for statistical significance. Three of the six patients (A, C 

and E) demonstrated improvement on measures of verbal fluency after 24 hours on NBM 

stimulation, particularly on the category switching condition (a test of set shifting - a 

component of executive function). However, this improvement was not sustained with 

chronic stimulation (Table 3). There was also a trend towards worsened simple movement 

time scores after 24 hours of NBM DBS, with five of six patients demonstrating worsening on 

this measure. However, this worsening in simple movement times was not accompanied by a 

deterioration in corresponding simple reaction times, suggesting that acute low-frequency 

NBM stimulation might have a selective deleterious effect on motor performance, but not on 

psychological processing speed. This divergent pattern in simple movement and reaction 

times was not sustained with chronic NBM stimulation (Tables 3 and 10) and therefore might 

only have been a transient effect. 
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Table	9:		 Effects	of	acute	NBM	stimulation	over	24	hours	on	primary	outcome	measures.

Patient CANTAB	Reaction	Time	Test

Digits	

backwards			

(range	0-14)

California	Verbal	Learning	Test	II

WAIS-III	digit	span	(raw	

scores) D-KEFS	Verbal	Fluency	Test	(scaled	scores) Posner's	covert	attention	test

Immediate	free	

recall	(T	score)

Simple	Reaction	

Time	(ms)*

Choice	Reaction	

Time	(ms)*

Simple	

Movement	Time	

(ms)*

Choice	

Movement	Time	

(ms)*

Letter	Fluency Category	

Fluency

Category	

Switching	

Total	Correct

Category	

Switching	

Total	Accuracy

Total	accuracy	

(%)

Posner	effect	-	

reorienting	time	

(ms)	◊

Immediate	free	

recall	(Trial	1)									

(Z	score)

Long	delay	

free	recall	(Z	

score)

Retention													

(Z	score)

Digits	forwards		

(range	0-16)

OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON

A -3.00 -2.00 28.00 31.00 -1.00 -2.50 1.00 -0.50 8 8 4 3 3 3 2 3 1 2 1 3 76 NC -88.42 NC 564 439 461 525 872 1368 559 957

B -2.00 -3.50 25.00 27.00 -2.50 -1.50 0.00 0.50 9 10 4 3 2 4 1 1 3 3 5 5 98 91 -36.31 55.93 387 375 501 420 488 723 461 438

C -1.00 -1.50 47.00 44.00 -2.50 -2.00 -2.00 -1.50 8 8 3 5 8 7 3 3 1 3 1 2 71 79 5.26 41.87 482 482 544 553 554 977 448 568

D -1.50 -1.50 35.00 28.00 -2.00 -1.50 -1.00 -0.50 8 8 6 6 3 3 3 2 3 2 4 1 32 40 187.51 -32.61 683 746 972 NA 1115 1495 1300 NA

E -1.50 -1.00 26.00 29.00 -1.50 -2.50 0.00 -1.00 8 8 4 3 3 6 2 1 1 2 1 5 18 67 -312.07 10.35 484 327 415 380 1755 1218 1448 568

F -2.50 -1.50 29.00 22.00 -2.00 -2.50 -0.50 0.50 8 9 3 2 3 2 1 1 1 1 1 1 32 19 89.16 76.38 466 513 687 585 1272 1593 1098 949

Group	

Mean
-1.92 -1.83 31.67 30.17 -1.92 -2.08 -0.42 -0.42 8.17 8.50 4.00 3.67 3.67 4.17 2.00 1.83 1.67 2.17 2.17 2.83 54.39 59.12 -25.81 30.38 511.00 480.33 596.67 492.60 1009.33 1229.00 885.67 696.00

Group	

SD
0.74 0.88 8.29 7.41 0.58 0.49 1.02 0.80 0.41 0.84 1.10 1.51 2.16 1.94 0.89 0.98 1.03 0.75 1.83 1.83 31.52 29.50 170.68 42.63 101.35 146.94 206.09 88.30 476.27 329.31 449.80 240.55

OFF	=	immediately	prior	to	patient	being	set	to	blinded	on-stimulation	condition.	ON	=	24	hours	after	patient	set	to	blinded	on-stimulation	condition.	All	scaled	scores/Z	scores	are	age-adjusted.	Higher	scores	are	better	on	all	tests,	except	for	measures	of	reaction	time	and	reorienting	time.	

Results	highlighted	in	green	indicate	those	where	ON	stimulation	score	was	better	than	OFF	stimulation	score	by	at	least	one	Z	score/one	T	score/one	scaled	score/10%	raw	score/50	ms	increase.	Results	highlighted	in	red	indicate	those	where	ON	stimulation	score	was	worse	than	OFF	

stimulation	score	by	at	least	one	Z	score/one	T	score/one	scaled	score/10%	raw	score/50	ms	decrease.	*	=	lower	scores	better.	◊	=	scores	closer	to	zero	are	better.	NA	=	performance	too	poor,	no	normative	data	available	to	standardise	score.	NC	=	not	completed.
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Table	10: 		Other	secondary	outcome	measures	at	baseline,	end	of	the	blinded	off-stimulation	period	and	end	of	the	blinded	on-stimulation	period

Patient

B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON

A 5 3 2 4 3 2 1005 983 4182 855 545 NA 0 0 0 0 0 0 3 4 4 12 15 4 2 0 2 37 31 24 1 1 1 0 1 0 0 0 0 0 0 0 0 0 0

B 2 2 2 3 3 3 441 862 594 428 551 522 1 8 0 3 2 3 4 8 12 13 13 11 4 1 9 12 13 13 1 1 0 1 1 0 0 1 0 0 0 0 1 0 0

C 3 3 3 2 1 1 625 800 792 513 788 865 3 3 0 0 0 0 2 2 0 4 7 7 8 8 1 18 27 21 1 1 1 1 1 0 0 0 0 1 0 0 1 1 1

D 3 4 3 5 5 3 3119 1887 2497 NA 935 NA 0 0 0 3 4 4 4 8 8 11 15 16 4 4 10 27 21 23 1 1 1 1 1 1 1 0 0 1 1 0 1 1 0

E 1 1 1 2 2 2 1482 953 NA 686 942 NA 0 0 0 4 0 0 8 8 4 8 10 15 8 1 5 14 10 8 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0

F 2 3 NC 3 2 NC NA 2295 3644 NA NA NA 2 0 6 4 8 3 12 12 12 10 14 9 9 11 5 15 25 20 1 1 1 0 1 0 1 1 1 1 1 1 0 0 0

Group	
Mean 2.67 2.67 2.20 3.17 2.67 2.20 1334.40 1296.67 2341.80 470.50 669.50 693.50 1.00 1.83 1.00 2.33 2.33 1.67 5.50 7.00 6.67 9.67 12.33 10.33 5.83 4.17 5.33 20.50 21.17 18.17

Number	in	
group:

5 6 4 3 6 2 2 2 1 3 2 1 3 2 1

Group	
SD 1.37 1.03 0.84 1.17 1.37 0.84 1074.30 632.02 1625.03 60.10 167.58 242.54 1.26 3.25 2.45 1.86 3.20 1.86 3.78 3.52 4.84 3.27 3.20 4.63 2.86 4.45 3.61 9.65 8.21 6.31

Proportion	of	
patients	(%):

83 100 67 50 100 33 33 33 17 50 33 17 50 33 17

Anosmia	/										
no	taste

Dysphagia Excessive	
sweating

B	=	Baseline,	OFF	=	end	of	blinded	off-stimulation	period.	ON	=	end	of	blinded	on-stimulation	period.	Lower	scores	are	better	for	all	measures	except	WAIS-III	symbol	search	and	digit-symbol	coding	where	higher	scores	are	better.	All	scaled	scores	are	age-adjusted.	Results	highlighted	in	green	indicate	those	where	ON	
stimulation	score	was	better	than	both	OFF	stimulation	and	baseline	scores,	by	at	least	one	scaled	score/10%	raw	score/50	ms	increase	compared	to	both.	Results	highlighted	in	red	indicate	those	where	ON	stimulation	score	was	worse	than	both	OFF	stimulation	and	baseline	scores,	by	at	least	one	scaled	score/10%	
raw	score/50	ms	decrease	compared	to	both.	Scores	for	the	Non-Motor	Symptoms	Questionnaire	are	expressed	as	number	of	patients	in	the	group	with	active	symptom	during	each	condition.	SCOPA-AUT	=	Scales	for	outcomes	in	Parkinson's	disease	-	autonomic	symptoms	assessment	scale.	SCOPA-sleep	=	Scales	for	
outcomes	in	Parkinson's	disease	-	sleep	assessment	scale.	NC	=	not	completed.	REM	=	rapid	eye	movement.	SD	=	standard	deviation.

Apathy	subscale					
(0-12)

Daytime	sleepiness						
(0-18)

Night-time	sleep	
problems	(0-15)

Autonomic	symptoms	
(0-69)

Memory	
problems

REM	sleep	
behavioural	
disorder

Symbol	Search Digit-Symbol	
Coding

Simple	Movement												
Time	(ms)

Choice	Movement	Time	
(ms)

Agitation/	
agression	
subscale	(0-12)

Depression/	
dysphoria	
subscale	(0-12)

Non	Motor	Symptoms	QuestionnaireWAIS-III	(scaled	scores) CANTAB	Reaction	Time	Test Neuropsychiatric	Inventory	(12	item	version) SCOPA-sleep SCOPA-AUT
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2.3 Discussion 

In this double-blind, crossover trial of six patients with Parkinson’s disease dementia, low 

frequency (20Hz) stimulation of the nucleus basalis of Meynert appears to be safe and well 

tolerated. Our objective data provides preliminary indication that this intervention might be 

associated with subtle improvements in memory and in neuropsychiatric symptoms, 

particularly visual hallucinations. However, given the small sample size, the results should be 

interpreted cautiously and viewed as being predominantly hypothesis generating to guide 

further studies. 

The improvements across the group in CVLT-II retention in memory scores were observed 

initially one week after surgery compared to baseline (+1.0 Z scores, p=0.026, Table 8), and 

improved further on-stimulation compared to baseline (+1.5 Z scores, p=0.042, Table 2, 

Table 3 and Fig. 11). The acute effects of NBM stimulation were also consistent with this, 

with four of six patients showing improved retention in memory scores after 24 hours on-

stimulation (Table 9).  

Interestingly, there was also a significant improvement across the group in CVLT-II 

immediate free recall (Trial 1) one week after surgery compared to baseline (p=0.041, Table 

8), and although this was not obtained with chronic stimulation, a similar pattern was present 

following acute NBM stimulation with three of six patients showing improved scores after 24 

hours (Table 9). Improvements in free recall were also observed with NBM DBS in both the 

single PDD patient reported by Freund and colleagues and in the six Alzheimer’s disease 

patients reported by Kuhn and colleagues (Freund et al., 2009; J Kuhn et al., 2015). 

The NBM plays a key role in memory encoding (see Section 1.6.6 above and (Gratwicke et 

al., 2013)), and so the improvements in immediate recall and retention in memory scores 

suggest that modulation of NBM activity might have the potential to improve this. However, 

immediate recall and retention of information are also dependent upon alertness/attention 

mechanisms, which the NBM is also proposed to play a role in, so the results could equally 
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reflect improvements in these cognitive processes. However, performance on many of the 

cognitive tests assessing attention remained unchanged and in some instances worsened with 

stimulation, including response accuracy on Posner’s covert orienting of attention test (Table 

3). Thus although the NBM and its cholinergic projections are strongly implicated in 

attentional processes, the impact of 20Hz stimulation in the Ch4i subregion in which the 

electrodes were located did not consistently improve the range of attentional deficits seen in 

these patients. The clinical impact of the objective improvements on memory subtests with 

NBM DBS also remains to be determined as we did not assess specific functional capacities 

to determine if and how these might translate to daily activities for patients. 

Outside our pre-specified primary outcome measures, the improvement across the group in 

NPI total scores on-stimulation compared to off-stimulation (-5 points, p=0.027), driven by 

marked improvements in visual hallucinations in Patients A and D on-stimulation compared 

to both off-stimulation and baseline, is interesting. It seems unlikely that these improvements 

were due to changes in medication, since Patient A had his levodopa increased by 300mg 

only after the start of the second blinded condition (after his visual hallucinations had already 

been supressed on-stimulation compared to baseline, Fig. 12), while Patient D (who 

demonstrated the most powerful suppression of hallucinations with stimulation, Fig. 12) had 

no changes made to his medications throughout the blinded trial period. The observation that 

low frequency trial stimulation in Patient A in the immediate post-operative period appeared 

to induce complex formed visual hallucinations in a time-locked manner also points towards 

an effect of electrical stimulation of the NBM on visual hallucinations. The reasons why acute 

low frequency NBM stimulation in that situation appeared to induce visual hallucinations, 

whereas chronic low frequency NBM stimulation later on appeared to suppress those same 

symptoms are currently unclear, but could reflect a superimposed post-operative stun effect 

on NBM functioning (as is commonly observed in the immediate aftermath of STN DBS 

implantation) which later resolves.  
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As discussed in subsections 1.3.1.10 and 1.3.1.11 above, the generation of visual 

hallucinations in PDD is poorly understood, but is strongly linked to impairments in alertness 

and attentional control (Bronnick et al., 2011; Gratwicke et al., 2015b; Meppelink et al., 

2008). AChEIs significantly improve attentional deficits in PDD and consequently improve 

visual hallucinations (Emre et al., 2004; Wesnes et al., 2005). The possibility that 

hallucinations may be reduced by NBM DBS further supports the hypothesis that stimulation 

might modulate cholinergic transmission in a similar way to AChEIs. Visual hallucinations 

have a particularly negative impact on quality of life for both PDD patients and caregivers 

(Aarsland et al., 2000; Goetz and Stebbins, 1993; Schrag et al., 2006), and the reduction in 

these symptoms may explain why Patients A and D and their carers all independently 

reported subjective improvements in their quality of life during the on-stimulation period 

compared to both off-stimulation and baseline (EQ-VAS scores, Table 6, and caregiver 

distress scores, Table 5, respectively). 

An unexpected finding was the improvement in UPDRS Part IV scores on-stimulation 

compared to both off-stimulation and baseline in Patients A, C and D, driven by reduction in 

their dyskinesias (Fig. 11). These results are likely explicable by current spread from NBM to 

the overlying GPi in addition to any possible microlesion effect of the surgery. However, 

conventional GPi DBS for dyskinesia control in Parkinson’s disease is generally delivered at 

high frequency (130Hz), and so the finding that low frequency (20Hz) stimulation directed 

towards the NBM also attenuates dyskinesias warrants further study. The possibility that 

improvement in dyskinesias could have compromised blinding of patients or assessing 

clinicians cannot be completely excluded.  

We did not observe the dramatic changes across multiple cognitive domains as reported in the 

only other case report of low frequency NBM DBS in PDD (Freund et al., 2009). Reasons for 

this could include the fact that the previous patient suffered more severe dementia than the 

patients in our trial, leading to a more apparent step-change in cognitive ability with 

stimulation, or possibly a synergistic effect from the combined subthalamic nucleus and NBM 
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stimulation that he received. Nevertheless one similarity between our experience and that of 

Freund and colleagues is that in both studies the patient’s carers reported a (blinded) general 

subjective improvement in cognition when NBM stimulation was on, reflected by the fact that 

all our patients opted to continue with NBM DBS beyond trial end rather than switching over 

to pallidal stimulation for motor impairments. 

It is difficult to compare our study directly to the two previously published double-blind trials 

of DBS in dementia since both were conducted in Alzheimer’s disease, and only one of them 

targeted the NBM (J Kuhn et al., 2015; Lozano et al., 2016). Considering the latter study by 

Kuhn and colleagues, differences in the effects seen in our study might reflect the fact that 

there is a larger cortical cholinergic deficit in PDD than in Alzheimer’s disease (Gratwicke et 

al., 2013), meaning that stimulation of the cholinergic NBM may produce a greater effect in 

the former group. However, differences in NBM active contact locations between the two 

trials (the spatial range of targets was greater in the Kuhn study, extending to Ch4p in some 

patients) might equally account for differences in observed effects. 

This pilot trial has a number of key strengths. We used a prolonged blinded period, allowing 

us to report more accurately on the sustained effects of NBM DBS than other studies have 

been able to. We also included a washout period of two weeks between experimental 

conditions, such that any prolonged effects of NBM DBS which might have persisted after 

cessation of stimulation would have been less likely to confound the second condition. 

Additionally, our primary outcome measures included detailed assessment of individual 

cognitive subdomains, rather than purely measures of global cognitive function. Due to the 

overlapping effects of impairments in individual cognitive domains upon performance in 

others (see Section 1.3.3 above and also (Gratwicke et al., 2015b)), use of global measures 

makes it difficult to determine what the specific cognitive effects of NBM DBS might be. We 

also performed detailed assessments of neuropsychiatric symptoms, motor symptoms and 

patient and carer quality of life, which allowed us to assess a broad range of potential 

beneficial effects. 
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The major limitation to our study is the small sample size, which although appropriate for 

exploratory data collection, is not designed to detect significant differences between the 

blinded on- and off-stimulation periods. Given the multiple comparisons we have performed, 

our data must not be interpreted as evidence for efficacy, but can be used in the planning and 

design of formal trials to test the hypotheses generated by the current dataset. Another 

relevant issue is that patients continued AChEI therapy during the trial, and although there 

were no dose alterations, it still means that the potential physiological effects of NBM DBS 

on the cholinergic system, and any consequent clinical effects on symptoms, may be partially 

masked. However, given the relative safety of AChEI medications in comparison to DBS, we 

did not feel it was appropriate to expose patients to surgical risks who might gain sufficient 

cognitive benefits from the use of medications alone. In addition, we did not include a 

randomised non-operated control group of PDD patients, and so cannot objectively determine 

whether NBM DBS made a difference to the natural progression of cognitive deficits during 

the trial period. Likewise this also makes it difficult to determine whether the deterioration 

across the group in some outcome measures (Tables 3 and 4) was due to effects of surgery, 

stimulation or disease progression. Although we tried to minimise potential confounding 

influences of task familiarity and practice effects by using parallel test versions, this was not 

possible for all outcome measures. Inclusion of a non-operated group would also have been 

useful to control for this. Finally, we only investigated the effects of low frequency NBM 

stimulation at 20Hz, however the scientific rationale for this is limited (as discussed in 

Section 1.7.2. above), and stimulation at a different frequency might produce different results. 

Use of a titration schedule investigating cognitive responses to different frequencies would 

have shed light on this issue. However, to implement this would have required a much longer 

study with an even greater frequency of assessment visits, and it seems unlikely that patients 

would have been easily able to comply with this. 

Looking forwards, one of the aims of this pilot study was to identify parameters which will 

inform sample size calculations for future trials of NBM DBS in PDD. In accordance with our 
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results, detailed measurements of the frequency and severity of visual hallucinations, as well 

as immediate free recall and retention in memory should comprise future primary outcome 

measures. Given the possible negative effect of NBM DBS on a measure of attentional 

shifting (Posner’s covert orienting of attention test) it would also be important to include 

more detailed assessment of different components of attention (as discussed in Section 1.2.2. 

above and in (Gratwicke et al., 2015b). As discussed earlier, secondary outcomes should 

include assessments of functional capacity to further determine the clinical impact that 

changes in neuropsychological test scores have on patient’s daily activities. 

In conclusion, data from this pilot clinical trial have shown that NBM DBS is both technically 

feasible and safe in carefully selected PDD patients, and provide preliminary evidence that 

this therapy should be further evaluated regarding its effects on memory and neuropsychiatric 

symptoms, particularly visual hallucinations. The outcomes from the study serve to justify 

further exploration of NBM DBS as a therapy for PDD patients whose cognitive and 

behavioural symptoms are refractory to medical therapy. Future studies should explore the 

effects of stimulation amongst subregions within the NBM and formally test whether 

stimulation can reproducibly impact on cognitive and neuropsychiatric symptoms in PDD 

patients. 
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Chapter 3: Deep brain stimulation of the nucleus basalis of Meynert 

for dementia with Lewy bodies 

 

3.1. Patients and methods 

3.1.1. Experimental design 

The experimental design for this trial was almost identical to our trial of NBM DBS for PDD 

(see Chapter 2): We conducted a randomised, double-blind, crossover trial of bilateral NBM 

DBS to compare deficits on a short battery of cognitive tests after six weeks of active 

stimulation and six weeks of sham stimulation. One major difference in terms of design was 

that in this trial NBM DBS was achieved without any requirement for the dorsal electrode 

contacts to be positioned in the overlying GPi. The reason for this is that GPi DBS is not used 

as a conventional treatment for motor symptoms in DLB. Therefore, the constraints imposed 

upon optimal targeting of the NBM in the PDD trial by the requirement to have dorsal 

contacts in the anteroposterior GPi did not apply here, allowing direct targeting of NBM only 

in the DLB patients.  

A second major difference was that this trial was conducted across two sites, the primary 

site being UCL’s Institute of Neurology, and the secondary site being Newcastle 

University’s Clinical Ageing Research Unit. This collaboration with colleagues in 

Newcastle was established as the research team there have a large cohort of DLB 

patients under their care, which facilitated more rapid recruitment of participants. The 

study was sponsored by University College London, and all neurosurgery, LFP and MEG 

recordings were performed at the National Hospital for Neurology and Neurosurgery, 

London, UK. All other trial assessments were performed at each individual participants’ 

original recruiting site. 
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3.1.2. Patients 

Participants were recruited from the populations of DLB patients referred to clinics at both 

sites. Patients were eligible for inclusion if they: met consensus criteria for the diagnosis of 

DLB (McKeith et al., 2005); were appropriate surgical candidates aside from the existence of 

dementia; were aged 50-80 years (reflective of the older average age of onset of DLB 

compared to PD/PDD (Aarsland et al., 2008)); were able to give informed consent; had a 

score between 2-12 on the Clinician Assessment of Fluctuations Scale (CAFS, see below). 

DLB patients have more prominent cognitive fluctuations than PDD patients of matched 

dementia severity (Bonanni et al., 2008), and given the scientific rationale for a potential role 

of the NBM in modulating arousal (see Section 1.6.8 above) we restricted recruitment of DLB 

subjects to those with significant cognitive fluctuations in order to evaluate the clinical effects 

of NBM DBS on this specific symptom; had an MMSE score between 21-27 (in order to 

select those with moderate dementia severity with retained capacity to give informed 

consent). Having found from the PDD trial that the MMSE score tends to under-

estimate cognitive impairment in LBDs (Hoops et al., 2009) we increased the MMSE 

score inclusion criteria to 21-27 in this trial to facilitate more rapid recruitment of 

eligible patients; had minimal atrophy on MRI brain scans (to ensure technical feasibility of 

electrode implantation); were living at home with a carer-informant; were willing to comply 

with the trial protocol (i.e. attend the National Hospital for Neurology and Neurosurgery in 

London for two weeks for DBS surgery and electrophysiological testing, and also necessary 

clinic visits in London/Newcastle); if taking either AChEIs or glutamate-antagonist 

medication (such as memantine) the patient had to have been taking a stable dosage for the 

last three months (with either an established suboptimal response to this medication or 

intolerance of higher dosage) and this was continued throughout the trial. Changes in 

AChEI/glutamate antagonist doses were not permitted during the trial period to avoid 

confounding any cognitive effects of NBM DBS. 
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Exclusion criteria were: diagnosis or suspicion of other cause for dementia; known 

abnormality on CT or MRI brain imaging considered likely to compromise compliance with 

the trial protocol; prior intra-cerebral surgical intervention.  

3.1.3. Ethics and consent 

The trial conformed to the Seoul revision of the Declaration of Helsinki (2008) and Good 

Clinical Practice guidelines, and was approved by the East of England Research Ethics 

Committee. All potential participants were assessed for their capacity to provide written 

informed consent by an experienced neuropsychologist independent from the trial team. This 

trial is registered with ClinicalTrials.gov, Identifier: NCT02263937 

3.1.4. Randomisation and blinding 

We randomly assigned participants to either the stimulation off-first group (sham stimulation 

for six weeks, followed by active stimulation for six weeks) or the stimulation on-first group 

(vice versa). We used computer-generated pairwise randomisation according to order of 

enrolment, so that equal numbers of patients were recruited to each group and the order of 

those receiving on- followed by off- stimulation and vice-versa was counterbalanced. The 

randomisation sequence was held by an unblinded clinician who was also responsible for 

programming the stimulation. Participants and assessing clinicians were blinded to the 

stimulation condition. The unblinded clinician spent the same time adjusting each patient’s 

stimulator at the start of both active and sham stimulation periods. The stimulation parameters 

were selected to avoid any immediate or long-lasting side effect that could be perceived by 

the patient or blinded clinicians, and thus have the potential to unblind them. 

3.1.5. Baseline procedures 

All enrolled participants underwent a baseline assessment (Fig. 13) which included a detailed 

neuropsychological battery, and motor, non-motor and psychiatric symptom scales (discussed 

in detail below). During baseline assessment the participants also completed two separate 
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measures of IQ; the two subtest form of the Wechsler Abbreviated Scale of Intelligence gives 

a brief estimate of current IQ by combining scores on a measure of crystallised verbal 

intelligence, the vocabulary subtest for measuring word knowledge, and a measure of fluid 

performance intelligence, the matrix reasoning subtest for measurement of visual information 

processing and abstract reasoning skills (Wechsler, 1999). In comparison, the Test of 

Premorbid Function (TOPF) estimates pre-morbid intelligence in English speaking patients 

with dementia (Wechsler, 2011). It is an untimed measure consisting of 70 words with 

atypical phonemic pronunciation, thereby testing the patient’s vocabulary rather than their 

ability to apply regular pronunciation rules. The pronunciation of previously learnt words is 

thought to be spared in cognitive decline, allowing it to be used as a proxy for estimating pre-

morbid crystallised verbal intelligence. We switched from using the National Adult Reading 

Test (used to measure premorbid intelligence in the PDD trial) to the Test of Premorbid 

Function in the DLB trial because (1) the latter is a more recently developed reading test with 

updated population reference ranges, and (2) The TOPF is standardised with the Wechsler 

Adult Intelligence Scale Fourth Edition (WAIS-IV; Wechsler, 2008), which we used in this 

trial instead of the older WAIS-III (see below). Comparing the scores on these two IQ tests at 

baseline allowed us to estimate the degree of cognitive decline in each individual participant 

relative to their pre-morbid state. 
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Figure 13: DLB trial study design. Black arrows indicate study time points, green arrows indicate 
assessments at those time points as per protocol. Patients remain under follow-up in University 
College London/Newcastle University Clinical Ageing Research Unit to enable reporting of long term 
outcomes. 

 

3.1.6. Neurosurgical procedure 

Within one month of completing baseline assessments participants underwent stereotactic 

implantation of bilateral DBS electrodes. All patients were operated under general anaesthesia 

(average time anaesthetised was 3-4 hours) using a Leksell stereotactic frame (Elekta 

Instrument AB, Stockholm), without microelectrode recording. Following attachment of the 

frame the NBM was visualised in each patient using pre-operative stereotactic axial and 

coronal proton-density MRI scans on which the pallidum, optic tract, anterior commissure 

and the adjacent NBM were visible (1.5T Siemens Espree, PDw Turbo Spin-echo; 1.0 x 1.0 x 

2.0 mm; TR 4000ms TE 13ms). Target selection for placement of the deepest contact/s was at 

the level of maximal NBM diameter, the Ch4i subsector (around 5mm below the AC-PC 

plane). As in the PDD trial, Ch4i was chosen as it is both the largest subsector of NBM, 

giving highest probability of successful electrode placement, and has the most widespread 

cortical projections, thus potentially influencing more cortical areas (see Section 1.6.4. above 
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and (Gratwicke et al., 2013)). Planning of the surgical trajectory in each individual patient 

was undertaken using commercially available software (Framelink, Medtronic, Minneapolis, 

USA). The NBM was visualised as the hyperintense signal lateral to the hypointense optic 

tract and medial to the hypointense anterior commissure (lateral extension) on proton density 

MRI. The entry point was chosen to ensure a trajectory which avoided both sulci and the 

ventricular system, while maximising the length of the trajectory within the visible NBM 

hyperintensity.  

Further surgical details are identical to those presented in Section 2.1.6 above. All six DLB 

patients received model 3389 quadripolar DBS electrodes (Medtronic, Minneapolis, MN, 

USA). The accuracy of DBS lead contact location was confirmed immediately with 

postoperative stereotactic MRI (see Fig. 9 above): The distance between the intended MRI 

target and the actual position of the implanted electrode was calculated and surgery was not 

considered complete until acceptable placement of the electrodes had been image-confirmed. 

In all six cases (twelve electrode implants) actual position of the most ventral electrode 

contact was within 1mm of intended MRI target location. 

Disposable extension connectors were attached to the end terminals of both subcutaneous 

leads, and these extensions were externalised though the scalp. Patient’s leads were 

externalised in this manner for a five-seven day period in order to allow trials of external 

stimulation to take place, as well as direct recording of LFPs from NBM and GPi (even 

though surgical trajectory in the DLB patients was planned without consideration of contact 

location in GPi, dorsal electrode contacts were still located in GPi in all patients due to its 

anatomical proximity to NBM). Lead externalisation also facilitated LFP and MEG 

recordings during this time (see Chapters 4 and 5). Prophylactic systemic antibiotics 

(Cefuroxime 1.5 g) were administered intra-operatively, and three more doses administered 

within the following 24 hours. Patients were reviewed in the recovery suite both by the 

operating neurosurgeon and a neurologist (myself) to confirm that there was no new 
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neurological deficit following surgery. Once awake the patients were transferred back to the 

main ward to recover. 

