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Abstract 
 

Successful interaction with the environment requires flexible updating of our beliefs about 

the world. By learning to estimate the likelihood of future events, it is possible to prepare 

appropriate actions in advance and execute fast, accurate motor responses. According 

to theoretical proposals, humans track the variability arising from dynamic environments 

by computing various forms of uncertainty. Several neuromodulators have been linked 

to uncertainty signalling but comprehensive empirical characterisation of their roles in 

perceptual belief updating and motor response modulation has been lacking. This thesis 

interrogates the contributions of noradrenaline, acetylcholine and dopamine to human 

learning and action within a unified computational framework of uncertainty. 

First, I use pharmacological interventions to characterise the impact of noradrenergic, 

cholinergic and dopaminergic receptor antagonism on individual computations of 

uncertainty during a probabilistic serial reaction time task. I develop and employ a 

hierarchical Bayesian model to quantify human learning and action under three forms of 

uncertainty. I propose that noradrenaline influences learning of uncertain events arising 

from unexpected changes in the environment, while acetylcholine balances attribution of 

uncertainty to chance fluctuations within environmental contexts or to gross 

environmental violations following a contextual switch. In contrast, dopamine supports 

the use of uncertainty representations to engender fast, adaptive responses. 

Second, I extend these results by focusing on the effects of natural inter-individual 

variations in dopaminergic function. Specifically, I employ the same task and model to 

assess individual learning and action under uncertainty as a function of COMT genotype. 

Third, I focus on the role of noradrenaline. Uncertainty computations have been linked 

to changes in pupil diameter, and pupil dilation to noradrenergic neuronal activity in the 

locus coeruleus. Combining an auditory probabilistic learning task, pharmacological 

manipulations, pupillometry and computational modelling, I demonstrate that pupil 

diameter offers an indirect measure of dynamic noradrenergic computations of 

environmental uncertainty and volatility. 
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1 Introduction 

This thesis addresses the neuromodulatory mechanisms employed by the human brain 

to support learning and action in uncertain environments. It builds on a large body of 

theoretical, physiological, pharmacological, behavioural and computational work 

proposing roles for noradrenaline (NA), acetylcholine (ACh), and dopamine (DA) in 

computing different forms of uncertainty, and in supporting adaptive motor responses to 

environmental events. In this chapter, I introduce three theorised forms of environmental 

uncertainty, and review the existing literature on the neuromodulatory bases of 

uncertainty representations and response modulation. I highlight several open questions 

addressed in this thesis, define the key terms that will be used throughout, and present 

an overview of the following chapters. 

1.1 Uncertainty is an inherent feature of the environment 

Successful interaction with the environment requires flexible updating of our beliefs about 

the world (Conant and Ashby, 1970; Körding and Wolpert, 2004; Yu and Dayan, 2005; 

Behrens et al., 2007; O’Reilly, 2013). By tracking the environment’s regularities, an 

individual can form and manipulate internal estimates of the world’s statistical structure, 

and learn the causes of their sensory input. In so doing, it becomes possible to predict 

the likelihood of future environmental events given particular sensory cues (Friston, 

2005; Bar, 2009), in turn facilitating anticipatory action preparation and the execution of 

fast, accurate motor responses (Bestmann et al., 2008). 

However, the world with which humans, and indeed all animals, interact is incredibly 

complex; a multitude of statistical dependencies relate the sensory stimuli and events 

within our current environment, and these relationships are liable to change over time. 

Further, random events can occur due to environmental stochasticity. While our senses 

offer a means by which to track the myriad of entities within our environment, they only 

give us partial access to the true relationships that exist between entities. As such, the 

environment’s richly complicated sources of noise and latent structure present us with 

various forms of uncertainty. 

For instance, a London commuter predicting her journey time to work faces three distinct 

forms: 

First, there is irreducible uncertainty, which captures the randomness inherent in any 

complex environment and is undiminished by learning. An unplanned station closure or 
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a faulty train could cause journey delays and thus influence the accuracy of the 

commuter’s estimated arrival time on any given day. 

Second, estimation uncertainty arises from the commuter’s incomplete knowledge of 

the probabilistic relationships within her current environmental context. After moving to 

a new part of town, the duration of the commuter’s chosen route to work may be unclear, 

producing uncertainty about how likely she is to arrive at work on time. Over repeated 

journeys, this estimation uncertainty falls as the commuter learns the contextual rules of 

her environment. For example, she learns to predict the frequent delays on this new 

route due to congestion during the morning rush hour, although these delays may vary 

with local dips and surges in the number of passengers using the service. 

Third, volatility uncertainty arises from the commuter’s beliefs about the stability of the 

environment, and thus how quickly probabilistic relationships are changing between 

contexts. A major sporting event, such as the London Olympics, may bring a large influx 

of additional passengers for an unknown period of time and with unexpected effects on 

transport performance, making it harder to predict future journey times until these 

changes have been learned. 

1.1.1 The brain computes different forms of uncertainty 

To formulate accurate predictions about the likelihood of future events, and thus facilitate 

anticipatory preparation of appropriate motor responses, it is necessary to take these 

forms of uncertainty into account (Ma and Jazayeri, 2014; Meyniel et al., 2015; Pouget 

et al., 2016). In line with this notion, an assortment of theoretical, behavioural and 

neurobiological research has suggested that the brain computes uncertainty estimates 

relating to the environment’s sensory events, contextual associations and their changes 

over time (Averbeck et al., 2006; Ma et al., 2006; Behrens et al., 2007; den Ouden et al., 

2010; Fiser et al., 2010; Mathys et al., 2011, 2014; Payzan-LeNestour and Bossaerts, 

2011; Bach and Dolan, 2012; Bland and Schaefer, 2012; Friston et al., 2012; Iglesias et 

al., 2013; Payzan-LeNestour et al., 2013; Vossel et al., 2014a, 2014b; de Berker et al., 

2016; Diaconescu et al., 2017). 

Uncertainty estimates influence our perceptual beliefs about the world. In psychology, a 

distinction has been made between two forms of information processing within the brain 

(Gregory, 1970, 1997). While bottom-up processing focuses on incoming sensory 

information from the environment, top-down processing uses past experience to guide 

the interpretation of environmental data in an expectation-driven manner. Uncertainty 

about the validity of one’s own perceptual beliefs about the world should have the effect 
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of suppressing top-down prior expectations relative to new bottom-up sensory evidence, 

promoting learning about the sensory stimuli and events within the current environmental 

context (Yu and Dayan, 2003). With their broad distribution and extensive connectivity, 

the brain’s neuromodulatory networks are well-placed to facilitate the widespread 

changes in neuronal gain required to support such a function (Berridge and Waterhouse, 

2003; Aston-Jones and Cohen, 2005a; Warren et al., 2016). Indeed, neuromodulators 

profoundly alter the dynamics and topology of cortical networks (Marder, 2012; Eldar et 

al., 2013; Polack et al., 2013; McGinley et al., 2015). In particular, NA and ACh are known 

to enhance bottom-up, feedforward thalamocortical transmission of sensory information 

relative to top-down, intracortical and feedback processing (Hasselmo et al., 1996; Gil et 

al., 1997; Kimura et al., 1999; Kobayashi et al., 2000; Yu and Dayan, 2002, 2005; 

Hasselmo and McGaughy, 2004; Sarter et al., 2005; Dayan and Yu, 2006a; Deco and 

Thiele, 2011; Moran et al., 2013). 

 

 

Figure 1.1 A schematic of the noradrenergic and cholinergic networks. Both 

neuromodulatory systems show a broad distribution and extensive connectivity. (A) 

Noradrenaline (NA), also known as norepinephrine, is a catecholamine synthesised from 

an amino acid precursor, tyrosine, via a sequence of enzymatic steps (Cooper et al., 

2003). The primary source of NA is a brainstem nucleus called the locus coeruleus (LC), 

which innervates the cortex, cerebellum and hippocampus (Sara, 2009). Functionally, 

NA has been linked to arousal and attention. (B) A major source of acetylcholine (ACh) 

is the basal forebrain, located below the striatum, which sends cholinergic projections to 

the cortex and hippocampus. An additional source of ACh lies within the 

pedunculopontine nucleus and laterodorsal tegmental nucleus of the brainstem. 

Functionally, ACh has been linked to arousal, attention and memory (Himmelheber et 

al., 2000; Jones, 2005). Figure adapted from Purves et al., 2011.  



1. Introduction 

22 
 

1.1.2 Neuromodulatory computations of uncertainty 

A seminal body of work by Yu and Dayan has had lasting impact on the theorised 

contributions of NA and ACh to uncertainty computations (Yu and Dayan, 2002, 2003, 

2005; Dayan and Yu, 2006b). Specifically, the authors hypothesised that ACh signals 

the uncertainty that arises from ignorance about, and the unreliability of, a stable set of 

probabilistic relationships that link sensory events within an environmental context. As 

such, the quantity is notionally similar to estimation uncertainty. In contrast, Yu and 

Dayan suggest that NA signals the uncertainty that arises from unexpected events that 

occur between environmental contexts, i.e., following a contextual switch. Contextual 

switches arise due to environmental volatility and bring about a change in environmental 

rules. As I will address next, two types of experimental paradigm have highlighted 

different cholinergic and noradrenergic effects on behaviour within and between 

environmental contexts respectively, supporting a notional functional dichotomy for the 

two neuromodulators. 

1.1.2.1 A proposed role for acetylcholine under estimation uncertainty 

Within a stable environmental context, humans and animals show faster, more accurate 

responses to validly and predictably cued events than to those believed improbable 

(Posner, 1980; Downing, 1988; Bowman et al., 1993; Vossel et al., 2014b). This so-

called validity effect is modulated by pharmacological (Witte et al., 1997; Phillips et al., 

2000a), surgical (Voytko et al., 1994; Chiba et al., 1999), and neurodegenerative 

(Parasuraman et al., 1992) manipulations of ACh. Specifically, reaction times (RTs) to 

invalidly cued visual targets have been shown to decrease in both rats and rhesus 

monkeys following systemic injections of the cholinergic agonist nicotine, which boosts 

ACh neurotransmission. Similarly, RTs to invalidly cued targets are lower in human 

cigarette smokers compared to non-smokers (Witte et al., 1997; Phillips et al., 2000a). 

In each of these experiments, responses to validly cued targets were unchanged, 

meaning that the validity effect was either reduced or completely abolished. Conversely, 

the cholinergic (muscarinic) antagonist scopolamine, which reduces ACh 

neurotransmission, increases the validity effect in rats by disproportionately increasing 

RTs to invalidly cued targets (Phillips et al., 2000a). Moreover, lesions of the cholinergic 

basal forebrain in rats and monkeys have also been shown to selectively increase RTs 

following invalid cueing (Voytko et al., 1994; Chiba et al., 1999). The same behavioural 

effect is observed when patients with Alzheimer’s disease, and thus a cholinergic deficit, 

are compared to age-matched healthy individuals (Parasuraman et al., 1992). 
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Together, these results suggest a role for ACh in learning within environmental contexts 

defined by particular probabilistic rules. More recently, it has been demonstrated that 

blood-oxygenation-level-dependent (BOLD) activity in the human cholinergic basal 

forebrain reflects an individual’s estimation uncertainty about the probabilistic 

relationships linking environmental cues and outcomes, as quantified by a computational 

learning model (Iglesias et al., 2013). Moreover, pharmacological cholinergic stimulation 

under the drug galantamine has been proposed to increase the rate at which humans 

learn probabilistic relationships under estimation uncertainty (Vossel et al., 2014a), 

supporting the idea that ACh enhances learning accorded to stimuli with uncertain 

predictive consequences (Bucci et al., 1998) by suppressing the use of outdated top-

down cues and boosting bottom-up sensory processing (Yu and Dayan, 2005). 

1.1.2.2 A proposed role for noradrenaline under environmental volatility  

While NA plays no consistent role in learning within environmental contexts (Clark et al., 

1989; Witte and Marrocco, 1997), it is thought to offer an interrupt signal when volatility 

uncertainty arises between contexts (Clark et al., 1989; Arnsten and Contant, 1992; 

Smith et al., 1992; Coull et al., 1995; Witte and Marrocco, 1997; Bouret and Sara, 2005; 

Dayan and Yu, 2006b). Learning to make accurate predictions from the strongly 

unexpected observations that follow a contextual switch necessitates heightened 

sensory vigilance and a disregard for outdated top-down expectations. NA, with its role 

in regulating arousal and its broad neural network capable of triggering multiple, 

simultaneous changes across the brain (Bouret and Sara, 2004), is well-placed to rapidly 

coordinate this process. 

At a cellular level, NA increases neuronal gain by boosting the efficacy of synaptic 

interactions between neurons and thus increasing the responsivity of target neurons to 

their afferent input (Servan-Schreiber et al., 1990; Berridge and Waterhouse, 2003; 

Aston-Jones and Cohen, 2005a; Warren et al., 2016). This noradrenergic effect on 

synaptic transmission within cortical structures is believed to upregulate the processing 

of external sensory stimuli relative to intrinsic top-down information (Hasselmo, 1995), 

therefore promoting experience-dependent neuronal plasticity (Harley, 1987; Sara et al., 

1994; Aston-Jones et al., 1997; Bouret and Sara, 2005; Yu and Dayan, 2005; Corbetta 

et al., 2008; Tully and Bolshakov, 2010). By selectively increasing gain following 

unexpected sensory events that accompany a change in environmental context, the 

neuromodulator would be well-positioned to regulate an individual’s learning rate under 

environmental volatility. Indeed, neurons in the locus coeruleus (LC), the primary source 
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of cortical NA, show strong responses to unexpected environmental changes in rats and 

non-human primates (Sara and Segal, 1991; Aston-Jones et al., 1997). 

Pharmacological manipulations of NA have been shown to alter performance during 

tasks that feature contextual switches. For instance, administration of idaoxan, an α2-

adrenoceptor antagonist that increases both the firing rate of LC neurons and 

noradrenergic release in the cortex and hippocampus, accelerates the detection of 

unexpected switches in the predictive properties of sensory stimuli in rats required to use 

visual or spatial cues to navigate a linear maze (Devauges and Sara, 1990). Similarly, 

systemic administration of an alternative α2-adrenoceptor antagonist, atipamezole, 

improves attentional set-shifting in rats; an effect that is blocked by microinjection of the 

α1-adrenoceptor antagonist benoxathian (which decreases NA neurotransmission) into 

the medial frontal cortex, an area homologous to the primate dorsolateral prefrontal 

cortex (dlPFC) (Lapiz and Morilak, 2006). 

It has also been demonstrated that noradrenergic, but not cholinergic, deafferentation of 

rat medial frontal cortex impairs adaptation to contextual switches during attentional set-

shifting tasks (McGaughy et al., 2008). Moreover, 6-hydroxydopamine-induced lesions 

of noradrenergic projections from the rat LC to the medial frontal cortex impairs set-

shifting to novel stimuli (Tait et al., 2007). Importantly, since 6-hydroxydopamine can 

destroy both NA and DA neurons, the authors of this study verified that their neurotoxic 

lesioning method depleted NA in the medial frontal cortex, but caused no significant 

changes to DA neurotransmission. Further, systemic administration of atomoxetine, a 

selective NA reuptake inhibitor (SNRI) that increases extracellular NA concentrations, 

has been shown to improve attentional set-shifting in noradrenergically lesioned rats but 

has no effect in non-lesioned rats, highlighting the importance of optimal levels of cortical 

NA neurotransmission for optimal adaptive performance in dynamic environments 

(Newman et al., 2008).  

With regards to whether humans depend on noradrenergic neurotransmission to detect 

and adapt to environmental volatility, BOLD activity in the human LC has been shown to 

dynamically track volatility uncertainty, as estimated by a computational learning model 

(Payzan-LeNestour et al., 2013). Moreover, pupil dilation, which is influenced by 

noradrenergic afferents (Joshi et al., 2016) correlates with unexpected events, such as 

those that occur due to changes in environmental context (Preuschoff et al., 2011; 

Nassar et al., 2012; Browning et al., 2015). Finally, SNRIs, thought to increase NA 

neurotransmission, are used to treat individuals with attentional deficit hyperactivity 

disorder (ADHD), a condition associated with deficits in reversal learning following 
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contextual switches and abnormal cortical catecholaminergic neurotransmission (Itami 

and Uno, 2002; Seu et al., 2009). 

In sum, an extensive body of physiological, pharmacological, behavioural and 

neuroimaging work is compatible with the theory that ACh underlies learning of the 

relationships within stable environmental contexts, while NA supports learning under 

environmental volatility. 

1.1.3 Motor responses are sensitive to uncertainty 

As discussed above, representations of the uncertainty existing within and between 

environmental contexts are crucial for optimal predictions about the probability of future 

events. Optimal predictions, in turn, facilitate anticipatory preparation of appropriate 

motor responses. Indeed, previous work has demonstrated that the relationships 

between sensory events within probabilistic contexts can pre-emptively modulate the 

output of the motor system, thus speeding RTs to predictable events (Hick, 1952; 

Hyman, 1953; Requin and Granjon, 1969; Näätänen, 1970). Moreover, human 

corticospinal excitability (CSE), as measured with transcranial magnetic stimulation, has 

been shown to vary with uncertainty during a probabilistic RT task such that CSE is 

increased under low uncertainty about the required motor response to an upcoming 

event (Bestmann et al., 2008). Accordingly, high CSE is also accompanied by faster RTs. 

However, good predictions are not in themselves sufficient for adaptive performance in 

dynamic environments. An additional mechanism is required to modify action selection 

based on one’s own beliefs about the latent changes in the environment and/or the 

occurrence of unexpected events. Humans are indeed capable of engaging resources 

to inhibit a prepared response and replace it with an alternative when a unexpected event 

occurs (Hikosaka and Isoda, 2010; Isoda and Hikosaka, 2011), albeit at the expense of 

a prolonged RT (Galea et al., 2012; Bestmann et al., 2014). Unexpected events arise 

due to prediction errors that capture a mismatch between expectation and reality. As I 

will discuss in detail in Chapter 3, prediction errors provide the brain with an important 

teaching signal (den Ouden et al., 2012) that can trigger the modifcation of neuronal 

plasticity in target structures (Houk et al., 1995; Wickens et al., 2003; Frank, 2005), thus 

facilitating learning and behavioural flexibility. 

1.1.3.1 A proposed role for dopamine in response modulation 

DA neurons are known to fire in response to prediction errors (Mirenowicz and Schultz, 

1994; Schultz et al., 1997; Schultz and Dickinson, 2000; Zink et al., 2003; O’Doherty et 

al., 2004; Bayer and Glimcher, 2005; Bunzeck and Düzel, 2006; Pessiglione et al., 2006; 
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Joshua et al., 2008; Matsumoto and Hikosaka, 2009; Zaghloul et al., 2009; den Ouden 

et al., 2010, 2010). Furthermore, there is considerable evidence linking DA to flexible 

behaviour (Figure 1.2). For instance, DA depletions due to Parkinson’s disease are 

associated with specific flexibility impairments in both motor (Cools et al., 1984; Galea 

et al., 2012) and cognitive domains (Beatty and Monson, 1990; Cools et al., 2001a), with 

performance restored by dopaminergic medication (Cools et al., 2001b; Galea et al., 

2012). Specifically, Parkinson’s disease patients off dopaminergic medication show 

impaired switching between different cognitive task demands, such as naming letters or 

digits (Cools et al., 2001b). This effect, which is ameliorated by pharmacological DA 

stimulation, has been shown to be independent of both rule learning and working 

memory load since it occurs even when a contextual cue explicitly signals the required 

behaviour and any task switches (Cools et al., 2001a). Moreover, patients with 

Parkinson’s disease have been shown to produce fewer motor responses in a finger-

tapping task following a switch in the required finger-tapping sequence (Beatty and 

Monson, 1990). However, it should be noted that, in the latter study, patients’ medication 

regimens were unchanged during testing sessions, meaning that pharmacological DA 

stimulation cannot be excluded as a possible confounding factor in this case. 

 

 

Figure 1.2 A schematic of the dopaminergic network. Dopamine (DA) is a 

catecholamine synthesised from the same amino acid precursor as NA, namely tyrosine. 

Like NA and ACh, DA neurons show a broad distribution and extensive connectivity in 

the brain. The principal sources of DA are the substantia nigra (SN) and the ventral 

tegmental area (VTA), both of which are components of the basal ganglia, located at the 

base of the forebrain. The SN sends dopaminergic projections to the dorsal striatum. 

This so-called nigrostriatal (or mesostriatal) pathway has been linked to motor, reward 

and associative learning functions. Dopaminergic neurons of the VTA project primarily 
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to the prefrontal cortex via a mesocortical pathway, which has been linked to cognitive 

control and behaviour. A smaller group of DA neurons project from the VTA to the 

nucleus accumbens via a mesolimbic pathway linked to reward, aversion, pleasure and 

reinforcement learning. Together, the mesocortical and mesolimbic pathways constitute 

the mesolimbocortical pathway (Björklund and Dunnett, 2007). Figure adapted from 

Purves et al., 2011.  

Recently, there has been renewed focus on the role of DA in modulating flexible motor 

responses. For example, Parkinson’s disease patients off dopaminergic medication 

show an impaired ability to make adaptive responses to unexpected sensory events 

occurring within a broadly predictable context (Galea et al., 2012). Specifically, in a 

probabilistic serial RT task, responses to unexpected imperative stimuli, which elicit large 

sensory prediction errors and require replacement of a prepared action with an 

unprepared one, are slower than those made by healthy controls or by patients receiving 

dopaminergic medication. Importantly, the same effect is also observed when healthy 

individuals undertake the same task after having been administered the D1/D2-receptor 

antagonist haloperidol, which reduces DA neurotransmission (Bestmann et al., 2014). 

Overall, it appears that DA plays a key role in modulating behavioural responses to low-

level sensory prediction errors that necessitate motor flexibility. However, it remains 

unclear whether DA supports accurate response selection by facilitating perceptual belief 

updating (i.e., learning) in light of sensory prediction errors (Iglesias et al., 2013), or by 

modulating the sensitivity of motor response selection to perceptual beliefs. 

1.2 A unified framework of uncertainty 

To summarise, a considerable body of physiological, pharmacological, behavioural and 

theoretical work has suggested separable neuromodulatory involvement in the 

computations of, and responses to, uncertainty. However, attempts to characterise the 

relative contributions of NA, ACh and DA within a single computational scheme have 

been lacking. Computational models offer a sophisticated means by which to probe the 

brain’s mechanisms of learning and action in uncertain environments. As such, they have 

brought significant advances to cognitive neuroscience in recent years (Daw et al., 2011; 

Takahashi et al., 2011; Iglesias et al., 2013; Diaconescu et al., 2017). By designing task 

paradigms in which key learning parameters change over time, and correlating these 

parameters with fluctuations in neural activity, it has been possible to infer the types of 

computations that underlie learning and behaviour. Indeed, in an assortment of studies 

of human learning, measures of neural activity have been linked to computations of 
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perceptual quantities such as uncertainty, prediction error and volatility (Hampton et al., 

2006; Behrens et al., 2007, 2008; D’Ardenne et al., 2008; Hare et al., 2008; den Ouden 

et al., 2009; Cooper et al., 2010; Daw et al., 2011; Klein-Flügge et al., 2011; Boorman et 

al., 2013; Iglesias et al., 2013; Payzan-LeNestour et al., 2013; Diaconescu et al., 2017). 

Given the array of perceptual quantities supposedly tracked by the brain, it is important 

to construct unified computational frameworks of uncertainty, prediction error and 

volatility. In so doing, it becomes possible to probe the relative contributions of different 

neuromodulatory systems to computing these quantities, and to modulating learning and 

action as the quantities fluctuate. 

In the work I present in this thesis, I employ a Hierarchical Gaussian Filter (HGF) model 

(Mathys et al., 2011, 2014), in conjunction with a series of probabilistic learning tasks, to 

capture individual human learning under three distinct forms of uncertainty: 

1. Irreducible uncertainty arising from the randomness inherent in any 

probabilistic environment; 

2. Estimation uncertainty arising from an individual’s incomplete knowledge of 

the probabilistic rules underlying the current environmental context; 

3. Volatility uncertainty arising from the instability of these probabilistic rules over 

time. 

Further, I develop a novel instantiation of the HGF to track the modulation of motor 

responses that occurs in light of an individual’s uncertainty estimates. 

As I will discuss in detail in Chapter 3, the HGF was first introduced by Mathys et al. as 

a generic hierarchical Bayesian framework for individual learning under the various forms 

of uncertainty inherent in the environment (Mathys et al., 2011). It has been successfully 

applied in several recent studies of probabilistic learning under volatility (Iglesias et al., 

2013; Diaconescu et al., 2014, 2017; Hauser et al., 2014; Vossel et al., 2014a, 2014b, 

2015; de Berker et al., 2016). The core component of the HGF is a three-level perceptual 

model that tracks an individual’s learning about the environment’s underlying structure.  

A novel second component, which will be introduced formally in Chapter 3 and applied 

in Chapters 4 and 5, is a response model that maps an individual’s beliefs about the 

environment, as provided by the perceptual model, onto his/her observed behaviour, 

here RT responses. This extension of the HGF makes it is possible to estimate the 

degree to which an individual’s perceptual beliefs influence his/her motor responses. 



1. Introduction 

29 
 

For this thesis, I sought to characterise the relative contributions of NA, ACh and DA to 

computations of distinct forms of environmental uncertainty. Further, I aimed to 

disentangle the effects of the neuromodulators on individual perceptual belief updating 

from any effects on the sensitivity of motor responses to perceptual estimates. In the 

following chapters, I utilise two probabilistic learning tasks and a unified computational 

framework of uncertainty to quantify individual learning and response modulation in 

dynamic, probabilistic environments. In a series of experiments, I aim to pinpoint the 

relative impact of NA, ACh and DA on learning and action by utilising: 

1. Pharmacological manipulations of NA, ACh and DA; 

2. Genetic characterisation of baseline DA function; 

3. Pupillometric measures of dynamic NA neurotransmission. 

1.3 Pharmacological manipulations of neuromodulatory function 

The notion that endogenous neuromodulators and exogenous drugs produce their 

physiological effects by interacting with cellular receptors was first introduced by John 

Newport Langley and Paul Ehrlich at the beginning of the twentieth century (Cooper et 

al., 2003). The idea was based largely on observations that some drugs could trigger 

specific biological responses while others prevented them. Since then, advancements in 

electrophysiological and pharmacological brain slice techniques, and the development 

of molecular cloning (Caulfield, 1993; Gingrich and Caron, 1993; Schwinn et al., 1995), 

have facilitated the identification of a vast array of cellular receptors. Drugs that bind to 

these receptors offer a useful tool with which to modulate endogenous neuromodulatory 

function. By combining pharmacological manipulations with cognitive tasks, it is possible 

to identify the contributions of different neuromodulators to human learning and 

behaviour (Pessiglione et al., 2006; Stelzel et al., 2010; Beierholm et al., 2013; Bunzeck 

et al., 2013; Chowdhury et al., 2013; Galea et al., 2013; Bestmann et al., 2014; Guitart-

Masip et al., 2014; van der Schaaf et al., 2014; Vossel et al., 2014a; Crockett et al., 2015; 

den Ouden et al., 2015; Rutledge et al., 2015; Tomassini et al., 2015; Jepma et al., 2016; 

Warren et al., 2016; Diederen et al., 2017). 

1.3.1 Pharmacological modes of action 

Drugs can induce biological effects in several ways. A pharmacological agonist has both 

affinity and efficacy for a receptor, meaning that it can bind to that receptor and produce 

the same biological response as the receptor’s endogenous ligand. An antagonist has 

affinity, but no efficacy, for a receptor. As such, it attenuates or blocks the biological 
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response produced by the receptor’s endogenous ligand by competing with the ligand 

for receptor binding sites. An inverse agonist binds to a receptor but triggers a biological 

response opposite to that of the endogenous ligand (Stephenson, 1997; Bradley, 2014). 

1.3.2 Types of receptor 

1.3.2.1 Ionotropic receptors 

There are two main classes of membrane-localised receptors: ionotropic and 

metabotropic. Ionotropic receptors are ligand-gated ion channels. They are composed 

of multiple subunits and a central pore. When an ionotropic receptor is activated by an 

endogenous ligand or pharmacological agonist, the pore opens, permitting the passage 

of Na+, K+, Ca2+ or Cl- ions. The change in ion permeability can trigger excitatory or 

inhibitory action. Specifically, the influx of positively charged cations evokes 

depolarisation of the membrane potential, while the influx of negatively charged anions 

evokes hyperpolarisation, in turn making action potential firing more or less likely, 

respectively. For instance, ACh acts as an endogenous ligand at ionotropic (nicotinic) 

ACh receptors, and evokes excitation by increasing membrane permeability to NA+ and 

K+ ions. The effects mediated by ionotropic receptors are fast, occurring within 

milliseconds (Cooper et al., 2003). 

1.3.2.2 Metabotropic receptors 

Metabotropic receptors are G protein-coupled receptors (GPCRs). They are activated 

when an endogenous ligand or pharmacological agent binds to the receptor, inducing a 

conformational change and triggering an intracellular signalling cascade that ultimately 

results in the phosphorylation (or dephosphorylation) of proteins, and therefore protein 

activation, inactivation or functional modification. As such, GPCRs mediate slower 

responses (across seconds to minutes) than ionotropic receptors. These responses are 

generally modulatory, enhancing or dampening a neuronal signal. There are several 

classes of G proteins, including Gs, Gi, Gq and G12, each of which activate different signal 

transduction pathways (Cooper et al., 2003). NA, ACh and DA act as endogenous 

ligands at different GPCRs located on the membranes of postsynaptic neurons within 

the brain. By administering pharmacological agents that interact with particular GPCRs, 

it is possible to disrupt the neuromodulatory function of the NA, ACh and DA systems.  

1.3.2.3 Autoreceptors 

At least within cognitive neuroscience, it is the ionotropic and metabotropic receptors 

located within the membrane of postsynaptic neurons that receive particular research 
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focus. Importantly, pharmacological agents acting at postsynaptic receptors have the 

capacity to modulate the firing rate of the postsynaptic cell in response to neuromodulator 

release from a presynaptic neuron. However, an additional presynaptic mechanism can 

also regulate postsynaptic firing. Presynaptic autoreceptors are sensitive to 

neuromodulators released by the neuron on which they are located. When a 

neuromodulator is released by the presynaptic neuron, it will activate these 

autoreceptors in addition to the receptors on the postsynaptic cell. Such presynaptic 

activation often serves as part of a negative feedback loop in signal transduction, with 

the autoreceptors typically inhibiting further release or synthesis of the neuromodulator, 

in turn modulating postsynaptic firing rate (Stephenson, 1997; Cooper et al., 2003; 

Bradley, 2014). 

1.3.3 Reuptake and degradation of neuromodulators 

Once a neuromodulator has been released by a presynaptic neuron, diffused across the 

synaptic cleft and activated receptors on the postsynaptic cell membrane, its action is 

terminated by a mechanism of reuptake and metabolic degradation. For instance, NA is 

absorbed back into the presynaptic neuron via reuptake mediated primarily by the 

noradrenaline transporter (NET). Once back in the cytosol of the presynaptic cell, NA is 

broken down by the enzyme monoamine oxidase (MAO), or repackaged into vesicles for 

future release. Similarly, DA reuptake is primarily mediated by the dopamine transporter 

(DAT). Once in the cytosol, DA is broken down into inactive metabolites by a set of 

enzymes that act in sequence: MAO, catechol-O-methyltransferase (COMT) and 

aldehyde dehydrogenase (ALDH) (Eisenhofer et al., 2004). ACh is inactivated primarily 

by the action of the enzyme acetylcholinesterase (ACHE), which catalyses degradation 

of the neuromodulator (Cooper et al., 2003). 

Importantly, these transporters and degradative enzymes offer an additional means by 

which to study the function of the brain’s neuromodulatory systems. Indeed, the action 

of NET, DAT, MAO, COMT and ACHE can be modulated using an assortment of drugs 

that target these proteins.  

1.3.4 Pharmacological manipulations of noradrenaline, acetylcholine and 

dopamine 

An understanding of the molecular and cellular mechanisms by which receptors, 

transporters and degradative enzymes regulate neuromodulatory function reveals 

relevant targets for psychopharmacological investigations. Indeed, by administering 

drugs known to interact with particular receptors, transporters and degradative enzymes, 
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it is possible to up- or down-regulate noradrenergic, cholinergic and dopaminergic 

neurotransmission in humans. Assessing any drug-induced changes in performance 

under carefully designed experimental paradigms offers the potential to implicate the 

different neuromodulatory systems in human learning and action under uncertainty. 

1.3.4.1 Pharmacological manipulation of noradrenaline 

The physiological targets of NA are the (nor)adrenergic receptors, otherwise known as 

adrenoceptors. Adrenoceptors are a class of metabotropic receptors with several 

subtypes: α1, α2 and β. A high density of α1-adrenoceptors exists in the human 

neocortex (Zilles et al., 1993). Since α1-adrenoceptors are the targets of noradrenergic 

neurons projecting from the LC, they form a sensible pharmacological target for 

investigations of the noradrenergic contributions to learning and action under 

uncertainty. In Chapters 4 and 6, I utilise prazosin, a drug that antagonises 

noradrenergic neurotransmission via a mechanism of inverse agonism at α1-

adrenoceptors (Zhu et al., 2000), to investigate the contribution of NA to learning and 

action under uncertainty. 

An alternative means by which to pharmacologically manipulate noradrenergic 

neurotransmission is to target the neuromodulator’s reuptake machinery. For instance, 

the selective NA reuptake inhibitor (SNRI) reboxetine blocks the action of NET, in turn 

reducing the rate of NA reuptake from the synaptic cleft and supposedly increasing 

extracellular concentrations of NA (Wong et al., 2000). It has therefore been proposed 

that the drug’s net effect is to increase NA neurotransmission. In Chapter 6, I use both 

reboxetine and prazosin in order to characterise the respective impact of up- and down-

regulated NA neurotransmission on learning in uncertain environments.  

1.3.4.2 Pharmacological manipulation of acetylcholine 

There are two major classes of cholinergic receptors: nicotinic and muscarinic. Nicotinic 

receptors are ionotropic, while muscarinic receptors are metabotropic. There are five 

subtypes of muscarinic receptors (M1-5). Muscarinic M1-receptors, abundant in the 

neocortex and the hippocampus, are a major target of cholinergic neurons projecting 

from the basal forebrain (Volpicelli and Levey, 2004; Abrams et al., 2006). In Chapter 4, 

I utilise the M1-receptor antagonist biperiden to characterise the impact of reduced 

cholinergic neurotransmission on learning and action under uncertainty.  
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1.3.5 Pharmacological manipulation of dopamine 

The physiological effects of DA are mediated via a class of metabotropic DA receptors. 

There are five known subtypes: D1-5. Research efforts have focused primarily on D1- 

and D2-receptors. D1-receptors are the most abundant dopaminergic receptors in the 

central nervous system. The highest concentrations of both D1- and D2-receptors exist 

within the basal ganglia, particularly in the caudate nucleus and putamen. Aside from the 

basal ganglia, D1-receptors have a wide distribution in the neocortex, amygdala and 

hippocampus. In contrast, the most significant densities of D2-receptors outside the 

basal ganglia occur in the hippocampus (Palacios et al., 1988; Hall et al., 1994). In 

Chapter 4, I administer haloperidol, a drug that, at sufficient doses, blocks both D1- and 

D2-receptors. The net effect of haloperidol is thought to be antagonism of dopaminergic 

neurotransmission. As such, I assess the impact of reduced dopaminergic 

neurotransmission on learning and action in uncertain environments. 

1.4 Genetic variations in neuromodulatory function  

An alternative means by which to examine the neuromodulatory underpinnings of 

learning and action is to adopt a behavioural genetics approach (Frank et al., 2007, 2009; 

Tan et al., 2007a, 2007b; Green et al., 2008; Ullsperger, 2010; den Ouden et al., 2013; 

Doll et al., 2016). It has been suggested that a considerable proportion of inter-individual 

variance in cognitive function can be accounted for by genetic factors (Friedman et al., 

2008). Moreover, genetics influence the degree to which cognitive processes are 

disrupted under pharmacological manipulations, and in neurological and psychiatric 

disorders (Kimberg et al., 1997; Mehta et al., 2004a; Roesch-Ely et al., 2005; Frank and 

O’Reilly, 2006; Cools et al., 2007b; Clatworthy et al., 2009, 2009). Exploiting inter-

individual differences in the genes that regulate neuromodulatory function offers an 

opportunity to identify the neural mechanisms that contribute to human learning and 

action under uncertainty. Additionally, a behavioural genetics approach permits the 

effects of different neuromodulatory systems to be assessed within individuals and in a 

single experimental session. 

1.4.1 Types of genetic variation 

Genetic variation can arise in several ways. First, a single nucleotide polymorphism 

(SNP) is a variation in a single nucleotide that occurs at a specific position on the genome 

(Sachidanandam et al., 2001). Second, a variable number tandem repeat (VNTR) is a 

location on the genome where a short nucleotide sequence is repeated, with the number 

of repeats commonly varying between individuals. Third, an insertion/deletion (INDEL) 
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polymorphism arises when a specific nucleotide repeat is present (insertion) or absent 

(deletion) (Rodriguez-Murillo and Salem, 2013). Approximately ten million SNPs and 

several thousand VNTRs and INDELs contribute to the vast genetic variation within 

human populations (Frank and Fossella, 2011). Among them are several genetic 

polymorphisms that influence noradrenergic, cholinergic and dopaminergic 

neurotransmission by modulating the availability of target postsynaptic receptors or the 

activity of neuromodulatory reuptake and degradation mechanisms. As I discuss next, 

the inter-individual variations in NA, ACh and DA function induced by these particular 

polymorphisms offer a potential means by which to characterise the neuromodulatory 

contributions to human learning and action under uncertainty. 

1.4.2 COMT 

The Val158Met SNP in the COMT gene is one of the most widely studied polymorphisms 

in the behavioural genetics literature. The COMT gene encodes catechol-O-

methyltransferase, an enzyme that catalyses the degradation of catecholamines, 

including DA. The COMT enzyme plays a significant role in regulating DA levels in the 

brain, providing the primary mechanism of DA degradation in the prefrontal cortex (PFC) 

(Gogos et al., 1998; Akil et al., 2003; Tunbridge et al., 2004; Yavich et al., 2007) but 

having little to no effect on striatal DA (Gogos et al., 1998; Sesack et al., 1998; 

Matsumoto et al., 2003; Tunbridge et al., 2004; Meyer-Lindenberg et al., 2005; Slifstein 

et al., 2008). The Val158Met polymorphism results from a missense mutation that causes 

a nucleotide substitution from guanine to adenine, and therefore an amino acid switch 

from valine (Val) to methionine (Met), at rs4680 (codon 158). The Met isoform has 

reduced thermostability at body temperature, resulting in a three- to four-fold decrease 

in COMT enzymatic activity relative to the ancestral Val isoform (Männistö and Kaakkola, 

1999; Chen et al., 2004). As such, synaptic DA concentrations are thought to be higher 

in Met carriers, particularly in the PFC. In contrast, the Val allele is associated with higher 

COMT activity and lower synaptic DA availability. Since the Val and Met alleles are 

codominant, heterozygotes show intermediate levels of COMT activity, explaining the 

trimodal distribution of COMT activity (corresponding to Val/Val, Val/Met and Met/Met 

genotypes) observed in human populations (Floderus et al., 1981). 

It appears that COMT activity levels have decreased during human evolution (Palmatier 

et al., 1999; Chen et al., 2004), suggesting that the Met allele may have a beneficial 

effect on PFC function (Egan et al., 2001). Indeed, the Val158Met polymorphism has been 

found to influence cognitive processing in various tasks that depend on the PFC (Egan 

et al., 2001; Malhotra et al., 2002; Goldberg et al., 2003; Winterer and Goldman, 2003; 
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Foltynie et al., 2004; Blasi et al., 2005; Frias et al., 2005; Meyer-Lindenberg et al., 2005; 

Diamond, 2007; Frank et al., 2007, 2009; Tan et al., 2007b; Diaz-Asper et al., 2008; 

Solís-Ortiz et al., 2010; Dumontheil et al., 2011). Carriers of the Met allele tend to show 

superior executive function compared to Val/Val homozygotes (Egan et al., 2001; 

Malhotra et al., 2002; Goldberg et al., 2003; Frias et al., 2005; Frank et al., 2007; Diaz-

Asper et al., 2008). In the context of DA’s proposed role in behavioural flexibility, it is 

particularly interesting to note that Met carriers are frequently better at switching between 

the demands of different task rules. For instance, task-switching performance in the 

Wisconsin Card Sorting Task, a widely used test of executive function in which 

individuals are required to match cards according to criteria that switch without explicit 

warning, is higher in Met carriers than Val/Val homozygotes (Egan et al., 2001; Malhotra 

et al., 2002). Since the Met allele has been linked to increased DA neurotransmission, 

this echoes the aforementioned finding of impaired task switching due to DA depletions 

in Parkinson’s disease, which can be ameliorated with pharmacological DA stimulation 

(Cools et al., 2001b). Similarly, it has been shown that Met/Met homozygotes are more 

likely than Val carriers to switch their behaviour in response to instances of negative 

feedback (Frank et al., 2007), adding further weight to the proposal that DA has an 

underlying role in behavioural flexibility. 

Although some alternative studies have observed the opposite effect of COMT genotype 

on executive function (i.e., that Val/Val homozygotes show better executive function than 

Met carriers), these experiments have not required behavioural task-switching. For 

instance, Parkinson’s disease patients with a Val/Val genotype were found to 

demonstrate improved working memory and planning ability in the Tower of London task 

(Foltynie et al., 2004). However, it should be noted that this effect is likely to have been 

confounded by disease state and concurrent intake of dopaminergic medication. Higher 

task-switching performance has also been observed in post-menopausal women with a 

Val/Val genotype (Solís-Ortiz et al., 2010), but this finding is confounded by the fact that 

DA levels decline across the adult lifespan (Kaasinen et al., 2000; Bäckman et al., 2006; 

Li et al., 2010), inducing changes in cognitive performance (Bäckman et al., 2000; Dreher 

et al., 2008; Eppinger et al., 2013). 

Nevertheless, the COMT enzyme appears to play an important role in regulating cortical 

DA neurotransmission, with associated effects on behavioural flexibility. More 

specifically, it has been proposed that the impact of DA on PFC function adheres to an 

inverted-U dose-response curve (Tunbridge et al., 2006). As such, it is thought that PFC-

mediated cognitive processes are optimal within a relatively narrow range of intermediary 

DA activity, with insufficient or excessive baseline DA neurotransmission having a 
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relatively deleterious effect (Williams and Goldman-Rakic, 1995; Goldman-Rakic, 1998). 

Consistent with this notion, pharmacological studies in animals (Granon et al., 2000) and 

healthy human individuals (Kimberg et al., 1997; Mattay et al., 2000; Mehta et al., 2000) 

have shown that the effects of dopaminergic agents depend on baseline PFC function 

and COMT genotype (Mattay et al., 2003; Farrell et al., 2012).  

In Chapter 5, I exploit COMT genotype to probe any natural inter-individual differences 

in DA-mediated behavioural flexibility by assessing learning and response modulation 

under uncertainty as a function of genotypic variations in cortical DA neurotransmission.  

1.4.3 DAT1 

Flexible learning and behaviour in dynamic environments depends not only on the PFC, 

but also on subcortical activity in the basal ganglia, particularly the striatum (Kehagia et 

al., 2010). The PFC and striatum interact via multiple serial and parallel loops (Alexander 

et al., 1986; Haber et al., 2000), which are under neuromodulatory influence. Indeed, 

cortical DA activity, regulated by COMT, has been shown to modulate subcortical DA 

neurotransmission (Grace, 2000), supposedly by indirect cortical feedback (Tunbridge, 

2010). Further, it has been demonstrated that prefrontal lesions in rats can cause 

secondary impairments in striatal DA neurotransmission (Pycock et al., 1980). 

A key target for investigations of striatal DA neurotransmission is the DAT1 gene. A 

VNTR in the 3’ untranslated region of DAT1 influences expression levels of the dopamine 

transporter (DAT) (Mill et al., 2002). Since DAT plays a pivotal role in synaptic DA 

clearance in the striatum (Lewis et al., 2001; Frank and Fossella, 2011), the 

polymorphism modulates striatal DA availability (Caron, 1996; Heinz et al., 1999). The 

VNTR commonly occurs as nine (9R) or ten (10R) repeats of a 40 base-pair sequence, 

although between three and eleven repeats are known to exist (Forbes et al., 2009). The 

exact functional consequences of the polymorphism on DA neurotransmission are 

currently unclear. In vitro, the DAT1 polymorphism causes natural variation in the 

expression of DAT (Mill et al., 2002). However, while some positron emission 

tomography (PET) and single-photon emission computed tomography (SPECT) studies 

have indicated that the 9R allele is associated with increased striatal DAT expression 

(Jacobsen et al., 2000; van Dyck et al., 2005; van de Giessen et al., 2009; Spencer et 

al., 2013), and a putative decrease in DA neurotransmission (Wichmann and DeLong, 

1996), others have identified greater DAT expression in 10R carriers (Heinz et al., 2000; 

Fuke et al., 2001; Mill et al., 2002; VanNess et al., 2005). It should also be noted that a 

recent meta-analysis reported that there is currently no evidence to support the 
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hypothesis that the VNTR in the DAT1 gene is significantly associated with inter-

individual differences in DAT availability in the human striatum (Costa et al., 2011). 

Nevertheless, the DAT1 polymorphism has been associated with specific behavioural 

effects (Forbes et al., 2009; Gizer et al., 2009; Franke et al., 2010; van Holstein et al., 

2011). Despite having no established effect on task-switching performance in a paradigm 

based on the Wisconsin Card Sorting Test (Garcia-Garcia et al., 2010), DAT1 genotype 

has been linked to variations in behaviour during (rewarded) probabilistic reversal 

learning (den Ouden et al., 2013). Specifically, 9R carriers were found to make more 

post-reversal perseverative errors than 10R/10R homozygotes. This suggests that 9R 

carriers are more reliant on their previous experience, being more likely to select a 

previously rewarded stimulus following a contextual switch. This finding is compatible 

with rodent conditioning studies demonstrating that increased DA levels augment 

responses to previously rewarded stimuli (Parkinson et al., 1999; Goto and Grace, 2005). 

A related observation is that dopaminergic medication impairs reversal learning in 

patients with Parkinson’s disease (Cools et al., 2001b), possibly due to dysregulation of 

reward-related dopaminergic processing in the ventral striatum (Cools et al., 2007a). 

Pharmacological inhibition of DAT under methylphenidate evokes similar impairments in 

healthy individuals (Clatworthy et al., 2009). Furthermore, increased reward-related 

activity is observed in the ventromedial striatum of 9R carriers (Dreher et al., 2009; Aarts 

et al., 2010). In light of this evidence, it has been suggested that the 9R allele may be 

associated with increased striatal DA concentrations, increased reward sensitivity and 

decreased behavioural flexibility. Alternative work has shown that flexible responses to 

a previously non-rewarded stimulus are impaired under neurological DA depletions due 

to Parkinson’s disease (Peterson et al., 2009). 

Despite conflicting reports of the impact of DAT1 genotype on DAT expression and 

dopaminergic neurotransmission, the polymorphism holds the potential to offer finer 

insight into the contribution of DA to learning and action under uncertainty. In particular, 

assessing any impact of COMT and DAT1 genotypes on learning and response 

modulation in uncertain environments could uncover evidence to suggest that specific 

processes are linked to cortical or striatal neurotransmission, respectively. One might 

hypothesise that, by altering cortical DA neurotransmission, different COMT genotypes 

might introduce variations in the ability to adapt behaviour in light of a (non-rewarded) 

switch in task demands. While the ventral striatum is linked to reward-related learning, 

the dorsal striatum is associated with motor function (Cools et al., 1984; Purves et al., 

2011). As such, it is possible that altered striatal DA neurotransmission under different 

DAT1 genotypes also influences an individual’s ability to modulate motor responses 
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under environmental volatility. However, the aforementioned literature suggests that any 

effect of DAT1 genotype on flexible behaviour is more likely to be linked to rewarded 

reversal learning than to rule-based behavioural task-switching.  

1.4.3.1 DRD2 

Inter-individual variation in DA-mediated task-switching behaviour has also been 

observed under different DRD2 genotypes. The DRD2 gene encodes the dopaminergic 

D2-receptor. D2-receptor density has been linked to individual capacity for switching 

between different task demands (van Holstein et al., 2011). A known SNP in the DRD2 

gene, namely the ANKK1-Taq1A polymorphism at rs1800497, results in an amino acid 

substitution from glutamic acid to lysine at position 713 and gives rise to the A1 allele. 

A1 carriers have a 30-40% reduction in DRD2 expression compared to homozygous 

carriers of the A2 allele (Thompson et al., 1997; Ritchie and Noble, 2003), this effect 

being most prominent in the striatum, but also affecting the PFC (Noble, 2003). Increased 

D2-receptor expression in A2/A2 homozygotes has been linked to  inferior (non-

rewarded) task-switching performance compared to A1 carriers, which manifests as 

increased RTs, increased cortical switching-related activity, and increased functional 

connectivity in corticostriatal circuits (Stelzel et al., 2010), indicative of an association 

between D2-receptor density and increased task-switching effort. In line with this finding, 

it has also been demonstrated that pharmacologically stimulating human D2-receptors 

with the agonist bromocriptine increases switching-related activity in both the striatum 

and the posterior lateral frontal cortex (Stelzel et al., 2013). In contrast, the agonist 

decreases activity in sensorimotor regions supporting motoric hand-switching activity 

under task switches, indicating that dopaminergic stimulation likely has varying 

influences on different types of flexibility (e.g., cognitive and motor) due to complex 

interactions across the DA network. However, it should be noted that impaired task-

switching behaviour has also been observed under D2-receptor antagonism with 

sulpiride (Mehta et al., 2004b). 