Following recovery on the ward over the interval five-seven day period each patient 

underwent a second shorter operation (average time under general anaesthesia two hours). 

Again, details of the surgical procedure were identical to those presented in Section 2.1.6 

above. Once awake the patients were transferred back to the main ward to recover over the 

following few days. Patients were only discharged home once they had fully recovered to 

their baseline pre-operative level of functioning (on average 3-4 days post-operative). DBS 

systems remained switched off during this period, and on discharge. 

All adverse events were recorded immediately post-operatively, throughout the rest of the 

trial period, and beyond into the open label follow up period. 

3.1.7. Externalised assessments 

As mentioned above, following electrode implantation all patients had their electrodes 

externalised on the ward for five to seven days before IPG implantation. During this time 

three types of assessment were performed on each patient: trial stimulation, LFP recordings 

and combined MEG-LFP recordings. Details of these assessments are identical to those 

presented in Section 2.1.7 above. 

3.1.8. Post-operative procedures 

All participants underwent their first post-operative assessment one week after pulse 

generator implantation (Fig. 13). An abbreviated cognitive battery was performed, consisting 

of: Hopkins Verbal Learning Test - Revised (HVLT-R), the Wechsler Adult Intelligence 

Scale-IV (WAIS-IV) digit span, verbal fluency, Posner’s covert orienting of attention test and 

Simple and Choice Reaction Times (these tests are discussed in more detail both in Section 

2.1.9 above and Section 3.1.9 below). These selected tests from the detailed 
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neuropsychological battery are amenable to repeated administration due to tests being either 

less susceptible to practice effects or parallel versions being available.  

Three weeks later patients attended for 24 hours and were screened for the effects of 

stimulation in an open label manner, using the WAIS-IV digit span (a test of attention and 

executive function) as an objective measure. Only low frequency stimulation at 20Hz was 

used (for the reasons discussed above in Chapter 1). Only monopolar stimulation was used at 

a pulsewidth of 60 µs. Optimum stimulation voltages were determined as those producing 

highest digit spans with the lowest energy, without side-effects, and these were adopted for 

the blinded phase (Table 11). DBS was subsequently turned off for two weeks, and then 

patients were randomised into the simulation off-first or on-first group for the subsequent six 

weeks. Following this there was a two-week washout period (DBS off), then patients were 

switched over to the opposite condition for a further six weeks. All assessments performed at 

baseline were repeated at the end of each six-week period, except for measures of IQ (Fig. 

13). The abbreviated cognitive battery was performed immediately prior to each change in 

DBS condition, as well as 24 hours afterwards. All trial assessments were performed by a 

clinician blinded to stimulation status (myself). Minor adjustments to concomitant licenced 

medications were permitted throughout the blinded trial period, aside from changes to the 

doses of any AChEIs or glutamate antagonists being taken. 

After the blinded crossover phase patients were invited to routine follow-up with 

neuropsychological assessments and open-label NBM DBS adjustments at least every six 

months. 

3.1.9. Primary outcome measures 

The pre-specified primary outcomes were the differences in scores on each item of the 

abbreviated cognitive battery between the two blinded stimulation conditions (after six weeks 

on-stimulation vs after six weeks off-stimulation). These included: 
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• HVLT-R: A list of 12 nouns, with four items drawn from each of three semantic 

categories, is read to the patient, who then attempts to recall as many words as possible in 

any order. This task is repeated two more times, for a total of three learning trials. 

Learning efficiency is approximated by the sum of the scores of all three learning trials 

(total recall). Ability to access newly learned information is assessed by the number of 

words retained by the patient after a 20-minute interval (delayed recall) and the 

percentage of words retained from those previously learnt (retention). Finally, a list of 24 

randomly ordered words is read, containing both the original 12 target words and 12 non-

target words, and the patient must identify which were the target words – this provides a 

measure of retention in memory that is relatively free from the influence of effortful 

memory search and retrieval (recognition – discrimination index) (Brandt and Benedict, 

2001). We switched from using the CVLT-II (used to measure verbal learning and 

memory in the PDD trial) to the HVLT-R in this trial primarily because the latter has six 

equivalent alternate forms (as opposed to only two alternate forms of the CVLT-II), 

making it less susceptible to practice effects due to item familiarity (Kuslansky et al., 

2004). In addition the CVLT-II was developed with relatively healthy populations in 

mind, and therefore the length and complexity of its administration makes it challenging 

for moderately cognitively impaired patients. In contrast the HLVT-R was developed 

primarily for use with brain disordered populations and is brief and easier to administer, 

and is therefore well-tolerated in moderately demented patients (Brandt and Benedict, 

2001). 

• Digit span: in this subtest from the WAIS-IV patients are first required to listen to and 

verbally repeat number sequences of increasing length (digits forwards), a test of auditory 

attention span. Secondly patients are asked to listen to and verbally reverse number 

sequences of increasing length presented (digits backwards), a test of manipulation in 

working memory (executive function). In the WAIS-IV version of the digit span test there 

is also a third section wherein patients listen to random sequences of numbers and letters 
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of increasing length and are asked to repeat them back verbally in numerical followed by 

alphabetical order (digit sequencing), a more demanding test of manipulation in working 

memory (executive function) (Wechsler, 2008). We switched from using the WAIS III 

(used in the PDD trial) to using the subtests of the WAIS IV in this trial as this more 

recent version uses up to date population reference ranges for standardisation of scores. 

• Verbal fluency: the verbal fluency subtest from the Delis-Kaplan Executive Function 

System measures the ability to generate words meeting phonemic or semantic criteria, 

thereby testing executive retrieval of verbal information (Delis et al., 2001). 

• Posner’s covert orienting of attention test: measures reaction speed to a lateralised visual 

target, preceded by a cue prompting to either the correct or incorrect side of upcoming 

target presentation. This measures speed of orienting of attention (Posner, 1980). We used 

a customised computerised version of this test, described in detail in Chapter 4. The 

proportion of correct responses is also measured as a percentage of total targets presented. 

• Simple and Choice Reaction Times: these tests measure the speed of psychomotor 

responses to visual targets where the stimulus is either predictable (simple reaction time) 

or unpredictable (choice reaction time), providing surrogate measures of alertness. We 

used the computerised version of this test included in the Cambridge Neuropsychological 

Test Assessment Battery (CANTAB). 

• Clinician Assessment of Fluctuations Scale: this scale consists of a series of screening 

questions, put to an informant, to assess for subjective episodes of fluctuating confusion 

and impaired consciousness occurring in the patient during the preceding month (Walker, 

2000). If present, the frequency and duration of episodes are both rated on a scale of 0-4, 

and these are multiplied together to give an overall severity score from 0-12 (0 = no 

fluctuating confusion, 12 = severe fluctuating confusion, 16 would indicate a state of 

continuous confusion which, be definition, would denote no fluctuation).  
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Higher scores on all these tests indicate better performance, aside from measures of reaction 

speed (Posner’s covert orienting of attention test and Simple and Choice Reaction Times) and 

the Clinician Assessment of Fluctuations Scale, where lower scores are better. 

3.1.10. Secondary outcome measures 

Secondary outcomes included changes in the following neuropsychological tests (which 

together with the abbreviated battery above comprised the detailed neuropsychological 

battery). Higher scores are better on all these neuropsychological tests. 

• MMSE: a brief general screening instrument for cognitive impairment (Folstein et al., 

1975). Although it is the most commonly used screening instrument for dementia 

worldwide, its dependence on age and educational level hinders the use of a rigid cut-off 

score (Crum et al., 1993). 

• Mattis Dementia Rating Scale 2: a test of global cognitive function (Jurica et al,. 2001), 

shown to sensitively measure the degree of cognitive deficits in patients with PD/PDD 

(Kulisevsky and Pagonabarraga, 2009). 

• Short recognition memory test for faces: in this test of recognition memory for faces 

patients are presented with a series of 25 photographs of faces at the rate of one face 

every 3 s, and for each face the subject is required to judge the presented stimulus as 

‘pleasant’ or ‘unpleasant’ to ensure that they are attending to the stimulus items. The 

patient is then presented with a series of 25 pairs of faces and the task is to identify which 

of the two faces came from the target list (Warrington, 1996). 

• WAIS-IV arithmetic and letter-number sequencing subtests: in the former patients are 

asked mental arithmetic problems of increasing difficulty, a test of manipulation in 

working memory (executive function). In the latter patients listen to a series of numbers 

and letters in random order and must recall them in numerical followed by alphabetical 

order, a test of auditory attention span and manipulation in working memory (executive 
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function). The age-adjusted scaled scores for both tests are combined with that for digit 

span to give an overall working memory index (Wechsler, 2008).  

• Trail making test: this subtest from the Delis-Kaplan Executive Function System is an 

expanded version of the original trail making test and includes five conditions: visual 

search, number sequencing, letter sequencing, number-letter switching and motor speed. 

In each condition patients must draw to connect numbers and/or letters on a page in a 

specific order as fast as possible. Number sequencing and letter sequencing scores are 

measures of psychomotor processing speed, while number-letter sequencing score is a 

measure of behavioural regulation/set shifting (executive function). The visual search and 

motor speed scores provide indexes of deficits in visual attention and motor control 

respectively, and can be used to control for the confounding effects of such deficits on the 

other task conditions. (Delis et al., 2001). 

• Colour-word interference test: this subtest from the Delis-Kaplan Executive Function 

System is an expanded version of the original Stroop test and includes four conditions: 

Colour naming and word reading act as screening tests which measure basic naming of 

colours and reading of words respectively (both key component skills necessary to 

attempt the higher tasks). The Inhibition condition is identical to the original Stroop test 

wherein the patient must inhibit reading words in order to name the dissonant ink colours 

in which those words are printed. This tests the patient’s ability to inhibit an overlearned 

prepotent response. Finally, in the inhibition/switching condition the patient is asked to 

switch back and forth between naming the dissonant ink colours and reading the words, a 

test of both response inhibition and cognitive flexibility (rule switching) (Delis et al., 

2001). 

• WAIS-IV symbol search and digit-symbol coding subtests: in the former patients are 

presented with a series of target symbols and must identify whether these are present in 

corresponding rows of symbols under a strict time limit. In the latter a key containing 

nine digit-symbol pairs is presented, followed by a table of digits. Under each digit in the 
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table the patient must write down the corresponding symbol (according to the key) as fast 

as possible, within a strict time limit. Both are tests of executive control of 

attention/processing speed, and from their combined age-adjusted scaled scores a 

processing speed index is derived (Wechsler, 2008). 

• Florida Apraxia Screening Test: a test of ideational praxis wherein patients must produce 

15 gestures to command. A score of nine or below on the FAST has previously been 

shown to demonstrate good sensitivity for a diagnosis of apraxia (Rothi and Heilman, 

1984). 

• Sustained Attention to Response Test (SART): In this computerised test the digits “1” 

through “9” are presented randomly in white colour against a black screen, in the lower 

left visual field. Patients are instructed to respond with their dominant hand (press a 

button) to all digits (Go trials) except “5”, at which they should inhibit their response 

(NoGo trial). On each trial the digits vary randomly in size and font to ensure that patients 

process the identity of the digits rather than focussing on specific perceptual features. 

Response speed and errors are recorded. This is a long task with repetitive trials in a non-

arousing visual environment, and thus can be used to measure the patient’s level of 

sustained attention/vigilance over time (Manly et al., 1999; O’Connell et al., 2009). 

Attentional lapses are manifest in both increased response time variability (Weissman et 

al., 2006) and errors (O’Connell et al., 2009). We used a customised computerised 

version of this test, described in detail in Chapter 4. 

• The Benton Judgement of Line Orientation Test: In this test patients are asked to match 

two angled lines on a page to a set of 11 lines which are arranged in a semicircle and 

separated 18 degrees from one another. The test measures accuracy of angular judgement, 

which is a proxy for visuospatial ability. Feedback is provided during five practice trials 

prior to initiating the test items. Compared to the practice trials, lines in the test items 

have part of the line erased to increase task difficulty. There are 30 trials, each with two 
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lines to identify, and responses are sored as being correct only when both lines are 

identified correctly (Benton et al., 1978). 

 

Additional secondary outcome measures included changes on the following validated scales. 

Higher scores indicate greater functional impairment on all scales except for the Quality of 

Life–AD scale. 

o MDS Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): a comprehensive 

assessment of the severity of all motor and non-motor symptoms in PD, comprising sixty-

five items (score range 0-260) (Movement Disorder Society Task Force on Rating Scales 

for Parkinson’s Disease, 2003). We evaluated motor symptoms using Part III (the motor 

subscale), both in the absence of dopaminergic medications (OFF state) and one hour 

after administration of dopaminergic medications (ON state). 

o Freezing of Gait (FOG) Questionnaire: this six–item scale (range 0–24) consists of four 

items that assess FOG frequency and duration, and two that assess the impact of gait 

difficulties in general (Giladi et al., 2000). It was found that the FOG questionnaire has 

high test-retest reliability, internal consistency and moderately high correlations with 

MDS-UPDRS motor and ADL scores (Giladi et al., 2009).  

o SCOPA-Autonomic symptoms scale: a self-reported questionnaire consisting of 23 

questions assessing symptoms of autonomic dysfunction in PD patients (score range 0-

69) (Visser et al., 2004). 

o Starkstein Apathy Scale: a clinician-administered 14 item questionnaire assessing apathy 

symptoms in PD patients (score range 0-42) (Starkstein et al., 1992). 

o The Neuropsychiatric Inventory: a clinician-administered caregiver-reported 

questionnaire assessing 12 psychiatric symptoms/behavioural disturbances which may be 

present in dementia patients, capturing frequency and severity of each and distress caused 

to the caregiver (Cummings et al., 1994). 
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o Blessed dementia scale: a clinician-administered caregiver-reported questionnaire 

assessing presence or absence of 22 functional impairments and behavioural disturbances 

due to dementia (score range 0-28) (Blessed et al., 1968). 

o Hamilton Depression Scale: a clinician-assessed 21 item inventory measuring severity of 

depressive symptoms (score range 0-68) (Hamilton, 1960). 

o Hamilton Anxiety Scale: a clinician-assessed 14 item inventory measuring severity of 

anxiety symptoms (score range 0-56) (Hamilton, 1959). 

o The North East Visual Hallucinations Interview: a clinician-administered semi-structured 

interview for use with the patient, which helps to identify the presence of visual 

hallucinations. The questionnaire also assesses the frequency of any hallucinations, and 

quantifies emotions and behaviours associated with them (Mosimann et al., 2008). 

o Clinical Global Impression of Change Scale: a brief, stand-alone assessment of the 

clinician's view of the patient's global functioning prior to and after an intervention. The 

patient's history, psychosocial circumstances, symptoms, behaviour, and the impact of the 

symptoms on the patient's ability to function are taken into account when rating. The 

scale comprises two companion one-item measures evaluating (a) severity of 

psychopathology from 1-7 and (b) change/improvement from the initiation of treatment 

from 1-7 (Busner and Targum, 2007). 

o Quality of Life – Alzheimer’s Disease Scale: This measure comprises two clinician-

administered scales, one for use with the patient and the other for use with the caregiver. 

Both scales independently rate the perceived quality of life of the patient across a number 

of domains (including physical, emotional, social, financial and occupational status) to 

give an overall index measure of their quality of life at that point in time (Logsdon et al., 

2002). 

o Mayo Fluctuations Composite Scale: a clinician-administered measure for use with the 

caregiver which assesses the presence of four composite features of cognitive fluctuation 

in DLB patients (daytime drowsiness and lethargy, daytime sleep of 2 or more hours, 
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staring into space for long periods, and episodes when the patient’s flow of ideas seem 

disorganised) (Ferman et al., 2004).  

o Carer Strain Index (Zarit burden interview): a 22-item self-reported questionnaire 

completed by the carer, which measures their level of burden at home due the functional 

and behavioural impairments of the patient with dementia. The items are worded 

subjectively, focusing on the affective response of the caregiver. Each question is scored 

on a 5 point Likert scale ranging from ‘never’ to ‘nearly always’ present. Total scores 

range from 0 (low burden) to 88 (high burden) (Bédard et al., 2001). 

Throughout the blinded trial period and subsequent open-label follow up period adverse 

events were systematically recorded. 

 

3.1.11. Statistical analysis 

The sample size of this study was based on practical considerations. We planned to recruit six 

patients on the basis of (1) an estimate of the number of eligible patients under active follow 

up in our clinics, and (2) the fact that the safety of NBM DBS implantation in this vulnerable 

patient group is currently unknown, necessitating a cautious approach to recruitment. This is 

therefore a pilot trial with a small sample size and even the primary outcomes are principally 

exploratory in nature. To maximise transparency of the results, all individual outcome data 

are presented. Statistical comparisons are performed simply to highlight the most consistent 

differences at group level according to on- vs off-stimulation, and are not corrected for 

multiple comparisons. Two-tailed Wilcoxon signed ranks tests were used in paired 

observations when the distribution of differences was symmetrical, and two-tailed related-

samples Sign tests otherwise. For comparisons according to randomisation sequence two-

tailed Mann-Whitney U tests were performed. All data were analysed using Statistical 

Package for the Social Sciences version 22.0 software.  
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3.2. Results 

Between 20th May, 2014, and 8th February, 2016, we assessed 15 patients and enrolled six into 

the study (five males, mean age 71.33 years (SD 3.67)). Table 11 summarises their clinical 

characteristics and also details the stereotactic coordinates of their active NBM contacts and 

the stimulation parameters used for the blinded period. Fig. 14 shows Schaltenbrand atlas 

locations of active NBM contacts in all patients (Schaltenbrand and Wahren, 1977), 

demonstrating that the most ventral active contact was successfully placed in the Ch4i 

subsector of NBM in each patient. In all patients with a second active contact per hemisphere 

(Patients A, B, C and F), this was located on the NBM/GPi border. Surgery was well tolerated 

and all patients were ambulatory within 24 hours and fully oriented within 48 hours. All six 

patients completed the blinded crossover phase and were included in analysis. 

Only two patients had medication changes during the blinded trial period: Patient D had his 

dose of immediate-release levodopa increased from 125 mg three times daily at baseline to 

187.5 mg four times daily in the initial post-operative period due to worsening limb rigidity 

(an increase in total LED to 843.75 mg). During condition 1 his dose of immediate-release 

levodopa was subsequently reduced to 187.5 mg three times daily (a reduction in total LED to 

656.25 mg). Following this he had no further changes made to his medications throughout the 

rest of conditions 1 and 2. Patient E had his immediate-release levodopa increased from 62.5 

mg once daily at baseline to 62.5 mg twice daily (an increase in total LED to 125 mg) three 

weeks after surgery due to worsening bradykinesia and rigidity. He remained on this dose 

throughout both blinded conditions. 
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Table	11: 		 Baseline	clinical	characteristics	of	the	study	sample,	and	parameters	used	during	the	blinded	stimulation	period

Patient Sex Age	at	
surger
y	(yrs)

Disease	
duration	
(yrs)

Hoehn	&	
Yahr	
stage

Visual	
hallucin-	
ations?

Clinician	
Assessment	
of	
Fluctuations	
Scale	score

TOPF	
estimated	
premorbid	IQ

WASI	
measured	
current	IQ				
(95%	CI)

MMSE Mattis	Dementia	
Rating	Scale	2											
(Raw,	Scaled)

Co-morbidities Concomitant	medications	at	
enrolment	(total	daily	doses)

Daily	levodopa	
equivalent	
dose	(LED,	
mg/day)†

Daily	total	
cholinesteras
e	inhibitor	
dose											
(mg/day)

Active	
contacts	
(monopolar)

Stereotactic						
coordinates							
(x,y,z)◊

Stimulation	
parameters

A M 65 5 3 No 12 92 83	(78-89) 23 126,	Scaled	5	
(moderately	
impaired)

Hypertension,	
appendicectomy,	
osteoarthritis,	
hiatus	hernia

Half	Sinemet	CR	125	mg	
BD,	Donepezil	10	mg	ON,	
Enalapril	15	mg	OM,	
Indapamide	1.5	mg	OM,	
Clonazepam	1	mg	ON

187.5 10 	 1,	9 -20.4,	5.5,	-5.3;	
18.5,	6.6,	-5.4

2.5V,	60us,	
20Hz

B M 73 4 2 No 9 102 90	(85-96) 23 121,	Scaled	4	
(moderately	
impaired)

Coronary	artery	
disease,	cateracts.

Rivastigmine	4.5	mg	BD,	
Sinemet	Plus	125	mg	TDS,	
Mirtazepine	45	mg	ON,	
Sertraline	100	mg	OM,	
Sotalol	40	mg	BD,	
Amlodipine	5mg	BD,	Aspirin	
75	mg	OM,	Atorvastatin	20	
mg	ON

375 9 0,	1,	8,	9 -21.4,	9.2,	-4.5;	
20.5,	8.8,	-4.2

2.5V,	60us,	
20Hz

C F 73 10 3 Yes 2 101 90	(85-96) 21 123,	Scaled	5	
(moderately	
impaired)

Anxiety,	vulvodynia Sinemet	250	mg	QDS,	
Rivastigmine	9.5	mg/24h,	
Amytriptylline	125	mg	ON,	
Domperidone	10	mg	QDS,	
HRT,	Lansoprazole	30	mg	
OM

1000 9.5 0,8 -17.3,	7.7,-5.3;	
16.8,7.6,	-4.7

3.0V,	60us,	
20	Hz

D M 69 5 3 Yes 12 91 69	(65-76) 22 103,	Scaled	2	
(severely	
impaired)

Sciatica Madopar	125	mg	TDS,	
Madopar	CR	125	mg	ON,	
Rivastigmine	3	mg	QDS,	
Ezetimibe	10	mg	OD,	
Tamsulosin	400	mcg	OD,	
Paracetamol	1g	QDS	

468.75 12 0,	8 -19.1,	9.7,	-7.5;	
21.4,	11.5,-7.3

2.5V,	60us,	
20Hz

E M 75 3 2 Yes 12 NC 65	(61-72) 24 82,	Scaled	2	
(severely	
impaired)

Age-related	
macular	
degeneration,	
coeliac	disease,	
chronic	obstructive	
pulmonary	disease

Donepezil	10	mg	ON,	
Sinemet	62.5	mg	OM,	
ventolin	inhaler,	seretide	
inhaler

62.5 10 0,	1,	8,	9 -18.8,	7.4,-4.6;	
18.0,8.8,-4.9

3.5V,	60us,	
20Hz

F M 73 4 2 No 12 96 90	(85-96) 24 125,	Scaled	5	
(moderately	
impaired)

Nil Donepezil	10	mg	ON,	
Venlafaxine	MR	150	mg	OM

0 10 0,8 -18.9,	4.2,	-8.0;	
19.7,	5.7,	-7.3

2.0V,	60us,	
20Hz

Group	
Mean

71.33 5.17 2.50 9.83 96.40 81.17 22.83 113.33 348.96 10.08

Group	
SD 3.67 2.48 0.55 4.02 5.03 11.37 1.17 17.53 365.73 1.02

Disease	duration	was	estimated	by	examining	the	patient's	medical	notes	and	collateral	history	from	the	caregiver	to	determine	the	time	at	which	cognitive	decline	began	to	interfere	with	normal	occupational	or	social	function.	The	Mattis	Dementia	
Rating	Scale	2	Scaled	score	is	corrected	for	age	but	not	education.	Patient	E	had	very	poor	vision	due	to	severe	macular	degeneration	which	impaired	his	completion	of	all	visuoperceptual	tasks,	therefore	WASI,	MMSE	and	Mattis	DRS-2	scores	likely	
underestimate	his	cognitive	ability.	He	is	also	alexic	and	so	could	not	complete	the	TOPF.	CR	=	controlled	release	preparation.	SD	=	standard	deviation.	†	LED	calculation	as	per	protocol	in	Tomlinson	et	al.,	2010.	◊	Mean	stereotactic	co-ordinates	of	
the	active	contacts	in	left	and	right	hemispheres	respectively,	with	reference	to	the	mid-commissural	point	of	the	AC-PC	plane.
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Figure 14a: Coronal sections from Schaltenbrand atlas taken 11.5mm, 7.5mm and 5.5mm anterior 
to the midcommissural point to indicate location of active DBS contacts during the blinded phase 
(DLB patients A-F). The optic tract (II) and the lateral extension of the anterior commissure (Cm.a) 
are coloured light blue. The Nucleus Basalis of Meynert (B) lies between these two structures (yellow) 
and inferior to the globus pallidus (Pars medialis interna, medialis externa and lateralis: P.mi, P.me 
and P.l). Figure adapted from Schaltenbrand and colleagues (plates 25–26) by permission of Thieme.
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Figure 14b: Location of active DBS contacts for each patient on their individual MRI images (Patients A through F). The locations of the most ventral active contacts (in 
NBM) are shown on representative coronal and axial post-operative MRI images for each patient, and correspond to those shown in Figure 14a above.  

 

Patient	A Patient	B Patient	C

Patient	D Patient	E Patient	F
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Trial stimulation through the externalised electrodes in the immediate post-operative period 

did not produce any subjective or objective side effects in any of the patients. Additionally, 

none of the patients experienced any perceptible side effects from low frequency NBM DBS 

at parameter screening, and again no objective side effects were observed by the trial team. In 

light of this it seems likely that patient and carer blinding was adequately maintained 

throughout the blinded trial period. 

Table 12 summarises the pre-specified primary outcome data at group level, while individual 

results for all patients are presented in Tables 13 and 20, and Figure 11. None of the blinded 

on- vs off- primary outcome comparisons achieved conventional threshold for statistical 

significance. The most consistent finding here was that four of six patients (Patients A, B, C 

and D) showed an improvement in simple reaction time on-stimulation compared to both off-

stimulation and baseline (Table 13), with no between group differences according to 

randomisation order (p= 0.7 and p=0.7 for scores off- and on-stimulation respectively). 