The finding of a link between D2-receptor expression and task-switching is in line with 

studies that have related increased striatal D2-receptor density in schizophrenia (Wong 

et al., 1986; Abi-Dargham et al., 2000) to increased cortical DA and to deficits in 

behavioural and cognitive flexibility (Thoma et al., 2007). The fact that different studies 

have observed that both increased and decreased cortical DA neurotransmission can 

impair cognitive and behavioural flexibility likely speaks to the aforementioned inverted-

U relationship between DA levels and executive function (Tunbridge et al., 2006; 

Vijayraghavan et al., 2007). Related to this notion, van Holstein et al. have highlighted 
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the importance of optimal D2-receptor signalling for adaptive human behavioural 

flexibility. Specifically, the researchers demonstrated that D2-receptor stimulation by 

bromocriptine could improve cognitive flexibility, but only in individuals with low baseline 

DA levels, as reflected by the aforementioned VNTR polymorphism in the DAT1 gene 

(van Holstein et al., 2011). The behavioural effect of bromocriptine was abolished by pre-

treatment with the D2-receptor antagonist sulpiride, providing further evidence that the 

effect is mediated via D2-receptors. 

In light of the variations in behavioural flexibility associated with different levels of D2-

receptor expression, examining any impact of DRD2 genotype on learning and action 

under uncertainty might offer further insight into an underlying dopaminergic mechanism, 

particularly when contrasted with any effects of the COMT and DAT1 genotypes. 

1.4.4 NET 

The NET gene encodes the NA transporter, which functions to reuptake extracellular NA 

and thus modulates NA neurotransmission. Although a SNP occurs in the promoter 

region of the gene at rs2242446, it has been studied far less extensively than the 

polymorphisms discussed thus far. Variations in NET genotype have been found to 

correlate with conditions such as ADHD, depression and alcohol dependence (Huang et 

al., 2008; Zhao et al., 2013; Oh and Kim, 2016), and with sensitivity to antidepressants 

that target the NA transporter (Owens et al., 2008; Jeannotte et al., 2009; Sekine et al., 

2010), but any specific impacts of the polymorphism on noradrenergic neurotransmission 

and behaviour are currently unclear. NET genotype offers a potential means by which to 

probe inter-individual differences in NA-mediated learning and action in uncertain 

environments. However, any results would be speculative until the impact of the NET 

polymorphism on NA neurotransmission has been better established. 

1.4.5 ACHE 

The ACHE gene encodes acetylcholinesterase, an enzyme that hydrolyses, and 

therefore inactivates, ACh. It has been shown that, in patients with Alzheimer’s disease 

and therefore cholinergic impairment, an A/A genotype is associated with a better 

response to treatment with the acetylcholinesterase inhibitor rivastigmine (Scacchi et al., 

2009). However, again, any specific effects of the polymorphism on cholinergic 

neurotransmission and behaviour are currently unclear. Nonetheless, variations in ACHE 

genotype might offer a means by which to speculatively study inter-individual differences 

in ACh-mediated learning and action under uncertainty. 
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In sum, these five genes are of potential physiological relevance to the noradrenergic, 

cholinergic and dopaminergic mechanisms underlying learning and action in uncertain 

environments. As such, I had originally planned to characterise the effects of COMT, 

DAT1, DRD2, NET and ACHE genotypes on human learning and response modulation 

under irreducible, estimation and volatility uncertainty. However, as I will discuss in detail 

in Chapter 5, due to unexpected methodological constraints, I focus instead on inter-

individual differences in dopaminergic neurotransmission evoked by COMT genotype. 

1.5 Pupil diameter as a proxy for dynamic noradrenergic 

uncertainty computations 

For half a century, pupil dilation at constant luminance has been considered a marker of 

central arousal (Hess and Polt, 1964; Kahneman and Beatty, 1966; Bradshaw, 1967; 

Kahneman et al., 1967; Beatty, 1982). Inspired by recent proposals that pupil diameter 

might offer an indirect measure of noradrenergic neural activity in the locus coeruleus 

(LC) (Rajkowski et al., 1993; Phillips et al., 2000b; Aston-Jones and Cohen, 2005a; 

Murphy et al., 2014; Varazzani et al., 2015; Joshi et al., 2016), and that NA might 

modulate learning under volatility uncertainty (Yu and Dayan, 2005; Payzan-LeNestour 

et al., 2013; Marshall et al., 2016), researchers have started to probe whether transient 

changes in pupil diameter can be used as a proxy for physiological autonomic processes 

that occur during behavioural tasks (Siegle et al., 2003; Aston-Jones and Cohen, 2005a; 

Critchley, 2005; Satterthwaite et al., 2007; Einhäuser et al., 2008; Hupé et al., 2009; 

Einhauser et al., 2010; Gilzenrat et al., 2010; Privitera et al., 2010; Jepma and 

Nieuwenhuis, 2011; Preuschoff et al., 2011; Fiedler and Glöckner, 2012; Nassar et al., 

2012; Wierda et al., 2012; Eldar et al., 2013; de Gee et al., 2014; Browning et al., 2015; 

de Berker et al., 2016; Korn et al., 2016; van den Brink et al., 2016; Urai et al., 2017). 

The sensitivity of the pupil to such processes means that pupillometry might offer a 

simple, non-invasive and cost-effective tool with which to measure individual 

noradrenergic computations of uncertainty, without the need for pharmacological 

interventions or behavioural genetics analyses.    

1.5.1 Pupil diameter as an indirect measure of noradrenergic 

neurotransmission 

As I will discuss next, there is converging evidence from electrophysiology (Rajkowski et 

al., 1993; Aston-Jones and Cohen, 2005a; Varazzani et al., 2015; Joshi et al., 2016), 

pharmacology (Phillips et al., 2000c) and human neuroimaging (Samuels and Szabadi, 
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2008; Murphy et al., 2014) to suggest a relationship between NA and pupil dilation under 

constant luminance. 

1.5.1.1 Electrophysiological evidence of a link between noradrenaline and pupil 

diameter 

In the last decade, the theory that changes in pupil diameter are directly related to 

fluctuations in noradrenergic neuronal activity in the LC has been the focus of a 

considerable body of research (Aston-Jones and Cohen, 2005a; Gilzenrat et al., 2010; 

Nieuwenhuis et al., 2010; Jepma and Nieuwenhuis, 2011; Eldar et al., 2013). The LC is 

a brainstem nucleus in the dorsolateral pons. As mentioned previously, it is the primary 

site of NA synthesis and the principal source of NA for the cerebral cortices, cerebellum 

and hippocampus (Moore and Bloom, 1979; Aston-Jones and Cohen, 2005a). The notion 

that the pupil might offer an indirect measure of LC-NA activity was largely inspired by 

an observation that the baseline firing rate of a single neuron recorded in monkey LC 

aligned closely with simultaneously recorded changes in pupil diameter (Rajkowski et 

al., 1993; Aston-Jones and Cohen, 2005a). 

While neuronal activity in several brain regions, including the inferior colliculus (IC), 

superior colliculus (SC), anterior cingulate cortex (ACC) and posterior cingulate cortex 

(PCC), has been associated with changes to pupil size (Wang et al., 2012; Ebitz and 

Platt, 2015), the link between LC and pupil diameter seems most direct. In 2015, 

Varazzani et al. provided novel data to suggest that LC neurons are involved in mediating 

changes in pupil diameter by demonstrating that spiking activity in the noradrenergic LC, 

but not the dopaminergic substantia nigra (SN), is positively correlated with changes in 

pupil size during decision-making in rhesus monkeys (Varazzani et al., 2015). 

Importantly, in the last year, Joshi et al. have offered the most convincing evidence of a 

causal relationship between LC-NA activity and event-driven changes in pupil diameter. 

By recording activity in the LC, as well as the IC, SC, ACC and PCC, of rhesus 

macaques, the authors established that, during passive fixation, fluctuations in the firing 

rate of many of the recorded neurons in these different regions correlated with 

fluctuations in pupil size. However, when the LC, IC and SC were electrically 

microstimulated, it was the LC stimulation that was found to consistently trigger transient 

increases in pupil size in a 250-700ms window following stimulation onset (Joshi et al., 

2016).   

Moreover, the NA-LC system also appears to show phasic activations during perceptual 

decision-making (Rajkowski et al., 2004; Aston-Jones and Cohen, 2005a; Bouret and 
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Sara, 2005; Sara, 2009), presumably triggered by feedback connections from the PFC 

(Aston-Jones and Cohen, 2005a; Dayan, 2012). It is therefore possible that pupillary 

responses to perceptual estimates, such as prediction error, uncertainty and volatility, 

reflect noradrenergic activity in the LC.  

1.5.1.2 Pharmacological evidence of a link between noradrenaline and pupil 

diameter 

Pharmacological evidence also suggests that NA modulates pupil diameter in humans. 

Specifically, α2-adrenoceptor agonists, such as clonidine, which decease the activity of 

central noradrenergic neurons, have been shown to decrease baseline pupil diameter 

and increase spontaneous pupillary fluctuations. In contrast, α2-adrenoceptor 

antagonists, such as yohimbine, which have the opposite effect on central NA, have been 

shown to have the opposite effect on pupils, i.e., an increase in baseline pupil diameter 

and decreased pupillary fluctuations (Phillips et al., 2000b). 

1.5.1.3 Human neuroimaging evidence of a link between noradrenaline and pupil 

diameter 

Until recently, the lack of reliable non-invasive measures of LC activity had limited 

investigations of the functioning LC-NA system in humans. In 2006, Sterpenich et al. 

used fMRI to correlate human pupillary dilation with neural activity during emotional 

memory retrieval. Activations in an area of the dorsal tegmentum of the ponto-

mesencephalic region were identified, consistent with (but not definitively indicative of) 

LC activity (Sterpenich et al., 2006).  

The decreased signal-to-noise ratio in the brainstem, resulting from the effects of cardiac 

pulsation and respiratory movement, means that it has been traditionally difficult to 

accurately locate the LC’s small structure using fMRI (Astafiev et al., 2010; Payzan-

LeNestour et al., 2013). However, Shibata et al. demonstrated that it is possible to image 

the neuromelanin (a by-product of monoamine synthesis) contained in noradrenergic 

neurons of the LC (Graham, 1979; German et al., 1988; Shibata et al., 2006). 

Furthermore, Keren et al. developed a probabilistic LC atlas using high resolution T1-

turbo spin echo MRI (Keren et al., 2009), which some researchers have used to locate 

LC responses under volatility uncertainty (Payzan-LeNestour et al., 2013). Furthermore, 

by taking advantage of these two methodological advances, Murphy et al. were able to 

use simultaneous pupillometry and fMRI to generate empirical evidence of a relationship 

between pupil diameter and BOLD activity in the human LC (Murphy et al., 2014).  
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1.5.2 A proposed link between pupil diameter and perceptual beliefs 

At the start of the decade, there was a move to integrate pupillometry into contemporary 

studies of human learning and behaviour. Motivated by proposals that different 

behavioural states might be mediated by two modes of LC-NA activity (Usher et al., 1999; 

Aston-Jones and Cohen, 2005a), and that pupil diameter might reflect these LC-NA 

activity profiles, researchers quantified pupil dilation during shifts between exploitation 

and exploration behaviours. Behavioural exploitation is defined as engagement with a 

particular task, while behavioural exploration is characterised by switches between 

tasks. According to adaptive gain theory, two LC modes promote exploitation and 

exploration by adaptively adjusting the responsivity of cortical neurons (Aston-Jones and 

Cohen, 2005a). A phasic mode, characterised by an intermediate level of baseline LC 

activity and large phasic increases in noradrenergic activity, produces selective 

increases in neuronal responsivity to task-related stimuli. The phasic release of NA 

temporarily increases the responsivity (i.e., gain) of target cortical neurons to their 

afferent input, thereby potentiating the processing of task-relevant stimuli (Servan-

Schreiber et al., 1990; Doya, 2002; Berridge and Waterhouse, 2003) and optimising 

performance in the current task (i.e., exploitation). In contrast, a tonic mode, 

characterised by elevated baseline LC activity, tonic NA release and the absence of 

phasic responses, produces a more enduring and less discriminative increase in 

neuronal responsivity. Although this impairs performance within the current task, it 

facilitates the disengagement of attention from that task and the processing of other non-

task-related stimuli and/or behaviours (i.e., exploration). 

Accordingly, changes in pupil diameter have been detected under exploration and 

exploitation behaviours (Gilzenrat et al., 2010; Jepma and Nieuwenhuis, 2011). Gilzenrat 

et al. showed that baseline pupil diameter decreases gradually when individuals engage 

in a new task, while increases in baseline pupil diameter are associated with decreases 

in task utility and upcoming task disengagement and exploration (Gilzenrat et al., 2010). 

Similarly, in a four-armed bandit task in which individuals aimed to maximise reward by 

making choices between four slot machines whose mean payoffs changed gradually and 

independently over time, exploratory choices were preceded by a larger baseline pupil 

diameter than exploitative choices. Furthermore, individual changes in baseline pupil 

diameter were predictive of an individual’s tendency to adopt exploitation behaviour 

(Jepma and Nieuwenhuis, 2011). 

Although perceptual estimates and decision variables were present in these task 

paradigms, they were not the principal focus of the experiments. Nevertheless, this work 
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inspired an important methodological shift; subsequent studies focused on developing 

quantitative models to formally test the hypothesised association between human pupil 

dilation and the perceptual estimates underlying learning and behaviour in uncertain 

environments. As I will discuss next, a range of studies have investigated the modulation 

of pupil diameter by perceptual quantities such as uncertainty, prediction error 

(commonly conceptualised in the pupil literature as surprise), and volatility. 

1.5.2.1 Evidence that pupil diameter is modulated by irreducible uncertainty and 

surprise 

Preuschoff et al. sought to explicitly quantify the impact of distinct perceptual estimates 

on pupil diameter during an auditory gambling task (Preuschoff et al., 2011). On each 

trial, two cards were drawn in succession from a deck numbered 1-10. Before the 

auditory presentation of either card, participants were required to place a monetary bet 

on whether the first or the second card would have a higher value. The paradigm was 

designed to dissociate perceptual estimates of expected reward, irreducible uncertainty 

(which the authors conceptualised as risk), and surprise (here conceptualised as risk 

prediction error). The first card served as a probabilistic cue and the second card as the 

trial outcome. Irreducible uncertainty about the trial outcome captured the inherent 

randomness of the probabilistic relationship between the cue and outcome cards, and 

therefore the unreliability of the trial outcome. Following cue presentation, irreducible 

uncertainty showed an inverted-U relationship, with maximal irreducible uncertainty 

occurring when the value of the first card was 5 or 6, and minimal uncertainty when the 

first card was 1 or 10. Surprise was defined as high when expected reward prior to the 

second card was positive and the actual outcome was a loss, or when the expected 

reward was negative and the actual outcome was a win. Surprise was low when the 

expected reward had been positive and the outcome was a win, or the expected reward 

had been negative and the outcome was a loss. 

Both irreducible uncertainty and surprise were found to have modulatory effects on pupil 

diameter (Figure 1.3). More precisely, pupil dilation occurring after the presentation of 

the first (cue) card was increased when there was low irreducible uncertainty about the 

relative value of the second (outcome) card (i.e., when the first card was 1 or 10, meaning 

the second card was certain to be higher or lower, respectively) compared to when there 

were medium (first card was 2, 3, 8 or 9) or high (first card was 4, 5, 6 or 7) levels of 

irreducible uncertainty about the value of the second card (Figure 1.3A). Pupil dilation 

occurring after the presentation of the second card was augmented under high surprise 

compared to low surprise about the reward outcome (Figure 1.3C). 
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Figure 1.3 Pupil dilation under irreducible uncertainty and surprise. (A) Pupillary 

dilation occurring between the presentation of the first and second cards was modulated 

by irreducible uncertainty. The pupil showed greater dilation if the outcome was certain 

(low uncertainty; first card was 1 or 10) than if there was high irreducible uncertainty 

about the outcome of the second card (high uncertainty; first card was 4, 5, 6 or 7). Pupils 

showed an intermediary dilatory response on trials with medium levels of irreducible 

uncertainty (first card was 2, 3, 8 or 9). (B) Significance of the difference between high 

and low uncertainty trials as presented in A. The horizontal line denotes an expected 

false discovery rate (FDR) of 5%. Times of significant difference fall above this line. (C) 

Pupil dilation after presentation of the second card was increased under high compared 

to low surprise about reward outcome. (D) Significance of the difference between high 

and low surprise trials according to C. Notation is the same as in B. Data in A and C are 

mean ± SEM. Figure adapted from Preuschoff et al., 2011.  

Assuming a relationship between NA and pupil dilation, the authors took the finding that 

post-outcome surprise (i.e., risk prediction error) modulated pupil diameter as indicative 

of a similar noradrenergic role for uncertainty as DA has for reward, namely the encoding 

of error signals. However, as I will address next, the finding that pupil dilation was 
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augmented under low (rather than high) irreducible uncertainty conflicts with the findings 

of alternative studies. 

In my work with de Berker et al., we demonstrated independent evidence to suggest that 

pupil diameter is modulated by both irreducible uncertainty and surprise (de Berker et 

al., 2016). In a volatile probabilistic learning task, participants were required to make 

predictions about binary aversive outcomes (electrical shock/no electrical shock) based 

on binary probabilistic visual cues (cue 1/cue 2). The true probabilistic relationship 

between cues and outcomes was fixed within a contextual block but changed discretely 

every 20-40 trials, with maximal irreducible uncertainty occurring under a 0.5/0.5 

cue:outcome probability. The HGF model was applied to the behavioural data to quantify 

individuals’ trial-wise estimates of uncertainty and surprise. Baseline pupil diameter (i.e., 

pupil diameter at the time immediately preceding cue onset) was found to increase with 

irreducible uncertainty about the current cue:outcome relationship (Figure 1.4A). In 

contrast to Preuschoff et al.’s finding, irreducible uncertainty was also shown to increase 

pupil diameter across the course of the trial (Figure 1.4B). An additional positive effect 

of surprise (here capturing sensory prediction error) occurred approximately two seconds 

after outcome presentation, mirroring Preuschoff et al.’s finding.  

 

Figure 1.4 Pupil diameter is modulated by estimates of irreducible uncertainty and 

surprise. (A) Baseline pupil diameter (i.e., pupil diameter immediately preceding cue 

onset) showed an inverted-U relationship with participants’ beliefs about the current 

cue:outcome probability, as reflected by their irreducible uncertainty. The relationship 

closely conformed to a Bernoulli distribution (grey dashed line), with peak baseline pupil 

diameter coinciding with maximal irreducible uncertainty (i.e., when the estimated 
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cue:outcome probability = 0.5/0.5). (B) Median splits, which separated trials according to 

whether they were high or low in irreducible uncertainty and high or low surprise, 

indicated that irreducible uncertainty increased pupil diameter throughout the trial. There 

was an additional positive effect of surprise approximately 2 seconds after outcome 

presentation. Data are mean ± SEM. Figure adapted from de Berker et al., 2016.  

There are some important differences in the approaches adopted by Preuschoff and de 

Berker, which might explain why different effects of irreducible uncertainty on pupil 

diameter were observed. For example, the relative time-points at which the impact of 

irreducible uncertainty on pupil diameter was assessed differs between the two studies. 

While Preuschoff examined the pupillary effect of irreducible uncertainty after 

presentation of a probabilistic cue, de Berker probed any effect both at baseline (i.e., 

before cue onset) and across the trial time-course (relative to outcome presentation). 

There was no motivation to assess baseline pupil diameter in Preuschoff’s study since 

pre-cue reward probability, and thus pre-cue irreducible uncertainty, were held constant 

(p=0.5). In contrast, in de Berker’s task, the probabilistic cue:outcome relationship 

changed over time. Since irreducible uncertainty on the current trial could be computed 

on the basis of trial history (Mathys et al., 2011), it was possible to investigate whether 

baseline pupil diameter was modulated by this quantity. 

Another difference between the two paradigms is that participants had to make 

predictions about different types of trial-wise outcomes (monetary reward/loss versus 

aversive/neutral stimuli), which may have evoked different neuromodulatory effects on 

pupil diameter. Further, these predictions were made at different time-points in the trial 

time-course. In de Berker’s task, participants were required to predict the trial’s outcome 

after the presentation of a probabilistic cue. In contrast, Preuschoff required participants 

to make a prediction about trial outcome before a probabilistic cue had been presented. 

As such, in Preuschoff’s task, there are two additional parameters that could have 

augmented the post-cue pupillary response. 

First, presentation of the cue would have conveyed a degree of post-decisional surprise. 

As mentioned previously, pre-cue irreducible uncertainty was constant in Presuchoff’s 

paradigm as reward probability was fixed at 0.5. Depending on the direction of the 

participant’s prediction and the value of the first (cue) card, trial-wise post-cue irreducible 

uncertainty would have increased or decreased at cue onset. For instance, if a participant 

had predicted that the second card would be lower than the first card, and the first card 

was then revealed to be a 2, they would have learned that there was a high likelihood 

that they had made a prediction error and that there was only moderate irreducible 
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uncertainty that the second card would be higher than the first. Post-decisional surprise 

would be highest when participants had made an incorrect prediction before the 

presentation of a cue card numbered 1 or 10 (i.e., on what Preuschoff et al. define as 

low irreducible uncertainty trials), possibly explaining the increased pupillary dilation on 

these trials. Second, given that low irreducible uncertainty in Preuschoff’s framework 

actually reflected post-cue certainty about whether a participant would win or lose a 

monetary bet, the associated increase in pupillary dilation may, at least in part, reflect 

outcome confirmation. Indeed, monetary rewards and losses have been shown to have 

a positive effect on pupil diameter (Seymour et al., 2007). 

In line with this suggestion, Satterthwaite et al. observed increased pupil dilation under 

high irreducible uncertainty when they utilised a similar version of Presuchoff’s gambling 

task (Satterthwaite et al., 2007; Figure 1.5A). As in Preuschoff’s paradigm, participants 

made predictions about the relative values of sequentially-presented pairs of cards, but 

here the prediction was made after presentation of the first (cue) card. This suggests 

that, when unconfounded by post-decisional surprise or outcome confirmation, 

irreducible uncertainty has a positive effect on pupil diameter. 

 

 

Figure 1.5 Pupil diameter tracks responses to uncertainty and surprise. (A) Pupil 

diameter during both the post-cue and post-outcome periods was greater on trials with 

high irreducible uncertainty than on certain trials. This finding is in line with that of de 

Berker et al., but opposes the effect observed by Preuschoff et al. (B) Following outcome 

presentation, losses evoked increased pupillary dilation compared to wins on uncertain 

trials. (C) This effect was even larger on probable trials when the loss was relatively 

unexpected, i.e. when there was a larger prediction error that conveyed increased 

surprise. Data are mean ± SEM. Figure adapted from Satterthwaite et al., 2007.  
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Moreover, pupillary dilation following presentation of the second (outcome) card, was 

augmented on trials on which participants had made a prediction error that led them to 

experience a monetary loss (Figure 1.5B). This effect was increased when the opposite 

outcome had been more likely (Figure 1.5C), echoing my hypothesised impact of post-

decisional surprise on low irreducible uncertainty trials in Preuschoff’s task. Nonetheless, 

it should be noted that, assuming participants made correct predictions on approximately 

50% of trials in Preuschoff’s task, any pupillary effect of post-decisional surprise may 

actually have been averaged out across trials. 

1.5.2.2 Evidence that pupil diameter is modulated by volatility 

Despite some differences in the precise results of these three studies, the observation 

that irreducible uncertainty and surprise modulate pupil diameter gives weight to the 

notion that pupil dilation offers an indirect measure of an individual’s perceptual 

estimates. Given that noradrenergic neurotransmission has been linked both to changes 

in pupil diameter and to learning under environmental volatility, one might expect that 

pupil diameter is also modulated by individuals’ volatility estimates. In the tasks 

implemented by Preuschoff et al. and Satterthwaite et al., a single probabilistic context 

was used, meaning there was no inherent volatility. As such, it was not possible to 

investigate any impact of volatility on pupil diameter. In de Berker et al.’s task, the 

probabilistic relationship between cues and outcomes was unstable. By applying the 

HGF model to individuals’ behavioural data, it was possible to capture their trial-wise 

volatility estimates and to isolate them from their estimates of surprise and uncertainty. 

However, any impact of volatility on pupil diameter was not the focus of the study and 

was therefore unaddressed.   