However, although comparisons of simple reaction time scores at group level showed median 

improvements on-stimulation compared to both off-stimulation and baseline these failed to 

reach significance (64.5 s, p=0.600, and 10.5 s, p=0.753, respectively). Interestingly, 

however, three of these four patients (Patients A, B and C) demonstrated worsening of their 

corresponding simple movement times on-stimulation compared to both off-stimulation and 

baseline (Table 20), again with no group differences according to randomisation sequence 

(p=1.0 for scores both off- and on-stimulation). Comparisons at group level of simple 

movement times showed a significant median worsening of 745.5 s (p=0.028) on-stimulation 

compared to baseline, and a non-significant median worsening of 629.5 s (p=0.249) on-

stimulation compared to off-stimulation. This dissociation between simple reaction and 

simple movement times on-stimulation suggests that the improvements seen in simple 

reaction speeds with chronic NBM stimulation were not due to improvements in motor 

symptoms, and thus may represent improvements in central (cognitive) processing speed, 
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which is a surrogate measure of alertness. However, the absence of improvements on-

stimulation on other measures of attention and recall makes this less likely 

The group level results for both simple reaction time and simple movement time are skewed 

against the on-stimulation condition due to the fact that Patient D was so somnolent both at 

baseline and during the off-stimulation condition (due to his marked cognitive fluctuation) 

that his performance was too poor to record a result. The only time when he was alert enough 

to record meaningful results was during the on-stimulation condition, and those results, 

though representing a significant qualitative improvement in performance for him, were 

markedly impaired compared to the rest of the group. However, even when his results are 

removed completely from the analysis the overall pattern remains unchanged, with group 

level results showing median improvements in simple reaction time on-stimulation compared 

to both off-stimulation and baseline (128.5 s, p=0.138, and 66 s, p=0.686 respectively), and 

median worsening in simple movement times on-stimulation compared to both off-

stimulation and baseline (387 s, p=0.5, and 503 s, p=0.043 respectively). 
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Table	12: 		Group	level	primary	and	selected	secondary	outcome	measures

Primary	Outcome	Measures

Hopkins	Verbal	Learning	Test	Revised	(T	scores)

Total	Recall 29.50 (7.61) 27.00 (4.69) 29.17 (7.99)

Delayed	recall 30.83 (7.08) 29.00 (5.93) 27.83 (9.87)

Retention 38.17 (11.51) 40.00 (15.50) 33.33 (16.49)

Recognition	discrimination	Index 36.00 (12.93) 33.50 (14.39) 34.00 (12.08)

WAIS-IV	digit	span	(raw	scores)

Digits	forwards		(range	0-16) 8.40 (1.67) 9.33 (0.82) 8.83 (0.75)

Digits	backwards	(range	0-14) 6.40 (1.52) 6.67 (2.07) 5.83 (1.47)

Digits	Sequencing	(range	0-16) 5.60 (1.52) 5.17 (2.32) 4.33 (2.73)

D-KEFS	Verbal	Fluency	Test	(scaled	scores)

Letter	Fluency 8.00 (2.19) 8.00 (2.10) 7.67 (3.27)

Category	Fluency 4.17 (2.64) 4.50 (2.51) 4.50 (3.21)

Category	Switching	Total	Correct 3.00 (2.28) 2.33 (1.97) 3.00 (2.10)

Category	Switching	Total	Accuracy 3.00 (3.16) 3.33 (2.16) 3.33 (3.27)

Posner's	covert	attention	test

Total	accuracy	(0-100%) 80.00 (22.43) 77.67 (29.30) 76.33 (29.26)

Posner	effect	-	reorienting	time	(ms)◊ 5.76 (48.76) 31.61 (50.73) -21.23 (63.78)

CANTAB	Reaction	Time	Test

Simple	Reaction	Time	(ms) 511.14 (225.03) 532.99 (100.57) 456.65 (186.87)

Choice	Reaction	Time	(ms) 439.55 (79.10) 442.42 (74.35) 417.84 (63.39)

Clinician	Assessment	of	Fluctuation	Score 9.50 (4.81) 9.67 (5.72) 8.00 (4.90)

Selected	Secondary	Outcome	Measures

Mini-Mental	State	Examination	(MMSE) 22.83 (1.17) 24.33 (3.56) 23.00 (2.10)

Mattis	Dementia	Rating	Scale	2	(raw	score) 113.33 (17.53) 113.33 (26.31) 116.50 (18.15)

Neuropsychiatric	Inventory

Total	score	(0-144) 18.67 (12.08) 23.40 (15.82) 12.80 (11.19)

Caregiver	distress	score	(0-60) 10.00 (5.97) 12.00 (8.60) 7.60 (7.16)

Hallucinations	subscale	(0-12) 2.83 (4.75) 1.60 (3.58) 1.80 (4.02)

Group	mean	 (standard	deviation)

Baseline OFF ON

All	scaled	scores/T	scores	are	age-adjusted.	Posner	task	total	accuracy	is	%	of	presented	
targets	correctly	responded	to.	Higher	scores	are	better	on	all	tests,	except	for	measures	of	
reaction	time,	the	Clinicians	Assessment	of	Fluctuations	Scale	scores	and	Neuropsychiatric	
Inventory	subscales,	in	which	lower	scores	are	better.	◊	=	scores	closer	to	zero	are	better	for	
Posner	reorienting	time.
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Table	13:	 		 Primary	outcome	measures	at	baseline,	end	of	the	blinded	off-stimulation	period	and	end	of	the	blinded	on-stimulation	period

Patient Hopkins	Verbal	Learning	Test	-	Revised	(T	scores) CAFS

B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON

A 33 28 40 37 20 20 41 20 20 52 28 37 8 9 9 7 8 8 5 6 6 9 6 10 3 8 8 6 2 6 6 1 8 95 99 98 752 477 404 507 487 371 12 16 12

B 36 31 38 34 34 45 36 47 51 21 45 54 8 10 8 4 4 5 6 5 3 10 12 13 4 4 6 1 3 3 1 4 2 95 98 93 547 521 465 498 497 505 9 12 8

C 21 25 20 31 34 23 37 56 33 37 56 34 6 10 8 7 8 6 5 5 1 9 8 6 2 2 2 1 1 1 1 2 1 91 87 83 326 443 305 413 335 424 2 2 2

D 20 20 25 25 25 25 56 56 20 20 20 36 10 10 10 6 4 5 4 1 2 4 8 4 2 2 1 1 1 1 1 4 1 38 30 24 NA NA 1239 NA NA 786 12 12 8

E 38 25 25 38 27 34 39 25 56 43 20 23 10 8 9 8 8 4 8 6 6 7 7 6 5 4 2 4 1 2 1 2 1 71 53 61 695 703 772 493 NA NA 12 12 12

F 29 33 27 20 34 20 20 36 20 43 32 20 NC 9 9 NC 8 7 NC 8 8 9 7 7 9 7 8 5 6 5 8 7 7 90 99 99 237 521 337 340 451 372 12 6 12

Group	

Mean
29.50 27.00 29.17 30.83 29.00 27.83 38.17 40.00 33.33 36.00 33.50 34.00 8.40 9.33 8.83 6.40 6.67 5.83 5.60 5.17 4.33 8.00 8.00 7.67 4.17 4.50 4.50 3.00 2.33 3.00 3.00 3.33 3.33 80.00 77.67 76.33 511.14 532.99 456.65 439.55 442.42 417.84 9.83 10.00 9.00

Group	

SD
7.61 4.69 7.99 7.08 5.93 9.87 11.51 15.50 16.49 12.93 14.39 12.08 1.67 0.82 0.75 1.52 2.07 1.47 1.52 2.32 2.73 2.19 2.10 3.27 2.64 2.51 3.21 2.28 1.97 2.10 3.16 2.16 3.27 22.43 29.30 29.26 225.03 100.57 186.87 79.10 74.35 63.39 4.02 5.06 3.95

B	=	Baseline,	OFF	=	end	of	blinded	off-stimulation	period.	ON	=	end	of	blinded	on-stimulation	period.	All	scaled	scores/T	scores	are	age-adjusted.	Higher	scores	are	better	on	all	tests,	except	for	measures	of	reaction	time	and	reorienting	time.	Results	highlighted	in	green	indicate	those	where	ON	stimulation	score	was	better	
than	both	OFF	stimulation	and	baseline	scores,	by	at	least	one	Z	score/one	scaled	score/10%	raw	score/50	ms	increase	compared	to	both.	Results	highlighted	in	red	indicate	those	where	ON	stimulation	score	was	worse	than	both	OFF	stimulation	and	baseline	scores,	by	at	least	one	T	score/one	scaled	score/10%	raw	
score/50	ms	decrease	compared	to	both.	*	=	lower	scores	better.	◊	=	scores	closer	to	zero	are	better.	NA	=	performance	too	poor,	no	normative	data	available	to	standardise	score.	SD	=	standard	deviation.	CAFS	=	Clinician	Assessment	of	Fluctuations	Scale	score.	WAIS-III	=	Wechsler	Adult	Intelligence	Scale-III.

Posner's	covert	

attention	test

(range	0-16)Category	
Switching	Total	
Correct

Category	
Switching	
Accuracy

Total	accuracy												
(0-100%)

Simple	Reaction	Time	
(ms)*

Choice	Reaction	Time	
(ms)*

Total	recall Delayed	recall Retention Recognition	
discrimination	index

Digits	forwards		
(range	0-16)

Digits	
backwards	
(range	0-16)

Digit	
sequencing	
(range	0-16)

Letter	Fluency Category	
Fluency

WAIS-IV	digit	span	(raw	scores) D-KEFS	Verbal	Fluency	Test	(scaled	scores) CANTAB	Reaction	Time	Test
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Figure 15: Effects of nucleus basalis of Meynert DBS on selected primary and secondary outcome measures. All graphs show individual results for all patients 
(dotted lines) and superimposed group mean results (solid lines) as per key. Please note that in both Graphs A and B (left side of figure) higher scores are better, 
whereas in Graphs C and D (right side of figure) lower scores are better. In Graph A all T-scores are age-adjusted. CAFS = Clinician Assessment of Fluctuations 
Scale. HVLT-R = Hopkins Verbal Learning Test – Revised. MMSE = mini-mental state examination. 
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Tables 12, 14 and 20 present secondary outcome cognitive measures (and MMSE scores also 

shown in Figure 11). There was no consistent advantage on-stimulation vs off-stimulation on 

global cognitive measures, or on focal measures of working memory, psychomotor speed, 

facial recognition memory, task-switching or praxis. Four of six patients (Patients B, C, D and 

E) showed an improvement in commission error rate on the SART task on-stimulation 

compared to both off-stimulation and baseline (Table 14), with no between group differences 

according to randomisation sequence (p= 1.0 for scores both off- and on-stimulation 

respectively). Comparison at group level of commission error rates showed median 

improvements on-stimulation compared to both off-stimulation and baseline (-4 %, p=0.104, 

and -20 %, p=0.08 respectively). 

Tables 12 and 15 present secondary outcome psychiatric measures. Although none of the 

group level comparisons reached statistical significance there was a trend for improvement in 

Neuropsychiatric Inventory total scores on-stimulation compared to both off-stimulation and 

baseline (median improvements of -12.5 points, p=0.066, and -8.5 points, p=0.080 

respectively, Figure 11), not due to between group differences due to randomisation sequence 

(p= 1.0 for scores both off- and on-stimulation respectively). This was mirrored by a similar 

trend for improvement in Neuropsychiatric Inventory caregiver distress scores on-stimulation 

compared to both off-stimulation and baseline (median improvements of -6.5 points, p=0.068, 

and -6.5, p=0.144, respectively), again with no between group differences according to 

randomisation sequence (p= 0.7 for scores both off- and on-stimulation respectively). 

In a similar manner to that seen in the PDD trial, the trend for improvement in 

Neuropsychiatric Inventory total scores with NBM DBS on was partially driven by a 

reduction in hallucinations subscale scores in two patients, in this case Patients D and E 

(Table 15). At baseline Patient D reported daily illusions and complex formed visual 

hallucinations several times a week on the North-East Visual Hallucinations Interview 

(NEVHI). Following surgery and six weeks of blinded off-stimulation he did not report a 

major change in his hallucination frequency, but reported fewer illusions on the NEVHI. 
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Following a subsequent six weeks on-stimulation he reported no visual hallucinations in the 

last month on the NEVHI. At baseline Patient E reported multiple daily complex formed 

visual hallucinations of people in his house, which were a major cause of distress. In the 

immediate three weeks post-operative (NBM DBS off) both he and his partner reported a 

major reduction in the frequency of his visual hallucinations to only once per week. However, 

thereafter his visual hallucinations gradually increased in frequency back to occurring daily, 

with no qualitative difference reported on the NEVHI between the blinded on- and off-

stimulation conditions. 

There was no consistent advantage on-stimulation vs off-stimulation on measures of anxiety, 

depression or apathy (Table 15). 
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Table	14: 	Secondary	outcome	measures	(cognitive)	at	baseline,	end	of	the	blinded	off-stimulation	period	and	end	of	the	blinded	on-stimulation	period

Patient

B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON

A 23 28 25 126 130 123 77 77 77 65 56 50 17 22 20 1 1 6 4 1 2 3 2 1 1 8 1 8 8 7 40 15 18 186 170 191 15 15 14

B 23 27 24 121 138 133 86 83 77 56 50 53 18 23 21 1 1 1 1 1 1 1 1 1 NA NA NA 1 1 1 83 28 20 181 188 144 15 15 15

C 21 25 24 123 126 121 83 83 60 56 50 NC 22 21 19 1 1 1 1 1 1 1 1 1 NA NA NA 11 1 1 53 39 25 182 219 262 13 15 13

D 22 18 19 103 84 106 69 NA NA 50 NA NA 11 16 22 1 NA 1 NA NA 1 NA NA 1 NA NA 1 NA NA 4 NA 29 20 NA 510 282 NC NC NC

E 24 25 23 82 76 85 95 89 92 NC NC NC 11 15 10 NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC NC 14 15 14

F 24 23 23 125 126 131 NC 102 92 NC 79 84 14 19 20 NC 9 5 NC 15 12 NC 12 12 NC 10 12 NC 12 11 38 18 15 162 144 149 15 15 15

Group	
Mean 22.83 24.33 23.00 113.33 113.33 116.50 82.00 86.80 79.60 56.75 58.75 62.33 15.50 19.33 18.67 1.00 3.00 2.80 2.00 4.50 3.40 1.67 4.00 3.20 1.00 9.00 4.67 6.67 5.50 4.80 53.50 25.00 19.38 177.94 180.16 186.66 14.40 15.00 14.20

Group	
SD 1.17 3.56 2.10 17.53 26.31 18.15 9.75 9.50 13.28 6.18 13.79 18.82 4.32 3.27 4.37 0.00 4.00 2.49 1.73 7.00 4.83 1.15 5.35 4.92 N/A 1.41 6.35 5.13 5.45 4.27 20.76 10.86 4.27 10.71 31.77 54.42 0.89 0.00 0.84

Response	time	
variability																							
(GO	correct	trials,	ms)

(range	0-15)visual	
scanning

number	
sequencing

letter	
sequencing

number-letter	
switching

B	=	Baseline,	OFF	=	end	of	blinded	off-stimulation	period.	ON	=	end	of	blinded	on-stimulation	period.	All	scaled	scores	are	age-adjusted.	Higher	scores	are	better	on	all	tests.	Results	highlighted	in	green	indicate	those	where	ON	stimulation	score	was	better	than	both	OFF	
stimulation	and	baseline	scores,	by	at	least	one	scaled	score/10%	raw	score	increase	compared	to	both.	Results	highlighted	in	red	indicate	those	where	ON	stimulation	score	was	worse	than	both	OFF	stimulation	and	baseline	scores,	by	at	least	one	scaled	score/10%	raw	score	
decrease	compared	to	both.	Patient	E	was	not	able	to	complete	the	processing	speed	index	tasks,	Trail	Making	Test,	SART	or	Stroop	Test	at	any	point	due	to	his	poor	vision	rendering	him	alexic.	NA	=	performace	to	poor	to	attempt	test	properly.	NC	=	not	completed.	SD	=	
standard	deviation.

(range	0-30) (range	0-144) Working	memory	
index

Processing	speed	
index

(range	0-25)
D-KEFS	Trail	Making	Test	(scaled	scores)

motor	speed Comission	Errors	
(%)

Sustained	Attention	to	Reponse	Task
Florida	Apraxia	
Screening	TestMMSE

Mattis	Dementia	
Rating	Scale	2																							
(total	raw	score) WAIS-IV	(composite	scores)

Short	Recognition	
Memory	for	Faces
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Table	15: 	Secondary	outcome	measures	(psychiatric)	at	baseline,	end	of	the	blinded	off-stimulation	period	and	end	of	the	blinded	on-stimulation	period

Patient

B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON

A 4 4 4 3 3 3 13 14 17 15 31 17 6 6 4 0 0 0 0 0 0 8 12 8 11 11 6

B 5 5 4 4 4 4 20 20 25 15 21 9 10 15 10 0 0 0 4 4 3 8 4 3 12 14 12

C 4 3 8 6 8 7 14 9 17 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 5 3 5

D 6 7 6 4 3 4 27 22 18 26 NC NC 14 NC NC 4 NC NC 4 NC NC 8 NC NC 11 14 13

E 10 10 11 2 3 2 12 16 7 37 44 30 18 23 19 12 8 9 2 3 2 0 3 3 9 11 12

F 0 3 11 8 6 8 12 12 14 18 20 7 11 15 4 1 0 0 0 0 0 4 1 0 8 9 6

Group	
Mean

4.83 5.33 7.33 4.50 4.50 4.67 16.33 15.50 16.33 18.67 23.40 12.80 10.00 12.00 7.60 2.83 1.60 1.80 1.67 1.40 1.00 4.67 4.00 2.80 9.33 10.33 9.00

Group	
SD

3.25 2.73 3.20 2.17 2.07 2.34 6.02 4.89 5.85 12.08 15.82 11.19 5.97 8.60 7.16 4.75 3.58 4.02 1.97 1.95 1.41 3.93 4.74 3.27 2.58 4.08 3.69

B	=	Baseline,	OFF	=	end	of	blinded	off-stimulation	period.	ON	=	end	of	blinded	on-stimulation	period.	 L ower	scores	are	better	on	all	above	measures.	Results	highlighted	in	green	indicate	
those	where	ON	stimulation	score	was	10%	better	than	both	OFF	stimulation	and	baseline	scores.	Results	highlighted	in	red	indicate	those	where	ON	stimulation	score	was	10%	worse	
than	both	OFF	stimulation	and	baseline	scores.	SD	=	standard	deviation.

(range	0-68) (range	0-56) (range	0-42) total	score	(0-144) caregiver	distress	
(0-60)

hallucinations	
subscale	(0-
12)

Depression/	
dysphoria	
subscale	(0-12)

Apathy	
subscale	(0-12)

(range	0-28)

Hamilton	
Depression										
Scale	score

Hamilton	
Anxiety									
Scale	score

Starkstein	Apathy										
Scale	score Neuropsychiatric	Inventory	(12	item	version)

Blessed	
Dementia	Scale
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Table 16 presents secondary outcome measures relating to motor symptoms and quality of 

life. There was no consistent advantage on-stimulation vs off-stimulation on measures of 

motor function, freezing of gait, patient-reported quality of life, carer reported quality of life 

or blinded clinician-rated change in clinical state. 

Other secondary outcome measures relating to non-motor symptoms (SCOPA-AUT, Mayo 

Fluctuations Composite Scale) are reported in Table 20. There were no consistent differences 

seen across the group with regard to these measures with NBM DBS on- vs off-. 
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Table	16: 	Secondary	outcome	measures	(motor	symptoms	and	quality	of	life)	at	baseline,	end	of	the	blinded	off-stimulation	period	and	end	of	the	blinded	on-stimulation	period

Patient

B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON

A 16 20 18 22 28 22 35 34 31 30 29 25 5 8 8 73 85 73 10 9 7 50 52 46 33 33 29 36 33 34 4 4 4 4 4 3

B 13 12 15 13 15 14 42 30 36 34 19 33 0 0 6 60 46 68 2 5 1 39 55 50 32 31 28 42 34 29 4 4 4 4 4 3

C 20 NC 20 22 NC 22 24 NC 23 18 NC 15 4 NC 4 64 NC 61 12 14 3 18 19 27 33 32 36 44 42 37 4 4 4 4 4 4

D 20 23 21 29 NC NC 64 NC NC 51 NC NC 5 6 6 105 NC NC 6 6 7 50 NC NC 34 28 32 31 NC NC 5 6 4 4 7 3

E 20 18 20 22 28 29 20 22 31 19 15 23 0 0 0 61 61 72 0 1 8 49 53 53 26 32 27 22 21 21 6 6 5 4 4 4

F 10 5 7 0 0 1 16 21 29 NC NC NC 0 0 0 26 26 37 0 0 0 32 26 25 43 36 38 36 36 40 4 4 5 4 4 4

Group	
Mean 16.50 15.60 16.83 18.00 17.75 17.60 33.50 26.75 30.00 30.40 21.00 24.00 2.33 2.80 4.00 64.83 54.50 62.20 5.00 5.83 4.33 39.67 41.00 40.20 33.50 32.00 31.67 35.17 33.20 32.20 4.50 4.67 4.33 4.00 4.50 3.50

Group	
SD 4.28 7.16 5.27 10.18 13.33 10.69 17.80 6.29 4.69 13.43 7.21 7.39 2.58 3.90 3.35 25.40 24.88 14.86 5.18 5.19 3.44 12.88 17.10 13.22 5.47 2.61 4.50 7.96 7.66 7.46 0.84 1.03 0.52 0.00 1.22 0.55

Patient	score														

(range	0-52)

Carer	score																										

(range	0-52)

Severity	rating												

(1-7)

Improvement	

rating	(1-7)

B	=	Baseline,	OFF	=	end	of	blinded	off-stimulation	period.	ON	=	end	of	blinded	on-stimulation	period.	Lower	scores	are	better	in	all	cases,	except	Quality	of	Life	AD	subscores,	where	a	higher	score	is	better.	Results	highlighted	in	green	indicate	those	

where	ON	stimulation	score	was	10%	better	than	both	OFF	stimulation	and	baseline	scores.	Results	highlighted	in	red	indicate	those	where	ON	stimulation	score	was	10%	worse	than	both	OFF	stimulation	and	baseline	scores.	EQ-VAS	=	EuroQol	five	

dimensions	questionnaire	visual	analogue	scale.	PDQ-39	=	Parkinson's	Disease	Questionnaire,	39	item.	SD	=	standard	deviation.

Clinical	Global	Impressions	
Scale

Part	I	score									

(range	0-52)

Part	II	score									

(range	0-52)

Part	III	score														

OFF	medication			

(range	0-132)

Part	III	score														

ON	medication	

(range	0-132)

Part	IV	score																	

(range	0-24)

Total	score																	

ON	medication	

(range	0-260)

(range	0-24) (range	0-88)

Movement	Disorders	Society	Unified	Parkinson's	disease	Rating	Scale
Freezing	of	Gait	
Questionnaire	 Carer	strain	index Quality	of	Life	-	AD
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Only one serious adverse event occurred during the trial period: Patient D developed 

antibiotic-associated Clostridium difficile colitis post-operatively (as a result of the 

prophylactic cefuroxime administered intra-operatively), which necessitated a prolongation of 

his hospital stay by two weeks while he completed an extended course of antibiotic therapy 

and recovered. Once he had made a full recovery there were no ongoing sequelae and no 

long-term extra morbidity. Table 17 lists all adverse events. The patients were generally 

fatigued in the immediate post-operative period and consequently most of them failed to 

completed the one-week post-operative assessment battery. Consequently a judgement cannot 

be made regarding whether surgery itself had any effects on cognitive performance (Table 

18). 

 

All	adverse	
events

Resolved	
adverse	
events

Serious	adverse	events

Related	to	surgery	or	device

Antibiotic-associated	C.	difficile	diarrhoea	prolonging	hospitalisation 1 1

Total 	1	(17%)* 1	(100%)**

Non-serious	adverse	events

Related	to	surgery	or	device

Post-operative	transient	confusion/paranoia 2 2

Post-operative	transient	increased	daytime	somnolence 1 1

Burr	hole	cap	discomfort 2 2

Other

Increased	limb	rigidity 2 2

Fall 1 1

Total 8	(83%)* 8	(100%)**

Table	17:	Adverse	events	in	the	six	patients	during	and	beyond	the	study	period

Data	are	n	or	n	(%).	*Proportion	of	patients.	**	Proportion	of	events.	C.difficile	=		Clostridium	difficile
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Table	18: 		Effect	of	the	surgical	procedure	on	primary	outcome	measures	at	one	week	post-operative

Patient Posner's	covert	attention	test CANTAB	Reaction	Time	Test
Total	accuracy	
(%)

Posner	effect	-	
reorienting	time	
(ms)	◊

Simple	
Reaction	Time	
(ms)*

Choice	
Reaction	Time	
(ms)*

Simple	Movement	
Time	(ms)*

Choice	
Movement	
Time	(ms)*

Digits	
backwards			
(range	0-16)

Digit	
sequencing			
(range	0-16)

Letter	Fluency Category	
Fluency

Category	
Switching	
Total	Correct

Category	
Switching	
Total	Accuracy

Total	Recall Recognition	
discrimination	
index

Digits	forwards			
(range	0-16)

Hopkins	Verbal	Learning	Test	-	Revised	(T	scores)
WAIS-IV	digit	span	(raw	
scores) D-KEFS	Verbal	Fluency	Test	(scaled	scores)

Delayed	recall Retention

B P B P B P B P B P B P B P B P B P B P B P B P B P B P B P B P B P

A 33 NC 37 NC 41 NC 52 NC 8 10 7 9 5 NC 9 NC 3 NC 6 NC 6 NC 95 NC -5 NC 752 NC 507 NC 1331 NC 667 NC

B 36 NC 34 NC 36 NC 21 NC 8 8 4 4 6 NC 10 12 4 4 1 NC 1 NC 95 NC 43 NC 547 NC 498 NC 526 NC 620 NC

C 21 20 31 23 37 33 37 26 6 8 7 7 5 1 9 5 2 1 1 1 1 1 91 51 -44 -33 326 403 413 599 1469 1935 935 1278

D 20 NC 25 NC 56 NC 20 NC 10 NC 6 NC 4 NC 4 NC 2 NC 1 NC 1 NC 38 NC 32 NC NA NC NA NC NA NC NA NC

E 38 NC 38 NC 39 NC 43 NC 10 NC 8 NC 8 NC 7 4 5 2 4 2 1 3 71 45 -56 -47 695 NA 493 NA 779 NA 634 NA

F 29 36 20 20 20 20 43 32 NC 7 NC 4 NC 7 9 4 9 4 5 4 8 5 90 100 64 15 237 NC 340 455 302 NC 289 378

Group	
Mean 29.50 28.00 30.83 21.50 38.17 26.50 36.00 29.00 8.40 8.25 6.40 6.00 5.60 4.00 8.00 6.25 4.17 2.75 3.00 2.33 3.00 3.00 80.00 65.33 5.76 -21.80 511.14 402.70 450.24 527.13 881.49 1935.30 628.88 827.94

Group	
SD 7.61 11.31 7.08 2.12 11.51 9.19 12.93 4.24 1.67 1.26 1.52 2.45 1.52 4.24 2.19 3.86 2.64 1.50 2.28 1.53 3.16 2.00 22.43 30.17 48.76 32.29 225.03 N/A 72.55 102.00 504.98 #DIV/0! 229.71 636.31

B	=	Baseline	asssesments.	P	=	Assessments	at	one	week	post-operative	(off-stimulation).	All	scaled	scores/T	scores	are	age-adjusted.	Higher	scores	are	better	on	all	tests,	except	for	measures	of	reaction	time	and	reorienting	time.	Results	highlighted	in	green	indicate	those	where	one	week	post-
operative	score	was	better	than	baseline	score,	by	at	least	one	T	score/one	scaled	score/10%	raw	score/50	ms	increase.	Results	highlighted	in	red	indicate	those	where	one	week	post-operative	score	was	worse	than	baseline	score,	by	at	least	one	T	score/one	scaled	score/10%	raw	score/50	ms	
decrease.	*	=	lower	scores	better.	◊	=	scores	closer	to	zero	are	better.	NA	=	performance	too	poor,	no	normative	data	available	to	standardise	score.	NC	=	not	completed.
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Table 19 presents data showing the effects of acute NBM stimulation over 24 hours on the 

primary outcome measures. The data for each patient is taken from the visits when they 

performed the abbreviated cognitive battery immediately before and 24 hours after simulation 

was switched on during the blinded period, whether this was at the start of Condition 1 or 

Condition 2. None of these blinded off- vs 24 hours on- primary outcome comparisons 

achieved conventional threshold for statistical significance. Four of the six patients (A, B, D 

and E) demonstrated improvement on measures of total recall after 24 hours on NBM 

stimulation, indicating improved learning efficiency. These improvements were sustained 

with chronic stimulation for three of these patients (A, B and D, Table 13). Five of the six 

patients (the same four plus patient C) also demonstrated improvements on recognition-

discrimination index scores after 24 hours on NBM stimulation, indicating improved retention 

of information in memory. However, these improvements were only sustained in two of the 

patients with chronic stimulation (B and D, Table 13). 
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Table	19:	 Effects	of	acute	NBM	stimulation	over	24	hours	on	primary	outcome	measures.