Nevertheless, pupillometric measures taken under alternative task paradigms have 

suggested that changes in pupil diameter are linked to estimates of volatility. In an 

experiment by Nassar et al., participants undertook an isoluminant predictive-inference 

task in which they were required to make trial-wise predictions about the next number in 

a series (Nassar et al., 2012). Numbers were drawn from a Gaussian distribution. The 

mean of the Gaussian distribution was stable within a particular context but changed 

unpredictably over time, introducing volatility. The standard deviation of the distribution 

introduced noise, i.e., random fluctuations in the data generated by an otherwise stable 

context. Over each block of trials, the standard deviation of the distribution was set to 

either 5 or 10, introducing low or high noise, respectively. 

Transient increases in pupil diameter (which the authors describe as pupil changes) were 

augmented under high surprise (i.e., high sensory prediction error) but low noise. Given 
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that larger prediction errors would be expected following a change in context, it was 

suggested that pupillary dilation might reflect perceived contextual instabilities arising at 

change-points (Figure 1.6A). Accordingly, transient increases in pupil diameter were 

found to predict change-point probability (Figure 1.6B), and coincided with an increase 

in learning rate that would be expected to accompany a contextual change. Together, 

these findings indicate that pupil diameter is sensitive to sensory changes that arise due 

to environmental volatility. 

 

 

 

Figure 1.6 Relationship between post-outcome pupil change, prediction error, 

noise and change-point probability. (A) Transient pupil change increased as a 

function of prediction error magnitude, scaled as a function of noise (black = low noise; 

grey = high noise). Pupil change was computed as the difference in mean (z-scored) 

pupil diameter measured late (time = 1-2 seconds) versus early (time = 0-1 seconds) 

post-outcome. (B) Increased pupillary dilation predicted a higher change-point 

probability, as estimated by a Bayesian learning model. Data are mean ± SEM. Figure 

adapted from Nassar et al., 2012.  

In addition, average pupil diameter during the outcome viewing period reflected the 

reliability with which recent trial history indicated the current contextual relationship 

(Figure 1.7), a parameter that the authors frame as relative uncertainty. Relative 

uncertainty encompasses my working definitions of irreducible and estimation 

uncertainty, reflecting both the unreliability with which a single sample can be predicted 

from a distribution with a known mean and the unreliability of an individual’s current 

estimate of that mean. It increases rapidly after a change-point and then decreases as 

more data are observed from the current distribution and an individual learns the rules 
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of the current context. The finding that average pupil diameter mirrored relative 

uncertainty, peaking after a change-point and then decreasing over subsequent trials 

(Figure 1.4), echoes, at least in part, our previous finding of increased pupil diameter 

under increased irreducible uncertainty (de Berker et al., 2016). 

 

Figure 1.7 Relationship between average pupil diameter and relative uncertainty. 

(A) Average pupil diameter as a function of trials pre- and post-change points. Pupil 

average is the mean (z-scored) pupil diameter across a 2 second outcome viewing 

period. The asterisk indicates that average pupil diameter on the trial immediately 

following the change-point was significantly greater than on all other trials. (B) An 

increase in average pupil diameter predicted an increase in relative uncertainty, as 

estimated by a Bayesian learning model. There was no relationship between relative 

uncertainty and transient pupil change. Data are mean ± SEM. Figure adapted from 

Nassar et al., 2012.  

Importantly, adaptive behaviour in dynamic probabilistic environments requires that the 

relative impact of incoming sensory information is modulated in line with different sources 

of uncertainty. When irreducible and estimation uncertainty (i.e., relative uncertainty) 

arise from noise, the average perceptual estimate over all historical sensory data is most 

predictive of future observations. In contrast, when volatility uncertainty arises from a 

change in probabilistic context, only the most recent observations are relevant. Thus, 

historical sensory data should be discounted and beliefs should be updated rapidly, in 

accordance with incoming sensory data, to maximise prediction accuracy. Nassar et al.’s 

finding that pupil diameter can predict both change-point probability and relative 

uncertainty suggests that the pupil might reflect the dynamics of the hypothesised 

noradrenergic processes that underlie learning in uncertain and volatile environments. 

Recently, Browning et al. conduced an explicit investigation into the relationship between 

pupil diameter and volatility (Browning et al., 2015). In an aversive probabilistic learning 
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task, participants were required to select one of two visual cues, each of which was 

probabilistically linked to a subsequent electrical shock of a magnitude defined by that 

cue. The probability that each cue predicted an electrical shock changed over time, 

introducing volatility. During a stable block, the cue:outcome probabilities were fixed for 

90 trials. During a volatile block, the cue:outcome probabilities switched every 20 trials. 

Pupillary dilation following outcome presentation was modulated by both surprise (Figure 

1.8A) and volatility (Figure 1.8B), as estimated by a Bayesian learning model.  

 

Figure 1.8 The effects of surprise and volatility on post-outcome pupil diameter 

during aversive probabilistic learning. (A) Pupil dilation was modulated by surprise 1-

3 seconds post-outcome and (B) by volatility 2-5 seconds post-outcome. Data are mean 

beta weights ± SEM. Figure adapted from Browning et al., 2015.  

Moreover, individuals with high trait anxiety demonstrated a reduced ability to adjust their 

learning rate following switches from stable to volatile blocks. Specifically, it seems that 

these individuals could not increase their learning rate under volatility, instead showing 

equivalent learning in both stable and volatile blocks. Elevated trait anxiety was also 

associated with a decreased mean pupillary response to volatility. There was no 

modulatory effect of trait anxiety on the mean pupil response to surprise. Given that 

anxiety has been linked to dysfunctional noradrenergic neurotransmission (Gorman et 

al., 2001), these results are compatible with the theorised functional relationship between 

noradrenergic neurotransmission, pupillary dynamics and learning under environmental 

volatility.  

In sum, varied behavioural and pupillometric evidence suggests that pupil diameter is 

modulated by an individual’s perceptual estimates under environmental uncertainty, with 

pupil dilation having been linked to uncertainty, surprise and volatility. Given the 

proposed role for NA in learning under volatility uncertainty, and the electrophysiological, 

pharmacological and neuroimaging data that suggest that pupil diameter is sensitive to 
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NA neurotransmission, the notion that pupil dilation can be used as a proxy for dynamic 

noradrenergic uncertainty computations is appealing. However, the foregoing 

investigations of pupillary responses to perceptual estimates have been heterogeneous: 

they have used different behavioural paradigms that exposed participants to different 

forms of uncertainty, and probed the impact of different combinations of perceptual 

beliefs on pupil diameter. As such, it is difficult to isolate the contribution of particular 

perceptual estimates to pupil diameter with confidence. Therefore, in Chapter 6, I 

combine a probabilistic learning task, pupillometry and a hierarchical Bayesian learning 

model to assess the impact of irreducible uncertainty, surprise and volatility on pupil 

diameter. Further, by utilising two pharmacological manipulations of NA, I causally 

assess whether any pupillary responses to these perceptual beliefs are under dynamic 

noradrenergic modulation. 

1.6 Thesis overview 

To summarise, this thesis addresses the neuromodulatory underpinnings of learning and 

action in uncertain environments. In a series of experiments, I seek to identify the relative 

contributions of NA, ACh and DA to perceptual belief updating and motor response 

modulation within a unified computational framework of irreducible, estimation and 

volatility uncertainty. Specifically, I hypothesised that: 

1. Pharmacologically manipulating NA would modulate learning under volatility 

uncertainty arising from environmental instability; 

2. Pharmacologically manipulating ACh would modulate learning under estimation 

uncertainty arising within probabilistic environmental contexts; 

3. Pharmacologically manipulating DA would modulate the sensitivity of motor 

responses to perceptual estimates of sensory prediction error; 

4. Inter-individual variations in COMT genotype would alter DA neurotransmission 

and thus the sensitivity of motor responses to perceptual estimates, echoing the 

effect of pharmacologically manipulating DA; 

5. Pharmacologically manipulating NA would modulate dynamic computations of 

uncertainty arising from environmental volatility, as reflected by pupil diameter. 

In Chapter 2, I introduce the methodological techniques implemented to interrogate the 

relative contributions of NA, ACh and DA to perceptual belief updating and response 

modulation under different forms of uncertainty. 
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In Chapter 3, I focus on the HGF model I apply to behavioural data in the following 

experimental chapters. I introduce the HGF as a generic Bayesian framework of 

individual learning under irreducible, estimation and volatility uncertainty. Further, I 

describe how I extended the original instantiation of the HGF so that it was possible to 

capture both individual learning and response modulation under these three forms of 

uncertainty. 

The empirical work of this thesis is presented in Chapters 4 to 6: 

In Chapter 4, I implement pharmacological interventions in 128 healthy human 

participants to characterise the influences of noradrenergic, cholinergic and 

dopaminergic receptor antagonism on individual computations of uncertainty during a 

probabilistic serial RT task. Using the novel instantiation of the HGF, I disentangle the 

effects of the neuromodulators on individual perceptual belief updating from any effects 

on the sensitivity of motor responses to perceptual estimates. 

In Chapter 5, I adopt a behavioural genetics approach to probe deeper into the role of 

DA in learning and response modulation under uncertainty. Specifically, I use the same 

serial probabilistic RT task and the same HGF model to assess the impact of COMT 

genotype on learning and action in 116 healthy human participants. As such, I aim to 

determine whether natural inter-individual variations in cortical dopaminergic 

neurotransmission modulate individual perceptual belief updating and/or the sensitivity 

of motor responses to perceptual estimates. 

In Chapter 6, I focus on the role of NA in learning under uncertainty. Combining 

pupillometry, the HGF model and two pharmacological manipulations of NA in 90 healthy 

human participants, I characterise dynamic noradrenergic responses to uncertainty, 

surprise and volatility during an auditory probabilistic learning task. 

Finally, in Chapter 7, I discuss the implications of this work, drawing together insights 

from the different lines of research presented in this thesis. 
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2 Methods 

In this chapter, I introduce the methodological techniques implemented in this thesis to 

investigate the neuromodulatory bases of learning and action in uncertain environments. 

I describe how the methods were developed and summarise the experimental 

considerations that were made. 

2.1 Behavioural paradigms to investigate learning and action 

under uncertainty 

In order to interrogate the roles of NA, ACh and DA in computing irreducible uncertainty, 

estimation uncertainty and volatility uncertainty, and in modulating motor responses to 

uncertainty, it was necessary to design behavioural paradigms that exposed participants 

to each quantity. For Chapters 4 and 5, I developed a novel probabilistic serial reaction 

time task that required participants to track these three forms of uncertainty to engender 

fast, accurate responses to visual stimuli. For Chapter 6, I adapted a previously 

documented probabilistic learning task (den Ouden et al., 2010; Iglesias et al., 2013; de 

Berker et al., 2016) that required participants to make accurate predictions about trial 

outcomes given uncertain cues whose reliability changed over time.  

2.1.1 Probabilistic serial reaction time task  

2.1.1.1 Task design 

The probabilistic serial reaction time task (PSRTT) required participants to respond to 

the trial-wise presentation of one of four visual stimuli by pressing an appropriate button 

as quickly as possible. At any given time, the trial sequence was generated by one of 

eight transition matrices (TMs), which changed every 50 trials. In each case, there were 

16 combinations that determined the probabilistic relationship between the stimuli 

presented on the current trial t, and the previous trial, t-1. In Chapter 4, three types of 

TM were utilised: 1st-order sequences, Alternating sequences, and 0th-order sequences 

(Figure 2.1). 
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Figure 2.1 Probabilistic structure of the PSRTT. (A) The eight TMs that determined 

the probabilistic relationship between the visual stimulus presented on the current trial, 

t, and that presented on the previous trial, t-1. (B) Example trial sequences generated 

from the eight TMs. TMs 1 and 2 generated 1st-order stimulus sequences in which there 

was a high probability of the sequences 1-2-3-4 and 4-3-2-1 occurring respectively. TMs 

3 and 4 resulted in a high probability of alternating between two stimuli. TMs 5-8 were 

0th-order sequences that led to one stimulus occurring with a high probability, one with a 

mid probability and two with a low probability. The TM switched to a different TM every 

50 trials. Over the course of the experiment, each TM occurred multiple times in a 

pseudorandom order, with no consecutive repeats of any one TM. The overall probability 

of each stimulus was equal across 1200 trials.  
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In Chapter 5, the task design was simplified slightly in that the Alternating TMs were 

replaced with two additional 1st-order sequences (Figure 2.2). All other TMs were 

identical to those used in Chapter 4.  

 

Figure 2.2 Alternative probabilistic contexts. (A) In Chapter 5, two additional 1st-order 

TMs replaced the Alternating TMs used in Chapter 4. (B) Example trial sequences 

indicate that TM 3 resulted in a high probability of the stimulus sequence 1-2-4-3 

occurring, and TM 4 a high probability of the stimulus sequence 1-4-2-3. In Chapter 5, 

TMs 1, 2, and 5-8 were identical to those defined in Figure 2.1.  

In both versions of the task, the order of the TMs was pseudorandom, with no 

consecutive repeats. This pseudorandom order of TMs was used to generate one 

stimulus sequence that was used for all participants to ensure comparable learning 

processes and model parameter estimates between individuals. Importantly, the overall 

probability of each stimulus was equal across the complete set of trials. 

The task design created transient contexts that participants could infer from stimulus 

observations, allowing them to reduce their uncertainty about events before they 

occurred (Harrison et al., 2006). Nonetheless, the probabilistic nature of these contexts 

also produced unexpected stimulus outcomes, i.e., a sensory prediction error (PE). For 

fast and accurate responses, participants had to track irreducible uncertainty arising from 

the inherent randomness of the probabilistic transitions between consecutive stimuli; 

estimation uncertainty arising from their imperfect knowledge of the probabilistic 

relationships governing stimulus transition contingencies within contexts; and volatility 

uncertainty maintained by the unsignalled contextual instability. 
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By implementing a hierarchical Bayesian learning model, with a response model adapted 

for this experimental paradigm (Chapter 3), it was possible to map an individual’s beliefs 

about stimulus transitions, transition contingencies, and volatility, and the respective 

irreducible, estimation and volatility uncertainty about these beliefs, onto his/her 

observed reaction time (RT) responses. In Chapter 4, the behavioural paradigm and 

computational modelling were combined with pharmacological manipulations of NA, ACh 

and DA in order to characterise the roles of the three neuromodulators in perceptual 

belief updating under these three forms of uncertainty, and in modulating motor 

responses to this uncertainty. In Chapter 5, genetic analyses of the Val158Met 

polymorphism in the COMT gene were used to probe the impact of inter-individual 

differences in dopaminergic neurotransmission on learning and action under uncertainty, 

thereby extending the findings of the pharmacological study. 

2.1.1.2 Training 

Each stimulus was associated with one particular button. Each participant acquired the 

stimulus-response mappings during a training block in which they received visual error 

feedback after each trial. The training session comprised at least 100 trials and did not 

finish until participants had reached a minimum performance criterion of 85% accuracy 

on the last 20 trials. This was to ensure that any learning during the task was related to 

the probabilistic relationships governing stimulus transitions, rather than the stimulus-

response mappings themselves. 

2.1.1.3 Button boxes  

Participants made their speeded responses via a custom-made button box. Four button 

boxes were used so that four participants could be tested in a multiple participant setup 

(see section 2.1.3). Two of the button boxes transmitted data to the testing computer via 

the serial port, and two via the parallel port. Button boxes, rather than computer 

keyboards, were used for improved precision of the logged RTs. Both the serial and 

parallel port button boxes had a temporal precision of 3-13ms, compared to a keyboard’s 

33ms.  

2.1.2 Probabilistic learning task 

2.1.2.1 Task design 

The probabilistic learning task (PLT) was closely modelled on a paradigm used in three 

recent studies (den Ouden et al., 2010; Iglesias et al., 2013; de Berker et al., 2016). On 

each trial, participants were presented with one of two auditory cues: a low pitch (450Hz) 
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or high-pitch (1000Hz) tone. They were required to make a prediction, signalled with a 

speeded button press, as to which auditory outcome (the word “cow” or the word “pig”) 

was likely to follow. A probabilistic mapping between stimulus and outcome exposed 

participants to estimation uncertainty about the current cue:outcome relationship. This 

probabilistic mapping shifted over the course of the experiment, introducing volatility 

uncertainty and requiring participants to constantly track the cue:outcome relationship 

over time. The task’s probabilistic nature also meant that unlikely outcomes were 

possible on any trial, giving rise to irreducible uncertainty. To make accurate predictions, 

participants therefore had to track three forms of uncertainty throughout. 

 

Figure 2.3 The instability of the PLT over time. The probabilities governing the 

cue:outcome relationships shifted unpredictably over time, producing fluctuations in 

uncertainty. The probabilities governing each block varied from heavily biased (0.9/0.1 

and 0.1/0.9), through moderately biased (0.7/0.3 and 0.3/0.7) to unbiased (0.5/0.5).  

2.1.2.2 Auditory stimuli 

Since the PLT was combined with pupillometry, the visual stimuli used in previous 

iterations of this task (den Ouden et al., 2010; Iglesias et al., 2013; de Berker et al., 2016) 

were replaced with auditory stimuli so as to eliminate any effects of luminance changes 

on pupil diameter. Moreover, to avoid any inter-stimulus difference in auditory saliency 

effects on the pupil, participants underwent an adaptive, two-alternative forced choice 

procedure before undertaking the behavioural task so as to match the subjective 

loudness of the auditory cues and outcomes. The two auditory cues and two auditory 

outcomes had the same durations (300ms and 600ms respectively). The auditory 

outcomes were neutral words that belonged to a single (animal) category and were easy 

to distinguish. 
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2.1.2.3 Training 

Participants were trained on the PLT before starting it. During four training blocks of five 

trials each, participants familiarised themselves with making predictions by button press 

on presentation of auditory cues. Participants were told at the start of each training block 

which cue and which outcome would be presented on each of the following five trials. 

After the outcome was presented, they were provided with visual error feedback. Each 

combination of cue and outcome was presented across the four training blocks. The 

order of the four training blocks (i.e., the pairings between each cue and each outcome) 

was counterbalanced across participants. To familiarise themselves with the timings of 

the PLT, participants then completed 12 practice trials without error feedback. On each 

trial there was a 50% probability that either cue would be followed by either outcome. 

2.1.3 Multiple participant setup 

For efficiency, I implemented multiple participant testing (Figure 2.4A). For the PSRTT, 

four participants were tested simultaneously. To ensure that they were not distracted 

while completing experimental tasks, participants wore ear defenders and sat in 

individual booths. For the PLT, which was combined with pupillometry, experimental 

sessions were staggered such that a second participant arrived once the first participant 

had received their drug or placebo and had entered the 1.5 hour waiting period that 

preceded commencement of the main behavioural task (see section 2.3.4 for details). 

To ensure that all participants received identical task instructions, they were provided in 

written form. 

 

Figure 2.4 Behavioural setup used during the PSRTT. (A) A multiple participant setup 

was employed for simultaneous testing of four participants. (B) Each participant sat 

fixating a central white cross presented on a black computer screen positioned 60cm 

away. They were instructed to place their left and right index and middle fingers on the 
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four buttons of a custom-made button box, and to maintain this position throughout the 

task. Following the trial-wise presentation of one of four visual stimuli, participants were 

required to make a speeded-button press response.  

2.2 Computational modelling of learning and action 

Computational modelling makes it possible to estimate the inferences made by 

participants during a behavioural task. Hierarchical Bayesian models have proven 

powerful for explaining the adaptation of behaviour to probabilistic contexts in dynamic 

environments (Behrens et al., 2007; den Ouden et al., 2010; Nassar et al., 2010; Wilson 

et al., 2013). In particular, the Hierarchical Gaussian Filter (HGF) model (Mathys et al., 

2011, 2014) has been successfully applied in several recent studies of probabilistic 

learning under volatility (Iglesias et al., 2013; Diaconescu et al., 2014, 2017; Hauser et 

al., 2014; Vossel et al., 2014a, 2014b, 2015; de Berker et al., 2016). 

The HGF models an individual’s learning across three levels: it tracks beliefs about 

environmental events (e.g. the presentation of a stimulus) at level 1, the probabilistic 

relationships linking different environmental events at level 2, and the volatility of these 

relationships at level 3. As such, it is possible to access the respective irreducible, 

estimation and volatility uncertainty about these beliefs, and to infer an individual’s beliefs 

about the causes of his/her sensory inputs. 

The HGF is hierarchical in that learning not only occurs simultaneously at multiple levels, 

but that belief updating at one level is constrained by beliefs at the level above. This 

provides a generic framework for implementing learning rates, which are crucial for 

learning in volatile environments (Behrens et al., 2007; den Ouden et al., 2010). 

Importantly, the HGF does not assume fixed “ideal” learning across individuals but rather 

contains participant-specific parameters that couple the hierarchical levels and allow for 

individual expression of (approximate) Bayes-optimal learning. 

The PLT used in Chapter 6 was compatible with a pre-existing instantiation of the HGF 

(Iglesias et al., 2013; de Berker et al., 2016). The PSRTT used in Chapters 4 and 5 

required the development of a novel instantiation of the HGF. This new version has two 

components: a three-level perceptual model of an agent’s mapping from environmental 

causes to sensory inputs, and a response model that maps those inferred environmental 

causes to observed RT responses. Full details are presented in Chapter 3. 
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2.3 Pharmacological manipulations of neuromodulatory function 

In Chapters 4 and 6, I employed pharmacological interventions that manipulate the 

noradrenergic, cholinergic and dopaminergic neuromodulatory systems in order to 

causally asses the roles of NA, ACh and DA in learning and response modulation under 

uncertainty. 

In Chapter 4, I utilised three antagonists for the different neuromodulators, and 

compared learning and action under each manipulation to placebo. Prazosin acts as a 

(nor)adrenergic antagonist. Specifically, the drug is an inverse agonist that binds to α1-

adrenoceptor but induces a pharmacological effect opposite to that of the receptor’s 

endogenous ligand, (nor)adrenaline (Zhu et al., 2000). Biperiden acts as an antagonist 

at cholinergic muscarinic M1-receptors. Since the drug has affinity, but no efficacy, for 

M1-receptors, it competes with ACh for receptor binding sites and dampens the effect of 

the natural cholinergic ligand. Similarly, when administered at a sufficient dose, 

haloperidol acts as a dopaminergic antagonist, competing with DA for D1- and D2-

receptor binding sites and dampening the pharmacological effect of DA. 

In Chapter 6, I probed dynamic noradrenergic responses to uncertainty by using two 

pharmacological agents that have bidirectional effects on the NA system. As in Chapter 

4, I used prazosin to antagonise NA. In addition, the selective NA reuptake inhibitor, 

reboxetine, was used to upregulate the NA system by blocking the action of the 

noradrenaline transporter (NET), which is responsible for the reuptake of extracellular 

NA. 

2.3.1 Between-subjects design 

For each pharmacological experiment (Chapters 4 and 6), I implemented a between-

subjects design. As such, each participant attended one experimental session during 

which they received either an active drug or a placebo. The principal reason for this was 

that my behavioural paradigms involved learning. Since each participant undertook the 

behavioural task only once, it was possible to eliminate any learning effects that may 

otherwise have been carried over from previous sessions. Moreover, a between-subjects 

design made it possible to use a single, pseudorandomly generated trial sequence for 

all participants undertaking the PSRTT (Chapters 4 and 5), ensuring comparable 

learning processes and model parameter estimates. A further benefit of a between-

subjects design was that participants were not required to attend multiple experimental 

sessions, minimising any problems caused by drop-outs. 
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2.3.2 Safety 

For safety purposes, it was necessary to screen participants to rule out intolerances or 

contraindications for the active drugs. To reduce the risk of side effects, I aimed to select 

relatively low drug doses that were nevertheless in line with previous studies showing 

clear behavioural and neurophysiological effects (Dostert et al., 1997; Ziemann et al., 

1997; Meintzschel and Ziemann, 2006; de Martino et al., 2007; Jepma et al., 2010; 

Korchounov and Ziemann, 2011; Bestmann et al., 2014). In addition, the following 

exclusion criteria applied: history of neurological or psychiatric disease, intake of 

medication (other than contraceptives), smoking, regular drug use, baseline blood 

pressure below 100/60, and current participation in other pharmacological studies. As an 

additional precaution, heart rate and blood pressure measurements were taken at three 

timepoints during the experimental session (see 2.3.3). A clinician was also available 

during each testing session in case of any medical queries or concerns.  

2.3.3 Physiological, psychometric and subjective control measures 

A between-subjects design meant that it was necessary to match the different drug-

groups for physiological, psychometric and subjective variables that could influence drug 

responses and behaviour during the experimental tasks. At recruitment, the study 

clinician pseudorandomly assigned participants to receive one of the active drugs or a 

placebo in order to ensure a balanced distribution of gender, age and body weight. 

Importantly, a double-blind design was achieved since both the experimenter (L.M.) and 

the participants were blind to the drug conditions. Since nicotine acts at cholinergic 

(nicotinic) receptors, smokers were excluded. 