Patient
Simple	
Movement	
Time	(ms)*

Choice	
Movement	
Time	(ms)*

Category	
Switching	
Total	Correct

Category	
Switching	
Total	Accuracy

Total	accuracy	
(%)

Posner	effect	-	
reorienting	
time	(ms)	◊

Simple	
Reaction	Time	
(ms)*

Choice	
Reaction	Time	
(ms)*

Total	recall Delayed	recall Retention Recognition	
discrimination	
index

Digits	forwards		
(range	0-16)

Digits	
backwards			
(range	0-16)

Digit	
sequencing			
(range	0-16)

Letter	Fluency Category	
Fluency

Hopkins	Verbal	Learning	Test	-	Revised	(T	scores)
WAIS-IV	digit	span	(raw	
scores) D-KEFS	Verbal	Fluency	Test	(scaled	scores) Posner's	covert	attention	test CANTAB	Reaction	Time	Test

OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON OFF ON

A 20 35 21 27 42 36 28 31 10 11 9 8 6 6 9 9 5 4 3 7 4 8 98 100 8 -20 398 462 520 422 638 900 729 790

B 21 34 27 42 33 56 20 40 9 8 4 6 5 6 13 13 1 5 4 5 4 4 94 95 -17 21 708 758 547 496 602 598 567 579

C 29 20 31 23 33 21 45 54 8 8 6 7 2 1 5 6 1 1 2 2 4 1 83 90 58 13 335 554 382 532 820 1608 591 732

D TS 20 TS 25 TS 56 TS 25 8 8 5 5 2 4 TS TS TS TS TS 17 TS -172 NA NA NA NA NA NA NA NA

E 21 29 27 27 41 28 29 37 8 9 8 8 5 7 5 5 4 3 1 1 1 2 49 66 10 -25 NC NC NC NC NC NC NC NC

F 34 23 27 20 25 20 29 20 11 8 8 8 9 7 6 4 7 7 5 8 6 8 98 99 -23 9 465 296 401 373 679 450 431 444

Grou
p	 25.00 26.83 26.60 27.33 34.80 36.17 30.20 34.50 9.00 8.67 6.67 7.00 4.83 5.17 7.60 7.40 3.60 4.00 3.00 4.60 3.80 4.60 84.53 73.33 7.25 -30.89 476.71 517.40 462.57 455.72 684.71 888.86 579.51 636.30

Grou
p	SD 6.20 6.79 3.58 7.66 6.94 16.40 9.09 12.08 1.26 1.21 1.97 1.26 2.64 2.32 3.44 3.65 2.61 2.24 1.58 3.05 1.79 3.29 20.81 33.98 31.85 80.82 163.42 192.40 83.30 71.73 95.23 514.76 122.34 155.80

OFF	=	immediately	prior	to	patient	being	set	to	blinded	on-stimulation	condition.	ON	=	24	hours	after	patient	set	to	blinded	on-stimulation	condition.	All	scaled	scores/T	scores	are	age-adjusted.	Higher	scores	are	better	on	all	tests,	except	for	measures	of	reaction	time	and	reorienting	time.	
Results	highlighted	in	green	indicate	those	where	ON	stimulation	score	was	better	than	OFF	stimulation	score	by	at	least	one	T	score/one	scaled	score/10%	raw	score/50	ms	increase.	Results	highlighted	in	red	indicate	those	where	ON	stimulation	score	was	worse	than	OFF	stimulation	score	
by	at	least	one	T	score/one	scaled	score/10%	raw	score/50	ms	decrease.	*	=	lower	scores	better.	◊	=	scores	closer	to	zero	are	better.	NA	=	performance	too	poor,	no	normative	data	available	to	standardise	score.	NC	=	not	completed.	TS	=	too	somnolent	to	complete	task.
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Table	20: 		Other	secondary	outcome	measures	at	baseline,	end	of	the	blinded	off-stimulation	period	and	end	of	the	blinded	on-stimulation	period

Patient

B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON B OFF ON

A 5 9 7 5 4 4 4 2 1 3 2 1 1331 991 1553 667 683 947 1 1 1 1 1 1 3 1 1 1 1 1 45 40 37 -5 -13 -16 3 1 4 9 20 33 3 4 4

B 5 3 5 8 7 7 2 1 2 2 1 1 526 546 758 620 596 498 1 1 1 1 1 1 5 2 6 NA 1 1 35 31 33 43 -16 -28 6 12 7 19 NC NC 2 2 2

C 1 2 NA 7 5 2 3 1 NA 1 1 NA 1469 1400 1839 935 777 1246 1 4 1 5 5 1 1 1 1 NA NA NA 56 42 40 -44 87 24 13 5 29 NC NC 13 1 1 0

D 3 NA 1 2 NA 1 1 NA 1 1 NA 1 NA NA 1243 NA NA 1271 1 1 1 1 1 1 1 1 1 1 1 1 8 NA 9 32 -9 -144 NA 72 29 19 NC NC 4 4 1

E 6 8 6 7 7 9 NC NC NC NC NC NC 779 2699 2079 634 NA NA NC NC NC NC NC NC NC NC NC NC NC NC 10 NA NA -56 91 15 NC NC NC 13 18 17 3 3 3

F NC 6 1 NC 11 7 6 4 6 9 8 8 302 405 451 289 349 448 1 2 1 1 1 2 1 4 1 1 3 1 58 56 57 64 50 22 4 2 1 4 3 6 1 1 2

Group	
Mean 4.00 5.60 4.00 5.80 6.80 5.00 3.20 2.00 2.50 3.20 3.00 2.75 881.49 1208.28 1320.48 628.88 601.13 881.90 1.00 1.80 1.00 1.80 1.80 1.20 2.20 1.80 2.00 1.00 1.50 1.00 35.33 42.25 35.20 5.76 31.61 -21.23 6.50 5.00 10.24 12.80 13.67 17.25 2.33 2.50 2.00

Group	
SD 2.00 3.05 2.83 2.39 2.68 3.16 1.92 1.41 2.38 3.35 3.37 3.50 504.98 920.57 628.80 229.71 183.87 395.16 0.00 1.30 0.00 1.79 1.79 0.45 1.79 1.30 2.24 0.00 1.00 0.00 22.02 10.34 17.27 48.76 50.73 63.78 4.51 4.97 12.75 6.50 9.29 11.44 1.21 1.38 1.41

SART SCOPA-AUT
Mayo	Fluctuations	
Composite	Scale

Letter-Number	

Sequencing

Arithmetic Symobl	Search Digit-Symbol	

Coding

Simple	Movement	Time	

(ms)

Choice	Movement	Time	

(ms)

Colour	Naming

WAIS-IV	(scaled	scores) CANTAB	Reaction	Time	Test Colour-Word	Interference	Test	(scaled	scores)
Judgement	of	Line	
Orientation

Posner's	covert	
attention	test

Autonomic	symptoms										

(0-69)

(range	0-4)

B	=	Baseline,	OFF	=	end	of	blinded	off-stimulation	period.	ON	=	end	of	blinded	on-stimulation	period.	Lower	scores	are	better	for	all	measures	except	WAIS-IV	symbol	search	and	digit-symbol	coding	where	higher	scores	are	better.	All	scaled	scores	are	age-adjusted.	Results	highlighted	in	green	indicate	those	where	ON	stimulation	score	

was	better	than	both	OFF	stimulation	and	baseline	scores,	by	at	least	one	scaled	score/10%	raw	score/50	ms	increase	compared	to	both.	Results	highlighted	in	red	indicate	those	where	ON	stimulation	score	was	worse	than	both	OFF	stimulation	and	baseline	scores,	by	at	least	one	scaled	score/10%	raw	score/50	ms	decrease	compared	to	

both.	SART	=	Sustained	Attention	to	Response	Task.	SCOPA-AUT	=	Scales	for	outcomes	in	Parkinson's	disease	-	autonomic	symptoms	assessment	scale.	NC	=	not	completed.	SD	=	standard	deviation.	◊	=	scores	closer	to	zero	are	better.	

Word	Reading Inhibition Inhibition/	

switching

(range	0-60) Reorienting	time	

(ms)◊

Omission	errors	

(%)
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3.3. Discussion 

In this double-blind, crossover trial of six patients with dementia with Lewy bodies, low 

frequency (20Hz) stimulation of the nucleus basalis of Meynert appears to be safe and well 

tolerated. Given the small sample size, the lack of contemporaneous controls and the absence 

of any significant findings, it is entirely possible that any variation in scores relates to chance 

alone. However, given that this is a hypothesis generating exercise, we shall consider whether 

any positive encouraging signals emerged. 

None of the blinded on- vs off-stimulation comparisons reached conventional threshold for 

statistical significance at group level. Nevertheless, the most consistent finding amongst our 

primary outcomes was that four of the six patients (A, B, D and E) demonstrated 

improvements in HVLT-R total recall scores following 24 hours of blinded acute NBM 

stimulation (median group level improvement of +5.0 T scores, p=0.249, Table 19), and that 

this improvement was sustained in three of them (A, B and D) with chronic NBM stimulation 

compared to both off-stimulation and baseline (Table 13 and Figure 11). Total recall is a 

proxy measure of learning efficiency across trials, which could potentially be influenced by 

an improvement in underlying attention parameters, storage of information in memory or 

executive retrieval of learnt information. In order to determine which of these processes might 

be responsible this finding needs to be interpreted in the context of the other results. This 

trend for improved learning efficiency on-stimulation in the DLB group was not seen on-

stimulation in the PDD group (CVLT-II immediate free recall T scores, Tables 3 and 9), and 

in fact worsened in the PDD group. However, these two verbal learning subtests are not 

equivalent, with the CVLT-II version using a longer word list (16 rather than 12 words) and 

more learning trials (5 rather than 3) than its HVLT-R equivalent, thus making it more likely 

to be confounded by fatigue in dementia patient populations (as discussed above in Section 

3.1.9). The lack of a similar improvement in learning efficiency in the PDD group may 

therefore reflect this fact. Interestingly however, an improvement in total recall, and thus 

learning efficiency, was also observed with acute NBM stimulation in the single PDD patient 
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reported by Freund and colleagues (an improvement in Rey Auditory Verbal Learning Test 

(AVLT) summary score from 11 to 20 words after 24 hours of NBM stimulation) (Freund et 

al., 2009). 

 

Of note the significant improvement in immediate free recall (Trial 1) seen in the PDD group 

after 24 hours of acute NBM stimulation does not equate to the improvement in total recall 

seen here in the DLB patients with acute stimulation, as the former is a measure of recall from 

one single trial only (reflecting working memory/attention, but not learning), whereas the 

latter is a measure of learning efficiency across three separate trials. 

Five of the six patients (the same ones that showed improvement in HVLT-R total recall, plus 

patient C) also demonstrated improvements in HVLT-R recognition-discrimination index 

scores with acute NBM stimulation (median group level improvement of +5.5 T scores, 

p=0.141, Table 19), and this improvement was sustained in two of them (B and D) with 

chronic NBM stimulation compared to both off-stimulation and baseline (Table 13). 

Recognition-discrimination index is a measure of retention of information in memory, and 

therefore these results are in line with the improvements in CVLT-II retention in memory 

scores seen in the PDD patients with both acute and chronic NBM stimulation. Therefore, the 

combined results from both trials appear to support the hypothesis that modulation of NBM 

activity might have the potential to improve learning and memory processes in LBD patients. 

Nevertheless, as discussed in Section 2.3 above, apparent improvements in learning and 

retention of information in memory could equally be due to improvements in underlying 

attention/alertness mechanisms, and some of the present trial results lend support to this 

alternate hypothesis; for example, four of the six patients (A, B, C and D) demonstrated 

improved simple reaction times with chronic NBM stimulation compared to both off-

stimulation and baseline (Table 13), while their corresponding simple movement times 

simultaneously worsened with stimulation (Table 20). This divergent trend in the results 
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suggests that the improvements seen in simple reaction speeds with chronic NBM stimulation 

were not due to improvements in motor symptoms, and thus represent true improvements in 

central (cognitive) processing speeds. A similar dichotomous trend is seen in the 

corresponding choice reaction time and choice movement time results (Tables 13 and 20), 

however the results are harder to interpret given that two patients (D and E) performed too 

poorly on this part of the task for their results to be standardised. Improvements in central 

processing speed are often viewed as surrogate measures of improved attention/alertness 

(Wesnes et al., 2005), therefore this trend in reaction time results could suggest that chronic 

NBM DBS improved these cognitive processes in the DLB patients. Interestingly a similar 

dichotomous pattern in simple reaction times and simple movement times was also seen in the 

PDD trial with both acute and chronic NBM stimulation (Tables 3 and 10, and 9 

respectively).  

The fact that four of the five DLB patients tested on the SART task (Patients B, C, D and E) 

showed improvements in commission error rate with chronic NBM stimulation compared to 

both off-stimulation and baseline (Table 14) also supports a possible effect on 

attention/alertness mechanisms. A lower commission error rate can only be considered a true 

improvement as long as the corresponding omission error rate also remains stable or improves 

(otherwise patients could have a low commission error rate simply because they are not 

performing the task correctly). In one of these four patients (Patient C) her omission error rate 

worsened markedly during on-stimulation testing, therefore her apparent improvement in 

commission error rate on-stimulation was simply due to poor task performance at that time 

point (Table 20). However, the omission error rates of the other three patients remained stable 

or improved on-stimulation (Patients B, D and E, Table 20) indicating that their 

corresponding improvements in commission error rates were true improvements in task 

performance. Commission errors on the SART task are reflective of lapses in sustained 

attention (O’Connell et al., 2009), therefore the relative reduction in error rate in these three 

patients on-stimulation further suggests that NBM DBS may have an effect on 
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attention/alertness mechanisms. An alternative explanation for the improvement in SART 

commission error rates in these patients on-stimulation could be an improvement in response 

inhibition, however this seems less likely given that they failed to show improvements on-

stimulation on more traditional measures of response inhibition such as the Trail Making Test 

and Colour-Word Interference Test (Tables 14 and 20 respectively).  

Qualitative evidence supporting a role of NBM DBS in improving attention/alertness comes 

from Patient D, who displayed marked cognitive fluctuation and frank daytime somnolence 

both at baseline and during the blinded off-stimulation condition, precluding his ability to 

perform many of the tasks at these time points (see Tables 13, 14, 19 and 20). However, 

during the blinded on-stimulation condition he was much more alert and attentive, and 

consequently was able to engage with and complete all tasks at this time point. This is 

reflected in the improvements in his blinded scores on the Clinician Assessment of 

Fluctuations Scale and Mayo Fluctuations Composite Scale on-stimulation compared to both 

off-stimulation and baseline (Table 13 and Figure 11, and Table 20 respectively). 

However, as in the PDD trial, performance on many of the cognitive tests remained 

unchanged on-stimulation. This argues against a general improvement in global attention 

functions with NBM DBS as in that situation one would have expected to see a general 

improvement in performance across all measures. Instead, our results currently suggest that 

low frequency NBM DBS may have a more specific effect on one particular mode of 

attention, particularly sustained attention/vigilance or level of arousal. Such an improvement 

in sustained attention or arousal could account for the improvements in learning efficiency 

and retention of information in memory with NBM DBS described above, however 

improvements in these two cognitive domains are not necessarily mutually exclusive. 

Outside our cognitive outcome measures, the improvement across the group in NPI total 

scores on-stimulation compared to both off-stimulation and baseline (median improvements 

of -12.5 points, p=0.066, and -8.5 points, p=0.080 respectively, Table 15 and Figure 11) 
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mirrors the improvement in blinded NPI total scores seen with NBM DBS in the PDD trial. 

However, whereas the improvement in the PDD patients was primarily driven by a reduction 

in complex formed visual hallucinations, in the DLB patients it appears to be due to a general 

reduction in neuropsychiatric symptoms across the board, with modest reductions in 

caregiver-rated subscale scores for hallucinations, depressive symptoms and apathy while on-

stimulation all contributing equally (Table 15). This is paralleled by more marked reductions 

in NPI caregiver distress scores on-stimulation in the DLB group (median improvements of -

6.5 points, p=0.068, and -6.5, p=0.144, compared to off-stimulation and baseline respectively, 

in comparison to -1.5 points, p=0.257, and -4.5 points, p=0.459 in the PDD group), although 

the median NPI caregiver distress score at baseline was higher to start with in the DLB group 

(10.5 points as opposed to 8.5 points in the PDD group). Results from both trials therefore 

support the hypothesis that low frequency NBM DBS improves neuropsychiatric symptoms 

in LBD patients, and suggest that greater symptom burden at baseline may predict a greater 

response to treatment. The exact mechanisms by which low frequency NBM DBS may 

influence these symptoms remains unclear. A recent DTI study has shown strong associations 

between degradation of corticopetal cholinergic projections from NBM and the occurrence of 

particular neuropsychiatric symptoms in dementia patients, including hallucinations, apathy, 

delusions and anxiety (van Dalen et al., 2016). In light of this we can hypothesise that low 

frequency NBM DBS may relieve such symptoms in LBD patients by increasing cortical 

cholinergic transmission in the degenerative NBM network. However, exactly how increased 

cortical cholinergic tone may influence diverse neuropsychiatric symptoms remains to be 

determined. As discussed in Sections 1.3.1.10, 1.3.1.11 and 2.3 above there are strong links 

between cortical cholinergic deficiency, impairments in alertness/attentional control, and 

generation of visual hallucinations, and the same may hold true for other neuropsychiatric 

symptoms in LBDs such as apathy and depression. 

We did not observe any improvements in UPDRS motor subscores or freezing with NBM 

DBS in the DLB group. In particular, we did not observe the same improvement in UPDRS 
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Part IV scores that was seen on-stimulation in the PDD group, likely because none of the 

DLB patients suffered from levodopa-induced dyskinesias, therefore negating any effect that 

current spread to the neighbouring GPi might have had on such symptoms. 

In common with the PDD trial, this pilot trial of NBM DBS in DLB has a number of key 

strengths. We again used a prolonged blinded period, allowing us to report more accurately 

on the sustained effects of NBM DBS than other studies have been able to so far. We also 

included a washout period of two weeks between experimental conditions, such that any 

prolonged effects of NBM DBS which might have persisted after cessation of stimulation 

would have been less likely to confound the second condition. Additionally, our primary 

outcome measures included detailed assessment of individual cognitive subdomains, rather 

than purely measures of global cognitive function. Due to the overlapping effects of 

impairments in individual cognitive domains upon performance in others (see Section 1.3.3 

above and also (Gratwicke et al., 2015b)), use of global measures makes it difficult to 

determine what the specific cognitive effects of NBM DBS might be. We also performed 

detailed assessments of neuropsychiatric symptoms, motor symptoms and patient and carer 

quality of life, which allowed us to assess a broad range of potential beneficial effects. A key 

strength of this particular trial over the PDD trial is that there was no requirement for the 

dorsal electrode contacts to be positioned in the overlying GPi, which allowed more direct 

targeting of the Ch4i subsector of NBM and thus evaluation of the effects of its stimulation. 

Once again the major limitation to this study was the small sample size, which although 

appropriate for exploratory data collection, is not designed to detect significant differences 

between the blinded on- and off-stimulation periods. Given the multiple comparisons 

performed here, our data must not be interpreted as evidence for efficacy, but can be used in 

the planning and design of formal trials to test the hypotheses generated by the current 

dataset. Another relevant issue is that patients continued AChEI therapy during the trial, and 

although there were no dose alterations, it still means that the potential physiological effects 

of NBM DBS on the cholinergic system, and any consequent clinical effects on symptoms, 
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may be partially masked. However, given the relative safety of AChEI medications in 

comparison to DBS, we did not feel it was appropriate to expose patients to surgical risks 

who might gain sufficient cognitive benefits from the use of medications alone. In addition, 

we did not include a randomised non-operated control group of DLB patients, and so cannot 

objectively determine whether NBM DBS made a difference to the natural progression of 

cognitive deficits during the trial period. Likewise, this also makes it difficult to determine 

whether deterioration across the group in some outcome measures (Tables 13 and 14) was due 

to effects of surgery, stimulation or disease progression. Although we tried to minimise 

potential confounding influences of task familiarity and practice effects by using parallel test 

versions, this was not possible for all outcome measures. Inclusion of a non-operated group 

would also have been useful to control for this. Finally, as in the PDD trial, we only 

investigated the effects of low frequency NBM stimulation at 20Hz, however the scientific 

rationale for this is limited (as discussed in Section 1.7.2. above), and stimulation at a 

different frequency might produce different results. Use of a titration schedule investigating 

cognitive responses to different frequencies would have shed light on this issue. However, to 

implement this would have required a much longer study with an even greater frequency of 

assessment visits, and it seems unlikely that patients would have been easily able to comply 

with this, especially given the difficulty that some of the DLB patients had in completing all 

tests under the current trial design. Finally, the clinical impact of the individual objective 

improvements on memory subtests with NBM DBS also remains to be determined as we did 

not assess specific functional capacities to determine if and how these might translate to daily 

activities for patients. 

Looking forwards, one of the aims of this pilot study was to identify parameters which will 

inform sample size calculations for future potential trials of NBM DBS in LBDs. In 

accordance with the results of the PDD trial our results here suggest that detailed assessments 

of verbal memory performance, including learning efficiency and retention in memory, as 

well as detailed measurements of the frequency and severity of neuropsychiatric symptoms 
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should comprise future primary outcome measures. Given the possible beneficial effects of 

NBM DBS on a measure of vigilance (Sustained Attention to Response Task) it would also 

be important to include more detailed assessment of different components of attention (as 

discussed in Section 1.2.2. above and in (Gratwicke et al., 2015b). As previously mentioned, 

secondary outcomes should include assessments of functional capacity to further determine 

the clinical impact that changes in neuropsychological test scores and/or neuropsychiatric 

symptoms have on patient’s daily activities. 

In conclusion, data from this pilot clinical trial have shown that NBM DBS is both technically 

feasible and safe in carefully selected DLB patients, and provide preliminary evidence that 

this therapy should be further evaluated regarding its effects on memory, attention and 

neuropsychiatric symptoms. The outcomes from the study serve to justify further exploration 

of NBM DBS as a therapy for DLB patients whose cognitive and behavioural symptoms are 

refractory to medical therapy. Future studies should explore the effects of stimulation 

amongst subregions within the NBM and formally test whether stimulation can reproducibly 

impact on cognitive and neuropsychiatric symptoms in DLB patients. In addition, given that 

the preliminary evidence from these trials suggests that NBM DBS may have similar 

beneficial effects in both PDD and DLB, and the fact that the boundary between these two 

dementia syndromes is largely artificial, it may prove useful to recruit patients with both 

dementias into future trials to increase numbers and thereby better determine the effects of 

NBM DBS in Lewy body dementias as a whole. 
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Chapter 4: Local field potential recordings from the nucleus basalis 

of Meynert in patients with Lewy body dementias 

 

4.1. Introduction 

Local field potentials (LFPs) recorded from a macro- or microelectrode reflect the temporal 

and spatial summation of synaptic neuronal activity in a certain volume of tissue (Goldberg et 

al., 2004), with the major influence likely to be slow sub-threshold post-synaptic potentials 

(Eccles, 1951). Consequently the LFP amplitude or power indexes the strength of 

synchronization, density and spatial extent of the involved neural pool (Little et al., 2012). 

Although it is not entirely clear how LFP activity relates to neural spike firing, the locking of 

neurons to LFP activity over a wide range of frequencies provides support for its use as a 

measure of the pattern of underlying neuronal synchronization (Moran et al., 2008). Extensive 

evidence from LFP recordings from the human STN and GPi in PD patients undergoing DBS 

for motor symptoms, and animal models of the disease, have demonstrated synchronised 

neural oscillations in the beta band (13-35 Hz) in the motor network (Brown et al., 2001; 

Hammond et al., 2007; Kühn et al., 2004; Williams et al., 2002). Their suppression by 

dopamine, DBS and salient cues has been shown to correlate with changes in motor 

performance (Brown, 2003; Brown and Williams, 2005; A. a Kühn et al., 2006; Kühn et al., 

2004; Oswal et al., 2012). Thus such recordings from patients undergoing DBS have offered 

unique insights into the physiological properties of distributed brain networks and 

consequently shed light on their function. 

As discussed in Sections 1.6.6 – 1.6.8. above, the exact physiological function of the human 

NBM remains open to debate as thus far its function has only ever been investigated by 

indirect methods such as functional imaging. However, our trials of NBM DBS afforded us 

the unique opportunity to record bilateral LFPs directly from NBM in our awake patients 

during the period of electrode externalisation prior to IPG implantation. Therefore, we were 
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able to directly investigate the physiological properties of the human NBM in vivo for the 

first time, and thereby gain novel insight into its possible functions. 

 

4.2. Materials and methods 

4.2.1 Patients 

As mentioned in both preceding chapters all PDD and DLB patients who participated in the 

clinical trials agreed and provided informed consent to undergo LFP recordings in the period 

of electrode externalisation on the ward, between electrode implantation and IPG 

implantation (a period of 4-7 days on average). Clinical characteristics of the patients and 

stereotactic co-ordinates of the most ventral electrode contacts in each hemisphere are 

detailed in Tables 1 and 11 above. Figures 10 and 14 above show anatomical locations of 

most ventral DBS contacts in the PDD and DLB patients respectively. Ethical approval and 

consent for externalised LFP recordings were included in the main ethics applications and 

consent forms respectively for the clinical trials (as described above in Sections 2.1.3 and 

3.1.3). 

4.2.2 Rest recordings and paradigms 

Patients attended our research laboratory during the daytime having taken their usual 

medications (including their usual doses of both levodopa and AChEI medications). Patients 

were seated comfortably in a chair. We first conducted a resting recording with no task 

paradigm to complete. We recorded resting bilateral LFPs from NBM and GPi 

simultaneously in each patient. Our hypothesis was that the NBM would show significantly 

different resting state activity to neighbouring GPi, reflective of the anatomical differentiation 

and proposed functional differentiation of the two structures. We subsequently conducted two 

separate recordings while patients completed two different attention task paradigms, Posner’s 

covert attention task (PCAT) and the sustained attention to response task (SART). We chose 
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these two tasks since the NBM has previously been proposed to play a role in both orienting 

of attention and sustained attention/vigilance (Buzsaki et al., 1988; Fuller et al., 2011; Sarter 

et al., 2005, 2006; Voytko et al., 1994). Therefore, we hypothesized that by directly 

comparing NBM LFP activity during these two tasks we would be able to determine if 

activity in the nucleus preferentially reflected one or other mode of attention. By recording 

simultaneous GPi LFPs during the tasks we would be able to determine whether any evoked 

activity seen in NBM during the attention tasks was specific to that nucleus, or a reflection of 

more widespread neural activation. The rest recording and both task recordings were 

conducted in one sitting, with breaks in between to allow patients to rest and to provide 

instructions. Initial set-up and wiring took some time, and so it was preferable from the 

patient’s perspective to only go through this procedure once, hence why all three recordings 

were conducted in one sitting rather than on separate days. 

4.2.2.1  Resting state recordings 

LFPs were simultaneously recorded from both NBM and GPi while patients sat still in a quiet 

room for three minutes with eyes open. No task was administered. These recordings were 

conducted in order to characterise baseline resting activity in the human NBM in the awake 

and alert state, and compare it to resting GPi activity (which has previously been well 

characterised through LFP recordings (Brown et al., 2001), and therefore acted as a control). 

Our prediction was that there would be a different resting LFP pattern in NBM compared to 

GPi reflecting their different proposed physiological roles.  

4.2.2.2  Posner’s Covert Attention Test (PCAT) 

LFPs were simultaneously recorded from both NBM and GPi while patients performed a 

customised version of this classical test of orienting of visual attention, displayed on a laptop 

computer. The recordings were made in order to investigate the proposed role of NBM in 

orienting of visual attention (see Section 1.6.7). Our hypothesis was that NBM activity would 

reflect orienting of visual attention to a novel stimulus, and that activity would be stronger 
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when required to reorient visual attention to an unexpected target location compared to an 

expected one, reflective of the greater attentional demand in the former. Meanwhile GPi 

activity would only reflect the motor aspect (response) in the task. 

Patients were seated comfortably in a chair facing the laptop screen 50 cm in front of them. 

They held an analogue trigger button in each hand and registered responses by pressing either 

the right or left button. Each trial began with a white fixation cross presented in the centre of 

a black screen, followed 2500 ms later by a warning cue (presented for 500 ms) which 

indicated either right or left (Figure 16). This was followed 1000-1500 ms later by a target on 

either the right or left of the screen (presented for 140 ms). After target appearance patients 

had to respond as fast as possible within a 1750 ms window by pressing the right or left hand 

button to indicate on which side of the screen the target had been presented. However, the 

warning cue only accurately predicted correct target side 70% of the time, so two types of 

trial were possible; ‘valid’ trials, where cue and target side were congruent, and ‘invalid’ 

trials, where cue and target side were incongruent. Thus valid trials only required orientation 

of visual attention to the expected target location, whereas invalid trials required a re-

orientation (shift) of visual attention to the location of the unexpected target (Posner, 1980). 

By keeping the balance of probability in favour of the occurrence of a valid trial patients were 

encouraged to respond rapidly contingent upon the cue rather than waiting to plan their 

response based on ultimate target location. In this way the potential requirement for a rapid 

re-orientation of visual attention was maintained throughout the task. Feedback was provided 

to patients at the end of each trial in the form of either a green ‘correct’ or red ‘error’ word 

being displayed for 500 ms, following which the fixation cross would reappear and the next 

trial would begin. 

The task requirements were verbally explained to the patient prior to completing an initial 

training block of 30 trials to ensure that instructions had been fully understood. After training, 

patients performed ten blocks of 30 trials each, with breaks between. The maximum total 
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number of trials that could be completed per patient was therefore 300, of which a maximum 

of 210 were valid and 90 invalid. 

Of note, this version of the PCAT was identical to that administered as a primary outcome 

measure to the patients in both clinical trials. 

 

Figure 16: Schematic illustration of a valid and an invalid trial in Posner's Covert Attention Test 
(PCAT). In either trial type a fixation cross was initially displayed for 2500 ms. A warning cue was 
then briefly displayed (for 500 ms), indicating right or left.  After this a blank screen was shown for 
1000-1500ms, followed by brief presentation of a target on either the right or left side of the screen 
(for 140 ms). After target appearance patients had to respond as fast as possible within a 1750 ms 
window by pressing the right or left hand button to indicate on which side of the screen the target had 
been presented. However, the warning cue only accurately predicted correct target side 70% of the 
time, so two trial types were possible; ‘valid’ trials, where cue and target side were congruent (left 
hand trial schematic), and ‘invalid’ trials, where cue and target side were incongruent (right hand trial 
schematic). Brief feedback was provided at the end of each trial in the form of either a green ‘correct’ 
or red ‘error’ word (displayed for 500 ms), following which the fixation cross would reappear and the 
next trial would begin. This customised version was used for both LFP recordings and as a primary 
outcome measure in both clinical trials. 

 

4.2.2.3  Sustained Attention to Response Test (SART) 

LFPs were simultaneously recorded from both NBM and GPi while patients performed a 

customised version of this test of sustained attention/vigilance, displayed on a laptop 

computer. The recordings were made in order to investigate the proposed role of NBM in 

sustained attention/alertness (see Section 1.6.8). Our prediction was that NBM activity would 
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reflect lapses in sustained attention leading to errors, while GPi activity would only reflect the 

motor aspect (response) in the task. 

Patients were seated comfortably in a chair facing the laptop screen 50 cm in front of them. 

They held an analogue trigger button in their dominant hand and registered responses with 

button presses. Each trial began with a white fixation cross (size 0.25 dva) presented in the 

centre of a black screen. This was constantly present, and subjects were instructed to fixate on 

this throughout the paradigm (although gaze fixation was not controlled for with an eye-

tracker). After 1000 ms a digit (varying randomly between “1” and “9” on each trial) was 

presented in the lower left corner of the screen for 70 ms. After presentation of the digit 

stimulus patients had to respond as fast as possible within a 1750 ms window by pressing the 

button. They were instructed to respond to all digits in this way (Go trials) except the digit 

“5”, to which they should inhibit their response (NoGo trial). NoGo trials accounted for 11% 

of the total trials administered in each block, and Go trials accounted for 89%. On each trial 

the digit presented varied randomly in size (0.84–1.17 dva) and font. This was to ensure that 

subjects processed the identity of the digits rather than focusing on specific perceptual 

features. Following the response window feedback was only given in three situations: (1) if 

the patient had responded too fast (within 100 ms of stimulus presentation, which is too fast 

to be a true physiological response and must therefore be a random error), in this case “too 

fast” was presented for 75 ms; (2) if the patient failed to make any response on a Go trial (an 

omission error) then “too slow” was presented for 75 ms; (3) if the patient made a response 

on a NoGo trial (a commission error), in which case “error” was presented for 75 ms. 

However, if the patient had made a correct response on a Go trial then no feedback was given. 

After any necessary feedback had been briefly displayed the next trial began. 

The task requirements were verbally explained to the patient prior to completing an initial 

training block of 36 trials, to ensure that the instructions had been fully understood. After 

training, patients performed ten blocks of 36 trials each, with optional breaks between. The 

maximum total number of trials that could be completed per patient was therefore 360. 
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The SART task was developed by Robertson et al. as an alternative to traditional Continuous 

Performance Tasks (CPTs) for measuring sustained attention/vigilance (Robertson et al., 

1997). In traditional CPTs participants are asked to monitor a stream of repetitive stimuli in a 

non-arousing visual environment over an extended period of time for the occurrence of a rare 

target stimulus to which they must make a response. Such tasks are designed to be 

monotonous and boring by virtue of their low signal probability, and rely on time-on-task 

effects to place the participant at increasing risk of a critical lapse of attention. However, in 

real life we are susceptible to fluctuations in attention over much shorter periods (Manly et 

al., 1999; O’Connell et al., 2009). Imaging studies support this observation by showing that 

the frontoparietal attention network is engaged over periods of less than a minute (Paus et al., 

1997), and that brief lapses of attention are preceded by momentary reductions of activity in 

frontal control regions (Weissman et al., 2006). Hence, the large temporal gaps between 

target presentations in traditional CPTs make them insensitive to these moment-to-moment 

lapses in sustained attention. This problem is addressed by the SART, which is in effect the 

inverse of the traditional CPT; it still presents a long task with repetitive trials in a non-

arousing visual environment, but the much more frequent occurrence of target stimuli mean 

that this task is more sensitive to the relatively brief lapses of sustained attention that occur in 

the absence of time-on-task effects. Additionally, in the context of the present experiment, 

since fluctuations in attentional control have been shown to occur on a second-by-second 

basis in LBD patients (Walker et al., 2000) then use of the SART paradigm appears likely to 

be a more sensitive measure of sustained attention in this particular patient group. 

Of note, this version of the SART was identical to that administered as a secondary outcome 

measure to the patients in the DLB trial. 
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Figure 17: Schematic illustration of the Sustained Attention to Response Task. Each trial began with a 
white fixation cross presented in the centre of a black screen. This was constantly present, and subjects 
were instructed to fixate on this throughout the paradigm (although gaze fixation was not controlled 
for with an eye-tracker). After 1000 ms a digit (varying randomly between “1” and “9” on each trial) 
was presented in the lower left corner of the screen for 70 ms. After presentation of the digit stimulus 
patients had to respond as fast as possible within a 1750 ms window by pressing the button. They were 
instructed to respond to all digits in this way (Go trials) except the digit “5”, to which they should 
inhibit their response (NoGo trial). This customised version was used for both LFP recordings and as 
a secondary outcome measure in the DLB trial. 

 

4.2.3 Electrophysiological data acquisition 

For all three paradigms data acquisition procedures were identical. NBM and GPi LFPs and 

analogue signals related to the cues, targets and button presses were recorded using a D360 

amplifier (Digitimer Ltd, Hertfordshire, UK), in combination with an analog-to-digital 

converter, and sampled onto a laptop computer using Spike 2 V6 software (Cambridge 

Electronic Design, UK). Electrophysiological signals were collected in a monopolar fashion 

(recorded across eight separate DBS channels: R0, R1, R2, R3, L0, L1, L2, L3) referenced to 

the left clavicle. Signals were amplified (X 50,000), filtered (1.0-1000 Hz) and sampled at a 

common rate of 2480 Hz. Raw data files in Spike 2 were converted to MATLAB file format 

for subsequent off-line pre-processing and spectral analysis. 
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4.2.4 Data pre-processing 

The data were imported into MATLAB (The Mathworks, Inc, Natick, MA) and analysed 

using custom scripts in conjunction with the SPM (http://www.fil.ion.ucl.ac. uk/spm/) and 

FieldTrip (http://www. ru.nl/neuroimaging/fieldtrip/) toolboxes (Litvak, Mattout, et al., 2011; 

Oostenveld et al., 2011). For task files, an events array was generated for each specific file by 

decoding the digitised trigger signals generated by the cues, targets and button presses 

(responses) during the task and thereby defining the events which occurred and their 

corresponding timings. LFP signals were then converted to a bipolar montage; this involved 

computing the difference between the adjacent but dorsal electrode contact from each contact 

to give three bipolar contacts per electrode representing the potential difference between 

contacts 0- 1, 1- 2, and 2- 3. A bipolar montage was preferred to limit the effects of volume 

conduction from both nearby and distant sources; given that we were trying to resolve 

differences in LFP signal between two distinct yet closely anatomically-related neighbouring 

structures (NBM and GPi), then taking all steps to limit the possible confounding influences 

of any current spread between these structures, or current spread from common distant 

sources, was important. Bipolar montages focus on the net difference in current between 

adjacent contacts (within the same structure), thereby reducing the influence of external 

current sources, whereas monopolar montages summate all current detected by each 

individual contact, and are therefore theoretically more vulnerable to their signal being 

confounded by distant current spread. In light of this, we felt that a bipolar montage offered a 

higher likelihood of being able to resolve differences in the LFP signals between the two 

structures. Given that in most patients contact 0 on each electrode was located in the body of 

the NBM, contact 1 was located around the NBM-GPi boarder and more dorsal contacts were 

located in GPi (see Figures 10 and 14), then the 0-1 bipole corresponded to the NBM, the 2-3 

bipole corresponded to the GPi, and the 1-2 bipole was taken as a mixed signal intermediate 

between the other two. This therefore meant that the LFP file for each paradigm for each 

patient contained six different channels of data: Right NBM, Right NBM/GPi and Right GPi, 
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Left NBM, Left NBM/GPi, Left GPi. Each individual file containing these six channels then 

underwent the same pre-processing steps as follows. 

Data were acquired at a high sampling rate (2480 Hz), which increases data storage and 

computational requirements, but allows for higher frequencies to be examined (the Nyquist 

frequency limit equals half the sampling rate4). In this experiment we focussed on oscillatory 

activity at frequencies less than 100 Hz, and therefore we felt it reasonable to downsample the 

data to 300 Hz in order to reduce computational requirements while maintaining the potential 

for sensitive analysis of our frequency range of interest. 

Although the acquired data had been hardware-filtered during acquisition by the LFP 

recording system, further filtering was necessary at the pre-processing stage in order to 

remove unwanted frequency components. A high-pass fifth-order Butterworth filter (> 1 Hz) 

was used to remove low frequency fluctuations in the signal due to gradual build-up of 

electrical charge, which can saturate the recording equipment. Fifth-order notch filters at 50 

Hz and its harmonics were then applied to the data to remove noise from mains interference. 

In our data there were numerous sources of artefacts which required removal; these included 

artefacts generated by the experimental procedures, recording equipment and physiological 

artefacts generated from eye movements, muscle activity or the cardiac cycle. In most cases 

these minor artefacts would be handled later by our spectral analysis methods. However, we 

prospectively applied artefact detection methods to the data, including thresholding of the 

data itself and thresholding of the difference between adjacent samples, in order to detect 

large amplitude jumps and mark them. This enabled us to check later on that all artefacts had 

been sufficiently removed by spectral analysis, and apply further strategies for removal if not. 

                                                        

4 In order to recover all Fourier components of a periodic waveform, it is necessary to use a sampling 
rate at least twice the highest waveform frequency you are interested in. The Nyquist frequency limit is 
defined as this highest frequency that can be coded at a given sampling rate in order to be able to fully 
reconstruct the original signal (Oppenheim et al., 1999). 
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4.2.5 Spectral Analysis 

The aim of these experiments was to investigate spectral activity in the NBM, in both the 

resting state condition and under manipulations of orienting and sustained attention. In order 

to do this we used a standard spectral timeseries analysis method, the Fourier Transform. This 

is a powerful technique for decomposing complex neural signals into simpler, biologically 

salient signals (Gabbiani and Cox, 2010), and is based on the principle of the Fourier Series: 

that any periodic function ƒ(t) with period T can be decomposed into a sum of sine and cosine 

waves: 

 

The Fourier Transform can be viewed as an extension of the Fourier series to non-periodic 

functions (i.e. when T  trends towards infinity), and therefore can be applied to a signal to 

determine what frequencies are present and in what proportions. The standard equation for the 

Fourier Transform:  

 

In practical use we usually perform the transform on a time series of discrete length (as in 

these experiments where the time series is epoched), and therefore we use an approximation 

known as the Discrete Fourier Transform. This can be evaluated over multiple frequencies 

and the magnitude square of the Fourier transform for a particular frequency ƒ(ω) % tells us 

how much weight, or power, the original signal contains at that frequency in that discrete time 

series. The distribution of power over different frequencies is a standard method to visualise 

the spectral properties of a signal and is termed the power spectrum. 
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A difficulty arises with performing Discrete Fourier Transforms on complex real world 

signals; a non-integer number of cycles of an underlying component frequency is likely to be 

sampled in a discrete time series. When a Fourier transform is applied to this signal then the 

time discontinuity will mean that other apparent frequencies close to the ‘true’ frequency of 

that component signal will also be erroneously detected (‘aliasing’). This is termed spectral 

leakage and can interfere with the ability to accurately resolve different component 

frequencies within a complex signal. The effects of spectral leakage can be reduced by pre-

multiplying the raw data with a window function (‘taper’) which suppresses time 

discontinuities. A common taper used is the Hanning taper, which has the advantage of very 

low aliasing at the expense of slightly decreased frequency resolution (Harris 1978). We 

applied a multitaper approach, which involves obtaining multiple independent spectral 

estimates by the use of multiple Hanning tapers, then averaging them together to yield a 

robust estimation of the true underlying spectrum (Thomson 1982). 

4.2.6 Analysis Pipelines 

Slightly different analysis pipelines were employed for resting and task recordings:  

LFP files from the resting experiments consisted of one long recording without discrete 

events. For each file we epoched this continuous data into discrete 1000 ms sections, before 

performing repeated spectral analyses using the discrete Fourier transform on each section 

(with frequency resolution of 1:100 Hz). We then averaged across these transforms to obtain 

a closer approximation to the true spectral decomposition of the recorded resting signal in 

each channel. For each patient the data in corresponding channels in each hemisphere were 

then averaged together to generate three individual spectral datasets: NBM, NBM/GPi and 

GPi. These spectra were then normalised to the mean power across the 55-95 Hz frequency 

range. Finally, these individual spectra were averaged across all patients to generate grand 

average resting power spectra. 
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For LFP files from the Posner and SART experiments spectral analysis using Fourier 

transformation was first applied to the whole recording. Following this data was rescaled 

using a log function and a high-pass Butterworth filter (> 1 Hz) was again applied to remove 

low frequency artefacts. Epoching was then implemented according to the timings in the 

corresponding events array decoded for each recording. Robust averaging was then applied to 

the whole spectral dataset (the benefits of this method for increasing signal-to-noise ratio in 

data with low trial numbers has been previously demonstrated (Litvak et al., 2012)). For each 

patient the data from corresponding channels in each hemisphere were then averaged together 

to generate three individual spectral datasets: NBM, NBM/GPi and GPi. Finally these 

individual spectra were averaged across all patients to generate grand-average time frequency 

spectra for each task. 

For the Posner task I separately analysed the spectra locked to the warning cue, the targets 

and the responses in overlapping windows of -1000 ms to +1000 ms. For the SART task I 

separately analysed the spectra locked to the cues and responses, again in overlapping 

windows of -1000 ms to +1000 ms. 

 

4.2.7 Statistical Analysis 

   Resting State Recordings 

For resting state recordings statistical analysis was performed using the Fieldtrip software 

package. To look for a significant difference between the resting state power spectra in NBM 

and GPi we first calculated sequential Monte-Carlo estimates (conditional probabilities, or 

‘best estimates’) of their respective true original signals from our observed data. We then 

performed a two-tailed paired samples T test on these estimated signals, using a cluster-based 

method for multiple comparison correction. 
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The reason for employing Monte Carlo methodology is that, statistically-speaking, our data is 

vulnerable to the filtering problem – i.e. due to (1) the fact that in our original recordings it 

was inherent that only partial observations of the true biological signal were made, (2) the 

introduction of random perturbations in the recorded signal from our sensors, and (3) 

potential artefacts introduced by our use of non-linear transforms (such as re-scaling our data 

using logarithmic functions), we cannot be sure that our data accurately represent the true 

original signal. We therefore need to establish a ‘best estimate’, termed the conditional 

probability, of the true original signal from our incomplete, potentially noisy observations. 

Sequential Monte Carlo methods are a form of mathematical particle filter which addresses 

this problem. The algorithm uses a genetic type mutation-selection sampling approach, taking 

a set of particles (data points) to represent the probable true signal and assigning them 

likelihood weights representing the probability of that particle being sampled from the true 

signal according to the probability density function. Once this is calculated the data is then 

resampled, and the particles with negligible weights are removed and replaced by new 

particles in the proximity of the particles with higher weights. Thus the particles with higher 

relative weights gradually become multiplied, and consequently the sequential models of the 

data trend towards the ‘best estimate’ (conditional probability) of the true original signal (Del 

Moral, 1996; Crisan et al., 1999).  

 

4.2.7.2  Task recordings 

For the tasks statistical analysis was performed by using a general linear model (GLM) based 

approach, implemented in the SPM12 (Statistical Parametric Mapping) software package. 

SPM is a MATLAB toolbox that was designed to make inferences about regionally specific 

effects in the brain, but whose statistical principles can be used to make inferences about 

regionally specific effects in three dimensional space generally, and is thus applicable to 

analysis of subcortical LFP data (Kilner and Friston, 2010). 



 179 

SPM employs a mass univariate approach to the statistical analysis of images, meaning that 

the observed data at each voxel, pixel or time point (in the case of 3D, 2D or 1D images 

respectively) is modelled as a linear combination of one or more explanatory variables with 

additive Gaussian noise. For example, in an experiment with ten conditions and ten 

observations per condition then the recorded activity in a single image voxel would take a 

different value for each observation, and is represented in SPM as a vector Y containing 100 x 

1 values). X is a design matrix with each explanatory variable as a column vector, here a 100 

x 10 block diagonal matrix. b represents a vector of parameters which optimally fit the model 

to the data whilst e is a vector of errors containing the mismatch between the observations and 

the model. 

 

It is relatively straightforward to estimate the b parameter when assuming that the errors are 

independent and identically distributed, however this assumption is rarely true with repeated 

measures designs. SPM therefore uses additional methods to handle such errors  (Worsley and 

Friston, 1995). 

Statistical analysis was performed at the group level using a summary statistic based 

approach, whereby a single image for each experimental condition of interest for each subject 

was analysed at the between subject level. Once the GLM had been applied to each data 

point, SPM produced an image of the b  parameters for each regressor in the design matrix. 

Statistical testing of hypothesis can then be performed using the b  images, after specifying 

appropriate contrasts to test. Once again two-tailed paired samples T tests were used. Images 

of the t-statistic for each contrast can be generated in SPM for visualisation and these may be 

thresholded to a certain p-value, such that surviving data points are those significantly 

activated by an experimental manipulation (Friston et al., 1995). However, this approach runs 

the risk of false positives (Type 1 errors) due to the multiple comparisons performed. 



 180 

Correcting for this requires an estimate of the number of independent statistical tests being 

performed, but Bonferroni correction is not possible here as spatial or temporal correlations in 

the data mean that the number of independent tests is not simply equal to the number of 

datapoints. Instead, SPM uses a branch of mathematics called Random Field Theory to 

calculate a corrected p-value: having estimated the smoothness of the data, the expected 

distribution of topological features such as peaks or clusters is calculated according to the 

Euler characteristic, and this allows more accurate thresholding of the statistical parametric 

maps (Worsley et al., 1992). 
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4.3. Results 

All six PDD patients and five of the DLB patients underwent LFP recording in the immediate 

post-operative period. DLB Patient D was too unwell in the post-operative period (due to his 

contraction of antibiotic-associated C.Difficile diarrhoea) to undergo LFP recording. Of the 

11 LBD patients who underwent recordings, all 11 completed the resting state recording, 

eight also completed the Posner task recording, and seven also completed the SART task 

recording. One patient (DLB Patient C) was too fatigued to complete either task recording, 

two patients (PDD Patients B and E) could not complete the task recordings due to equipment 

failures, and one patient (DLB Patient 5) could complete the Posner task, but could not 

accurately complete the SART task due to alexia. All completed recordings were included in 

the respective analyses. 

4.3.1 Resting state recordings 

Individual resting NBM power spectra from each hemisphere in all 11 patients (22 

hemispheres in total) are shown in both Figures 18 and 20 (latter is zoomed view of former to 

illustrate low frequency power more clearly). Corresponding individual resting GPi power 

spectra from each hemisphere in all 11 patients (22 hemispheres in total) are shown in both 

Figures 19 and 21 (latter is zoomed view of former to illustrate low frequency power more 

clearly). Both nuclei show spectral peaks in the delta band (0.1-3 Hz) range, however note the 

differences in Y axis scales between the NBM and GPi plots, indicating that delta power is 

generally much higher in resting state NBM compared to GPi in these LBD patients.  

Minor spectral peaks are also seen in the theta band (4-7 Hz) and alpha band (8-13 Hz) in the 

NBM spectra, and in the theta band and beta band (16-30 Hz) in the GPi spectra. The 

relatively low activity in the beta band in the GPi spectra is consistent with the fact that all 

patients had taken their usual levodopa medication prior to LFP recording, which has 

previously been shown to suppress GPi beta activity (Brown and Williams, 2005). 
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Figure 18 (right): Resting NBM power spectra for all patients. Each coloured line represents the resting power spectrum from a single NBM (one hemisphere) from 
each patient. Most individual NBM spectra demonstrate peaks in the delta band (0.1 – 3 Hz). Most spectra show a second peak in the theta band (4-7 Hz) range. See 
Figure 20 for a zoomed in view of the low frequency spectra. The apparent loss of power between 48-52 Hz is due to artefact from the stop band filter applied at 48-
52 Hz to remove electrical mains interference at these frequencies. These power spectra are normalised to the mean power across the 55-95 Hz frequency range. 

Figure 19 (left): Resting GPi power spectra for all patients. Each coloured line represents the resting power spectrum from a single GPi (one hemisphere) from 
each patient, colours correspond to those in Figure 18, identifying NBM and GPi from the same individual hemisphere. Most individual GPi spectra demonstrate 
peaks in the delta band (0.1 – 3 Hz), however note the difference in Y axis scales between Figures 18 and 19, indicating that delta band power is generally much 
lower in GPi compared to NBM. Most spectra show a second peak in the theta band (4-7 Hz) range and a third in the beta band (15-30 Hz) range. See Figure 21 for 
a zoomed in view of the low frequency spectra. The apparent loss of power between 48-52 Hz is due to artefact from the stop band filter applied at 48-52 Hz to 
remove electrical mains interference at these frequencies. These power spectra are normalised to the mean power across the 55-95 Hz frequency range. 
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Figure 20 (right): Resting NBM power spectra for all patients, zoomed in view on low frequencies. Each coloured line represents the resting power spectrum from a 
single NBM (one hemisphere) from each patient. Most individual NBM spectra demonstrate peaks in the delta band (0.1 – 3 Hz). Most spectra show a second peak 
in the theta band (4-7 Hz) range and a few show a peak in the alpha band (8-13 Hz) range. These power spectra are normalised to the mean power across the 55-95 
Hz frequency range. 

Figure 21 (left): Resting GPi power spectra for all patients, zoomed in view on low frequencies. Each coloured line represents the resting power spectrum from a 
single GPi (one hemisphere) from each patient, colours correspond to those in Figure 20, identifying NBM and GPi from the same individual hemisphere. Most 
individual GPi spectra demonstrate peaks in the delta band (0.1 – 3 Hz), however note the difference in Y axis scales between Figures 20 and 21, indicating that 
delta band power is generally much lower in GPi compared to NBM. Most spectra show a second peak in the theta band (4-7 Hz) range and a third in the beta band 
(16-30 Hz) range. These power spectra are normalised to the mean power across the 55-95 Hz frequency range.
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Figure 22 shows the grand average resting NBM and GPi power spectra averaged over all 

respective hemispheres in all patients. The resting spectral peaks in the delta band, and to a 

lesser extent in the theta band, in both nuclei can now be more clearly visualised. The 

difference in resting delta band power between NBM and GPi is also readily apparent. 

 

 

Figure 22: Grand average resting NBM and GPi normalised power spectra. A) Group average resting 
NBM and GPi power spectra for all LBD patients (n=11). Spectral peaks are evident in the delta and 
theta bands in both nuclei, however higher power is seen in NBM relative to GPi in both frequency 
bands. B) and C) Group average resting NBM and GPi power spectra for PDD (n=6) and DLB (n=5) 
patients separately. Spectral peaks are again evident in the delta and theta bands in both nuclei in both 
patient groups, with higher power seen in both frequency bands in the NBM compared to the GPi (note 
the difference in Y axis scales). In the GPi, but not the NBM, PDD patients showed higher power in the 
delta and theta bands than their DLB counterparts (although these differences were not significant). 
All power spectra are normalised to the mean power across the 55-95 Hz frequency range. The shaded 
regions represent standard errors of the mean.  
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Figure 23 below shows a plot of the differences between the corresponding NBM and GPi 

power spectra (NBM - GPi power, from each individual hemisphere) at each individual 

frequency. The mean difference across all corresponding pairs is plotted as a red line. At 

group level, statistically significant differences in resting state power between NBM and GPi 

were found in the delta, theta, and alpha bands (p=0.004 for all). The individual frequencies at 

which these significant differences in resting power were found (1-16 Hz) are plotted as red 

stars on the figure. Figure 24 shows a zoomed-in version of the previous figure, focussing on 

the low frequencies with statistically significant differences in resting state power between 

NBM and GPi. 

Figure 23: Differences in power between corresponding NBM and GPi resting power spectra. Plots of 
NBM-GPi power from all 22 hemispheres are included. The red line represents the mean difference in 
resting state power between NBM and GPi across the group. Red stars indicate the frequencies at 
which mean differences in resting state power between NBM and GPi were statistically significant at 
group level. See Figure 24 below for a zoomed-in view of these particular frequencies. The power is 
normalised to the mean power across the 55-95 Hz frequency range. 
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Figure 24: Differences in power between corresponding NBM and GPi resting power spectra, zoomed-
in view of low frequencies. Plots of NBM-GPi power from all 22 hemispheres are included. The red 
line represents the mean difference in resting state power between NBM and GPi across the group. 
Red stars indicate the frequencies at which mean differences in resting state power between NBM and 
GPi were statistically significant at group level. The power is normalised to the mean power across the 
55-95 Hz frequency range. 

 

4.3.2 Posner’s Covert Attention Test (PCAT) 

Behavioural results: across the eight patients (4 PDD and 4 DLB) who successfully 

completed the PCAT LFP recording a total of 1422 valid trials and 474 invalid trials were 

completed. However, average response accuracy was only 55%, which was not significantly 

different from chance level of 50% accuracy (one-sample T-test, p=0.617). This indicated that 

only half of all trials (valid or invalid) were completed correctly, and therefore that patients 

struggled to complete the task properly in the post-operative period. The mean response times 

at group level for valid and invalid trials were 731.57 ms (SD 243.96 ms) and 761.31 (SD 

273.57) respectively (Fig. 25). These reaction speeds are slow compared to speeds of 300 ms 

and under in normal controls (Posner, 1980), but are within the expected range for this patient 
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group (pre-operative reaction times in the PDD group were 769.49 ms (SD 232.61 ms) for 

valid trials and 774.06 ms (SD 198.49 ms) for invalid trials). Although there was a difference 

between the mean response times for valid and invalid trials of 29.74 ms (SD 57.46 ms), 

consistent with the so-called ‘Posner effect’ (wherein mean reaction time for invalid trials is 

prolonged compared to that for valid trials due to the requirement to re-orient (shift) attention 

in the former) this failed to reach significance for the group (two-tailed paired samples T-test, 

p=0.187).   

 

 

Figure 25: Behavioural results from the Posner paradigm. The red line shows the difference between 
the group level average reaction times to valid and invalid trial types, the so-called ‘Posner effect’ or 
reaction time cost caused by the requirement to re-orient visual attention to the unexpected target 
location in the latter. Black bars show the standard error of the mean for valid and invalid trials. 
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Electrophysiological results: Grand average time-frequency power spectra (averaged across 

all sixteen hemispheres) for both NBM and GPi during the Posner task are shown in Figure 

26 below. There are no clear differences in the visualised spectra when locked to cue, target 

or response, or between the two nuclei when compared to one another. This is not surprising 

given that the behavioural results show that the majority of the patients struggled to complete 

the task correctly, with response accuracies of around 50% (chance level) in six of the eight 

patients. Consequently, any evoked activity in NBM and/or GPi during correctly completed 

trials is likely to have been lost when averaged with noise from the high number of 

incorrectly completed trials across the patient group.  

Despite these limitations, analysis of the group level results in SPM did reveal some effects of 

trial validity on low frequency NBM activity: analysis of the contrast ‘invalid trials’ > ‘valid 

trials’ on the NBM LFPs confirmed a main effect of the invalid target on NBM activity with a 

significant cluster at 1.26 Hz, 767 ms pre-target appearance (Ke 39, p=0.003 corrected), 

possibly representing an anticipatory effect to the target. Analysis of the reverse contrast 

(valid trials > invalid trials) also showed a main effect of the valid target on NBM activity 

with a significant cluster at 1.98 Hz, 600 ms pre-target appearance (Ke 48, p<0.001 

corrected). Again this may represent an anticipatory effect to the target. Since both these 

effects occurred within a similar timeframe prior to target presentation then it seems likely 

that they both represent an anticipatory effect to target presentation generally, but not 

specifically to the nature of the target (valid/invalid). Analysis of the same contrasts in GPi 

did not show any effect of either target type on activity in that nucleus, suggesting that the 

anticipatory activity seen to the target was specific to the NBM. 

Further contrasts did not show any effects of trial validity on activity locked to the response in 

either nucleus. There were also no significant differences detected between the two nuclei in 

activity locked to the cue, target or response for either trial validity.  
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When restricting the analysis to include only the two patients who performed the task well 

(both achieved response accuracies of >95%, and were the only two patients with response 

accuracies >55%) analysis of the contrast ‘invalid trials’ > ‘valid trials’ on the NBM LFPs 

again confirmed a main effect of the invalid target on NBM activity with a significant cluster 

at 1.34 Hz, 267 ms pre-target appearance (Ke 26, p=0.014 corrected). The reverse contrast did 

not show any significant clusters, in this case suggesting that the anticipatory activity was 

specific only to invalid targets. No other contrasts found significant results. 
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Figure 26: Grand average time-frequency power spectra for NBM and GPi locked to cue, target and response for both valid and invalid trial types. For the NBM and GPi plots 
aligned to the onset of the warning cue the time window extends to 1000 ms post-cue presentation, to prevent contamination from motor responses which would occur after this 
time period. Contamination from anticipatory activity related to the upcoming target cannot be excluded however. Power was calculated relative to a 0.8 s period prior to the 
appearance of the warning cue. Warm colours indicate an increase in power at the respective frequencies, with cooler colours indicating a reduction in power (see colour bar). 
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4.3.3 Sustained attention to response task (SART) 

Behavioural results: Across the seven patients who completed the SART LFP recordings a 

total of 2282 total trials were completed. As discussed previously (Chapter 3 Discussion, 

Section 3.3), correct performance on the SART task is shown by a low overall omission error 

rate. As shown by Figure 27 below only two of the patients (2 and 7) achieved a good rate of 

omission errors (<5%). Two further patients (1 and 4) displayed an omission error rate of 25-

30%, but their commission error rates were still higher (55% and 43% respectively), 

indicating that they were making a good attempt to complete the task correctly, even if they 

found it difficult. In the remaining three patients (3, 5 and 6) their omission error rates were 

much higher than their commission error rates, which suggests that they were not performing 

the task correctly as they were making very few responses at all to any trial type.  

This pattern in individual performance by the patients is generally reflected by their reaction 

times in Figure 28: those who completed the task correctly (patients 1, 2, 4 and 7) showed 

faster average reaction times when making commission errors (responding on NoGo trials) 

than when making correct responses on Go trials. This is because the fast repetitive nature of 

the SART task encourages patients to generate a pre-potent response to any presented digit. 

The pre-potent response is automatic, and is faster than a volitionally-guided response under 

attentional control. If there is a lapse in sustained attention then the subject will fail to exert 

volitional control over the pre-potent response, which leads to failure to inhibit the response 

during NoGo trials and consequent commission errors. Although a lapse in sustained attention 

(and consequent switch to pre-potent responses) will mean reaction speeds are faster for both 

correct Go and incorrect NoGo trials, the relative scarceness of the latter trial type compared 

to the former means that the average reaction time for incorrect NoGo trials (commission 

errors) will be lower overall (Robertson et al., 1997).  

Conversely, subjects who are not performing the task correctly (not paying adequate 

attention) will tend to show equal reaction times on correct Go and incorrect NoGo trials, or 
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faster reaction times on the former. This is because the majority of all responses will be pre-

potent in this situation, and the greater number of correct Go trials therefore biases the mean 

reaction time in the direction of this trial type. This pattern can be seen in the reaction times 

for patients 3 and 6 (Fig. 28), again indicating that they did not perform the task correctly.  

The reaction times for Patient 5 appear to suggest that he was performing the task correctly 

since his average reaction time on incorrect NoGo trials was much faster than on correct Go 

trials (Fig. 28). However, further scrutiny of his individual results showed that he actually 

only made incorrect responses on two NoGo trials in the whole experiment, which 

consequently placed undue bias towards his reaction times on these trials. As discussed above 

his high omission error rate (Fig. 27) indicates that he was not performing the task correctly. 