Since participants’ working memory, impulsivity, risk-taking and distractibility could 

influence behaviour during the tasks, participants undertook computerised versions of 

the Digit Span test, Barratt Impulsiveness Scale (BIS-11) (Patton et al., 1995), Domain-

Specific Risk-Taking (DOSPERT) Scale (Blais and Weber, 2006) and Cognitive Failures 

Questionnaire (CFQ) (Broadbent et al., 1982) at baseline (i.e., before taking a drug). In 

both pharmacology experiments (Chapters 4 and 6), scores on these tests were 

established to be equivalent across drug-groups. 

2.3.3.1 Digit span 

Digit span is a common measure of working memory. Participants were instructed to 

memorise sets of digits that were presented to them via stereo headphones, and then to 

repeat those digits, in the order in which they had been read, by typing them via a 

computer keyboard. The first trial started with a set of three digits. Every two trials, the 
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set-length increased by one digit. For each set-length, participants were required to 

repeat at least one of the two sets correctly to progress to the next level. The task finished 

either when a participant incorrectly repeated two sets of the same length, or when they 

correctly repeated the maximum set-length of nine digits. After completing the forward 

digit span, participants undertook the backwards digit span. Here the rules were the 

same, except that participants had to repeat the digits that were presented to them in the 

reverse order. 

2.3.3.2 Barratt impulsiveness scale (BIS-11) 

The BIS-11 (Patton et al., 1995) consists of 30 items describing common impulsive, or 

non-impulsive (for reverse scored items), behaviours and preferences. It interrogates 

attentional, motor and non-planning impulsiveness. Participants used a 4-point scale to 

self-report whether they engaged in particular behaviours, or had particular preferences, 

“rarely/never”, “occasionally”, “often”, or “almost always/never”. The higher the summed 

score for all items, the higher the level of impulsiveness. 

2.3.3.3 Domain-specific risk-taking scale (DOSPERT) 

The DOSPERT is a validated scale (Blais and Weber, 2006) that assess an individual’s 

tendency for risk-taking behaviours, and their perceived-risk attitudes (defined as the 

willingness to engage in a risky activity as a function of its perceived riskiness) in five 

domains: ethical, financial, health/safety, social, and recreational decisions. It consists 

of 30 items. Participants self-reported the likelihood that they would engage in a 

described activity or behaviour, or how risky they considered a described behaviour to 

be, using a 7-point scale ranging from “extremely unlikely” to “extremely likely”, and from 

“not at all risky” to “extremely risky”, respectively. A higher total score indicates higher 

risk-taking behaviour. 

2.3.3.4 Cognitive failures questionnaire (CFQ) 

The CFQ (Broadbent et al., 1982) measures self-reported failures in perception, memory 

and motor function, and thus can be used to approximate an individual’s distractibility. It 

consists of 25 questions, such as “Do you read something and find you haven’t been 

thinking about it and must read it again?” Participants responded using a 5-point scale: 

“very often”, “quite often”, “occasionally”, “very rarely” and “never”. A higher score 

indicates a higher failure rate. 
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2.3.3.5 Controlling for subjective measures 

To assess any subjective drug effects, participants used sixteen visual analogue scales 

(VAS) to self-report their mood at baseline, before starting the main behavioural task 

(i.e., when the active drugs were at their most active) and after completing the 

behavioural task. For each VAS, two extreme moods, such as alert/drowsy and 

tense/relaxed were presented at either end of a 100-point scale and participants had to 

mark their current subjective feeling. The 16 measures were used to calculate scores for 

alertness, calmness and contentedness (Bond and Lader, 1974). Since there was a 

significant interaction between alertness and drug in both pharmacology studies, an 

alertness covariate was included in the analyses (see Chapters 4 and 6 for details). 

For completeness, heart rate and blood pressure measurements were taken at the same 

three timepoints as the VAS scores so as to monitor any physiological drug effects. 

2.3.4 Drug administration times 

Drug administration times were selected such that participants undertook the main 

experimental task when the active drug they had been administered was at its most 

active. Since average time-to-peak plasma concentrations varied across drugs, two 

different drug administration times were used. In the first pharmacology study (Chapter 

4), haloperidol was administered two hours before the main experimental session, while 

prazosin and biperiden were administered 1.5 hours in advance (Ziemann et al., 1997; 

Meintzschel and Ziemann, 2006; Korchounov and Ziemann, 2011). A random 50% of 

participants from the Placebo group were administered a placebo tablet at the first 

timepoint, and the other 50% at the second timepoint. 

In the second pharmacology experiment (Chapter 6), a minor modification was made to 

this approach so that all participants underwent an identical administration schedule. 

This time all participants were administered two tablets thirty minutes apart. Reboxetine 

was administered two hours before the main experimental task and prazosin 1.5 hours 

in advance (Dostert et al., 1997; de Martino et al., 2007; Jepma et al., 2010). At the 

timepoint at which participants in the Reboxetine and Prazosin groups did not receive an 

active drug, they were administered a placebo tablet. Participants in the Placebo group 

were administered a placebo tablet at both timepoints. This method ensured that, in 

multiple participant testing sessions, individuals would not infer any differences in how 

the different participants were being treated, and ensured that the experimenter (L.M.) 

remained blind to the drug conditions.   
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In both experiments, the study clinician administered the drug or placebo while the 

experimenter was away from the testing room. For comparable metabolism rates, 

participants were asked not to eat for at least one hour before the first drug administration 

time. 

2.4 Behavioural genetics 

An alternative approach to studying neuromodulatory systems is to interrogate genetic 

polymorphisms that introduce natural inter-individual variations in neuromodulatory 

function. A polymorphism of particular interest in the behavioural genetics literature is 

the Val158Met polymorphism in the COMT gene, which modulates activity of the COMT 

enzyme and thus DA neurotransmission. In Chapter 5, I combined the same PSRTT 

and novel instantiation of the HGF applied in Chapter 4 to assess individual perceptual 

belief updating and response modulation as a function of COMT genotype. As such, it 

was possible to probe whether inter-individual variations in DA neurotransmission were 

associated with altered learning and/or action under uncertainty. 

2.5 Pupillometry 

As discussed in the Introduction, the neuroscience literature has previously linked 

subjective uncertainty computations to changes in pupil diameter (Preuschoff et al., 

2011; Nassar et al., 2012; de Gee et al., 2014; de Berker et al., 2016), and pupil dilation 

to noradrenergic neuronal activity in the locus coeruleus (Aston-Jones and Cohen, 

2005a; Varazzani et al., 2015; Joshi et al., 2016). In Chapter 6, I combined 

pharmacological manipulations of NA with a behavioural paradigm and pupillometry to 

assess the neuromodulator’s causal impact on learning in dynamic environments and on 

pupillary responses to uncertainty. 

While participants undertook the PLT, the diameter of the left pupil was measured using 

an infrared ASL Eye-Trac 6 System (Applied Science Laboratories, USA), sampling at 

120Hz (Figure 2.5). In order to minimise movement, participants sat with their head 

supported in a forehead- and chin-rest. The viewing distance was fixed at 60cm. 

Participants were instructed to maintain fixation on a horizontally-centred fixation cross 

presented on an isoluminant, grey screen. The vertical position of the fixation cross was 

such that the participant’s line of vision was straight ahead. Auditory stimuli were 

presented via stereo headphones. 
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The eyetracker system calculates pupillary gaze by measuring the distance between the 

location of a participant’s pupil and corneal reflection (CR). For each participant, the 

eyetracker was calibrated to account for inter-participant differences in the relationship 

between the pupil and CR. The central calibration point was positioned at the location of 

the centre-point of the fixation cross used during the behavioural task. Calibration was 

repeated after each rest period to adjust for any subtle differences in head position. In 

order to align the pupil diameter time-course with experimental events occurring in the 

behavioural task (i.e., the precise timing of cue, response and outcome onsets) triggers 

were sent via the testing computer’s parallel port to the eyetracker system. 

 

Figure 2.5 Pupillometry setup used during the PLT. Participants sat in a darkened 

room with their head supported by a forehead- and chin-rest. During the experimental 

task, participants were instructed to maintain fixation on a black cross horizontally 

centred on a grey isoluminant display positioned 60cm ahead. The fixation cross was 

presented parallel with the participant’s line of vision. An infrared eyetracker was used 

to measure the diameter of the left pupil. Auditory stimuli were presented via stereo 

headphones. Participants were instructed to position their left and right index fingers on 

two marked keys on a computer keyboard, and to maintain this position throughout the 

experiment. On the presentation of each trial-wise auditory cue, participants were 

required to make a prediction via a speeded button-press as to which auditory outcome 

they thought would follow.  
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3 Modelling individual learning and action under 

uncertainty 

This chapter is based on work presented in Marshall L, Mathys C, Ruge D, de Berker 

AO, Dayan P, Stephan KE & Bestmann S. (2016) Pharmacological fingerprints of 

contextual uncertainty. PLOS Biology. 14(11): e1002575. 

3.1 Abstract 

A mechanistic understanding of perceptual belief updating and response modulation 

requires specification of the computational principles by which learning and action occur, 

and identification of their neurophysiological implementation in the brain. As such, the 

development of computational models is key to elucidating the neurophysiological bases 

of learning and action in uncertain environments. In 2011, Mathys et al. introduced the 

Hierarchical Gaussian Filter (HGF) model as a generic hierarchical Bayesian framework 

for individual learning under various forms of uncertainty inherent in the environment. In 

this chapter, I first provide a summary of the computational principles that inspired the 

HGF’s construction. Second, I describe how the original instantiation of the HGF is 

designed to capture individual learning under uncertainty. Third, I focus on a novel 

extension of the HGF model designed to link perceptual beliefs to action execution. 

Specifically, this new instantiation of the HGF characterises individual learning and 

response modulation during the serial probabilistic reaction time task (PSRTT) applied 

in Chapters 4 and 5. 
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3.2 Introduction   

Computational models offer a sophisticated means by which to probe the brain’s 

mechanisms of learning and adaptive behaviour in complex, uncertain environments. 

Such models commonly conceptualise the environment as a set of unobservable, hidden 

states whose temporal dynamics generate our observable, sensory input. Learning 

about the hidden states that define our present environmental context, and adapting to 

contextual changes, requires us to update our beliefs about the world by integrating our 

top-down, experience-driven expectations and our current bottom-up sensory evidence 

(Yu and Dayan, 2003). In so doing, we can exploit our past experience of the world while 

also taking into account the current state of the environment, thus improving our ability 

to predict future events and to prepare adaptive motor responses. One strategy for 

investigating human learning and action under uncertainty is to formulate the 

computational principles that underlie perceptual belief updating and response 

modulation, and identify the neurophysiological implementation of those computations in 

the brain (Daunizeau et al., 2010a). Indeed, combining formal models of learning and 

behaviour with the measurement of neural signals has brought significant advances to 

behavioural neuroscience in recent years (Daw et al., 2011; Takahashi et al., 2011; 

Iglesias et al., 2013). 

3.2.1 Capturing the computational principles that underlie learning and action 

Two classes of models that have been applied in an effort to infer the computational 

underpinnings of learning and action within the brain take inspiration from reinforcement 

learning and Bayesian learning principles. 

3.2.1.1 Reinforcement learning models 

Reinforcement learning (RL) models seek to capture how individuals learn to optimise 

their behaviour in a given environment by predicting the consequences of their actions 

(Sutton and Barto, 1998; Dayan and Niv, 2008). Inspired by classical conditioning 

(Peterson, 2004), RL rests upon the notion that humans and other animals learn when 

an event deviates from its expectations, i.e., it is surprising. As such, under RL models, 

learning (i.e., belief updating) is driven by prediction errors (PEs), which are formalised 

as the difference between predicted and actual outcomes. By computing PEs, individuals 

are proposed to use their experience of the environment to construct an internal model 

of the associations between stimuli, actions and rewards. Individuals select appropriate 

actions by searching this internal model space, thereby facilitating the execution of 

adaptive motor responses to environmental events. Within this framework, an individual 
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can learn to predict environmental outcomes based on sensory cues, and engender 

actions that will maximise their chance of gaining reward and minimise their chance of 

punishment. 

A particularly influential RL model has been that constructed by Rescorla and Wagner 

(Rescorla and Wagner, 1972). It prescribes that beliefs are updated in relation to an 

individual’s pre-existing belief and their current PE, weighted by a learning rate: 

𝜇𝑛 =  𝜇𝑛−1 + 𝛼(𝑥𝑛 −  𝜇𝑛−1), 

Equation 3.1 

where 𝜇𝑛 is the current belief, 𝜇𝑛−1  is the belief before making a new observation, 𝛼 is 

the learning rate, and (𝑥𝑛 −  𝜇𝑛−1) is the prediction error, i.e. the difference between the 

new observation, 𝑥𝑛 and the existing belief, 𝜇𝑛−1.  

The key advantages of the Rescorla-Wagner (RW) model are its conceptual simplicity 

and computational efficiency; it provides a capable account of how individuals build a 

primitive model of the world, associating environmental stimuli with their predictors. 

Moreover, because the learning rate determines the degree to which each PE influences 

existing beliefs, it modulates the relative influence of recent compared to past events on 

learning. 

However, a fixed learning rate means that individuals will only take into account a fixed 

number of previous observations when making new beliefs. Since the world is dynamic, 

and given that changes within different environmental contexts occur at different rates, 

individuals require a means by which to account for changes in environmental 

uncertainty. For instance, noisy but otherwise stable environments require low learning 

rates, which result in stable beliefs, whereas volatile environments necessitate higher 

learning rates and more flexible beliefs (Behrens et al., 2007; Nassar et al., 2010). There 

have been various efforts to extend the RW model by developing an adaptive learning 

rate that allows for flexible belief updating under varying degrees of environmental 

uncertainty (Kalman, 1960; Sutton, 1992; Nassar et al., 2010; Mathys et al., 2011; 

Payzan-LeNestour and Bossaerts, 2011; Wilson et al., 2013). Importantly, by allowing 

learning rates to vary across individuals and environmental contexts, a flexible RL 

framework can capture action selection that is adaptive to the changes inherent in 

dynamic environments. 

An alternative instantiation of RL is temporal difference (TD) learning. TD models extend 

the concept that PEs drive learning by incorporating an additional feature of learning 

commonly included in engineering algorithms, that of prediction (Sutton and Barto, 
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1981). Specifically, TD models utilise changes, or differences, in predictions over time to 

drive learning. This means that, whereas RW models describe the association between 

a predictor and an immediate outcome, TD learning assumes that individuals seek to 

find the earliest valid predictor of a variable of interest and continually adjust predictions 

in light of new evidence. A particular focus of TD learning has been capturing how 

individuals make optimal predictions so that they can select actions that will maximise 

their cumulative future reward (Sutton and Barto, 1998). 

Importantly, there is evidence to suggest that RL may be implemented neuronally. For 

instance, the signalling of PEs required for RL (Sutton, 1988) has been linked to the 

phasic activity of DA neurons (Montague et al., 1996). In particular, RL approaches have 

been central to postulates about electrophysiological and functional neuroimaging 

measures of brain activity during reward learning, with DA having been proposed to 

encode reward PE (Schultz et al., 1997; Montague et al., 2004; O’Doherty et al., 2004; 

Daw and Doya, 2006; D’Ardenne et al., 2008; Hart et al., 2014; Rutledge et al., 2014, 

2015). Alternative lines of research have linked DA to the signalling of sensory PE in the 

absence of reward, and to consequent influences on action selection (Friston et al., 2012; 

Galea et al., 2012; Bestmann et al., 2014). In both cases, RL has been influential in 

guiding hypotheses about behavioural and neural dynamics under different experimental 

learning paradigms.  

In sum, the major benefit of RL methods is their capacity to reduce a daunting problem 

to a series of simple update equations that are both intuitively appealing and 

computationally feasible. This approach, and its influence on fields ranging from 

electrophysiology through to cognitive neuroscience and artificial intelligence, has 

guided our understanding of learning. RL models also offer a useful computational 

framework for investigations of anticipatory action selection and adaptive behaviour 

(Killcross and Coutureau, 2003; Matsumoto and Tanaka, 2004; Balleine, 2005; Dolan, 

2007; Rushworth and Behrens, 2008), as well as the neuromodulatory contributions to 

these processes (Yu and Dayan, 2005; Pessiglione et al., 2006; Doya, 2008). Moreover, 

their non-normative, descriptive nature allows for modelling aberrant modes of learning 

that occur in disease states such as schizophrenia or depression (Smith et al., 2006; 

Frank, 2008; Murray et al., 2008; Dayan and Huys, 2009). 

Nonetheless, RL has its limitations. First, from a theoretical perspective, it is a heuristic 

approach that does not follow from the principles of probability theory that would be 

expected to support optimal learning. Second, at a practical level, RL often performs 

badly in real-world situations where environmental states and the outcomes of actions 



3. Modelling individual learning and action under uncertainty 

73 
 

are not known to the individual but must be inferred or learned. Third, RL models do not 

permit an explicit representation of uncertainty, which appears a shortcoming. Indeed, a 

strong line of argument from probability theory suggests that learning would be improved 

if the brain were to represent beliefs as probability distributions, whose variance 

inherently capture uncertainty, rather than single quantities (O’Reilly et al., 2012).  

To illustrate the advantage of capturing uncertainty for optimal belief updating, we can 

consider a coin toss. In this scenario, we know that the probability of observing heads on 

each toss is 0.5. If we bet that the outcome of an upcoming coin flip will be heads, at 

outcome we experience a (reward) PE, which is positive (+0.5) if the outcome is heads 

or negative (-0.5) if it is tails. Thus, even in situations where we have a pre-existing model 

of the environment and there is nothing left to learn, we experience PEs.  

If we start with the assumption that the coin is unbiased, this implies that after 100 coin 

flips, we have learned nothing. We are now very sure that the coin is unbiased but, 

because RL does not explicitly capture uncertainty, it does not offer a means to represent 

this confidence. This seems wasteful from a neurophysiological perspective; supposing 

DA signals the PE that follows each coin toss, the neuromodulator will be promoting 

neuronal plasticity in a situation where this is nothing to left to learn (Yu and Dayan, 

2005). Although suggestions have been made as to how RL models might be modified 

to account for this (Preuschoff and Bossaerts, 2007), it is generally thought that this is a 

limitation of this class of models (Daw and O’Doherty, 2013). To incorporate an explicit 

representation of uncertainty, and therefore improve models of learning and behaviour, 

researchers have turned to Bayesian statistics (Gershman and Niv, 2010). 

3.2.1.2 Bayesian learning 

The optimal method for learning from new information was first described by Laplace, 

who set out the laws of inductive inference (Laplace, 1774, 1812). Inductive reasoning 

is inherently uncertain; it concerns the degree to which a conclusion is credible according 

to a particular set of evidence. The mechanism by which conditional probabilities are 

updated in inductive inference was later formally described by Bayes’ theorem: 

𝑃(𝐴|𝐵) =  
𝑃(𝐵|𝐴)𝑃(𝐴)

𝑃(𝐵)
 

𝑃(𝐴|𝐵)  ∝ 𝑃(𝐵|𝐴)𝑃(𝐴) 

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 ∝ 𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 𝑥 𝑝𝑟𝑖𝑜𝑟 

Equation 3.2 
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where A and B are events and P(B)≠0.  

As such, inductive inference has become more commonly known as Bayesian inference, 

or Bayesian learning. Bayesian inference prescribes that the statistically optimal strategy 

to learning in uncertain environments is to integrate the multiple sources of uncertain 

information with a weight inversely proportional to their uncertainty. It seems likely that 

this approach would require an individual’s beliefs to be represented as probability 

distributions (O’Reilly et al., 2012; Pouget et al., 2013). Assuming that these probability 

distributions are Gaussian, the mean of the distribution would capture an individual’s best 

guess at the value of a particular variable, i.e., its most probable value. The width, or 

variance, of the distribution would correspond to the uncertainty associated with the 

representation of that variable. The combination of multiple sources of information 

produces a probability density function with a variance smaller than that of either of the 

inputs (Figure 3.1) according to the following equation: 

𝜎𝑡𝑜𝑡𝑎𝑙 =  
𝜎1𝜎2

𝜎1 + 𝜎2
, 

Equation 3.3 

where 𝜎𝑥 is the variance associated with the probability distribution 𝑥. 

Importantly, there is convincing evidence that individuals combine sources of information 

in this manner. Indeed, in contrast to the aforementioned popularity of RL approaches in 

studies of reward learning, Bayesian strategies have been more widely applied in the 

field of sensorimotor control. For instance, researchers have demonstrated that 

Bayesian integration of this nature is a good predictor of individuals’ performance when 

estimating the height of a bar from noisy visual and haptic information (Ernst and Banks, 

2002), when estimating the position of a noise source from visual and auditory cues 

(Battaglia et al., 2003), and in guiding movements (Körding and Wolpert, 2004). 
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Figure 3.1 Integrating multiple sources of evidence. Under Bayesian inference, 

combining multiple sources of uncertain information produces a probability density 

function with a variance smaller than that of its inputs. For instance, in an experiment 

conducted by Ernst and Banks, individuals were required to estimate the height of a bar 

according to noisy visual and haptic information. Integrating these two sources of 

sensory evidence according to their uncertainty, here represented as the width of a 

probability density function (𝜎), produces a combined estimate with a lower variance than 

either of the two inputs (𝜎𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 < 𝜎𝑣𝑖𝑠𝑢𝑎𝑙 <  𝜎ℎ𝑎𝑝𝑡𝑖𝑐). A model implementing Bayesian 

integration of this nature was shown to be a good predictor of individuals’ performance 

of the task.  Figure adapted from Ernst and Banks, 2002.  

Bayesian inference does not only offer a means for combining multiple sources of 

uncertain sensory input. As set out in Equation 3.2, Bayes’ theorem also provides a way 

to optimally incorporate current sensory evidence with prior beliefs. To borrow a popular 

example from Körding and Wolpert, consider a tennis player preparing to return an 

approaching ball (Figure 3.2). Anticipatory preparation of an adaptive motor response to 

the ball hitting the ground requires an optimal prediction as to where the ball will bounce. 

To formulate this prediction, the player must consider both his bottom-up sensory input 

and his top-down experience-driven beliefs (Körding and Wolpert, 2004). Under ideal 

Bayesian learning, his posterior belief about where the ball is likely to bounce is 

determined by optimally integrating the likelihood of his sensory evidence (i.e., his 

current visual and auditory input) and his prior knowledge of the typical distribution of 

tennis shots:  

𝑃(𝑏𝑎𝑙𝑙 𝑎𝑡 𝑥|𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝑏𝑎𝑙𝑙 𝑎𝑡 𝑥)  ∝ 𝑃(𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑖𝑜𝑛 𝑜𝑓 𝑏𝑎𝑙𝑙 𝑎𝑡 𝑥|𝑏𝑎𝑙𝑙 𝑎𝑡 𝑥)𝑃(𝑏𝑎𝑙𝑙 𝑎𝑡 𝑥) 

Equation 3.4 
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The posterior, prior and likelihood are represented as probability distributions, meaning 

they are inherently associated with an uncertainty. The prior and likelihood are integrated 

according to their relative uncertainties.  

 

 

 

Figure 3.2 Integrating priors and likelihoods over time. A Bayesian tennis player 

preparing to return an approaching ball can optimally predict the likely landing location 

of his opponent’s shot by combining the ball’s observed trajectory with the prior 

distribution of shot placement. (A) A schematic of a Kalman filter. At any point in time, 

the player holds a belief about the state of the world. This belief is updated with a model 

of the dynamics of the world to calculate the belief at the next point in time. The belief 

(prior; green patch) is then combined with new sensory information (likelihood; red patch) 

using Bayes’ rule to calculate the belief at the next point in time. (B) To predict the 

position at which the ball will hit the ground, the player continuously updates his belief in 

line with incoming sensory information. The posterior at the previous time point is the 

prior for the current time point. Figure adapted from Körding, 2007.  

Since Bayesian learners integrate their prior knowledge with new information optimally, 

they would be expected to make better predictions and thus have an evolutionary 

advantage over non-Bayesian learners. It therefore seems reasonable to hypothesise 

that the human brain has evolved such that it implements ideal Bayesian learning, i.e., 

inference on uncertain quantities according to the rules of probability theory (Geisler and 

Diehl, 2002). At least from a theoretical perspective, this conceptual framework seems 

well suited to describing information processing in the brain (Knill and Pouget, 2004; 

Tenenbaum et al., 2006; Körding, 2007). Further, there is considerable evidence from 

studies on various domains of learning and perception that human behaviour is better 
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described by Bayesian models than by other theories (Ernst and Banks, 2002; Battaglia 

et al., 2003; Körding and Wolpert, 2004; Bresciani et al., 2006; Yuille and Kersten, 2006; 

Behrens et al., 2007; Xu and Tenenbaum, 2007; Orbán et al., 2008; den Ouden et al., 

2010), and that human behaviour is close to Bayes optimal in tasks requiring multimodal 

cue integration and motor adaptation (Yu, 2007; Yu et al., 2009). 

Owing to the environment’s volatility, the reliability of a prior belief may change over time. 