Only the four patients (1, 2, 4 and 7) who had performed the task correctly according to the 

analysis of their behavioural results were included in the electrophysiological analysis. 

 

Figure 27: Behavioural results from the SART paradigm: Error rates. Commission error rates are 
percentage of total NoGo trials presented on which the patient erroneously made a response. Omission 
error rates are percentage of total Go trials presented on which the patient failed to make the required 
response. Good performers are those patients where the commission error rate is higher than the 
omission error rate. Poor performers are those where the omission error rate is higher than the 
commission error rate. Average error rates for the group as a whole are shown in the final column. 
Error bars represent the standard error of the mean error rates across trial blocks. 
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Figure 28: Behavioural results from the SART paradigm: Average reaction times. Good performers 
are those patients who displayed faster average reaction times on incorrect NoGo trials compared to 
on correct Go trials. Average reaction times for the group as a whole are shown in the final column. 
Error bars represent the standard error of the mean for each subject. 
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First, there appears to be a greater reduction of delta power in the NBM immediately 

following presentation of NoGo cues compared to following Go cues (comparing Plots C and 

D to Plots A and B). This suggests that there may be a greater desynchronisation of delta 

power in NBM in conditions where the pre-potent response requires inhibition. Analysis of 

the contrast ‘correct NoGo trials’ > ‘correct Go trials’ on the NBM LFPs in SPM confirmed a 

main effect of the NoGo cue on NBM activity with a significant cluster at 1.1 Hz, 567 ms 

post-cue (Ke 70, p<0.001 corrected).  The reverse contrast ‘correct Go trials > ‘correct NoGo 

trials’ did not show any significant clusters around the same time point post-cue, confirming 

that the effect was specific to the NoGo cue rather than simply to the presence of a cue itself.  

There also appears to be a greater reduction of delta power in the GPi immediately following 

presentation of NoGo cues compared to following Go cues (comparing Plots I and J to Plots 

G and H below).  Analysis of the contrast ‘correct NoGo trials’ > ‘correct Go trials’ on the 

GPi LFPs in SPM also confirmed a main effect of the NoGo cue on GPi activity with a 

significant cluster at 0.95 Hz, 600 ms post-cue (Ke 49, p<0.001 corrected). The reverse 

contrast again did not show any significant clusters, confirming that the effect was specific to 

the NoGo cue. 

Analysis of the contrasts ‘NBM’ > ‘GPi’ and ‘GPi > NBM’ on the LFPs locked to the cue on 

correct NoGo trials did not show any significant clusters around the 600 ms post-cue time 

point for either contrast. This therefore suggests that there was no significant difference in the 

delta band desynchronisation seen in both nuclei following NoGo cues on correct trials. 

Second, in NoGo trials there appears to be a greater desynchronisation in delta band power in 

NBM following the cue in those trials which are correct compared to those which are 

incorrect (Plot C compared to Plot D). This suggests that there may be a greater 

desynchronisation of delta power in NBM during periods of sustained attention (correct 

NoGo trials) compared to during attentional lapses (incorrect NoGo trials). Analysis of the 

contrast ‘correct NoGo trials’ > ‘incorrect NoGo trials’ on the NBM LFPs in SPM confirmed 
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a main effect of correct outcome on NBM activity with a significant cluster at 1.5 Hz, 553 ms 

post-cue (Ke 50, p<0.001 corrected). The reverse contrast did not show any significant 

clusters, confirming that the effect was specific to a correct outcome. 

When the same contrast (‘correct NoGo trials’ > ‘incorrect NoGo trials’) was applied to the 

GPi LFPs in SPM a main effect of correct outcome on GPI activity was also seen with a 

significant cluster at 0.71 Hz, 667 ms post-cue (Ke 44, p<0.001 corrected). However, when 

the reverse contrast was applied (‘incorrect NoGo trials’ > ‘correct NoGo trials’) a main 

effect of incorrect outcome on GPi activity was also seen with two significant clusters; one at 

1.58 Hz, at 900 ms before the cue (Ke 46, p<0.001 corrected) and one at 0.71 Hz 300 ms 

post-cue (Ke 26, p=0.029). 

Finally, looking at activity locked to the motor responses, there was no effect of cue type (Go 

cue vs NoGo cue) on activity in either NBM or GPi individually, which is not surprising as 

the motor response was identical in the two trial types where responses were made (correct 

Go trials and incorrect NoGo trials). Comparing activity locked to the motor responses 

between the two nuclei (contrasts NBM>GPi and GPi>NBM) there were no significant 

clusters detected for either contrast in incorrect NoGo trials. In correct Go trials however, the 

contrast GPi>NBM showed a significant cluster at 1.19 Hz at 33 ms post-response (Ke 44, 

p<0.001 corrected), while the contrast NBM>GPi showed two significant clusters, one at 1.19 

Hz at 333 ms pre-response (Ke 27 p=0.03 corrected) and one at 1 Hz at 533 ms post-response 

(Ke 33, p=0.006 corrected). 
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Figure 29: Grand average time-frequency power spectra for NBM and GPi locked to cues and responses for different trial types in the SART. Time windows extent to 1000 ms pre- and 
post- cue/response. For the NBM and GPi plots aligned to the onset of the cues in Correct Go and Incorrect NoGo trials the plots will be contaminated by the motor responses occurring 
afterwards, at 750 ms and 600 ms post-cue respectively (see Figure 28 for the average response times). Likewise, the opposite is true of the NBM and GPi plots aligned to the responses 
for these particular trial types. In all plots contamination from anticipatory activity related to the upcoming cues cannot be excluded. Power was calculated relative to a 0.8 s period 
prior to the appearance of the cues. Warm colours indicate an increase in power at the respective frequencies, with cooler colours indicating a reduction in power (see colour bar).
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4.4. Discussion 

Overall, our LFP experiments revealed a number of interesting findings with regard to the 

physiological functioning of the human NBM in vivo.  

The rest recordings served to demonstrate the spectrum of resting state activity in the human 

NBM for the first time: this was characterised by high power in the delta band, as well as the 

theta and alpha bands, all significantly greater than that recorded in neighbouring GPi. These 

results therefore confirm our hypothesis above that resting state NBM activity is significantly 

different to resting GPi activity.  

However, the NBM degenerates significantly in LBDs ((Gratwicke et al., 2013) and see Section 

1.3.1.5 above), and therefore its resting state activity described here cannot be taken to be 

representative of that seen in the healthy human NBM in vivo. Interestingly, both EEG and MEG 

studies have shown that cognitive decline in Lewy body diseases is associated with increasing 

cortical delta oscillatory power alongside a relative decline in faster beta and gamma activities 

(Bosboom et al., 2006; Caviness et al., 2007; Franciotti et al., 2006; Ponsen et al., 2012). It is 

therefore possible that the high delta power observed in the NBM of our LBD patients is the 

subcortical correlate of this, especially since evidence suggests that cortical activation rhythms 

are driven by ascending control from NBM (Buzsaki et al., 1998; Kalmbach et al., 2012; Lee et 

al., 2005; Metherate et al., 1992; Nguyen and Lin, 2014a). 

Therefore, our resting state observations can only be taken as relating specifically to resting NBM 

activity in the Lewy body dementia state. Furthermore, a limitation to these recordings is the fact 

that they were conducted only two to five days after neurosurgery and administration of 

anaesthetic agents, and therefore depressive after-effects of these factors on physiological 

functioning of the NBM cannot be excluded.  
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With regard to the Posner task LFP recordings, the results were heavily confounded by the 

difficulty that six of the eight patients had in correctly completing the task, evidenced by the 

generally very slow group reaction times and insignificant ‘Posner effect’ (Figure 25). Despite 

this, t-contrasts at whole group level showed significant main effects of both valid and invalid 

targets on NBM activity in the delta band, at 600-767 ms before target presentation. The fact that 

these changes in delta activity occurred prior to presentation of either target, when the patient 

cannot have known the upcoming target validity, suggests that they represent general anticipatory 

activity to an upcoming target rather than an effect of target validity per se.  

When the t-contrast was repeated including only the two patients who demonstrated good 

behavioural performance a similar anticipatory effect on NBM activity in the delta band was 

again seen to invalid targets, but not to valid ones. This seems difficult to account for if the 

change in delta band activity was truly anticipatory to an upcoming target, as one would have 

expected to see it in relation to both target types regardless of validity. However, scrutinising the 

individual results from these two patients they completed a total of 306 valid trials and 102 

invalid trials between them, and therefore the apparent anticipatory delta activity to invalid trials 

only here may simply be a product of artefact due to the relatively low trial count taken for 

averaging. 

It is difficult to make any clear inferences from the results of the Posner task LFP recordings. The 

main limitation to this task was its length, as it took roughly 40 minutes for the patients to 

complete all ten blocks (with necessary rest breaks). Bearing in mind that these were patients with 

dementia who had undergone invasive neurosurgery and a general anaesthetic only several days 

beforehand it seems likely than many of them were too fatigued to concentrate properly for this 

period of time. Indeed, from subjective observation of the individual patients during their 
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performance of this task recording it was clear that many of them experienced significant lapses 

of attention and found it progressively more difficult to concentrate as the task continued in 

length. 

Finally, with regard to the SART task LFP recording it is interesting to note that behavioural 

performance was generally better for this task than for the Posner task. This may be because the 

task was shorter in duration (taking roughly 20 minutes to complete all ten blocks with necessary 

breaks) or because it was a simpler paradigm to perform. Four of the seven patients tested 

completed the task to an acceptable level, evidenced by a higher rate of commission errors than 

omission errors combined with a faster reaction time during commission errors than on correct 

Go trials (Figures 27 and 28). 

t-contrasts performed at group level (4 patients) showed a significant main effect of cue type on 

NBM delta band power, with a desynchonisation at 1.1 Hz seen 567 ms following a NoGo cue, 

but not following a Go cue (p<0.001 corrected, Figure 29 Plot C compared to Plot A). This 

suggests that NBM activity in the immediate post-cue period reflected the fact that the pre-potent 

response required inhibition in NoGo trials. The same contrast showed a similar main effect of 

cue type on delta band power in GPi, with a significant desynchonisation at 0.95 Hz seen 600 ms 

following presentation of NoGo cues but not not Go cues (p<0.001 corrected, Figure 29 Plot I 

compared to Plot G). No significant difference between activity in the two nuclei was seen 

following NoGo cues, and this combined with the similar frequencies and timeframe of the post-

presentation evoked responses in both nuclei suggests that activity in both reflected the need to 

inhibit the pre-potent response in equal measure. A possible volume conduction effect from one 

nucleus to the other cannot be excluded in the present analysis. 
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Comparing NoGo trials with correct and incorrect outcomes (purported to reflect maintenance of 

sustained attention and attentional lapses respectively), there was a significant main effect of 

correct outcome on NBM delta band power, with a further desynchonisation at 1.5 Hz seen 533 

ms post-cue in correct trials, but not in incorrect trials (p<0.001 corrected, Figure 29 Plot C 

compared to Plot D). Combined with the previous finding this suggests that NBM activity in the 

immediate post-cue period reflected the requirement to inhibit the pre-potent response and was 

further modulated by the background level of sustained attention. The same contrast performed in 

the GPi LFPs also showed a significant main effect of correct outcome on delta band power, but 

this was at a lower frequency (0.71 Hz) and 114 ms later (at 667 ms) than the main effect seen in 

NBM. Furthermore, the reverse contrast in GPi also showed a significant main effect of incorrect 

outcome on delta band power at two different timepoints; a desynchonisation at 1.58 Hz 900 ms 

pre-cue (p<0.001 corrected), and a desynchronisation at 0.71 Hz at 300 ms post-cue (p=0.029). 

These GPi findings were different to those found in NBM, and suggest that post-cue delta activity 

in GPi reflected not only the need to inhibit the pre-potent response, but also reflected the 

outcome of this by differential timings of desychronisation at the 0.71 Hz frequency, with a 

longer latency post-cue (around 667 ms) when the response was successfully inhibited, and a 

shorter latency (300 ms) when it was not. 

Finally, comparing activity locked to the motor response between the two nuclei; GPi showed a 

greater increase in delta power locked to the response itself (1.19 Hz, 33 ms post-response, 

p<0.001corrected), while NBM showed increased delta power at two timepoints, 333 ms pre-

response (1.19 Hz, p=0.03 corrected) and 533 ms post-response (1 Hz, p=0.006 corrected).  

Overall, therefore, evidence from the SART task suggested that NBM delta activity locked to the 

cue reflected both the need to inhibit the prepotent response, and the background level of 
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sustained attention, while GPi delta activity locked to the cue reflected the need to inhibit the pre-

potent response, and whether or not this was successfully achieved. Furthermore, as expected, 

GPi delta activity locked to the response appeared to reflect the motor response itself. The 

relevance of the weaker changes in NBM delta activity pre- and post- the motor response are 

unclear, but may reflect anticipation and confirmation of execution of the response respectively. 

Taking both attention tasks into account, the significant modulation of NBM activity in the SART 

task, combined with the apparent lack of modulation in its activity during the Posner task might 

support the idea that the nucleus plays a role in sustained attention, but not in orienting of 

attention. This would be in line with our hypothesis above that activity in the nucleus 

preferentially reflects one mode of attention over the other. However, the fact that the Posner 

results are so heavily confounded by the difficulty the patents had in completing the task means 

that it would be premature to make that conclusion based upon the current dataset. Furthermore, 

there are a number of other limiting factors to these task recordings, which restrict our ability to 

draw such inferences. 

First, a particular limitation to the SART task must be borne in mind when interpreting our 

results. Although performance of the task certainly demands sustained attention to action, correct 

performance is also highly dependent on the participant’s ability to actually inhibit the pre-potent 

response upon the appearance of the NoGo cue, i.e. their capacity for response inhibition, a core 

executive function (Dirnberger and Jahanshahi, 2013). Response inhibition has been described in 

terms of a horse-race model, whereby go and stop processes are stochastically independent and 

race to completion, with the winner determining whether the response will be inhibited or not 

(Logan, 1994). Therefore, during performance of the SART task, sustained attention will be 

necessary in maintaining a strong task set in the inter-cue intervals, and response inhibition will 
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be required to resolve the conflicting response tendencies. A deficiency in either cognitive ability 

can therefore potentially lead to errors (Braver and Barch, 2006). LBD patients are known to 

suffer impairments in both these domains (see Section 1.2 and (Gratwicke et al., 2015a)), and 

indeed our patients demonstrated marked impairments in both at baseline (Tables 4, 14 and 20). 

Therefore it is not currently possible to determine whether the commission errors made on the 

SART task were due to impairments in sustained attention or response inhibition, and therefore 

whether the main effect of outcome on NBM LFP activity was a reflection of lapses in the former 

or the latter. 

Our data are also limited by the small numbers of patients who managed to complete the tasks 

successfully, which resulted in relatively small numbers of rare event trials (invalid trials in the 

Posner and NoGo trials in the SART respectively) being recorded relative to the large number of 

common trials (Valid trials and Go trials respectively). As discussed above, averaging across low 

trial numbers makes the occurrence of artefacts in the electrophysiological data more likely, 

which will further confound the results obtained. We tried to counter this problem by applying 

robust averaging methods to the dataset to boost the signal-to-noise ratio (Litvak et al., 2012), 

however this can have the side-effect of introducing artefacts into the data itself if patients were 

not performing the task correctly (as in the case of the Posner task recordings). 

In addition, as discussed above, the NBM degenerates significantly in LBDs ((Gratwicke et al., 

2013) and see Section 1.3.1.5 above), and therefore the task-related evoked activity in NBM 

described here cannot be taken to be representative of that which might be seen in the healthy 

human NBM during the same task paradigms. In addition, confounding effects on NBM activity 

due to the recent invasive neurosurgery and administration of a general anaesthetic cannot be 

excluded. 
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In summary, there are many potential confounding influences and limitations to the data 

presented here, which restricts our ability to make sound inferences regarding the normal 

physiological function of the NBM. Nevertheless, this was a unique opportunity to directly 

investigate the physiological properties of the human NBM in vivo for the first time. In this 

context the present results provide preliminary evidence that spectral activity in the nucleus is 

distinct from neighbouring GPi, both at rest and during active behaviour, and may reflect the 

prevailing level of sustained attention as previously postulated. 

Future studies of NBM LFPs in LBD patients would benefit from a longer interval period 

between surgery and recordings so that patients can recover to a greater extent before attempting 

cognitive tasks. This might lead to better task performance. In addition, long task paradigms, 

which cause gradual exponential fatigue in this patient population and thereby deteriorating 

performance over time, should be avoided if possible. However, unless NBM DBS implantation 

is attempted in less severely demented and younger patients (who have less degenerate nuclei and 

are also less vulnerable to the after-effects of surgery and anaesthetics) then future 

electrophysiological studies may find it difficult to avoid many of the limitations described above.  

Finally, to help determine whether evoked activity in NBM is due to sustained attention or 

response inhibition future studies would benefit from using a different version of the SART, 

called the SART Fixed. The SART Fixed is identical to the SART apart from the fact that stimuli 

are presented in a predictable, fixed sequence from 1 to 9. It is hypothesized that this predictable 

target sequence facilitates preparation of the no-go (withheld) response to such an extent that the 

race between the go and stop process is largely eliminated, thereby minimising demands on 

response inhibition (Manly et al., 2003). Simultaneously, by making the appearance of targets 

entirely predictable, the test is rendered more monotonous and less exogenously alerting, thereby 
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increasing the demands on sustained attention. Therefore, evoked activity recorded from NBM 

during performance of the SART Fixed would be much more likely to reflect sustained attention 

than response inhibition.  
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Chapter 5: Simultaneous recording of cortical 

magnetoencephalography and local field potentials from the nucleus 

basalis of Meynert in patients with Lewy body dementias 

 

5.1  Introduction 

Magnetoencephalography (MEG) is a non-invasive functional neuroimaging technique that relies 

on recording the magnetic fields which are generated by neuronal activity. Any electrical current 

will produce a magnetic field perpendicular to its direction of transmission (this is described by 

Maxwell’s equations. See Figure 30, panel A), and this phenomenon is the basis of the magnetic 

signals recorded by MEG. Post-synaptic ionic currents flowing through neural dendrites produce 

such a magnetic field, and the MEG signal is based upon the temporal and spatial summation of 

these fields across a population of neurons. Since the magnetic field generated by synaptic 

activity in an individual neuron is of a very small order of magnitude, simultaneous activation of 

approximately 50,000 neurones is required to generate a detectable signal (Okada, 1983). 

However, if directions of current flow vary significantly amongst the neuronal population then 

the differing vectors of the magnetic fields generated will cancel each other out. Therefore, in 

order to generate a signal sufficient to be detected by MEG, neurones and their dendrites must 

have similar orientations such that they generate magnetic fields of a common direction, which 

reinforce each other. In this regard, the activity of cortical pyramidal cells is most likely to 

contribute to the MEG signal. Amongst this neuronal population MEG is most sensitive to 

activity originating in cortical sulci, as dendrites here travel parallel to the scalp, thus meaning 

that the perpendicular direction of their magnetic fields passes straight towards the MEG sensors 
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overlying the scalp (Figure 30, Panel B). Conversely, pyramidal cells in gyri lie perpendicular to 

the scalp, thus their magnetic fields travel parallel to the scalp and are not picked up by MEG. It 

is this selective sensitivity to activity in different neuronal sub-populations that gives MEG its 

superior spatial resolution compared to modalities such as EEG, which picks up both tangential 

and radial components of current sources and is thus less selective (Cohen and Cuffin, 1983). 

 

 

Figure 30: The physiological basis of the MEG signal. Panel A illustrates the physical phenomenon that 
the direction of the magnetic field generated by an electrical current is perpendicular to its direction of 
transmission (as described in Maxwell’s equations). Following on from this, Panel B illustrates the fact 
that MEG can only detect magnetic signals generated in pyramidal cells in cortical sulci, as their physical 
orientation (blue arrow) means that the direction of magnetic fields generated from current flow in their 
dendrites crosses the skull. Pyramidal cells in gyri will generate magnetic fields parallel to the skull, which 
cannot be detected by MEG. 

 

MEG systems record magnetic fields using superconducting quantum interference devices 

(SQUIDS) which are set in a helmet-shaped enclave overlying the participant’s head. However, 

even when summated across thousands of neurones, magnetic activity recorded from the brain is 

orders of magnitude lower than background activity due to the earth’s magnetic field, the 
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movement of nearby ferromagnetic objects (e.g. traffic, underground trains) and other 

electrophysiological activity (e.g. muscle activity and the cardiac cycle). The effect of these 

external interferences is therefore reduced by enclosing the MEG system within a magnetically 

shielded room. Furthermore, since sources of noise are typically much further away than the brain 

signal of interest, it is possible to achieve noise suppression by using the gradient between two 

neighbouring sensors. Noise from distant sources will be the same at both sensors and is therefore 

suppressed by subtraction. However, for closer sources (i.e. brain sources), the activity recorded 

by both sensors will be subtly different, giving rise to a differential signal. Modern MEG systems 

therefore use such combinations of sensors, termed axial gradiometers, to suppress distant 

magnetic interference. 

Functional imaging using MEG is therefore a highly sensitive method for measuring cortical 

neural activity. As with other modalities (EEG, fMRI) it has limited ability to resolve activity in 

deeper brain structures (sensitivity loss is proportional to the squared distance between source and 

MEG sensor), but it has the advantage that it can be combined with simultaneous deep brain LFP 

recordings, allowing functional connectivity (coherence) between the subcortical structure and 

cortical areas to be measured. This is not easily feasible using fMRI, due to both the image 

artefact caused by DBS electrodes and the substantial metallic recording equipment that is 

currently needed for LFP measurement, which poses a safety risk in the magnetic field of the 

scanner. It is also difficult to perform with EEG given that neural electric fields are distorted by 

the presence of burr holes (van den Broek et al., 1998) and scalp recording sites are limited in the 

presence of post-operative surgical wounds and dressings. However, magnetic fields are less 

distorted by burr holes and MEG can be recorded post-operatively with a large amount of sensors 

around the head without direct skin contact (Litvak et al., 2010), which adds weight to its utility 

in this situation. 
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Evidence from combined STN LFP and MEG recordings in PD patients undergoing DBS for 

motor symptoms have previously demonstrated the existence of two spatially and spectrally 

distinct cortico-STN networks involved in movement processing (Hirschmann et al., 2011; 

Litvak, Jha, et al., 2011). Such recordings from patients undergoing DBS therefore represent a 

powerful tool to study interactions between distant brain regions and thereby characterise diffuse 

functional networks. 

As discussed above, the exact physiological function of the NBM remains unknown. However, 

our LFP recordings in the previous chapter provided some potential insights on this issue, 

demonstrating significantly higher delta power in the resting state nucleus compared to 

neighbouring GPi, and suggesting that this activity may be differentially modulated by the 

subject’s level of sustained attention. The period of post-operative electrode externalisation also 

afforded us the unique opportunity to record simultaneous resting NBM LFPs and cortical MEG 

in our awake patients, and we were therefore able to directly investigate interactions between 

activity in the nucleus and the cortical mantle more widely to gain further insight into its possible 

function. 
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5.2 Materials and Methods 

5.2.1 Patients 

As mentioned above all PDD and DLB patients who participated in the clinical trials were 

planned and consented to undergo combined NBM LFP and MEG recordings in the period of 

electrode externalisation on the ward, between electrode implantation and IPG implantation (a 

period of 4-7 days on average). Clinical characteristics of the patients and stereotactic co-

ordinates of the most ventral electrode contacts in each hemisphere are detailed in Tables 1 and 

11 above. Figures 10 and 14 above show anatomical locations of most ventral DBS contacts in 

the PDD and DLB patients respectively. Ethical approval and consent for combined NBM LFP 

and MEG recordings were included in the main ethics applications and consent forms 

respectively for the clinical trials (as described above in Sections 2.1.3 and 3.1.3). 

5.2.2 Experimental Paradigm 

Patients attended our research MEG suite during the daytime having taken their usual 

medications (including their usual doses of both levodopa and AChEI medications). We only 

conducted resting state recordings, in order to attempt to characterise the cortical connectivity and 

coherence of NBM. While sitting comfortably in the MEG scanner, patients were instructed to 

remain still with their eyes open for 3 minutes. They were instructed to focus their gaze on a 

fixation point projected onto a screen in the scanning room using MATLAB (The Mathworks Inc, 

Natick, MA, USA) and a custom script based on the Cogent toolbox 

(http://www.vislab.ucl.ac.uk/cogent.php). A neurologist was present in the magnetically shielded 

room during the experiments to monitor the patients’ wellbeing and also to ensure that they 
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remained awake throughout the recording. A single rest recording session lasted about 1h (most 

of that time being for experimental set-up and preparation). 

5.2.3 Magnetophysiological and electrophysiological data acquisition 

MEG recordings were performed with a 275 channel CTF system (VSM MedTech Ltd., 

Vancouver, Canada). A strength of this particular system is the high dynamic range of its sensors 

and their robustness to strong external interferences. MEG data were sampled at 2400 Hz and 

stored to disk for subsequent offline analyses.  

Head location in the MEG scanner was monitored using three head position indicator (HPI) coils 

attached to the subject’s nasion and both pre-auricular points. For each subject head locations 

were recorded continuously throughout the experiment. Loss of head tracking occurred 

intermittently in some patients, possibly due to metal artefacts disrupting the head tracking 

function of the sensors. Three fiducials were attached to the patient on the nasion, and on the left- 

and right- pre-auricular points to enable later offline co-registration of the MEG sensors to the 

patient’s structural brain MRI scan for source-level analysis (see Section 5.1.6 below). 

Bilateral NBM and GPi LFPs, electro-oculographic (EOG) and electromyographic (EMG) signals 

were simultaneously recorded using a battery-powered and optically isolated BrainAmp system 

(Brain Products GmbH, Gilching, Germany). As this is a separate recording system to the main 

MEG system the challenge that this approach poses is the fusion of the LFP and MEG data with 

minimal timing distortions. To facilitate this, a common synchronisation signal was recorded on 

both systems – the signal used was random white noise because it can only be matched in a 

unique way. Note that connecting the noise generator with cables to both the MEG and the LFP 

amplifier would create a breach in the patient’s optical isolation from the mains power supply, 
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which would pose a potential safety concern. However, the BrainAmp system incorporates two 

optically isolated amplifiers into one system with synchronous sampling – accordingly one of 

these amplifiers was used to record the noise signal, whilst the other was used to record the 

electrophysiological signals (see Figure 31). 

Eight intracranial LFP channels representing contacts 0-3 of each DBS macroelectrode were 

converted using bridge connectors into a bipolar montage, between adjacent contacts. Six 

separate DBS channels (R01, R12, R23, L01, L12, L23) were therefore recorded referenced to the 

left clavicle. As in the LFP experiments in the preceding chapter, sampling LFPs in a bipolar 

fashion served to limit the effects of volume conduction from distant sources. EMG data were 

recorded from tendons of the right and left first dorsal interosseous muscles to serve as references 

for movement artefact in MEG. Recorded electrophysiological signals were amplified (X 50,000), 

hardware filtered (1.0 – 300 Hz), sampled at a common rate of 2400 Hz and stored to disk on an 

acquisition laptop.  

Figure 31 below shows a schematic illustration of the experimental set-up, which was approved 

by the MEG safety board of the Wellcome Trust Centre for Neuroimaging, following extensive 

in-house safety testing. 
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Figure 31: Schematic representation of the set-up for simultaneous NBM LFP and MEG recordings. All 
LFP bipolar channels from the left and right electrodes (grey lines) and reference lead from the patient’s 
left clavicle (black line) are recorded by the BrainAmp bipolar headbox. Black dashed arrows depict optic 
fibre cables, which serve to optically isolate the patient from the mains power source (see section 5.1.3 
above). The timings of signals recorded from the MEG and the LFP acquisition laptop are synchronised 
through the independent recording of a single white noise source on the two systems (see section 5.1.3 
above for further details). Figure modified from a figure in Oswal et al., 2016 by kind permission of the 
authors. 
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5.2.4 Data pre-processing 

The data were imported into MATLAB (The Mathworks, Inc, Natick, MA) and analysed using 

custom scripts in conjunction with the SPM (http://www.fil.ion.ucl.ac. uk/spm/) and FieldTrip 

(http://www. ru.nl/neuroimaging/fieldtrip/) toolboxes (Litvak, Mattout, et al., 2011; Oostenveld et 

al., 2011). LFP data had been recorded in a bipolar fashion at hardware level and therefore there 

was no need for offline conversion to a bipolar montage as data was already in this format. 

Therefore, the LFP file for each patient contained six different channels of data: Right NBM, 

Right NBM/GPi, Right GPi, Left NBM, Left NBM/GPi, Left GPi. Both LFP and MEG data had 

been sampled at a common rate of 2400 Hz. The next step was to fuse the two datasets using the 

white noise recordings which had been recorded alongside both as the common reference in the 

time domain. This was performed by dividing each dataset into non-overlapping 1s segments and 

repeatedly cross-correlating the white noise time series until an LFP segment definition was 

reached which yielded zero-lag when matched to the MEG segment definition (Oswal et al., 

2016). The resulting segment definitions for MEG and LFP were then used to epoch the full 

MEG and LFP data. The epoched datasets were fused and then converted again into a continuous 

recording (which was straightforward because the segments were consecutive in time). Therefore, 

in this new dataset MEG and LFP data for the same patient were fused and aligned. 

The fused dataset was now divided into arbitrary epochs with duration of 3 ms (1024 samples). 

To ensure stable head location relative to the MEG sensors for the analysed data the continuous 

head localisation data from the three HPI coils was analysed: the instantaneous distances between 

the individual HPI coils at each of the 1024 samples across the three-minute recording was 

compared to their robust average distances across the whole continuous recording (Litvak et al., 

2012). Those data samples where discrepancies of >1cm head displacement were detected were 

discarded and replaced with linear interpolation based on the other time frames. This method 
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works well when the tracking is valid for more than half of the recording, which was the case for 

all recordings reported here. The data were then high-pass filtered at >1Hz and the line noise 

artefacts at 50Hz and 100Hz were removed using Butterworth notch filters. Trials with artefacts 

in the LFP recording were rejected by thresholding the peak-to-peak LFP amplitude at 100µV. 

5.2.5 Spectral Analysis 

All MEG and bipolar NBM/GPi LFP data in the fused dataset underwent spectral analysis using 

the multi-taper method fast Fourier transform (as previously described in the previous chapter in 

Section 4.2.5). 

5.2.6 Functional connectivity measurement: coherence 

The key aim of this experiment is to study possible physiological interactions, or functional 

connectivity, between the resting NBM/GPi and distant cortical regions. Functional connectivity 

can be assessed through the statistical relationship of activity signals occurring in two distant 

brain regions over a discrete time interval. Coherence is one way of measuring this, it provides a 

frequency-domain measure of the linear phase and amplitude relationships between two signals, 

bounded between 0 and 1 (Buzsáki and Draguhn, 2004; Thatcher et al., 1986). In other words 

coherence is the frequency domain counterpart of a cross-correlation in the time domain. 

Coherent oscillatory activity between distant neural populations is believed to play an important 

role in their communication, and implies a functional relationship between the two areas, 

although it does not provide any information about the directionality of coupling (Bastos et al., 

2015; Fries, 2005). 

Coherence was first calculated at sensor-level, between each NBM/GPi LFP channel and each 

MEG channel (which individually represent each physical MEG sensor in space) in order to 
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define frequency bands of significant coherence within each patient (Litvak, Jha, et al., 2011): 

Coherence was computed between 5–45Hz (low frequency), with 2.5Hz resolution, and between 

60–90Hz (high frequency) with 7.5Hz resolution. Scalp maps of coherence for each frequency 

bin were linearly interpolated to produce a 2D image. The resulting images were stacked to 

produce a 3D image with two spatial and one frequency dimension (Kilner and Friston, 2010). 

This resulted in separate images for high and low frequencies. To determine significant regions 

within these images, it was compared with null (surrogate) data in which any coherence was 

destroyed: ten surrogate coherence images were generated from the same MEG data but with the 

order of the time series for the NBM/GPi LFP channel data shuffled. The original and surrogate 

images were smoothed with a Gaussian kernel (10mm x 10mm x 2.5Hz for the lower frequencies, 

10mm x 10mm x 7.5Hz for the higher frequencies, to ensure conformance to the assumptions of 

random field theory). They were then subjected to a two-tailed paired samples t-test in SPM 

(thresholded at P<0.01 family-wise error corrected) to identify significant regions in sensor space 

and frequency (Litvak, Mattout, et al., 2011). Thereby, for each individual NBM/GPi LFP, this 

provided frequency ranges where there was significant sensor-level coherence over MEG 

channels. 

With this information in hand, coherence was then analysed at source-level, between each 

NBM/GPi LFP channel and a 3D grid of points representing spatial locations within the brain, in 

order to locate coherent cortical sources. This employed the dynamic imaging of coherent sources 

(DICS) beamforming method (Gross et al., 2001). A summary explanation of this methodology is 

as follows: MEG data can be directly analysed in relation to the locations of its individual sensors 

relative to the skull (sensor-level analysis, as above). However, this has limited spatial localising 

power. Source-level analysis/reconstruction aims to improve spatial localisation by projecting 

sensor-level data onto 3D brain space. This representation of brain space comprises a large 
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number of dipolar magnetic sources with fixed locations and the orientations and amplitudes of 

each of these sources needs to be determined before the sensor-level data can be ‘fitted’ to it 

correctly and the precise locations of coherent sources determined. This is because sensor-level 

data could be significant if fitted to a dipole with one particular orientation and/or amplitude, and 

not significant if fitted to another (see Section 5.1, Introduction, and Figure 30 above for an 

explanation and graphical illustration of why this might be the case). First, the co-ordinate system 

of the MEG sensor positions is mapped to the co-ordinate system of the patient’s structural brain 

MRI in Montreal Neurological Institute (MNI) space according to the three recorded fiducial 

points: nasion, left and right pre-auricular (‘co-registration’, see (Litvak et al., 2010)). Then an 

estimation is made of how a brain dipole at a particular location with a particular orientation maps 

to the individual MEG sensors. This step is known as forward-modelling and is achieved 

according to a summation of individual Maxwell equations for each dipole, corrected for a 

spherical volume conductor (the skull). The single shell forward model proposed by Nolte is 

based on this principle (Nolte, 2003), and we applied this model to an inner skull mesh derived 

from inverse-normalising a canonical mesh to each individual patient’s pre-operative structural 

MRI image (Mattout et al., 2007). Thereby a forward model was generated for each individual 

patient, and was specific to that particular patient alone. In conjunction with the previous co-

registration of the patient’s MRI to the MEG sensors, each individualised forward model 

therefore allows an estimation to be made of how the individual spatially distinct dipole sources 

in that patient’s brain are likely to map to the MEG sensors. The final step is to generate the 

inverse model – to predict the original dipolar activity across the brain from the MEG cross-

spectral density matrix (source reconstruction). Beamforming achieves this by assuming a linear 

projection of the signal picked up from each MEG sensor, then applying an adaptive spatial filter 

to mathematically minimise the variance between the sensor-level data recorded and the predicted 
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sensor-level data from the forward model (Gross et al., 2001; Litvak, Jha, et al., 2011). The final 

result is cross-spectral coherence values computed on a 3D grid of the individual patient’s brain 

in MNI space, with spacing of approximately 5mm and bounded by the inner skull surface. This 

allows accurate spatial determination of cortical sources coherent with the NBM/GPi LFPs across 

different frequencies. Values at the gridpoints are then linearly interpolated to produce volumetric 

images with 2 mm resolution and smoothed with an 8mm isotropic Gaussian kernel. Of note 

beamforming was the chosen method of source reconstruction here since it has previously been 

shown to be effective at suppressing artefact generated by the ferromagnetic cables connecting 

the DBS electrodes to the recording equipment (Litvak et al., 2010). 

To identify the cortical areas consistently coherent with the NBM across the group a group mean 

image was generated from the individual patient images. These images had been normalized prior 

to averaging (by dividing the coherence at each beamformer grid point by the mean of that image) 

in order to ensure that each included hemisphere-contact pair contributed equally to the 

calculation of the average. All images corresponding to left NBM contacts were flipped across 

the mid-sagittal plane to allow comparison of ipsilateral and contralateral sources to the NBM 

regardless of original NBM side. The global maximum of the resulting image was defined as the 

cortical source maximally coherent with NBM across all subjects. 

5.2.7 Statistical analysis 

Statistical analysis was performed using a general linear model (GLM) based approach, 

implemented in the SPM12 software package, identical to that described in Section 4.2.7.2 in the 

preceding chapter. All the reported findings are significant with family-wise error correction 

(p<0.05). In the results I also report the peak t statistic with the corresponding degrees of freedom 

and p value. 
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5.3 Results 

All six PDD patients and four of the DLB patients underwent combined resting NBM LFP and 

MEG recording in the immediate post-operative period. DLB Patient C was too fatigued to 

complete the MEG recording, and DLB patient D was too unwell in the post-operative period 

(due to his contraction of antibiotic-associated C.Difficile diarrhoea) to undergo MEG recording. 

Clinical details and contact locations of the included patients are as previously documented in 

Chapters 2 and 3. All completed recordings were included in the analysis. 

5.3.1 Resting NBM and GPi power spectra 

Figure 32 below shows the grand average resting NBM and GPi LFP power spectra averaged over 

all respective hemispheres in all patients (20 hemispheres per nucleus). As in Chapter 4 resting 

spectral peaks can again be seen in the delta band, and to a lesser extent in the theta band, in both 

nuclei. Significantly greater low frequency power was again found in NBM compared to GPi in 

the delta, theta, and alpha bands (p<0.001 for all). These results were generated from an entirely 

separate set of NBM and GPi LFP recordings to those used in Chapter 4, and therefore serve to 

confirm those results. Again, the relatively low activity in the beta band in the GPi spectra is 

consistent with the fact that all patients had taken their usual levodopa medication prior to LFP 

recording, which has previously been shown to suppress GPi beta activity (Brown and Williams, 

2005). 
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Figure 32: Group average resting NBM and GPi normalized power spectra. Spectral peaks are evident in 
the delta and theta bands. These power spectra are normalised to the mean power across the 55-95 Hz 
frequency range. The shaded regions represent standard errors of the mean. 

 

Interestingly, when separate grand average resting power spectra were computed for the PDD 

patients (N = 6) and the DLB patients (N = 4) separately (Figure 33), PDD patients showed 

higher power in the delta and theta bands than their DLB counterparts (although these differences 

were not significant). PDD patients also showed higher power in the beta band (15-25 Hz) in both 

NBM and GPi compared to their DLB counterparts, which reached significance in the latter 

(t=9.0, df=8, p<0.001). It is now clear that beta peaks had not been visible in the resting power 

spectra when both groups were combined for analysis (Figure 32 above) due to the lack of beta 

power in the DLB patients obscuring the beta power in the PDD group. The results obtained here 
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are very similar to the resting LFP recordings in Chapter 4 (Figure 22), reinforcing the validity of 

the former. However, spectral peaks in the beta band were not seen in those recordings in either 

PDD or DLB patients. This could be due to methodological differences, or the fact that the 

microlesion effect in the GPi was greater when the LFP recordings were conducted (often only 

one or two days after DBS surgery), but had recovered to a greater extent by the time LFPs were 

recorded in MEG (which tended to be performed several days later) meaning that beta activity in 

GPi was more readily detectable. In addition, normalised LFP power across the low-frequencies 

in both NBM and GPi appeared slightly higher in the Chapter 4 recordings (Figure 22) compared 

to the respective recordings here (Figures 32 and 33). This could be due to the fact that the 

Chapter 4 recordings were averaged over 11 patients (as opposed to 10 patients here), or 

differences in hardware filtering of the original signals due to differences in the experimental set-

up between the two sets of recordings. 

 

Figure 33: Group average resting NBM and GPi normalized power spectra for PDD and DLB patients. 
Spectral peaks are evident in the delta and theta bands in both nuclei in both patient groups, with higher 
power seen in both frequency bands in the NBM compared to the GPi (note the difference in Y axis scales). 
Spectral peaks can also be seen in the beta band in both the NBM and the GPi in the PDD patients, but not 
the DLB patents. All power spectra are normalised to the mean power across the 55-95 Hz frequency 
range. The shaded regions represent standard errors of the mean. 
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5.3.2 Spatial location of cortical sources coherent with NBM 

In total, cortico-NBM coherence was estimated for 20 NBMs from all ten patients. Each of the 

NBM bipolar channels was used as a reference to calculate the location and frequency range over 

which significant cortical coherence existed. Although the frequency ranges spanned 5–90 Hz, 

none of the sources had a scalp pattern typical of a focal cortical source. 

5.3.3 Spatial location of cortical sources coherent with GPi 

In total, cortico-GPi coherence was estimated for 20 GPis from all ten patients. Each of the GPi 

bipolar channels was used as a reference to calculate the location and frequency range over which 

significant cortical coherence existed. Although the frequency ranges spanned 5–90 Hz, none of 

the sources >45Hz had a scalp pattern typical of a focal cortical source. These high-frequency 

sources were therefore excluded from further analysis. This resulted in a total of 46 cortically 

coherent sources in the delta, theta, alpha and beta ranges. The peak frequencies and spatial 

locations of coherent cortico-GPi sources are displayed in Figures 34 and 35 below. In the 

frequency range 5-45 Hz, sources fell into two broad bands, which we will term the delta-theta-

alpha band at 1–12Hz and the beta band at 15–25 Hz. These ranges formed the basis of the fixed 

frequency bands used for group analysis. Sources in the beta range clustered around medial 

motor/premotor areas ipsilateral to the pallidal nucleus, whilst delta-theta-alpha range sources 

clustered in two areas - ipsilateral temporo-occipital regions and bilateral frontal regions, with 

ipsilateral predominance. 
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Figure 34: Peak frequency distribution of potential cortical sources of cortico-GPi coherence. Ten patients 
(20 GPis) were recorded from (6 PDD and 4 DLB patients). We searched for coherent sources between 5–
45Hz and 60–90 Hz, although after subsequent visual lead field inspection we excluded sources 
>45Hz.Yellow highlight denotes frequencies in the delta-theta-alpha band (1-12 Hz), red highlight denotes 
frequencies in the beta band (15-25 Hz). 

 

 

Figure 35: The variation in location and peak frequency of significant cortical sources coherent with GPi 
in the 5–45Hz frequency range. Results from 20 pallidal nuclei. The images are ‘glass brains’ (inner 
boundary of skull marked with grey mesh) viewed from the above, right and front. All left pallidal nucleus 
sources are reflected across the middle sagittal plane to allow comparison of ipsilateral (right) and 
contralateral (left) sources. The peak frequency of the coherence is represented by a colour scale where 
warmer colours reflect higher frequencies. 
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5.3.4 Topography of cortical activity coherent with GPi activity is frequency dependent  

We tested for the effect of frequency on coherence through a further group analysis. We 

computed DICS images with our two standardized frequency bands (delta-theta-alpha 1–12Hz 

and beta 15–25 Hz). To allow a balanced comparison these DICS images were normalized by 

dividing by the mean value over voxels, thereby allowing us to compare differences in the 

topography of cortico-GPi coherence between the two bands. This confirmed a temporo-occipital 

preponderance for delta-theta-alpha band coherence with GPi and a primary motor 

cortex/premotor area preponderance for beta band coherence with GPi (Figure 36).  

 

Figure 36: Differences in the topography of cortico-GPi coherence between the two bands. Mean of the 
normalized DICS images. Unthresholded delta-theta-alpha (yellow) and beta (red) coherence is 
superimposed onto a T1-weighted canonical MRI. Coronal, sagittal and axial sections through the image 
are displayed, oriented to the respective local maximas for each set of images: Image A shows regions of 
cortico-GPi coherence in the delta-theta-alpha band, which centre on temporo-occipital cortex. Image B 
shows regions of cortico-GPi coherence in the beta band, which centre on primary motor cortex/premotor 
areas. The colour scale is coherence normalized to individual image global values (arbitrary units). A 
value greater than 4 units means that the activity in that voxel is consistently greater than the mean across 
the image. 
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Differences in cortico-GPi coherence between these two frequency bands were then directly 

compared by analysis in SPM. This confirmed a significant main effect of frequency across these 

two distinct brain regions (Figure 37, left): Regional cortico-GPi coherence was greater in the 

delta-alpha-theta band than the beta band in the ipsilateral lateral occipital area (t=12, 8 df, 

P<0.001). Meanwhile regional cortico-GPi coherence was greater in the beta band then the delta-

theta-alpha band in ipsilateral primary motor cortex (t=11, 8df, P<0.001). 

To explicitly illustrate the relative differences in frequency of coherence between the two distinct 

brain regions and GPi, the mean absolute (non-normalized) coherence spectra were computed 

between the peak values at their respective regional maxima (identified in SPM) and the grand 

average GPi (and NBM) dipole data (Figure 37, right). These spectra clearly confirm that delta-

theta-alpha band coherence was higher than beta band coherence between the lateral occipital 

area and GPi, and vice-versa between the primary motor cortex and GPi. The spectra also confirm 

the lack of coherence between NBM and either of these cortical regions across these frequency 

bands. 
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Figure 37 (left): SPMs confirming differences in the relative topography of delta-theta-alpha and beta 
band coherence between cortex and the GPi. Top: Voxels where regional delta-theta-alpha coherence with 
GPi is significantly greater than beta coherence. A regional maximum was identified in the lateral occipital 
area [t=12, 8df, P<0.001, red arrowhead]. The area of higher relative delta-theta-alpha coherence is 
represented on the 3D brain model. Bottom: Voxels where regional beta coherence with GPi was 
significantly greater than delta-theta-alpha coherence. A local maximum was identified in the primary 
motor area [t=11, 8df, P<0.001, red arrowhead]. The area of higher relative beta coherence is 
represented on the 3D brain model. Colour bars indicate the t-statistics. 

Figure 37 (right): mean absolute (non-normalised) coherence spectra between the respective regional 
maxima identified on the left, and grand average GPi (and NBM) dipole data. Top: delta-theta-alpha band 
coherence is higher than beta band coherence between the lateral occipital area and GPi. Bottom: beta 
band coherence is higher than delta-theta-alpha band coherence between primary motor cortex and GPi. 
Note the lack of coherence between either of these brain regions and NBM across these frequency bands. 
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Finally, the respective cortico-GPi coherence spectra at both frequency bands were computed 

separately for the PDD (N=6) and DLB patients (N=4) and compared. Interestingly, coherence in 

the delta-theta-alpha band between GPi and lateral occipital cortex was higher in the DLB 

patients than the PDD patients (p=0.042, Figure 38 below). Meanwhile, coherence in the beta 

band between GPi and the primary motor area was similar in both patient groups. 
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Figure 38: Cortico-GPi coherence spectra for PDD and DLB patient groups. The top panel shows 
coherence spectra between the lateral occipital area and GPi in the delta-theta-alpha band for both patient 
groups. Note that there is significantly greater coherence in this band in the DLB patients compared to the 
PDD patients, which represents a dissociation between power and coherence effects in this frequency band 
in the GPi between the two groups (see the individual resting PDD and DLB power spectra for this nucleus 
above in Figure 33, right plot). The bottom panel shows coherence spectra between the primary motor area 
and GPi in the beta band for both patient groups. There was no difference between the two groups here 
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5.4 Discussion 

The combined NBM/GPi LFP and MEG experiments revealed a number of interesting findings, 

both with regard to the general physiological functions of NBM and GPi, and with regard to 

physiological differences between these nuclei in PDD and DLB patients. 

First, we failed to identify a specific cortical network coherent with the NBM. This is not 

necessarily surprising however considering the major afferent and efferent connections of the 

nucleus: most of its inputs come from deep limbic and brainstem areas, while its connections to 

the cortex are almost exclusively efferent projection fibres, with little reciprocal cortical input to 

NBM (see Sections 1.6.3 and 1.6.4, Figure 6 and (Gratwicke et al., 2013)). This anatomical 

evidence suggests that NBM acts as an input nucleus to the cortex, possibly to boost the signal to 

noise ratio of processing on demand (Goard and Dan, 2009; Pinto et al., 2013), but that it is 

unlikely to participate in a cortico-subcortical processing loop in the same way as the GPi, which 

may explain why cortical coherence was not seen. Meanwhile, MEG cannot reliably resolve 

activity in deep brain structures which input to NBM since its sensitivity to signals reduces in 

proportion to the squared distance between source and sensor (Hillebrand and Barnes, 2002), 

hence we are unable to determine if any coherence with NBM activity might exist there. 

An alternative explanation for the lack of cortical coherence with NBM could be due to the fact 

that the NBM degenerates by up to 70% in LBDs (Gaspar and Gray, 1984; Hall et al., 2014; Perry 

et al., 1985; Whitehouse et al., 1983), which is closely associated with equally severe cortical 

cholinergic binding reductions (Bohnen et al., 2006b; Hilker et al., 2005; Shimada et al., 2009). 

These factors combined suggest that there is severe cortical deafferentation from NBM in LBDs, 

and this loss of direct connections will consequently reduce the likelihood of finding a cortical 

network coherent with the nucleus. However, the GPi also degenerates severely in PD (Fearnley 
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and Lees, 1990; Huot et al., 2007), yet its coherence with cortex was maintained. Therefore 

nuclear degeneration alone seems unlikely to account fully for the lack of cortical coherence 

observed with NBM. 

Another possibility is that cortical cells groups can become coherent with NBM activity, but only 

when specifically activated by discrete corticopetal projections from the nucleus. We recorded 

LFPs and MEG in the resting state, without a task to place any specific motor or cognitive 

processing demands on cortical areas. In the absence of such demands there may have been no 

stimulus to engage the ascending NBM cholinergic system to modulate cortical activity, and 

hence the nucleus, and any potential coherence with cortex that it might be able to induce, 

remained quiescent. However, the GPi displayed coherence with two spectrally and spatially 

distinct cortical networks in the absence of any specific task, therefore a lack of task dependent 

activation of NBM seems a less likely explanation for its lack of cortical coherence here. 

The finding of two spatially and spectrally distinct cortical networks coherent with activity in the 

resting GPi is in line with previous work. Using the same experimental set-up in PD patients 

Litvak and colleagues previously demonstrated that a frontal premotor network is coherent with 

the subthalamic nucleus (STN) in the beta band (15-35 Hz) (Litvak, Jha, et al., 2011), similar to 

our finding of a frontal/primary motor area network coherent with GPi in the beta band (15-25 

Hz) (Figure 37, upper panel). The similarity in these results is expected, since the STN and GPi 

are anatomically distinct yet heavily functionally interconnected subcortical nuclei within the 

same cortico-basal ganglia motor network (Albin et al., 1989; Nambu, 2008), and so would be 

expected to both be coherent with the same cortical motor regions in the same spectral band. Beta 

activity in this cortico-basal ganglia network has been shown to be modulated by dopaminergic 

medication, which increases coherence, and movements (whether personally executed, imagined, 
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or observed in others), which reduced coherence, and it is therefore proposed that this network is 

involved in motor planning (Alegre et al., 2010; A. A. Kühn et al., 2006; Lalo et al., 2008; Litvak, 

Jha, et al., 2011).  

Litvak and colleagues also simultaneously demonstrated a separate temporo-parietal network 

coherent with the STN in the alpha band (7-13 Hz)(Litvak, Jha, et al., 2011). The cortical 

topography of this network is similar to that of the lateral occipital-temporal network coherent 

with GPi in our study, although the frequency band was different (delta-theta-alpha band (1-12 

Hz, Figure 37, upper panel). As discussed above, these findings are again likely to reflect 

different sub-components of the same cortico-basal ganglia network. However, the finding in our 

experiments that the spectral band of this network extended to lower delta and theta frequencies 

may reflect the fact that our patients had concurrent dementia as well as motor parkinsonism 

(whereas the patients in the Litvak study were not demented): as discussed in previous chapters, 

worsening cognitive decline in LBDs is associated with an increasing shift of resting cortical 

oscillatory power away from faster activity towards lower frequencies (Bosboom et al., 2006; 

Caviness et al., 2007; Franciotti et al., 2006; Ponsen et al., 2012). The functional relevance of 

alpha coherence in this posterior cortico-basal ganglia network is under debate, however it has 

been shown to be differentially modulated by dopaminergic medication and the dynamics of 

upcoming/executed movements (Oswal et al., 2013), as well as visuospatial attention (Gould et 

al., 2011; Thut et al., 2006). Considering the latter, a shift towards coherence at lower frequencies 

in this posterior cortico-basal ganglia network in our LBD patients compared to non-demented 

subjects may reflect the relative atrophy in posterior regions of the fronto-parietal attention 

network in this group, and consequently their impaired clinical ability to orient attention. 
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However, caution must be exercised when attempting to ascribe physiological function to precise 

anatomical regions on the basis of evoked spectral activities. Whether the delta-theta-alpha 

activity in the GPi LFP originates within the GPi itself or from a broader brainstem region is 

unclear (Hirschmann et al., 2011; Litvak, Jha, et al., 2011). For example, prominent alpha activity 

has been reported in LFPs recorded from the pedunculopontine nucleus in PD patients 

(Androulidakis et al., 2008; Thevathasan et al., 2012), and given the upward connections of this 

nucleus to basal ganglia structures (Pahapill and Lozano, 2000) one cannot exclude the possibility 

that the low frequency activity seen is actually transmitted from this deep brainstem generator. 

Furthermore, even despite the improvements in artefact control offered by beamforming methods, 

MEG recordings are not immune to spatial noise arising from the metal artefacts and head 

movements in our patients, and therefore the results and discussion above have been limited to 

cortical regions/areas rather than precise cortices. 

Comparing our grand average resting GPi LFP (Figure 32) and the respective resting coherence 

spectra for this nucleus (Figure 37) an interesting finding is that cortico-GPi coherence in the 

delta-theta-alpha band was focussed in theta frequencies (4-5 Hz). LFP power in the GPi, on the 

other hand, was greater in delta frequencies. A similar dissociative pattern was previously found 

for beta coherence and beta power in the STN of PD patients withdrawn from medication, with 

cortical coherence focussed in the upper beta frequency and LFP power in the lower beta 

frequency (Litvak, Jha, et al., 2011). Our results therefore lend further support to the hypothesis 

proposed in that paper, and previously by Fogelson that the difference in frequencies between 

peak basal ganglia power and peak cortico-basal ganglia coherence are not simply passive 

phenomena, but may have functional significance: ‘frequency of synchronization may be 

exploited as a means of marking and segregating processing in the different functional subloops, 

over and above any anatomical segregation of processing streams.’  (Fogelson et al., 2006).  
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Of note, we did not observe the same dissociation of frequencies in the beta range in our patients 

as those seen in the work of Litvak and colleagues. However, unlike their patients ours were on 

dopaminergic medication, which is known to suppress low beta oscillations (Brown and 

Williams, 2005), and this may be why such a dissociation was not evident in this frequency band. 

Interestingly however, cortico-GPi coherence in the beta band was evident in all our patients 

(Figure 37, lower right plot and Figure 38, lower plot), in agreement with previous results 

showing that coherence in the upper beta band is relatively less modulated by dopaminergic 

therapy (Litvak, Jha, et al., 2011). 

Our comparisons of low frequency activity in the delta-theta-alpha band in GPi between the PDD 

and DLB groups revealed an interesting double dissociation between resting power and cortical 

coherence in this band: PDD patients demonstrated higher mean low frequency power in GPi 

(Figure 33, right plot), whereas DLB patients demonstrated significantly higher mean low 

frequency coherence between GPi and lateral occipital cortex (Figure 38, upper plot). The 

relevance of this is not certain, however, a dissociation between local alpha band power and alpha 

band coherence in the same network within a group of PD patients has previously been shown 

(Oswal et al., 2013): local alpha band power in the STN was suppressed 2 seconds before 

movement onset, and was not modulated by dopamine, whereas regional cortico-basal ganglia 

alpha band coherence was suppressed only after movement onset and was modulated by 

dopamine. This therefore suggests that local alpha band power and regional alpha band coherence 

in the basal ganglia may be functionally distinct. If this is the case, then the observed double 

dissociation in our patients may also have functional relevance: our PDD patients suffered a 

greater level of motor impairment  than their DLB counterparts (mean UPDRS part III off scores 

at baseline were 46.67 and 33.5 respectively, Tables 6 and 16), and therefore their higher mean 

low frequency power in GPi may be a reflection of this, especially since suppression of local 
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alpha power in the basal ganglia appears to be necessary for the initiation of movement (Oswal et 

al., 2013). However, whereas local alpha power in the basal ganglia is unaffected by dopamine, 

cortico-basal ganglia coherence in the alpha band appears to be suppressed by dopamine, and 

therefore the fact that our PDD patients had taken a higher mean daily equivalent dose of 

levodopa than the DLB patients prior to recordings (646.88 mg and 348.96 mg respectively, 

Tables 1 and 11) may account for the lower mean level of low frequency coherence observed in 

this group. 

Finally, despite the suppression caused by dopaminergic therapy, there was still significantly 

higher beta frequency power in the GPi in PDD patients compared to DLB patients (Figure 33, 

right plot), again in keeping with the greater overall motor deficits in the former group. However, 

cortico-GPi coherence in the beta band, which is less affected by dopamine therapy as described 

above, was similar in both groups. This suggests that beta coherence is less reflective of overall 

level of parkinsonian motor symptoms, and thereby further supports the proposed functional 

dissociation between peak basal ganglia power and peak cortico-basal ganglia coherence in the 

beta band. 

There are a number of limitations to this study. First, as with the LFP recordings in Chapter 4, the 

MEG recordings were performed only two to three days after electrode implantation, and so are 

highly likely to be influenced by the after-effects of both the invasive neurosurgical procedure 

and the general anaesthetic (both of which are likely to be significant in these demented patients). 

However, the fact that cortical networks coherent with GPi were easily resolved by the scanner 

suggests that any post-operative depressive effects on cerebral function were fairly limited. 

Second, we did not withdraw the patients from their dopaminergic medications, which means that 

low frequency beta band power in the subcortical structures was likely to have been suppressed. 
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However, the patients had significant motor symptoms, which were exacerbated by the after-

effects of surgery, and without administering their usual doses of levodopa it is unlikely that 

many of them would have been able to tolerate the scanning session. Thirdly, we did not 

withdraw the patients from their AChEI medications, and so brain acetylcholine levels were 

supplemented during the recordings. It is theoretically possible that this could have partially 

masked NBM activity by diminishing the demand for corticopetal cholinergic input to cortex. 