In dynamic environments, old beliefs should be rapidly down-weighted relative to new 

evidence. In stable environments, old information is still valuable. Representing beliefs 

as probability distributions offers Bayesian learners a means by which to learn and adapt 

to environmental volatility, with higher uncertainty in dynamic environments reflected by 

a broader distribution over possible perceptual estimates. In line with this, Behrens et al. 

demonstrated that humans indeed track environmental volatility, thereby allowing them 

to learn quickly in dynamic environments, rapidly overwriting old beliefs, but to be more 

reliant on older information when the environment is stable (Behrens et al., 2007). 

Learning rates were found to vary systematically with the volatility of an environment’s 

underlying statistical structure, precisely as would be expected in a Bayesian learner. 

Indeed, comparing the ability of different models to account for individuals’ behaviour in 

volatile environments revealed that an optimal Bayesian learner model outperformed an 

RL model, despite the latter being tuned to fit the data via free parameters. 

However, developing computationally efficient, ecologically valid Bayesian learning 

models has proven challenging for several reasons. First, in most complex, real-world 

environmental settings, modelling Bayesian learning involves computationally-

demanding, high-dimensional integrals, making online belief updating difficult. An 

important consideration, therefore, is whether any evolutionary advantage conferred by 

optimal learning in humans might actually be outweighed by these computational costs. 

Related, we do not currently have a precise framework with which to precisely describe 

how ideal Bayesian learning, with its requirement for complex integrals, would be 

implemented neuronally, although there are ongoing efforts to establish underlying 

mechanisms, such as spiking neural networks (Deneve, 2007) and probabilistic 

population coding models (Sanger, 1996; Pouget et al., 2003; Ma et al., 2006; Yang and 

Shadlen, 2007; Beck et al., 2008; Ma and Jazayeri, 2014).  

In addition, despite evidence that humans and other animals demonstrate considerable 

inter-individual variability in learning and action, even under carefully controlled 

experimental conditions (Gluck et al., 2002; Daunizeau et al., 2010b), many Bayesian 

models are agnostic to inter-individual variability. There have been some attempts to 
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construct Bayesian models capable of capturing inter-individual variability (Steyvers et 

al., 2009; Nassar et al., 2010). Nonetheless, the failure of traditional Bayesian learning 

theory to account for these individual differences remains a key problem for 

understanding (mal)adaptive learning and action in humans. 

 Advantages Disadvantages 

Reinforcement 
learning 
models 

 Simple update equations are 
computationally feasible 

 Intuitive framework for 
investigations of learning 
and adaptive behaviour 

 Non-normative nature allows 
for modelling of aberrant 
modes of learning 

 Heuristic approach 

 Not grounded in probability 
theory 

 Often perform badly in real-
world situations where 
environmental states and 
outcomes are not known in 
advance 

 Do not capture uncertainty 
 

Bayesian 
learning 
models 

 Capture the optimal method 
for integrating multiple 
sources of new information 
and prior knowledge 

 Grounded in probability 
theory 

 Capture uncertainty of 
beliefs 

 Computationally 
demanding, making online 
learning difficult 

 Currently unclear how they 
would be implemented 
neuronally 

 Many models are agnostic 
to inter-individual variability 

 

Table 3.1 The advantages and disadvantages of different learning models.  

3.3 The Hierarchical Gaussian Filter 

In 2011, Mathys et al. developed the Hierarchical Gaussian Filter (HGF) model as a 

generic hierarchical Bayesian framework for individual learning under the various forms 

of uncertainty inherent in dynamic environments (Mathys et al., 2011, 2014). The HGF 

takes inspiration from RL schemes and aims to overcome the limitations of Bayesian 

approaches, namely their computational complexity and failure to capture differences in 

learning across individuals. It uses variational Bayes under mean-field approximation to 

derive trial-wise update equations that are analytical and efficient, allowing for real-time 

learning. A novel approximation to the conditional probabilities over unknown quantities 

replaces the conventional Laplace approximation used in Bayesian schemes. The form 

of the update equations is similar to those used in RW learning, meaning the HGF 

provides a Bayesian analogue to, and has a natural interpretation in terms of, RL. 

The HGF is an extension of a model proposed by Daunizeau et al., which quantifies the 

likelihood of an individual’s observed behaviour based on Bayes-optimal inferences in 

probabilistic environments (Daunizeau et al., 2010b). It also draws inspiration from the 
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aforementioned work by Behrens et al. so as to capture alterations in learning under 

environmental volatility (Behrens et al., 2007). Briefly, the original instantiation of the 

HGF comprises a perceptual model that tracks an individual’s learning of the underlying 

structure of the environment. The perceptual model has two components: a generative 

model and a recognition model. The generative model comprises a set of probabilistic 

assumptions that describe how sensory signals in the environment are generated. The 

recognition model captures the unobservable inference process made by an individual 

based on these sensory signals. It does this by performing (approximate) statistical 

inference on the observations of the actual sensory data and thus determining the 

probability distribution over variables in the generative model appropriate to those 

particular observations. 

3.3.1 Perceptual model 

The perceptual model makes it possible to quantify the inferences individuals make 

during an experimental learning task with known sensory signals, and to decompose the 

contributions of different forms of uncertainty to those inferences. In contradistinction to 

models that assume that individuals fashion the generative process to the task at hand 

(see the General Discussion for details), the HGF offers an inclusive scheme for 

explaining learning that generalises to a multitude of situations requiring inference about 

the state of the world.  

3.3.1.1 Generative model 

The HGF’s generative model describes how the hidden environmental states of the 

world, 𝑥, generate sensory inputs, 𝑢, across three hierarchical levels (Figure 3.3).  

Hierarchical Bayesian models have proven powerful for explaining learning in volatile 

probabilistic environments (Behrens et al., 2007; den Ouden et al., 2010; Nassar et al., 

2010; Wilson et al., 2013). In the case of the HGF, level 1 concerns trial-wise sensory 

outcomes, level 2 the probabilistic relationship between sensory outcomes and their 

predictive cues, and level 3 the volatility of this probabilistic relationship over time. 

The original instantiation of the HGF models an environment in which trial-wise sensory 

outcomes are of a binary form. Therefore, at level 1, the environmental state 𝑥1 at time 

t, denoted by 𝑥(𝑡) ∈ {0,1}, causes sensory input 𝑢(𝑡). This might capture whether a visual 

stimulus is black or white, an olfactory stimulus is present or not present, or, in the case 

of the probabilistic learning task used in Chapter 6, whether an auditory stimulus is a 

vocalisation of the word “cow” or the word “pig”. Accordingly, in what follows, the 
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likelihood model is assumed to take the following form (note that the time index t has 

been omitted here for simplicity): 

𝑝(𝑢|𝑥1) =  (𝑢)𝑥1(1 − 𝑢)1−𝑥1 

Equation 3.5 

Thus, 𝑢 =  𝑥1 for both 𝑥1 = 1 and 𝑥1 = 0 (where 1 = stimulus type A; 0 = stimulus type 

B), and vice versa. As such, 𝑥1 captures the stimulus type. Knowing state 𝑥1 allows for 

an accurate prediction of input 𝑢. 𝑥1 is drawn from a Bernoulli distribution. The predicted 

probability of a particular sensory outcome is obtained by applying a sigmoid 

transformation to 𝑥2:   

𝑝(𝑥1|𝑥2) =  𝑠(𝑥2)𝑥1(1 − 𝑠(𝑥2))
1−𝑥1 = Bernoulli(𝑥1; 𝑠(𝑥2)) 

Equation 3.6 

where 𝑠 is the logistic sigmoid function: 

     𝑠(𝑥) =  
1

1 + exp (−𝑥)
 

Equation 3.7 

Thus, 𝑥2 is mapped to the probability of 𝑥1 such that 𝑥2 = 0 means that 𝑥1 = 0 and 𝑥1 =

1 are equally probable. 

At level 2, 𝑥2 represents the probabilistic relationship between sensory cues and 

outcomes, in logit space. This could be, for instance, the conditional probability of an 

auditory outcome stimulus given an auditory cue (i.e., the cue:outcome contingency). It 

is an unbounded real parameter of the probability that 𝑥1 = 1: 

𝑝 (𝑥2
(𝑡)

|𝑥2
(𝑡−1)

, 𝑥3
(𝑡)

) =  Ν (𝑥2
(𝑡)

;  𝑥2
(𝑡−1)

, exp (𝑥3
(𝑡)

+ 𝜔)) 

Equation 3.8 

At level 3, 𝑥3 represents the (log-)volatility of the environment: 

𝑝 (𝑥3
(𝑡)

|𝑥3
(𝑡−1)

, 𝜗) =  Ν (𝑥3
(𝑡)

;  𝑥3
(𝑡−1)

, 𝜗) 

Equation 3.9 
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Figure 3.3 A schematic representation of the HGF’s generative model. Left: 𝑥1
(𝑡)

,  

𝑥2
(𝑡)

 and 𝑥3
(𝑡)

 are hidden states of the environment at time t. 𝑥1
(𝑡)

represents the sensory 

outcome on the current trial, 𝑥2
(𝑡)

 the probability of that outcome given a preceding 

sensory cue, and 𝑥3
(𝑡)

 the volatility of the probabilistic relationship between cues and 

outcomes. The hidden states generate the sensory input at time t, 𝑢(𝑡).The hidden states 

at levels 2 and 3 are dependent on their immediately preceding values, 𝑥2
(𝑡−1)

 and 𝑥3
(𝑡−1)

, 

and two participant-specific parameters, ϑ and ω, that link the hierarchical levels. Right: 

The probability of the hidden state at each level is determined by the variables and 

parameters at the next highest level. At level 1, 𝑥1 determines the probability of the input 

𝑢. At levels 2 and 3, the hidden states evolve as Gaussian random walks, with 

participant-specific step sizes. At level 2, the step size of the Gaussian random walk is 

captured by the variance exp(𝑥3+ω) of the conditional probability. At level 3, the step size 

is captured by ϑ. Figure adapted from Mathys et al. 2011.  

At levels 2 and 3, the states evolve in time as Gaussian random walks, with each walk’s 

step size determined by the next highest level of the hierarchy. For the sake of generality, 
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the HGF makes no assumptions about the probabilities of 𝑥2
(𝑡)

 or 𝑥3
(𝑡)

, except that they 

may change over time as Gaussian random walks. This means that the values of 𝑥2
(𝑡)

 

and 𝑥3
(𝑡)

 will be normally distributed around their values at the preceding time point, 𝑥2
(𝑡−1)

 

and 𝑥3
(𝑡−1)

 respectively. Importantly, the HGF does not assume fixed “ideal” learning 

across individuals but rather contains participant-specific parameters that couple the 

hierarchical levels and allow for individual expression of (approximate) Bayes-optimal 

learning. 

Specifically, the dispersion of the random walk at level 2 (i.e., the variance exp(𝑥3+ω) of 

the conditional probability; Equation 3.8) is determined by both the participant-specific 

parameter ω and state 𝑥3 (c.f. Behrens et al., 2007, 2008). ω is a constant component 

of volatility that captures how rapidly an individual generally updates their beliefs about 

probabilistic relationships within the environment. As such, a higher ω would lead an 

individual to update their beliefs about environmental contingencies more rapidly, 

resulting in a faster tonic learning rate. 𝑥3 captures the environment’s phasic volatility, 

which can vary over time. Introducing ω therefore allows for a participant-specific tonic 

component of volatility that scales independently of state 𝑥3. The higher the volatility, the 

larger the step-size of the Gaussian walk at level 2. Note that the original instantiation of 

the HGF includes an additional participant-specific parameter, κ, which scales state 𝑥3, 

and hence modulates coupling between levels 2 and 3. In all applications of the HGF in 

this thesis, κ was held constant at 1 (Vossel et al., 2014a, 2014b, 2015; de Berker et al., 

2016). 

At level 3, the step-size of the Gaussian walk is determined by the participant-specific 

parameter ϑ, which captures the volatility of state 𝑥3 (Equation 3.9). ϑ therefore 

determines the speed of learning about volatility, i.e., the rate at which estimates of the 

environment’s phasic volatility are updated. As such, ϑ encapsulates metavolatility, i.e., 

the rate at which volatility changes, with higher values leading to a Gaussian random 

walk with a larger step-size, and implying a belief in a more unstable world, in turn leading 

to a more variable learning rate at level 2. It is possible to add additional levels to the 

HGF’s perceptual model, in which case the step-size of the Gaussian random walk would 

be determined by both ϑ and the state at level 4, 𝑥4. Mirroring previous studies that have 

utilised the HGF to investigate hierarchical learning (Iglesias et al., 2013; Diaconescu et 

al., 2014, 2017; Hauser et al., 2014; Vossel et al., 2014a, 2014b, 2015; de Berker et al., 

2016), a three-level perceptual model was applied in this thesis. 
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3.3.1.2 Recognition model 

Based on their observations, 𝑥1, individuals form and update beliefs about the true states 

represented at each level of the HGF. These beliefs are captured by a recognition model. 

Under this recognition model, individuals infer the approximate posterior distributions 

over the states at levels 2 and 3. More precisely, trial by trial, individuals update their 

beliefs about the true quantities at each level, which at levels 2 and 3 are modelled by 

Gaussian distributions with a mean (𝜇) and variance (σ), the latter reflecting the 

uncertainty of the estimate. The recognition model captures irreducible uncertainty 

arising from the inherent randomness of the probabilistic relationships between cues and 

outcomes at level 1, estimation uncertainty arising from an individual’s incomplete 

knowledge of these probabilistic relationships at level 2, and volatility uncertainty arising 

from the instability of these relationships at level 3. 

Sufficient statistics of the Gaussian approximations are computed at each time-point. 

The resulting update equations resemble RW learning (c.f. Equation 3.1) and take the 

form: 

prediction(t) = prediction(t-1) + learning rate x prediction error, 

where t is the current time-point. 

Given the aforementioned body of work suggesting that RL may be implemented 

neuronally, Mathys et al. postulate that this property means that the belief updates have 

an ecologically valid interpretation. Specifically, the HGF parameters that determine 

learning may relate to specific physiological processes, such as the neuromodulation of 

synaptic plasticity (Mathys et al., 2011). For instance, it has been hypothesised that 

dopamine, which regulates the plasticity of glutamatergic synapses (Gu, 2002), may 

encode the precision (i.e., the inverse variance, or inverse uncertainty) of PEs (Friston, 

2009). As I will describe later, precision-weighting of PEs occurs within the HGF’s 

computational framework. The HGF therefore offers a useful model-based approach to 

probing participant-specific computational and neurophysiological mechanisms of 

learning under uncertainty. Moreover, the dynamic learning rates that result from 

coupling the HGF’s different levels allow for the adaptation necessary in volatile 

environments (Behrens et al., 2007; den Ouden et al., 2010).  

Since the integrals arising in the recognition model are intractable, inference in the HGF 

is approximate. Variational Bayesian inversion determines the posterior distributions by 

maximising the log-model evidence, which corresponds to the negative surprise about 

the data, given a model. It is approximated by a lower bound, namely the negative free 
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energy (Beal, 2003; Friston and Stephan, 2007), building on the work of Friston et al. 

(Friston et al., 2006). 

3.3.2 Response model 

To link an individual’s posterior beliefs, as provided by the recognition model, to his/her 

actions, a response model that provides a complete mechanistic mapping from 

experimental stimuli to observed behavioural responses is required (Daunizeau et al., 

2010a, 2010b). This was a key focus of our novel instantiation of the HGF, which I 

describe in section 3.4. 

3.3.3 The merits and shortcomings of the HGF 

To summarise, the original instantiation HGF, with its constituent generative, recognition 

and response models, has the capacity to describe learning and action that is 

subjectively optimal in relation to an individual’s prior beliefs and sensory input. It is 

possible for this learning to be objectively maladaptive. Importantly, this means that the 

HGF can capture variations in learning across healthy individuals, as well as aberrant 

belief updating in individuals with conditions such as schizophrenia (Adams et al., 2016). 

Thus, the HGF’s approach to modelling learning and action may have potential clinical 

applications, including the development of diagnostic classifications of psychiatric 

spectrum disorders (Stephan et al., 2009a). The HGF has been successfully applied in 

several investigations of learning and action in volatile environments (Iglesias et al., 

2013; Diaconescu et al., 2014, 2017; Hauser et al., 2014; Vossel et al., 2014a, 2014b, 

2015; de Berker et al., 2016). In Chapter 6, I apply the original instantiation of the HGF 

to behavioural data recorded in individuals undertaking a probabilistic learning task with 

binary trial-wise outcomes. 

As mentioned above, the HGF was designed as an inclusive scheme for explaining 

learning that generalises to different situations requiring inference about the state of the 

world. However, modelling an environment in which all trial-wise sensory outcomes are 

of a binary form is clearly not representative of real-world scenarios. Further, the HGF’s 

perceptual model is not sufficient to elucidate the influence an individual’s perceptual 

beliefs has on action execution. 

As part of this thesis, I have worked on the development of a novel instantiation of the 

HGF. It features a perceptual model with the capacity to track an individual’s learning 

about multiple outcome types and a response model that quantifies the influence of that 

individual’s perceptual beliefs on their executed actions, specifically their RTs. Next, I 

describe how this novel instantiation of the HGF was applied to model individual learning 
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and action during the PSRTT utilised in Chapters 4 and 5. I also provide additional detail 

as to how individual learning and action is captured by the model. 

3.4 Developing a novel instantiation of the HGF 

To recap Chapter 2, the PSRTT required individuals to respond to the trial-wise 

presentation of one of four visual stimuli by pressing an appropriate button as quickly as 

possible. At any given time, the trial sequence was generated by one of eight transition 

matrices (TMs), which changed every 50 trials. In each case, there were 16 combinations 

that determined the probabilistic relationship between the stimuli presented on the 

current trial t, and the previous trial, t-1. The task design created contexts that 

participants could infer from their stimulus observations, allowing them to reduce their 

uncertainty about sensory events before they occurred  (Harrison et al., 2006). 

Nonetheless, the probabilistic nature of these contexts also produced unexpected 

stimulus outcomes, i.e., sensory PEs. For fast and accurate responses, participants had 

to track irreducible uncertainty arising from the inherent randomness of the probabilistic 

transitions between consecutive stimuli; estimation uncertainty arising from their 

imperfect knowledge of the probabilistic relationships governing stimulus transition 

contingencies within contexts; and volatility uncertainty maintained by the unsignalled 

contextual instability. 

The novel instantiation of the HGF has a focus on transition matrices and includes two 

components: a three-level perceptual model and a response model (Figure 3.4). The 

relevant Matlab code has been incorporated into the HGF Toolbox, which is available for 

download from http://www.translationalneuromodeling.org/tapas/. The perceptual model 

encompasses a generative model that describes how stimulus transitions were 

generated and a recognition model that captures an individual’s unobservable beliefs 

about these transitions. Since beliefs modulate behaviour, it is possible to reverse 

engineer an individual’s observed actions (here trial-wise log(RTs)) to infer their beliefs. 

A response model was developed to predict normally-distributed log(RTs) from 

parameters in the recognition model (Daunizeau et al., 2010a). 

http://www.translationalneuromodeling.org/tapas/
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Figure 3.4 A novel instantiation of the HGF. The perceptual model tracks an 

individual’s learning of the PSRTT’s structure across three levels. State 𝒙1 represents 

trial-wise stimulus transitions from one stimulus to the next, 𝒙2 the transition 

contingencies, and 𝑥3 the phasic volatility of these contingencies, where t is the current 

trial number. Participants hold and update beliefs about the true quantities at each level, 

with a mean μ and a variance σ. ϑ and ω are participant-specific parameters that couple 

the levels and determine the respective speed of belief updating about phasic volatility 

and transition contingencies. The response model describes the mapping from a 

participant’s trial-wise beliefs onto their observed log(RT) responses.   

3.4.1 Perceptual model 

The perceptual model is a variant of the HGF as introduced by Mathys et al. (Mathys et 

al., 2011, 2014). It comprises a generative model and a recognition model, and thus 

tracks a participant’s learning of the task’s structure in a similar way to previous studies 

using the HGF (Iglesias et al., 2013; Diaconescu et al., 2014, 2017; Hauser et al., 2014; 

Vossel et al., 2014a, 2014b, 2015; de Berker et al., 2016). 
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3.4.1.1 Generative model  

Unlike previous applications of the HGF, in the novel instantiation the sensory data are 

observed transitions between stimuli that arise from a sequence of environmental states 

(𝒙1), where bold font is used to indicate a matrix. In the PSRTT (Figure 2.1), the jkth 

element of 𝒙1 is the transition from stimulus k to stimulus j, the probability of which 

participants must learn to perform the task well. There are 16 possible transitions induced 

by the trial-wise presentation of one of four visual stimuli, meaning that 𝒙1 is a four-by-

four matrix. On each trial, an individual observes a sample from one column of the 

transition matrix. Therefore, the current transition in the corresponding column of 𝒙1 is 1, 

with all other elements in that column equal to zero. 

The generative model has two further levels above 𝒙1. Level 2 is a four-by-four matrix 𝒙2 

of real numbers governing the transition contingencies. These undergo random walks 

with increments that are independent of each other. At level 3, 𝑥3 sets the variance of 

those random walks, and so the rate of change (or volatility) of the elements of 𝒙2. Since 

all elements are assumed to experience the same volatility (c.f. Mathys et al. 2011; 

2014), 𝑥3 is a scalar. Collectively, 𝒙2 and 𝑥3 capture stimulus transitions and their 

changes over time (albeit represented heuristically as a continuous random walk in logit 

space with a bijective mapping to the probability of specific discrete changes). More 

specifically, a sample of 𝒙1 is generated by applying a logistic sigmoid transformation to 

the column of 𝒙2 associated with the stimulus that was previously shown to generate a 

probability distribution over the four possible next stimuli. A sample is then drawn from 

that distribution. 

Thus, level 1 of the HGF represents a sequence of environmental states 𝒙1 (here the 

presentation of one of four stimuli). Level 2 represents the transition contingency 𝒙2 (i.e., 

the conditional probability, in logit space, of the stimulus on trial t given the stimulus 

presented on trial t-1). 𝑥3 represents the phasic volatility. The hidden states at levels 2 

and 3 are assumed to evolve as a Gaussian random walk, such that their variance 

depends on the state at the level above: 

𝑝(𝑥1,𝑗𝑘|𝑥2,𝑗𝑘) =  𝑠(𝑥2,𝑗𝑘)
𝑥1,𝑗𝑘

(1 − 𝑠(𝑥2,𝑗𝑘))
1−𝑥1,𝑗𝑘

= Bernoulli (𝑥1,𝑗𝑘; 𝑠(𝑥2,𝑗𝑘)) 

Equation 3.10 
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𝑝 (𝑥2,𝑗𝑘
(𝑡)

|𝑥2,𝑗𝑘
(𝑡−1)

, 𝑥3
(𝑡)

) =  Ν (𝑥2,𝑗𝑘
(𝑡)

;  𝑥2,𝑗𝑘
(𝑡−1)

, exp (𝑥3
(𝑡)

+ 𝜔)) 

Equation 3.11 

𝑝 (𝑥3
(𝑡)

|𝑥3
(𝑡−1)

, 𝜗) =  Ν (𝑥3
(𝑡)

;  𝑥3
(𝑡−1)

, 𝜗) 

Equation 3.12 

where 𝑥1,𝑗𝑘 and 𝑥2,𝑗𝑘 (with j,k=1,…,4) are the elements of the level 1 transition matrix 𝒙1 

and of the level 2 matrix 𝒙2 respectively, and 𝑠 is the logistic sigmoid function previously 

defined in Equation 3.7.  

3.4.1.2 Recognition model 

The recognition model takes observations of 𝒙1 and infers approximate posterior 

distributions over the values of 𝒙2 and 𝑥3. This amounts to a variant of predictive coding 

in which beliefs are dynamically updated across the levels via PEs that are weighted by 

their salience, or expected precision (equivalent to inverse variance, or uncertainty). 

Estimates of stimulus transition contingencies correspond to the posterior distribution 

over 𝒙2 and are updated by PEs about stimulus occurrences. Estimates of environmental 

volatility, i.e., the posterior distribution over 𝑥3, are updated in proportion to PEs about 

the transition contingencies. Thus, the effective learning rate is influenced by uncertainty 

about current beliefs and environmental instability. 