However, as with their levodopa doses, if we had withdrawn AChEI medication from these 

demented patients after invasive neurosurgery it seems unlikely that many of them would have 

been in a cognitive state robust enough to tolerate the recording. As mentioned previously, 

although beamforming methods reduce artefacts arising from metallic DBS hardware and 

ferromagnetic wiring, it does not make recordings immune to distortions and spatial noise caused 

by these materials in our DBS patients, and therefore our ability to localise cortical areas coherent 

with subcortical LFP activity using this methodology must be regarded as a highly sensitive 

estimation rather than definitive localisation (Litvak et al., 2010). The relatively small total 

number of patients is not unusual in MEG experiments (Hirschmann et al., 2011; Litvak, Jha, et 

al., 2011), however, when the group was split into PDD (N=6) and DLB (N=4) for sub-analysis 

by LBD type then the number of patients in each group was particularly small, and was therefore 

likely underpowered to detect significant differences in some of the comparisons, such as resting 

delta power. Although the presence of coherence between brain areas implies a functional 

relationship between time series, it does not provide any information about the directionality of 

coupling, and so we cannot determine whether the functional connectivity shown between GPi 

and cortical areas was driven primarily by the cortical or subcortical components of that network. 

Finally, as with the LFP studies in Chapter 4, both the NBM and GPi are known to degenerate 
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significantly in LBDs, and therefore the resting state activity described here cannot be taken to be 

representative of that seen in the healthy human NBM in vivo. 

Future investigations combining NBM/GPi LFPs and cortical MEG would benefit from scanning 

patients after withdrawal of both levodopa and AChEI medications. If performed using 

externalised electrodes this could be done by waiting longer after electrode implantation before 

performing the recordings, so that hopefully patients have recovered to a greater extent and are 

more likely to tolerate being off medications for several hours. Alternatively, newer DBS 

technologies may allow transmission of LFP signals from fully implanted systems, and therefore 

such recordings can be performed some months after full recovery, when patients would be much 

more likely to tolerate being off their medications. Future studies should also investigate the 

direction of functional connectivity in these coherent networks using advanced methods such as 

Granger causality (Granger, 1969) which provide information on the direction of signal 

transmission. Finally, methodologies have recently been validated for the analysis of 

simultaneous LFP and MEG recordings during active DBS (Oswal et al., 2016), and this will 

allow the physiological effects of stimulation of the NBM and any resultant changes in 

widespread functional connectivity to be directly evaluated in LBD patients. 

 

 



 
 

 
 
 

236 

Chapter 6: General discussion 

6.1 Overview of the aims of this thesis 

In conducting the work in this thesis I aimed to address a number of key questions: (1) can low 

frequency NBM DBS offer clinical therapeutic potential for Lewy body dementias, (2) is it a safe 

intervention in this vulnerable patient group, and (3) through investigation of the above can I gain 

new insight into the physiological functions and roles of the human NBM.  

The principle driver behind my first question lies in the current therapeutic landscape for 

dementias. There are currently only a small number of symptomatic medications available for 

treatment of these diseases, all of which are limited in their efficacy and have the potential for 

disabling side effects (Emre et al., 2004, 2010; Qaseem et al., 2008; Rolinski et al., 2012). This is 

in the face of a significant and growing economic and societal disease burden (Brookmeyer et al., 

2011; Olesen et al., 2012; Wimo et al., 2011). Modern approaches to develop disease modifying 

biologic agents for dementia have so far produced little tangible effect (Le Couteur et al., 2016; 

Schenk et al., 2016), possibly reflecting the fact that LBDs, as well as other forms of dementia, 

are caused by a heterogeneous milieu of underlying cellular and genetic pathologies which are not 

easily modified by single-ligand targeted drugs (Gratwicke et al., 2015a; Kawas et al., 2015). In 

this context there is growing recognition of the need to explore alternative avenues of treatment, 

and neuromodulation of cognitive networks, thus bypassing the varying underlying pathology, 

represents one possibility. The success of DBS in modulating aberrant neural network processing 

to relieve symptoms in other neuropsychiatric diseases (Blomstedt et al., 2012; Lozano et al., 

2012; Williams et al., 2010) raises the possibility that this might be achievable in dementia. To 

this end, the NBM is proposed to be a key node in multiple distributed cognitive networks and 

appears a viable anatomical target for DBS implantation. To date only a single randomised 
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double-blind trial of low frequency NBM DBS has been carried out in patients with AD (J Kuhn 

et al., 2015), but none so far in patients with LBDs. 

With regard to the second question, the proposition to undertake invasive neurosurgery in elderly 

patients with severe cognitive impairments and associated neuropsychiatric disturbances raises 

substantial safety issues. Despite the fact that the aim of the intervention is to benefit those same 

symptoms, there is both no guarantee that it will do so (due to its exploratory nature) and the 

possibility that the surgery and anaesthetic agent themselves could instead exacerbate those 

symptoms. In addition, these patients often have significant brain atrophy and other structural 

cerebral pathologies, such as white matter plaques and microhaemorrhages, which increase the 

risk of complications from the DBS procedure. Finally, dementia patients are often elderly and 

physically frail, which increases their risk of undertaking a general anaesthetic. All these factors 

are usually contraindications to DBS surgery (Foltynie and Hariz, 2010), therefore the risk of 

NBM DBS surgery for LBDs is inherently high. It is therefore imperative to determine the safety 

of the procedure in these patients, as even if there was a strongly beneficial response to NBM 

DBS, the delicate risk-benefit ratio of the surgery might still preclude further practical clinical use 

if it is determined to be unsafe. 

With regard to the last question, despite being implicated as a key node in several cognitive 

processes in animal studies (Pinto et al., 2013; Voytko, 1996), the physiological role of the NBM 

in the human brain remains unclear. This is because studying the physiological activity of the 

nucleus in human subjects in vivo has proven difficult with current imaging techniques - fMRI 

does not resolve activity well in subcortical structures, while PET studies are limited in their 

practical application during cognitive tasks. Therefore, human studies of the NBM have so far 

largely been restricted to post-mortem neuropathological examinations (Mesulam and Geula, 
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1988), which although helpful in anatomical and biochemical characterisation do little to shed 

light on its function. In undertaking NBM DBS implantation in these clinical trials and 

temporarily externalising the leads in the post-operative period, we were afforded a unique 

opportunity to make direct electrophysiological recordings from the human NBM in vivo. These 

recordings, both at rest and during performance of dynamic cognitive tasks, allowed us to directly 

investigate the physiological function of NBM in the awake human brain for the first time. 

Furthermore, by combining these NBM LFP recordings with concurrent 

magnetoencephalography recordings we were able to gain further insight into its physiology by 

examining the resting functional connectivity of the nucleus with cortical areas. In addition, if we 

were to find any clinical benefits of NBM DBS in LBD patients then undertaking these 

electrophysiological investigations might help to shed light on possible mechanisms of action of 

the therapy. 

We will now address each of these key questions in turn in light of the results obtained in these 

studies. 

 

6.2 Clinical impact of NBM DBS in Lewy body dementias 

The sample sizes in both the PDD trial and the DLB trial were necessarily small for ethical 

reasons, therefore the results from each should be viewed as exploratory and principally 

hypothesis generating rather than as absolute evidence of efficacy. However, within that context, 

the blinded clinical impact of NBM DBS on cognitive and behavioural symptoms in both LBDs 

was limited, with some patients, but not others, showing apparent improvement in specific 

symptoms, but no global improvement in cognitive function as previously reported in the single 

case report of NBM DBS in PDD (Freund et al., 2009). There may be several potential reasons 
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behind this discrepancy in general cognitive improvement, however above all the previous case 

report was an open-label study and hence susceptible to significant placebo effects, whereas the 

double-blind randomised nature of our studies mitigated against this. This view would seem to be 

supported by the results of the more recent double blind randomised trial of low frequency NBM 

DBS in AD by the same group (J Kuhn et al., 2015), which also failed to demonstrate a general 

improvement in global cognitive function, in line with our results. 

The overall pattern of results across both trials suggests that low frequency NBM DBS may have 

caused blinded improvements in verbal memory retention and neuropsychiatric symptoms, 

particularly visual hallucinations, with the magnitude of these improvements larger in the PDD 

cohort than in their DLB counterparts. There was also a specific improvement in dyskinesias with 

low frequency NBM DBS in the PDD patients who suffered these symptoms. However, since 

none of the DLB patients suffered levodopa induced dyskinesias this effect was not seen in that 

group. 

As discussed above, animal studies suggest that the NBM plays a key role in memory encoding 

(see Section 1.6.6 and (Gratwicke et al., 2013)), and the improvements in retention in memory 

scores suggest that modulation of NBM activity might have improved this. As discussed at the 

end of Chapter 2, an enhancement of attention functions with stimulation could also underlie 

improvements on this measure, as greater top down attention to the task would have ensured 

better encoding of information. However, if this had been the case one would have expected a 

general uptuning of performance across all tests with NBM DBS, since top down attention is 

crucial to performance on all of them, yet no global improvement was observed. Therefore a 

specific effect of NBM DBS on memory encoding appears the more likely possibility. However, 

the other main test of retention of information in memory in both trials (short recognition memory 
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for faces) failed to show improvement with stimulation in either group (Tables 4 and 14). 

Nevertheless it is well known that memory for facial information is encoded uniquely both 

anatomically and functionally within the brain (Kanwisher et al., 1997), therefore the lack of 

improvement seen on this test with NBM DBS does not necessarily preclude an effect on 

retention in memory more generally. 

It is interesting to note that although both patient groups demonstrated an improvement in 

retention in memory on-stimulation compared to baseline, this reached significance in the PDD 

group (p=0.042, uncorrected) but not in the DLB group. However, this was one case where the 

cognitive tests used differed between the two groups; the PDD group were tested on the CVLT-II, 

which has a longer word list and so is more challenging, but also has only two alternate forms, 

meaning that it is more susceptible to practice effects. The DLB group on the other hand were 

tested with the HVLT-R, which has a shorter word list and so is easier for demented patients, but 

has six alternate forms, making it is less susceptible to practice effects. Bearing in mind that each 

respective memory test was administered eight times to an individual patient across the course of 

the trial (during each detailed and abbreviated cognitive battery, see Figures 1 and 13), then PDD 

patients would inevitably have been tested four times on each parallel version of the CVLT-II, 

whereas DLB patients would only have been tested once on most parallel versions of the HVLT-

R. Therefore, the fact that the PDD patients appeared to show a greater improvement in retention 

in memory scores on-stimulation compared to the DLB group could be due to a confounding 

effect of task familiarity in the former which was not present in the latter.  

An alternate reason for the difference in the magnitude of improvements on these tests between 

the two groups could be an effect of age, since there is a strong independent association between 

increasing age and worsening cognitive ability (Wechsler, 1999). The mean ages of the PDD 
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patient group and the DLB patient group were 65.17 years (SD 10.74) and 71.33 years (SD 3.67) 

respectively (Tables 1 and 11). However, the mean age of the PDD group is skewed due to the 

inclusion of one young-onset PDD patient (Patient E). When he is excluded the mean age of the 

PDD patients becomes comparable with the DLB patients (69.00 years, SD 5.83), and therefore it 

seems less likely that age played a significant role in the differences in performance observed. 

Another possible reason for the difference could be an effect of diagnosis itself. DLB patients are 

more likely than PDD patients to have significant co-existent AD pathology (Gomperts et al., 

2008; Halliday et al., 2011; Lippa et al., 2007), and the presence of multiple cellular pathologies 

is strongly associated with greater dementia severity (Kawas et al., 2015). However, mean 

baseline MMSE scores were only slightly different across the two groups (23.67, SD 1.75 for the 

PDD group, and 22.83, SD 1.17 for the DLB group, Tables 1 and 11) and therefore it seems 

unlikely that there was a significant difference in dementia severity to account for the differences 

in improvements seen on-stimulation. 

Finally, given the small sample sizes in both trials, and the lack of contemporaneous control 

groups, it remains entirely possible that the difference in retention in memory scores on-

stimulation compared to baseline between the two groups was due to chance alone. 

Overall however, the improvements in retention in memory scores in either group did not appear 

to have any direct impact on daily activities for the patients or the quality of life of either 

themselves or their carers. Therefore, although intriguing from a cognitive neuroscience point of 

view, these test score improvements did not translate into tangible improvements from the 

patient’s point of view, and therefore their clinical value is limited. 
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The improvements in neuropsychiatric symptoms on-stimulation in both groups are the more 

salient results of the two trials, especially since they were paralleled by mean improvements in 

associated caregiver distress scores (Tables 5 and 15), suggesting that they had a real direct 

impact on patient and carer quality of life. These objective and clinical improvements on-

stimulation are all the more significant since both groups also experienced a mean worsening in 

these symptoms during the blinded off-stimulation period compared to baseline, paralleled by 

worse caregiver distress scores. In the PDD group the improvement in NPI total scores on-

stimulation compared to off-stimulation reached significance (p=0.027 uncorrected), driven in 

particular by a marked blinded reduction in visual hallucinations on-stimulation in two patients 

(Table 5 and Figure 12). In the DLB group one patient (Patient D) experienced a similar marked 

reduction in hallucinations on-stimulation compared to both off-stimulation and baseline (Table 

15), but another patient with particularly marked and distressing visual hallucinations (Patient E) 

did not. However, the latter patient also suffered from severe macular degeneration, and so his 

hallucinations likely had both a central and a peripheral basis, which may have proven more 

resistant to the effects of NBM DBS than in the other DLB and PDD patients where they were 

only centrally (i.e. cerebrally) generated. 

As discussed in Chapter 2, the improvement in levodopa induced dyskinesias on-stimulation 

compared to both off-stimulation and baseline in PDD Patients A, C and D was an unexpected 

finding (Figure 11). This effect is likely explicable by current spread from NBM to the overlying 

GPi. However, given that conventional GPi DBS for dyskinesia control in PD is generally 

delivered at high frequency (130Hz), the finding that low frequency (20Hz) stimulation directed 

towards the NBM also attenuates dyskinesias warrants further study in its own right. 
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However, aside from the improvements in these specific measures and symptoms, most of the 

cognitive and behavioural outcome measures in both trials remained unchanged with stimulation 

(see in particular Tables 3, 4, 13 and 14). This suggests that low frequency NBM DBS did not 

have a general augmenting effect on global cognitive ability, as discussed above. Furthermore, 

one particular outcome measure, simple movement time, consistently worsened with NBM DBS 

in both groups compared to baseline (Tables 10 and 20). Indeed, in the case of the DLB group 

their mean simple movement time on-stimulation worsened significantly compared to baseline 

(p=0.028, uncorrected). However, simple movement time also worsened off-stimulation 

compared to baseline in this group, and so some of the deterioration observed may have been due 

to either the surgery itself or disease progression. Alternatively, the reduction in dyskinesias on-

stimulation in the PDD patients suggests that NBM DBS at 20 Hz may have influenced motor 

symptoms through current spread to the overlying GPi, and this might have had other subtle 

concurrent motor side-effects such as worsening bradykinesia.  

In summary, the present results demonstrate that low frequency NBM DBS has only a very 

limited impact on symptoms in LBDs, and would not be supportive of its adoption for clinical use 

in its current form. However, the fact that blinded improvements did occur in specific symptoms 

on-stimulation, namely neuropsychiatric symptoms and retention in memory, would support 

further evaluation of this therapeutic approach targeted towards these specific cognitive and 

behavioural outcomes. 

 

6.3 Safety of NBM DBS in Lewy body dementias 

The safety profile of NBM DBS in both trials was very favourable: Only a single serious adverse 

event occurred in each trial. In the PDD trial the right electrode cap eroded through the scalp in 
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Patient C 15 months after implantation. This necessitated explantation of that electrode for safety, 

but did not cause any long term adverse sequelae. In the DLB trial one patient developed 

antibiotic-associated Clostridium difficile colitis post-operatively, which necessitated a 

prolongation of his hospital stay by two weeks while he recovered. However, there were no long 

term adverse sequelae from this either. The other adverse events mainly consisted of transient 

post-operative confusion or burr hole cap discomfort, all of which resolved fully within two 

weeks post-operative. Importantly, the surgery itself did not appear to cause any significant 

worsening of cognitive function, as evidenced by the relatively stable results across primary 

outcome measures on the cognitive batteries performed at baseline and at one week post-

operative (Tables 8 and 18). 

Given our prospective concerns regarding the safety of performing NBM DBS implantation in 

this elderly and vulnerable patient group, it was a welcome surprise to find that the procedure was 

well tolerated and has a safety profile consistent with other standard clinical applications of DBS 

(Foltynie and Hariz, 2010). Our safety results are consistent with those of the other studies of low 

frequency NBM DBS to date, which have similarly showed that both surgery and stimulation are 

well-tolerated and safe in demented patients (Freund et al., 2009; Kuhn et al., 2015a; Kuhn et al., 

2015b). 

Of note, our PDD patients received a dual NBM and GPi implant, the latter being available for 

the treatment of concurrent motor symptoms in the event of little clinical benefit from NBM 

stimulation. Standard GPi DBS, though not as effective as STN DBS for control of motor 

symptoms (Foltynie and Hariz, 2010), can still benefit patients in this respect, but dementia 

remains a contraindication to this surgery. In light of the good safety profile observed with 

combined NBM/GPi implants in demented patients in these trials this contraindication is now 
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called into question. Further work to determine whether this restriction should now become 

relative for demented patients with severe motor impairments who might benefit from GPi DBS 

appears to be warranted. 

 

 

6.4 Implications of the electrophysiological findings in NBM for cognitive 

neuroscience 

The LFP recordings from NBM confirmed that its resting spectral activity is significantly 

different from neighbouring GPi, in particular it showed significantly higher power across low 

frequencies in the delta, theta and alpha ranges. In light of previous findings from rodent studies 

that unilateral NBM lesions lead to synchronised delta oscillations in the ipsilateral cortical EEG 

(Buzsaki et al., 1988), and human MEG studies suggesting a correlation between cortical delta 

oscillations and worsening cognitive decline in LBDs (Ponsen et al., 2012), we hypothesised that 

cortical activation rhythms in LBD might be driven by ascending control from NBM. We 

therefore performed simultaneous resting NBM LFP and MEG recordings in our patients to look 

for evidence of functional connectivity to cortex. However, no cortical activity coherent with 

NBM activity was found in the present experiments, meaning that we found no evidence to 

support this hypothesis. 

Our NBM LFP recordings during performance of two different types of attention task shed some 

light on the possible physiological role of NBM in the human brain: During performance of the 

sustained attention to response task, NBM activity in the delta band appeared to reflect the need 

to inhibit the pre-potent response, though whether this was a reflection of sustained attention to 
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the task or preparation to inhibit the response was unclear. However, the strength of this same 

delta band desynchonisation in NBM appeared to be greater in trials where the pre-potent 

response was correctly inhibited compared to those where it was not, suggesting that activity here 

also reflected the background level of sustained attention to the task. In contrast, there was no 

clear differential modulation of NBM activity during a task of orienting of attention. Taken 

together therefore, these task recordings provide preliminary evidence that the human NBM may 

play a role in the maintenance of sustained attention, but not the shifting of visual attention 

between stimuli. Such a role would be in line with existing evidence showing that corticopetal 

cholinergic input from NBM increases the signal to noise ratio for the cortical representations of 

salient stimuli (Bentley et al., 2011; Goard and Dan, 2009; Pinto et al., 2013; Soma et al., 2013), 

the possible neurobiological correlate of sustained attention to a stimulus. 

These findings could also potentially be in line with our clinical results. Low frequency NBM 

DBS did not produce any objective improvements on a task of orienting of attention in either trial 

(Posner’s covert attention test, Tables 3 and 13). However, improvements on a test of sustained 

attention were seen on-stimulation compared to both off-stimulation and baseline in several of the 

DLB patients (Sustained attention to response task, Table 14, N.B. PDD patients were not tested 

on this). Furthermore, the reductions in visual hallucinations observed on-stimulation in particular 

patients in each trial could also reflect an improvement in levels of sustained attention/alertness, 

since evidence suggests that impairments in this cognitive faculty contribute to the generation of 

visual hallucinations in LBDs (Gratwicke et al., 2015a). 

However, as discussed previously, the NBM degenerates significantly in LBDs ((Gratwicke et al., 

2013) and see Section 1.3.1.5), and therefore the electrophysiological findings described here are 
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not necessarily representative of the intrinsic activity of the healthy human NBM in vivo. 

Therefore, it is important that readers interpret the results in this context. 

 

6.5 Limitations of the present work and future directions for DBS for dementia 

The trials described here were always meant to be exploratory, to determine relevant outcomes 

for further exploration in future work. Therefore, even though only limited clinical benefits were 

found with low frequency NBM DBS, the fact that blinded improvements in specific measures 

were seen, combined with the fact that the approach is safe, and the finding of a possible 

mechanistic link between low frequency stimulation and sustained attention levels in LBD 

patients justifies the further exploration of DBS to this nucleus as a therapy for this patient 

population, and for dementias in general. 

There are a number of limitations of the work presented in this thesis. Many of the limitations 

specific to each study have already been presented in the relevant chapters, therefore here I will 

present an overview of general methodological issues, and suggest how they can be addressed in 

future studies of DBS for dementia. 

The major limitation to both clinical trials was the fact that only a small number of patients was 

recruited in each, meaning that each trial was underpowered to detect statistically significant 

differences between the on- and off-stimulation periods. This was of course inevitable in these 

pilot trials, due to the fact that at the outset the safety of NBM DBS implantation in this 

vulnerable patient group was unknown, necessitating a cautious approach to both ethical approval 

and recruitment. However, as a consequence, given the multiple comparisons we have performed, 

our data cannot be interpreted as evidence for efficacy. In light of this, future trials of DBS for 
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Lewy body dementias should consider combined recruitment of patients with a diagnosis of either 

PDD or DLB into one trial, in order to increase recruitment numbers. This approach seems valid 

given the common underlying neuropathological basis of the two conditions and their significant 

clinical overlap (see Sections 1.2 and 1.3), and in support of this current thinking appears to be 

moving toward a dissolution of the boundary distinction between PDD and DLB (Berg et al., 

2014). However, not everyone ascribes to this view (Boeve et al., 2016), and the small areas of 

difference between the two conditions might therefore leave such trials open to criticism. 

However, on balance, at present it would seem preferable that trials with sufficient numbers to 

determine the full impact of DBS interventions in LBDs are conducted rather than delayed. 

A second major issue with the clinical trials was the fact that AChEI medications were continued 

(at stable dosage) throughout the trial periods. The use of such medications is likely to partially 

mask any augmenting effects of DBS on the NBM cholinergic system, and will thereby reduce 

the magnitude of any differential clinical effects seen. However, given the relative safety of 

AChEI medications in comparison to DBS, we did not feel it was appropriate to expose patients 

to surgical risks who might gain sufficient cognitive benefits from the use of medications alone, 

therefore patients had to be taking such medication already prior to recruitment. Once recruited, 

the fact that the patients were likely deriving some (albeit sub-optimal) cognitive benefit from 

their AChEI medication meant that it would have been unethical to withdraw it, and moreover 

patients and their carers are unlikely to have consented to the trial if this had been a condition. 

One way in which future studies could address this issue would be through the use of functional 

imaging using PET, so that brain acetylcholine receptor occupancy could be measured both pre- 

and post- the usual dose of AChEI, and then again with additional blinded NBM stimulation, to 

look for a superadded biochemical effect. However, even if this were to clarify the contribution of 
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NBM DBS in such patients from a mechanistic point of view, the clinical effects might still be 

masked. 

Thirdly, the results of the clinical trials were limited by their relatively short duration; the 

duration of each blinded period was only six weeks. Although this is sufficient to demonstrate an 

effect of medium-term NBM DBS, it does not inform on the sustainability of the effects seen over 

longer periods, or give any indication as to whether the intervention modified the course of the 

disease. One way to address these two issues in the future would be to have two parallel groups of 

LBD patients undergo surgery, then a much longer blinded period of one year within which one 

group receives active stimulation and the other sham. The difficulty with this approach is that 

patients with disruptive symptomatology from dementia and their caregivers alike may not be 

willing to undergo invasive neurosurgery in the knowledge that they might not actually receive 

any active stimulation until one year later. However, trial designs of this type might be possible in 

patients with milder dementia (Lozano et al., 2016). An alternative could be to conduct a similar 

blinded crossover study to those detailed here, but to also include a separate, non-operated, 

control group of LBD patients, who would complete all the same assessments. The only difficulty 

with this approach is that any difference in the disease course detected between the two groups 

could be attributed to the effects of the surgery itself rather than the active stimulation. 

The lack of functional outcome measures, and the resultant difficulty in interpreting how 

differences in the performance on neuropsychological tests relate to the patient’s daily life has 

previously been discussed. Future trials of DBS in dementia should aim to incorporate such 

measures into their outcomes battery, for example the Alzheimer’s Disease Cooperative 

Activities of Daily Living Inventory (Galasko et al., 2005), in order to better determine the 

clinical impact and relevance of the intervention to the patient and their carers. In addition, 
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another limitation previously discussed in Chapter 2 is that we only stimulated the NBM at 20 

Hz, although the existing scientific rationale for this is limited (see Section 1.7.2). Stimulation at 

a different frequency might produce different results, and future studies should investigate this 

using a titration schedule, investigating cognitive responses to different frequencies of NBM 

DBS. 

Another limitation is the fact that we did not subdivide the NBM into its constituent subsectors to 

determine which of these was predominantly receiving stimulation in each patient. The different 

subsectors of NBM provide topographical innervation to different cortical areas (Gratwicke et al., 

2013), and therefore stimulation delivered to one particular subsector in a patient might have 

different effects to stimulation of another subsector in a different patient. Novel high-field 

imaging techniques combined with DTI tractography offer the potential to resolve these issues in 

future studies, which should allow better characterisation of the beneficial effects of discrete 

NBM subsector stimulation.  

Related to the last point, the size of the macroelectrodes relative to NBM means that we cannot be 

sure which NBM subsector the LFPs were recorded from, or indeed whether they originated from 

the nucleus or represent volume conduction from nearby sources. However, as I argued in 

Chapter 4, the use of a bipolar montage for LFP recordings limited the effects of distant volume 

conduction. Moreover, the fact that statistically significant differences in resting power spectra 

were found between NBM and its closest neighbouring structure, GPi, further suggests that the 

recordings we made were NBM specific and not due to volume conduction from neighbouring 

sources. However, which subsector of NBM the LFP represented cannot currently be 

distinguished. 
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A methodological limitation of our electrophysiological results is that the analyses that I 

employed assume that brain signals are stationary, for example when performing Fourier spectral 

analysis over long time windows, or when computing covariance matrices for beamformer source 

localisation estimates. Using these techniques to average over long segments of data increases the 

signal to noise ratios, which is particularly beneficial under the conditions we faced with patient 

MEG recordings (Litvak et al., 2010). However, we must bear in mind that resting and task 

related brain activity is not stationary, but is instead constantly dynamic and complex (Baker et 

al., 2014; Deco et al., 2008), and therefore our analysis of electrophysiological signals can at best 

only ever approximate to this. One way for future studies to approach this problem is to reduce 

the length of the time windows into which the continuously recorded data is epoched before 

spectral analysis, in effect sampling the true signal on a finer scale. Although this would still not 

be perfect, it would further approximate the data toward the measured signal, although the 

computational costs of analysing data on this finer scale increase exponentially, which can cause 

problems for processing power and data storage.  

It is also important to point out that the many of the electrophysiological analyses in this thesis 

are of a correlative nature (LFP task recordings and MEG coherence recordings). While 

correlations are a critical step in establishing relationships, they by no means imply causality. In 

order to demonstrate causal relationships, the behavioural and clinical consequences of 

specifically modulating oscillatory activities in the NBM need to be established. To this end 

future studies should take advantage of the newly validated methods for performance of 

simultaneous LFP and MEG recordings during active DBS (Oswal et al., 2016) to determine the 

direct effects of NBM stimulation on local and diffuse brain activity and the behavioural effects 

of this. 
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A final question is whether NBM DBS might be more effective if performed earlier in the LBD 

disease course. Since the nucleus is known to degenerate by up to 70% in both PDD and DLB 

(Gaspar and Gray, 1984; Hall et al., 2014; Perry et al., 1985; Whitehouse et al., 1983) then 

attempting to modulate its function with NBM DBS at a late stage may not have a significant 

effect simply because there are too few intact corticopetal cholinergic fibres left to stimulate. 

Future trials could therefore evaluate whether earlier intervention, at a stage when the NBM is 

less degenerate, might yield a greater response. Indeed such evaluations are already being 

undertaken in AD using NBM DBS (Kuhn et al., 2015b). 

Cognitive networks are both multiple and diffusely distributed within the brain (Gratwicke et al., 

2015a; Seeley et al., 2009; Stam, 2014), and possibly even more complex in their nature than 

motor networks. Therefore attempting to directly modulate cognitive functions using DBS 

constitutes a considerable challenge, and the lack of marked beneficial effects in the trials 

described here should not deter future investigations of this therapeutic approach. These are, in 

effect, some of the first steps, and they needed to be taken in order to provide initial guidance in a 

research field where there are currently a multitude of possibilities. The application of DBS 

technology in its current form to cognitive networks may be a rather blunt instrument for fine and 

complex systems. Advancements and refinements to the technology may be needed before 

neuromodulation can be applied to cognitive networks on an appropriate scale, and possibly 

across the correct number of distributed simultaneous sites. Nevertheless, further studies in this 

field should continue at the present time, especially since the increasing global burden of 

dementia represents an ever more pressing problem to our modern society.  
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