As in the original instantiation of the HGF, trial by trial, participants update their beliefs 

about the true quantities at each level, which at levels 2 and 3 are modelled by Gaussian 

distributions with a mean (𝜇) and variance (σ), the latter reflecting the uncertainty of the 

estimate. Precision (�̂�) of the prediction is equal to the inverse variance (1/�̂�), where the 

hat denotes the participant’s predicted estimate before seeing the stimulus outcome on 

each trial. At level 1, when the elements of 𝒙2 are each transformed by the logistic 

sigmoid to produce probabilities �̂�1, there is irreducible uncertainty (the participant’s 

estimate of which is captured by �̂�1). Irreducible uncertainty, which gets its name since 

it is undiminished by learning (Payzan-LeNestour and Bossaerts, 2011), arises from any 

probabilistic relationship, and is closely related to entropy, with an inverted-U relationship 

to probability that peaks at p=0.5. The quantity gives rise to sensory PE (𝜹1) following 

the presentation of an unexpected, or surprising, stimulus that would require a participant 

to respond against their expectation: 
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    𝛿1,𝑗𝑘
(𝑡)

=  𝜇1,𝑗𝑘
(𝑡)

− �̂�1,𝑗𝑘
(𝑡)

 

Equation 3.13 

where the prediction �̂�1
(𝑡)

 about stimulus outcome results from a sigmoidal transformation 

of the previous belief about the stimulus transition contingency 𝝁2
(𝑡−1)

: 

    �̂�1,𝑗𝑘
(𝑡)

= 𝑠(𝜇2,𝑗𝑘
(𝑡−1)

) 

Equation 3.14 

Note that column-wise normalisation of �̂�1 is not enforced (i.e., the columns do not 

necessarily add up to one, as they would have to in order to represent a probability 

distribution over mutually exclusive events). Ensuring that the probabilities sum to one 

would arguably require a sort of certainty about the stimuli that participants do not 

necessarily have when performing the behavioural task; for instance, it would require 

precise a priori knowledge that each and every trial will present exactly one of four stimuli 

and that there is no possibility of novel stimuli occurring during the experiment. In 

practice, the statistics governing the sensory events that occur in the PSRTT ensure that 

column sums of participants’ �̂�1 estimates never stray far from unity. 

At level 2, 𝝈2 which is informational in origin, represents estimation uncertainty about the 

true probabilistic relationships governing stimulus transitions, giving rise to a more 

abstract contingency PE (𝜹2). At level 3, volatility uncertainty arises from the 

environment’s volatility, i.e. how quickly the transition contingencies are changing. This 

is in contrast to 𝜎3, which represents the uncertainty about the volatility. 

Generally, at any level 𝑖 of the hierarchy, the update of the belief on trial t (i.e., posterior 

mean  𝜇𝑖
(𝑡)

 of the state 𝑥𝑖) is proportional to the precision-weighted PE, 𝜀𝑖
(𝑡)

. This weighted 

PE is the product of the upward-propagating PE, 𝛿𝑖−1
(𝑡)

, and a precision ratio, 𝜓𝑖
(𝑡)

, 

capturing the uncertainty about input from the level below relative to the uncertainty 

about the state of the level being updated (Iglesias et al., 2013). A general and 

didactically useful form of this precision-weighted PE (with subtle differences below level 

3; see Mathys et al. 2014) is: 

Δ𝜇𝑖
(𝑡)

∝ 𝜀𝑖
(𝑡)

= 𝜓𝑖
(𝑡)

 𝛿𝑖−1
(𝑡)

 

Equation 3.15 

where        
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𝜓𝑖
(𝑡)

 =
�̂�𝑖−1

(𝑡)

𝜋𝑖
(𝑡)

 

Equation 3.16 

Thus, precision-weighted sensory PE (𝜺2) about stimulus outcome is weighted by 

uncertainty at levels 1 and 2 and serves to update the belief about 𝒙2 (the stimulus 

transition contingency in logit space):  

    𝜇2,𝑗𝑘
(𝑡)

−  𝜇2,𝑗𝑘
(𝑡−1)

=  𝜓2,𝑗𝑘
(𝑡)

𝛿1,𝑗𝑘
(𝑡)

 

                      =  𝜀2,𝑗𝑘
(𝑡)

 

Equation 3.17  

At level 3, the update of the belief about 𝑥3 (phasic environmental (log-)volatility) is 

proportional to the precision-weighted contingency PE 𝜺3, which captures uncertainty at 

levels 2 and 3: 

    𝜇3
(𝑡)

−  𝜇3
(𝑡−1)

∝  𝜓3,𝑗𝑘
(𝑡)

𝛿2,𝑗𝑘
(𝑡)

 

                             =  
�̂�2,𝑗𝑘

(𝑡)

𝜋3
(𝑡)

𝛿2,𝑗𝑘
(𝑡)

 

                   =  𝜀3,𝑗𝑘
(𝑡)

 

Equation 3.18 

Here, the PE concerns the volatility of the stimulus transition contingency, or more 

precisely, the variance ratio of its estimates (in logit space) after and before observing 

the sensory input, respectively: 

    𝛿2,𝑗𝑘
(𝑡)

=  
𝜎2,𝑗𝑘

(𝑡)
+ (𝜇2,𝑗𝑘

(𝑡)
−  𝜇2,𝑗𝑘

(𝑡−1)
)2

𝜎2,𝑗𝑘
(𝑡−1)

+  𝑒𝜇3
(𝑡−1)+𝜔

 − 1 

Equation 3.19 

Importantly, like the original instantiation, the novel perceptual model includes two 

participant-specific parameters that couple the hierarchical levels and allow for individual 

expression of approximate Bayes-optimal learning (Figure 3.4). The first of these 

parameters is ϑ, which determines the speed of learning about the volatility of the 

environment, i.e. the rate at which estimates of trial-wise phasic volatility (𝜇3) are updated 
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(Equation 3.12). The second, ω, is a constant component of the learning rate at level 2 

that captures a tonic learning rate about the stimulus transition contingencies (Equation 

3.11).  

The punctate change-points contained in the true generative process are detected 

implicitly by the HGF via spikes in the precision weights. At levels 2 and 3, 𝛼𝑖
(𝑡)

 is 

proportional to the precision ratio, 𝜓𝑖
(𝑡)

, defined in Equation 3.16. At level 1, the learning 

rate 𝜶1 is simply defined as the update divided by the prediction error: 

𝜶1
(𝑡)

∝  
𝝁𝟐

(𝑡)
− �̂�𝟏

(𝑡)

𝜹1
(𝑡)

 

Equation 3.20                                                                                 

As I will demonstrate in Chapter 4, the HGF implicitly captures punctate change-points 

in the PSRTT’s generative process as an increase in learning rate, 𝛼1, following a true 

change in context (Figure 3.5). 

 

Figure 3.5 Example learning rate (𝜶𝟏) trajectory. Increases in 𝛼1 are observed 

following a true change in context. As such, learning rate at level 1 of the HGF implicitly 

captures punctate change-points contained in the PSRTT’s generative process. Data are 

mean 𝛼1 for trials undertaken by Placebo participants in Chapter 4. For further details, 

see Figure 4.5.  

3.4.2 Response model  

As described above, in addition to the perceptual (generative + recognition) model, the 

novel instantiation of the HGF features a response model. Its purpose is to link estimates 

from the recognition component of the perceptual model to an individual’s actions during 

the PSRTT. A response model offers an important extension to the perceptual model by 

linking modulations of action execution to perceptual beliefs. Alternative response 

models have been added to the HGF previously (Vossel et al., 2014a, 2014b, 2015). The 

response model developed and applied in the present work describes the mapping from 
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a participant’s trial-wise beliefs, as provided by the perceptual model, onto his/her 

observed responses, log(RTs). 

I reasoned that there are several variables that could influence this mapping, and thus 

trial-wise log(RT). Therefore, I constructed and formally compared a range of response 

models using random effects Bayesian model selection (Stephan et al., 2009; Rigoux et 

al., 2014) and associated techniques for assessing differences in model frequencies 

across groups, as implemented in the VBA toolbox (Daunizeau et al., 2014). Further 

details of this model comparison are provided in Chapter 4. 

As we will see in Chapter 4, the winning response model (Equation 3.21) was a linear 

function prescribing that trial-wise log(RT) is determined by a constant component of RT 

(β0) and estimates arising from each level of the perceptual model: sensory PE (𝛿1) 

arising at level 1, precision-weighted contingency PE (𝜀3) arising at level 2, and trial-wise 

phasic volatility (𝜇3) arising at level 3. Additionally, as observed in previous work using 

similar RT tasks (Rabbitt, 1966; Botvinick et al., 2001; Gehring and Fencsik, 2001; 

Cavanagh et al., 2014), there was evidence of post-error slowing in the PSRTT, i.e., 

participants were slower to respond on a trial that followed an incorrect response. ζ is a 

noise term. 

log(RT)(t) =  β0 +  β1(δ1
(t)

)  +  β2(ε3
(t)

)  +  β3(μ3
(t)

)  +  β4(PostError(t))  +  ζ(t) 

Equation 3.21 

While the perceptual model assumes that participants update their beliefs according to 

the stimulus presented on each trial, the response model incorporates correct trials only.             

3.4.3 Model fitting 

For each participant, individual maximum a posteriori estimates for perceptual and 

response model parameters were jointly obtained using the Broyden-Fletcher-Goldfarb-

Shanno algorithm as implemented in the HGF Toolbox. Where priors were required, they 

were defined by inverting the perceptual model in isolation, given the known stimulus 

sequence (using the function ‘tapas_bayes_optimal_whatworld_config’ contained in the 

TAPAS Toolbox), under suitably uninformative priors. The resulting posterior estimates 

were then used to define the priors for the subsequent inversion of the full model given 

the behavioural data. In other words, the prior means in the empirical data analysis 

corresponded to those parameter values for which the stimulus sequence would 

generate minimal surprise (in an observer with the aforementioned uninformative priors). 
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4 Pharmacological fingerprints of uncertainty 

This chapter is based on work presented in Marshall L, Mathys C, Ruge D, de Berker 

AO, Dayan P, Stephan KE & Bestmann S. (2016) Pharmacological fingerprints of 

contextual uncertainty. PLOS Biology. 14(11): e1002575. 

4.1 Abstract 

Successful interaction with the environment requires flexible updating of our beliefs about 

the world. By estimating the likelihood of future events, it is possible to prepare 

appropriate actions in advance and execute fast, accurate motor responses. According 

to theoretical proposals, individuals track the variability arising from changing 

environments by computing various forms of uncertainty. Several neuromodulators have 

been linked to uncertainty signalling, but comprehensive empirical characterisation of 

their relative contributions to perceptual belief updating, and to the selection of motor 

responses, is lacking. In this chapter, I assess the roles of noradrenaline (NA), 

acetylcholine (ACh) and dopamine (DA) within a single, unified computational framework 

of uncertainty. Using pharmacological interventions in a sample of 128 healthy human 

participants and a hierarchical Bayesian learning model, I characterise the influences of 

noradrenergic, cholinergic and dopaminergic receptor antagonism on individual 

computations of uncertainty during a probabilistic serial reaction time task. I propose that 

NA influences learning of uncertain events arising from unexpected changes in the 

environment, while ACh balances attribution of uncertainty to chance fluctuations within 

environmental contexts or to gross environmental violations following a contextual 

switch. In contrast, DA supports the use of uncertainty representations to engender fast, 

adaptive motor responses. 
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4.2 Introduction 

Adaptive performance in dynamic environments depends on our ability to represent and 

manipulate internal estimates of the world’s statistical structure (Conant and Ashby, 

1970; Körding and Wolpert, 2004; Yu and Dayan, 2005; Behrens et al., 2007). By 

tracking the environment’s underlying regularities, an individual can learn the causes of 

their sensory input and thus the likelihood that a particular event will occur. In turn, this 

permits anticipatory action preparation and the rapid execution of responses (Bestmann 

et al., 2008).  

However, the environment’s richly complicated sources of noise and latent structure 

present us with various forms of uncertainty. In Chapter 1, I introduced three distinct 

forms. First, irreducible uncertainty captures the randomness inherent in any complex 

environment and is undiminished by learning. Second, estimation uncertainty arises from 

an individual’s incomplete knowledge of the probabilistic relationships within the current 

environmental context. Third, volatility uncertainty arises from our beliefs about the 

stability of the environment, and thus how quickly probabilistic relationships are changing 

between contexts. Optimal learning, prediction and anticipatory action preparation 

require that these sources of uncertainty are taken into account (Ma and Jazayeri, 2014; 

Meyniel et al., 2015; Pouget et al., 2016). 

4.2.1 The brain computes different forms of uncertainty 

To recap Chapter 1, multiple lines of theoretical, behavioural and neurobiological 

evidence suggest that the brain indeed computes estimates of uncertainty relating to the 

environment’s sensory events, contextual associations and their changes over time 

(Averbeck et al., 2006; Ma et al., 2006; Behrens et al., 2007; den Ouden et al., 2010; 

Fiser et al., 2010; Mathys et al., 2011, 2014; Payzan-LeNestour and Bossaerts, 2011; 

Bach and Dolan, 2012; Bland and Schaefer, 2012; Friston et al., 2012; Iglesias et al., 

2013; Payzan-LeNestour et al., 2013; Vossel et al., 2014a, 2014b; de Berker et al., 2016; 

Diaconescu et al., 2017). It has been proposed that, with their broad distribution and 

extensive connectivity, the brain’s neuromodulatory networks are well-placed to facilitate 

the widespread changes in neuronal gain required to modulate the relative impact of top-

down prior expectations and bottom-up sensory evidence in light of uncertainty (Berridge 

and Waterhouse, 2003; Warren et al., 2016). In accordance with this notion, ACh and 

NA are known to enhance bottom-up, feedforward thalamocortical transmission of 

sensory information relative to top-down, intracortical and feedback processing 

(Hasselmo et al., 1996; Gil et al., 1997; Kimura et al., 1999; Kobayashi et al., 2000; Yu 
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and Dayan, 2002, 2005; Hasselmo and McGaughy, 2004; Sarter et al., 2005; Dayan and 

Yu, 2006a; Deco and Thiele, 2011; Moran et al., 2013), in turn promoting learning about 

the current environmental context (Yu and Dayan, 2003). 

4.2.1.1 A proposed role for acetylcholine under estimation uncertainty 

The application of two types of behavioural paradigm has offered more detailed insight 

into the relative roles played by NA and ACh in learning under uncertainty. Accordingly, 

ACh is thought to support learning within stable environmental contexts defined by 

particular rules. Here uncertainty arises from ignorance about, and the unreliability of, 

probabilistic relationships within the environment that predict upcoming sensory events. 

The learning of these relationships is modulated by pharmacological (Witte et al., 1997; 

Phillips et al., 2000a), surgical (Voytko et al., 1994; Chiba et al., 1999), and 

neurodegenerative (Parasuraman et al., 1992) manipulations of ACh. Moreover, activity 

in the human cholinergic basal forebrain has been shown to reflect an individual’s 

estimation uncertainty about contextual probabilistic relationships (Iglesias et al., 2013; 

Diaconescu et al., 2017), while pharmacological cholinergic stimulation under the drug 

galantamine increases the rate at which humans learn probabilistic relationships under 

estimation uncertainty (Vossel et al., 2014a). Together, these findings support the notion 

that ACh enhances learning accorded to stimuli with uncertain predictive consequences 

(Bucci et al., 1998) by boosting the contribution of bottom-up sensory processing relative 

to top-down prior expectations (Yu and Dayan, 2005). 

4.2.1.2 A proposed role for noradrenaline under environmental volatility 

While NA plays no consistent role in probabilistic learning within contexts (Clark et al., 

1989; Witte and Marrocco, 1997), it is thought to offer an interrupt signal when volatility 

uncertainty arises between contexts (Clark et al., 1989; Arnsten and Contant, 1992; 

Smith et al., 1992; Coull et al., 1995; Witte and Marrocco, 1997; Bouret and Sara, 2005; 

Dayan and Yu, 2006b). Learning to make accurate predictions from the strongly 

unexpected observations that follow a contextual switch necessitates heightened 

sensory vigilance and a disregard for outdated top-down expectations. NA, with its broad 

neural network capable of triggering multiple, simultaneous changes across the brain 

(Bouret and Sara, 2004), is well-placed to rapidly coordinate this process. Indeed, 

neurons in the locus coeruleus (LC), the primary source of cortical NA, show strong 

responses to unexpected environmental changes (Sara and Segal, 1991; Aston-Jones 

et al., 1997). Pharmacologically upregulating NA accelerates the detection of 

unexpected switches in the predictive properties of sensory stimuli (Devauges and Sara, 

1990), while noradrenergic deafferentation of rat medial frontal cortex impairs 
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behavioural adaptation to contextual switches (McGaughy et al., 2008). Moreover, BOLD 

activity in the human LC has been shown to dynamically track volatility uncertainty 

(Payzan-LeNestour et al., 2013). Furthermore, pupil dilation – which is influenced by 

(nor)adrenergic afferents (Joshi et al., 2016) – correlates with unexpected changes in 

probabilistic context (Preuschoff et al., 2011; Nassar et al., 2012). 

4.2.2 Motor responses are sensitive to uncertainty 

Thus, uncertainty representations existing both within and between environmental 

contexts are crucial for optimal predictions about the probability of future events. While 

good predictions facilitate anticipatory preparation of appropriate motor responses 

(Bestmann et al., 2008), they are not sufficient for adaptive performance in dynamic 

environments. An additional mechanism is required to modify action selection based on 

one’s own beliefs about the latent changes in the environment and/or the occurrence of 

unexpected events. Indeed, when an unexpected event occurs, humans are capable of 

engaging resources to inhibit a prepared response and replace it with an alternative 

(Hikosaka and Isoda, 2010; Isoda and Hikosaka, 2011), albeit at the expense of a 

prolonged reaction time (RT) (Galea et al., 2012; Bestmann et al., 2014). 

4.2.2.1 A proposed role for dopamine in response modulation 

There is considerable evidence linking DA to flexible behaviour (Cools et al., 2001a, 

2009; Stelzel et al., 2010, 2013; van Holstein et al., 2011). Dopaminergic deficits due to 

Parkinson’s disease are associated with specific flexibility impairments in both motor 

(Cools et al., 1984; Galea et al., 2012) and cognitive domains (Beatty and Monson, 1990; 

Cools et al., 2001a), with performance restored by dopaminergic medication (Cools et 

al., 2001b; Galea et al., 2012). In healthy individuals, pharmacological DA depletions 

impair adaptive reactions to unexpected events occurring within a broadly predictable 

context (Bestmann et al., 2014). However, it remains unclear whether DA supports 

accurate response selection by facilitating perceptual belief updating (Iglesias et al., 

2013), or by modulating the sensitivity of response selection to perceptual beliefs. 

4.2.3 A unified framework of uncertainty 

In sum, while physiological, pharmacological, behavioural and theoretical work has 

suggested separable neuromodulatory involvement in different uncertainty 

computations, attempts to characterise the relative roles of NA, ACh and DA within a 

single computational scheme are lacking. Of note, since the conception of the work 

reported in this thesis, Varazzani et al. have contrasted the roles of NA and DA in 

motivation (Varazzani et al., 2015) and Brown et al. have assessed the impact of 
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pharmacological NA and ACh manipulations on orienting responses to novel stimuli 

(Brown et al., 2015). Nonetheless, there has been no direct investigation of the relative 

contributions of NA, ACh and DA to human learning and response modulation within a 

unified computational framework of uncertainty.  

In this chapter, I employ the probabilistic serial RT task (PSRTT) introduced in Chapter 

2 and the novel instantiation of the Hierarchical Gaussian Filter (HGF) model (Mathys et 

al., 2011, 2014) developed in Chapter 3 to characterise human learning and response 

modulation in dynamic, probabilistic environments and under pharmacological NA, ACh 

and DA interventions. To recap, the HGF’s three-level perceptual model captures an 

individual’s mapping from environmental causes to sensory inputs, while the response 

model maps those inferred environmental causes to observed RT responses (Daunizeau 

et al., 2010a). Thus, I sought to disentangle the effects of the three pharmacological 

manipulations on participant-specific perceptual belief updating under irreducible, 

estimation and volatility uncertainty from those effects on the sensitivity of motor 

responses to perceptual estimates. 

4.3 Methods 

4.3.1 Participants 

128 healthy participants (56 male, aged 18-38 years, 119 right-handed) with normal or 

corrected-to-normal vision took part in this study after giving written informed consent. 

The experimental protocol was approved by the UCL Research Ethics Committee. The 

following exclusion criteria applied: history of neurological or psychiatric disease, intake 

of medication (other than contraceptives), self-reported smoking, self-reported 

recreational drug use, and current participation in other pharmacological studies. 

Following a screening interview to rule out intolerances or contraindications, the study 

clinician assigned participants pseudorandomly (i.e., ensuring a balanced distribution of 

gender, age and body weight) to receive a NA, ACh or DA antagonist, or a placebo. The 

experimenter (L.M.) was blind to the drug conditions. 

4.3.2 General procedure 

A double-blind, between-subjects design was employed. Each participant attended one 

experimental session during which they received a single, oral dose of one of the 

following: 1mg prazosin (α1-arenoceptor antagonist; NA- group), 6mg biperiden (M1-

receptor antagonist; ACh- group), 2.5mg haloperidol (D1/D2-receptor antagonist; DA- 

group), or a placebo. Doses were selected in line with previous studies showing clear 
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behavioural and neurophysiological effects (Ziemann et al., 1997; Meintzschel and 

Ziemann, 2006; Korchounov and Ziemann, 2011; Bestmann et al., 2014). On arrival, 

participants completed computerised versions of the Digit Span test, Barratt 

Impulsiveness Scale (BIS-11) (Patton et al., 1995), Doman-Specific Risk-Taking 

(DOSPERT) Scale (Blais and Weber, 2006) and Cognitive Failures Questionnaire (CFQ) 

(Broadbent et al., 1982). Participants also self-reported their baseline mood (alertness, 

calmness and contentedness) with visual analogue scales (VAS) (Bond and Lader, 

1974), and had their baseline heart rate (HR) and blood pressure (BP) measured. To 

assess any subjective and/or physiological drug effects, the VAS, HR and BP 

measurements were repeated before participants started the PSRTT and again once 

they completed it. Please refer to Chapter 2 (section 2.3.3) for details about the 

psychometric and subjective measures. 

Two different drug administration times were used to match peak plasma concentration 

across drugs, based on previous pharmacokinetic data. To ensure that participants 

undertook the RT task when the drug was at its most active, haloperidol was 

administered two hours in advance (Time A; Figure 4.1A), while prazosin and biperiden 

were administered 1.5 hours before the main experimental session (Ziemann et al., 

1997; Meintzschel and Ziemann, 2006; Korchounov and Ziemann, 2011). A random 50% 

of participants from the Placebo group were administered a placebo tablet at the first 

timepoint, and the other 50% at the second timepoint. The study clinician administered 

the drug or placebo while the experimenter was away from the testing room. Participants 

were asked not to eat for at least one hour before the first drug administration time. 

4.3.3 Probabilistic serial reaction time task 

Participants sat facing a computer screen positioned approximately 60cm away. They 

were instructed to rest their left and right index and middle fingers on the four buttons of 

a custom-made button box placed in front of them, and to maintain this position 

throughout the task. On each trial, participants were required to respond to the 

presentation of one of four visual stimuli by making a speeded button-press before the 

end of a 1200ms intertrial interval (ITI) (Figure 4.1B). Each stimulus was associated with 

one particular button. The stimulus-response mappings remained consistent within an 

experimental session but were counterbalanced across participants. 
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Figure 4.1 Task design. (A) Timeline for each experimental session. At baseline, 

participants had their heart rate (HR) and blood pressure (BP) measured, self-reported 

their alertness, contentedness and calmness via visual analogue scales (VAS) (Bond 

and Lader, 1974), and undertook a battery of psychometric tests to assess working 

memory, impulsivity, risk-taking and distractibility. HR, BP and VAS measures were 

repeated before and after completing the behavioural task. Due to different times-to-peak 

plasma concentration across drugs, two different drug administration times (Time A and 

Time B) were used so that participants undertook the behavioural task when the drugs 

were at their most active. 50% of participants in the Placebo group received a placebo 

tablet at Time A and the other 50% at Time B. (B) Trial sequence. A trial began with the 

presentation of a central white fixation cross against a black background. After an initial 

delay of 1500ms at the start of each block, one of four visual stimuli was presented for 

200ms. Participants were required to make a speeded button-press response before the 

end of a 1200ms intertrial interval (ITI). (C) Stimulus transitions were generated by one 
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of eight different transition matrices (TMs), which changed every 50 trials without explicit 

indication to the participant. These TMs comprised two different 1st-order sequences, two 

alternating sequences, and four 0th-order sequences, each of which occurred three times 

in a pseudorandom order across 1200 trials. The overall probability of each stimulus was 

equal across the 1200 trials. For full details, see Figure 2.1. (D) Example trial sequences 

generated from the three example TMs in B. (E) By tracking the transition probabilities, 

subjects could learn to predict high probability events and prepare to make the correct 

button-press accordingly. Faster responses were observed for predictable stimuli 

compared to unexpected stimuli. Here Placebo group log(RTs) (mean ± SEM) are 

depicted for each of the 16 possible combinations between consecutive stimuli for the 

1st-order sequence shown in C. Grey boxes indicate stimulus combinations with a high 

transition probability. (F) Indeed, across all types of TM, responses were faster for stimuli 

with higher transition probabilities (mean ± SEM).  

4.3.3.1 Training 

Each participant acquired the stimulus-response mappings for their session during a 

training block in which they received visual error feedback after each trial. The training 

session comprised at least 100 trials and did not finish until the participant had reached 

a minimum performance criterion of 85% accuracy on the last 20 trials. Participants were 

then given 40 practice trials, in which the stimuli were presented in a random order and 

without error feedback, to familiarise them with the timings of the main experiment. An 

additional refresher block, consisting of at least 26 trials with error feedback, was 

completed immediately before the main experiment. Again, participants had to achieve 

85% accuracy in the last 20 trials to proceed. On average, participants reached this 

criterion in 28.1 ± 1.1 trials, indicating adequate learning and retention of the mappings. 

There was no difference in the number of refresher trials required between groups 

(F3,120=1.17, p=0.324). 

4.3.3.2 Task design 

Each participant performed 1200 trials of the probabilistic RT task. Figure 4.1B shows 

an example trial sequence. Anticipatory responses (<80ms RT) were recorded as 

incorrect. At any given time, the trial sequence was generated by one of eight transition 

matrices (TMs), which changed every 50 trials without explicit indication to the 

participant. In each TM, there were 16 combinations that determined the probabilistic 

relationship between the stimulus presented on the current trial, t, and the stimulus 

presented on the previous trial, t-1. Three types of TM were utilised: two 1st-order 

sequences, two Alternating sequences, and four 0th-order sequences (see Figure 4.1C 
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and Figure 2.1 for further details). Trials were drawn from each TM three times. The 

order of TMs was pseudorandom, with no consecutive repeats. Importantly, the overall 

probability of each stimulus was equal across the 1200 trials. 

The different TMs created contexts that the participants could infer from stimulus 

observations, allowing them to reduce their uncertainty about events before they 

occurred (Harrison et al., 2006). Nonetheless, the probabilistic nature of these contexts 

also produced unexpected stimulus outcomes, i.e. a sensory prediction error (PE). For 

fast and accurate responses, participants had to track three forms of uncertainty: 

irreducible uncertainty arising from the inherent randomness of the probabilistic 

transitions between consecutive stimuli; estimation uncertainty arising from their 

imperfect knowledge of the probabilistic relationships governing stimulus transition 

contingencies within contexts; and volatility uncertainty maintained by the unsignalled 

contextual instability. 

The pseudorandom order of TMs was used to generate one stimulus sequence that was 

used for all participants to ensure comparable learning processes and model parameter 

estimates. Rest periods occurred every 185 trials, orthogonal to TM switches. The 

importance of fast responses was stressed. Participants were told that by paying 

attention to any patterns in the order in which stimuli were presented, and to any switches 

in these patterns, it may be possible to respond faster. No further information about the 

nature of the experiment was provided. 

Combining the behavioural paradigm with three pharmacological manipulations 

permitted direct assessment of any separable roles for NA, ACh and DA in belief 

updating under irreducible uncertainty, estimation uncertainty and volatility uncertainty, 

and in sensitising the motor system to participants’ individual perceptual beliefs. At the 

end of the experimental session, participants were debriefed, indicated whether they 

thought they had taken an active drug or placebo, and reported the quality and quantity 

of their sleep on the previous night (Ellis et al., 1980). 

4.3.4 Model-agnostic analyses 

Trial-wise RT was calculated as the time between stimulus onset and the subsequent 

button press. The RT data were log-transformed (Bestmann et al., 2014). A series of 

conventional, model-agnostic analyses of behaviour were first conducted to assess 

whether participants learned about the underlying stimulus transition contingencies, and 

whether learning was influenced by the pharmacological interventions. To assess the 

interaction between stimulus transition probability and drug, trials were binned according 
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to three probability levels corresponding to the presented stimuli’s true transition 

probabilities as existed in the TMs (High: 0.85 and 0.70; Mid: 0.25 and 0.20; Low: 0.05) 

(Galea et al., 2012; Bestmann et al., 2014). A repeated-measures analysis of variance 

(RM-ANOVA) was used to compare mean log(RTs) for correct responses across these 

three probability levels and between drug-groups. 

To obtain a model-agnostic indication of learning across the course of the probabilistic 

contexts, a median split was performed on each 50-trial contextual block. A RM-ANOVA 

was used to compare mean log(RTs) on correct Early (1-25) and Late (26-50) trials at 

each probability level, and between drug-groups. To assess any learning in more detail, 

RTs on correct, high probability Early trials were examined after having been baseline-

corrected by subtracting the mean RT on the last three correct, high probability trials of 

the previous context. 

In many behavioural response time tasks, participants typically demonstrate post-error 

slowing, i.e., slower responses on trials following those on which they made an error 

(Rabbitt, 1966; Botvinick et al., 2001; Gehring and Fencsik, 2001; Cavanagh et al., 

2014). To identify any evidence of post-error slowing during the PSRTT, a RM-ANOVA 

was used to compare log(RTs) on correct trials that immediately followed both correct 

and erroneous responses. A further RM-ANOVA compared log(RTs) on correct, post-

infrequent trials (i.e., trials following those with a true transition probability of 0.05) and 

correct trials following trials with a true transition probability >0.05. 

4.3.5 Model-based analyses 

While model-agnostic analyses offer a heuristic indication of learning and possible drug 

effects, a model-based approach permits quantification of participants’ (approximate) 

inferences and subjective expectations about the transitions, which are driven by data-

limited observations. A novel instantiation of the HGF model, consisting of a three-level 

perceptual model and a response model (see Chapter 3 and Figure 4.2), was therefore 

applied to the data. Thus, it was possible to map each individual’s estimated perceptual 

beliefs about stimulus transitions, transition contingencies and volatility, and the 

respective irreducible, estimation and volatility uncertainty about these beliefs, onto 

his/her observed log(RT) responses. The model was implemented using the 

‘tapas_logrt_linear_whatworld’ code contained in the HGF Toolbox 

(http://www.translationalneuromodeling.org/tapas/). 

http://www.translationalneuromodeling.org/tapas/
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Figure 4.2 The Hierarchical Gaussian Filter (HGF). (A) The perceptual model tracks 

an individual’s learning of the task’s structure across three levels. State 𝒙1 represents 

trial-wise transitions from one stimulus to the next, 𝒙2 the transition contingencies, and 

𝑥3 the phasic volatility, where t is the current trial number and bold font is used to indicate 

a matrix. Participants hold and update beliefs about the true quantities at each level, with 

a mean μ and a variance σ. ϑ and ω are participant-specific parameters that couple the 

levels and determine the respective speed of belief updating about phasic volatility and 

transition contingencies. The response model describes the mapping from a participant’s 

trial-wise beliefs onto their observed log(RT) responses. (B) Example of the trial-wise 

dynamics at level 3 for Placebo Participant 2. 𝜇3 reflects the participant’s belief about the 

true phasic volatility (𝑥3). Vertical dashed lines indicate true context switches. 𝜇3 tends 

to increase following a context change and then decreases over the course of a context 

as the participant learns the new contextual rule and thus perceives the environment to 

be increasingly stable. √ϑ is a variance determining the step-size of 𝜇3 and therefore how 

quickly the participant updates their phasic volatility estimates. (C) As in B, but for 

precision-weighted contingency PE (𝜺3) at level 2. This estimate results from weighting 

the contingency PE (𝜹2) by a precision ratio that captures uncertainty about input from 
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the level below relative to the level above. The higher the precision at level 2, the more 

meaningful a deviation from the predicted stimulus transition contingency. This in turn 

increases the impact on phasic volatility belief updating at level 3. For simplicity, the 

depicted 𝜀3 trajectory is for true transition changes only. (D) As in B and C, but for sensory 

PE (𝜹1) at level 1. This estimate arises from irreducible uncertainty about stimulus 

transitions. Trial-wise values are equivalent to 1-𝑥1, where 𝑥1 is equal to the probability 

of the predicted transition. Again, for simplicity only 𝛿1 values for truly occurring 

transitions are shown here. (E) Mean β values for the Placebo group indicate that 

increases in sensory PE (β1), precision-weighted contingency PE (β2), and phasic 

volatility estimates (β3) slowed participants’ trial-wise log(RTs). There was also evidence 

of post-error slowing (β4). Results are mean ± SEM. *** p<0.001.  

4.3.5.1 Perceptual model 

The perceptual model tracks an individual’s learning of the task’s structure: the trial-wise 

stimulus transitions at level 1, the probability of the transitions (i.e., transition 

contingencies) at level 2, and the volatility of transition contingencies at level 3 (Figure 

4.2A). It is hierarchical in that learning not only occurs simultaneously at multiple levels, 

but belief updating at one level is constrained by beliefs at the level above. This provides 

a generic framework for implementing dynamic learning rates, which are crucial for 

learning in volatile environments (Behrens et al., 2007; den Ouden et al., 2010). 

Trial-wise trajectories of a participant’s perceptual estimates at each level evolve 

according to the predictions made and outcomes experienced by that individual (Figure 

4.2B-D). At levels 2 and 3, these estimates are modelled by Gaussian distributions with 

a mean (μ) and a variance (σ), the latter reflecting the uncertainty of the estimate. 

Precision (π) of the estimate is equal to inverse variance (1/σ). Irreducible uncertainty at 

level 1 gives rise to sensory PE, 𝜹1. Estimation uncertainty at level 2 gives rise to 

contingency PE, 𝜹2. PEs can be weighted according to their precision (inverse 

uncertainty). At level 1, this gives us precision-weighted sensory PE, 𝜺2, and at level 2 

precision-weighted contingency PE, 𝜺3. Volatility uncertainty arises from phasic volatility 

beliefs, 𝜇3, at level 3. Please refer to Chapter 3 for full details.  

Importantly, the HGF does not assume fixed learning across the population but rather 

contains participant-specific parameters that couple the hierarchical levels and allow for 

individual expression of approximate Bayes-optimal learning. ϑ determines the speed of 

learning about volatility, i.e., the rate at which estimates of phasic volatility (𝜇3) are 

updated. As such, ϑ encapsulates metavolatility, i.e., the rate at which volatility changes, 

with higher values implying a belief in a more unstable world and leading to a more 
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variable learning rate (as expressed in phasic volatility belief updating). By contrast, ω is 

a constant component of the volatility and captures how rapidly individuals generally 

update their beliefs about transition contingencies at level 2. Changes in ω therefore lead 

to a tonic alteration of the learning rate. By comparing ϑ and ω estimates for each of the 

drug-groups to the Placebo group, it was possible to interrogate the effects of NA, ACh 

and DA antagonism on perceptual belief updating. 

4.3.5.2 Response model  

The response model describes the mapping from a participant’s trial-wise beliefs, as 

provided by the perceptual model, onto his/her observed responses, log(RTs). I 

reasoned that there are several variables that could influence trial-wise log(RT). 

Therefore, three response models were constructed and compared using random effects 

Bayesian model selection (Stephan et al., 2009; Rigoux et al., 2014) and associated 

techniques for assessing differences in model frequencies across groups as 

implemented in the VBA toolbox (Daunizeau et al., 2014). Random effects Bayesian 

model selection allows for heterogeneity in the population; the best model for each 

individual is allowed to vary, producing an estimate of model frequency in the population 

(i.e., for how many participants that model is the best model), and an exceedance 

probability that the model is the most frequently utilised in the population. This is a more 

conservative approach than conventional fixed-effects analyses, which assume that data 

from all participants are best explained by a single model. 

Each response model proposed that log(RT) on any given trial is a linear function of a 

constant component of log(RT) and several other factors. Since there is evidence, both 

from earlier work (Rabbitt, 1966; Botvinick et al., 2001; Gehring and Fencsik, 2001; 

Cavanagh et al., 2014) and the present study, that participants’ RTs increase on a trial 

following an incorrect response, post-error slowing was included in each response 

model. While the perceptual model assumed that participants updated their beliefs 

according to the stimulus presented on each trial, the response model incorporated 

correct trials only. 

The extra factors in the different models came from quantities at each level of the HGF 

that might influence log(RT). The first response model contained the following 

parameters: 𝛿1 (sensory PE), due to evidence that DA sensitises motor responses to 

low-level PE (Galea et al., 2012; Bestmann et al., 2014), 𝜀3 (precision-weighted 

contingency PE), which has been shown to correlate with activity in the cholinergic basal 

forebrain (Diaconescu et al., 2017), and 𝜇3 (estimated phasic volatility), which is relevant 

to switching tasks for which there is a proposed role for DA (Cools et al., 2001a, 2001b). 
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For each parameter, the quantity relates to the true stimulus transition on each trial. ζ is 

Gaussian noise. 

Response Model 1:  

log(RT)(t) =  β0 +  β1(δ1
(t)

)  +  β2(ε3
(t)

)  +  β3(μ3
(t)

)  +  β4(PostError(t))  +  ζ(t) 

Equation 4.1                      

Alternative research has indicated that activity in the dopaminergic midbrain correlates 

with the precision-weighted form of sensory PE, 𝜀2 (Iglesias et al., 2013; Diaconescu et 

al., 2017). To disambiguate whether motor responses are modulated according to raw 

sensory PE or the confidence one has in their sensory predictions, the second response 

model contained 𝜀2 instead of 𝛿1. 

Response Model 2:   

log(RT)(t) =  β0 + β1(ε2
(t)

)  +  β2(ε3
(t)

)  +  β3(μ3
(t)

)  +  β4(PostError(t))  +  ζ(t) 

Equation 4.2        

Since 𝛿1 and 𝜀2 are highly correlated, a third response model containing both parameters 

was constructed to ascertain whether one had a higher degree of explanatory power in 

terms of determining log(RT). 

Response Model 3:  

log(RT)(t) =  β0 + β1(δ1
(t)

)  + β2(ε2
(t)

)  + β3(ε3
(t)

)  +  β4(μ3
(t)

)  +  β5(PostError(t))  +  ζ(t) 

Equation 4.3 

4.3.5.3 Model fitting 

For each participant, individual maximum a posteriori estimates for perceptual and 

response model parameters were jointly obtained using the Broyden-Fletcher-Goldfarb-

Shanno algorithm as implemented in the HGF Toolbox. Where priors were required, they 

were defined by inverting the perceptual model in isolation, given the known stimulus 

sequence (using the function ‘tapas_bayes_optimal_whatworld_config’), under suitably 

uninformative priors. The resulting posterior estimates were then used to define the 

priors for the subsequent inversion of the full model given the behavioural data (see 

Table 4.1). In other words, the prior means in the empirical data analysis corresponded 

to those parameter values for which the stimulus sequence would generate minimal 

surprise (in an observer with the aforementioned uninformative priors). 
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Table 4.1 A summary of HGF parameters and priors. 

 All priors are specified in the space in which they are estimated. For an account of how 

this relates to the native space of that parameter, please refer to Chapter 3 and to the 

original description of the model (Mathys et al., 2011).  

Parameter Notes Prior 

 
Perceptual Model 
 

ϑ  Metavolatility belief parameter; controls the 

step size of the Gaussian random walk at 

level 3. Estimated in logit space. 

Mean 
Variance 
Upper bound 

0 
2 

0.01 

ω  Tonic volatility belief parameter; a constant 

component of the learning rate at level 2. 

Mean 
Variance 

-6 
25 

Stimulus 

Transitions 

(𝒙1) 

4x4 matrix; the predictions are a sigmoid 

transformation of the probabilities 

represented in 𝒙2, and so do not have a 

starting prior value. 

𝝁1: 
Mean 
Variance 

 
NaN 
NaN 

𝝈1: 
Mean 
Variance 

 
NaN 
NaN 

Stimulus 

Transition 

Contingencies  

(𝒙2) 

4x4 matrix; estimated conditional 

probabilities for the 16 possible stimulus 

transitions are updated on each trial. At 

level 2, estimates are made in logit space   

(-1.0986 is equivalent to a 0.25 probability). 

𝝁2: 
Mean 
Variance 

 
-1.0986 

0 
 

𝝈2: 
Mean 
Variance 

 
0 

log(1) 

Volatility 

(𝑥3) 

Scalar; one trial-wise volatility estimate is 

updated after each stimulus transition. 

𝜇3: 
Mean 
Variance 

 
1 

0.1 

𝜎3: 
Mean 
Variance 

 
log(0.1) 

1 

 
Response Model  
 

β0 log(RT) constant Mean 
Variance 

log(500) 
3 

β1 Sensory PE (𝛿1) 
 

Mean 
Variance 

0 
4 

β2 Precision-weighted contingency PE (𝜀3) Mean 
Variance 

0 
4 

β3 Volatility estimate (𝜇3) Mean 
Variance 

0 
4 

β4 Post-error Mean 
Variance 

0 
3 

ζ Noise Mean 
Variance 

-3 
1e-3 
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4.3.5.4 Parameters of interest 

Since the HGF separates the relatively complex and interacting factors that influence 

RTs in a computationally limpid way, the individual effects of the three pharmacological 

manipulations on perceptual belief updating and response modulation could be probed. 

By comparing participant-specific perceptual parameters (ϑ and ω) in each drug-group 

to Placebo, it was possible to characterise learning under pharmacological NA, ACh and 

DA manipulations. Moreover, any neuromodulatory effects on perceptual belief updating 

could be distinguished from those on the sensitivity of motor responses (as reflected by 

the response model β estimates) to perceptual beliefs. 

4.3.6 Statistical analyses 

In reporting statistical differences, a significance threshold of =0.05 was used. Where 

assumptions of sphericity were violated (Mauchly’s test p<0.05), the Greenhouse-

Geisser correction was applied. Since a significant time x drug interaction on self-

reported alertness was identified (see section 4.4.5.1 for details), the participant-specific 

difference in alertness between baseline and the time corresponding to peak drug 

concentration, Δalertness, was used as a covariate in all analyses to control for any inter-

participant variability in subjective drug effect. 

For comparisons across the four drug-groups, partial eta-squared (ηp
2) is reported as the 

effect size. The key experimental question pertained how different neuromodulators 

influence learning and response modulation compared to placebo. Therefore, planned 

comparisons were made between each of the three active drug-groups (NA-, ACh- and 

DA-) and the Placebo group by fitting a linear model separately for each participant-

specific model parameter (ϑ, ω and each β). Here a Benjamini-Hochberg correction for 

three pairwise comparisons was applied to account for the false discovery rate (FDR) 

(Benjamini and Hochberg, 1995). For pairwise comparisons, Cohen’s d is reported as 

the effect size. 

4.3.7 Control analyses 

4.3.7.1 Permutation tests 

In addition to the linear models used to assess the effects of the three drug manipulations 

on the HGF model parameters, permutation tests randomising drug assignment over 

participants were conducted to make distribution-free comparisons. 10,000 permutations 

were run per parameter of interest. For each parameter and each permutation, the 

difference between the mean for each permuted drug and the mean for the permuted 
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Placebo was calculated. The permutation values were then tested by calculating the 

fraction of the permutation points with larger absolute differences than, but in the same 

direction as, those differences observed in the empirical data. 

4.3.7.2 Exhaustive response model comparison 

To further verify that a response model that offered the best means by which to explain 

trial-wise log(RT) had been identified, a more exhaustive set of models containing 

different combinations of parameters from the HGF was compared for the Placebo group. 

A family-wise model comparison was first run on models containing every combination 

of the parameters 𝛿1, 𝜀2, 𝜀3 and 𝜇3 (Family 1) versus models containing every 

combination of predicted uncertainty estimates from each level of the HGF, �̂�1, �̂�2 and �̂� 

(Family 2). All models contained an additional parameter for post-error slowing. Once 

the winning family was identified, random effects Bayesian model selection was run on 

all models in that family. See section 4.4.5.3 for details. 

4.3.7.3 Model parameter correlations 

To demonstrate that the HGF provided a good fit to the behavioural data, the correlations 

between the Bayesian parameter averages (BPAs) for model parameters in each drug-

group were assessed. 

4.3.7.4 Residuals 

For further verification that the HGF model provided a good fit to the behavioural data, 

the residuals between the observed log(RTs) and those predicted by the model were 

assessed for each drug-group. To confirm that the HGF did not systematically under- or 

over-estimate log(RTs) at true contextual change-points, autocorrelations between 

residuals for participants in each drug-group were calculated.  

4.3.7.5 Simulations 

To demonstrate that the HGF can capture the effects reported in the results, and to 

illustrate the implications of different model parameters further, the HGF was used to 

generate simulated log(RT) data. First, 100 simulations were run for each set of posterior 

parameter values obtained for each participant in the Placebo group, generating 1200 

log(RTs) for each run. The simulated log(RTs) on high (p=0.85 or p=0.70), mid (p=0.25 

or p=0.20) and low (p=0.05) probability trials were then averaged, i.e., to mirror the 

model-agnostic analyses. For each of a series of further simulations, the same parameter 

settings were taken, but particular parameters of interest, identified based on the 

empirical observations, were modified. For these parameters of interest, the estimated 
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parameters for each Placebo participant were shifted by the difference between the 

Placebo group average and the relevant drug-group average for that parameter. All 

averaging was performed in the space in which the parameters were estimated. Again, 

100 runs for each “computationally drugged” participant were run and the simulated 

log(RTs) were averaged across three probability levels. Thus, it was possible to assess 

the impact of different model parameters on log(RT), and to compare simulated log(RTs) 

to empirical data in each drug-group. 

4.4 Results 

Data from 124 participants are reported. Four participants were excluded from analyses: 

three due to high missed response rates (≥11%) and one because behavioural model 

parameter estimation (using the Broyden-Fletcher-Goldfarb-Shanno algorithm) did not 

converge. The four drug-groups were matched for gender (Kruskal-Wallis test: H3=0.53, 

p=0.912), age (one-way ANOVA: F3,120=0.46, p=0.714), body weight (F3,120=2.24, 

p=0.087), education level (H3=1.31, p=0.727), and all baseline psychometric measures 

taken (Table 4.2). 
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4.4.1 Model-agnostic results 

On average, 90.3 ± 0.8% (±SEM), 88.4 ± 1.2%, 87.7 ± 1.3% and 89.2 ± 0.91% of trials 

were correct in the Placebo, NA-, ACh- and DA- groups respectively. The percentages 

of correct responses did not differ between groups (F3,123=1.12, p=0.345).  

First, a RM-ANOVA was conducted on the log(RTs) for correct responses on trials 

binned according to the five true conditional probabilities that existed in each of the TMs, 

grouped into High (0.85 and 0.70), Mid (0.25 and 0.20), and Low (0.05) transition 

probabilities, with drug as a between-subjects factor (Figure 4.3A). This revealed a 

significant decrease in log(RTs) with increasing transition probability (main effect of 

probability: F1.27,151.36=483.50, p<0.001, effect size ηp
2=0.80), which was modulated by 

drug-type (probability x drug interaction: F3.82,151.36=12.37, p<0.001, ηp
2=0.24), but not by 

Δalertness (p=0.909). 

Table 4.2 Participant details for each experimental group.  

Between-groups comparisons revealed no significant differences (ns = non-significant) 

for gender, age, body weight, education level, baseline working memory (Digit Span), 

impulsivity (Barratt Impulsiveness Scale; BIS-11), risk-taking (Domain-Specific Risk-

Taking Scale; DOSPERT), distractibility (Cognitive Failures Questionnaire; CFQ), fatigue 

during the task, or sleep quality or quantity on the previous night. For continuous data, 

one-way ANOVAs were used to test for any between-group differences. For discrete 

data (#), Kruskal-Wallis tests were applied. Education Level refers to the highest attained 

from the following: 1 = compulsory education (≤ 12 years); 2 = further education (13-14 

years); 3 = undergraduate degree (15-17 years); 4 = one postgraduate degree (≥ 18 

years); 5 = multiple postgraduate degrees. Age data are mean ± SD. Remaining data 

are mean ± SEM.  Active drug refers to the percentage of participants within each group 

who reported at the end of the experiment that they believed they had received an active 

drug.  
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Figure 4.3 Model-agnostic results. Changes in log(RT) indicate that participants 

learned to predict the stimulus transitions. (A) In all four groups, log(RT) increased as a 

stimulus’ true transition probability decreased. (B) A median split on each 50-trial 

contextual block was used to compare mean log(RTs) on Early (1-25) and Late (25-50) 

trials at each probability level. Over the course of a context, participants became faster 

at responding to High and Mid probability stimuli, and slower at responding to Low 

probability stimuli. Raw RTs are plotted here to simplify interpretation of ΔRT, but 

statistics were run on log(RTs). (C) Across drug-groups, participants showed evidence 

of post-error slowing on correct trials that followed an erroneous response compared to 

those following correct responses. (D) Participants also showed evidence of slowing on 

correct trials that followed an infrequent stimulus transition. Results are mean ± SEM, 

corrected for Δalertness. Results shown in A, B and D were modulated by drug-group.  

Moreover, across the course of a contextual block (Figure 4.3B), participants became 

faster at responding to High and Mid probability stimuli and slower at responding to Low 

probability stimuli (significant main effects of probability: F1.28,152.70=476.88, p<0.001, 

ηp
2=0.80 and time: F1,119=12.01, p<0.001, ηp

2=0.34; probability x time interaction: 

F2,238=113.73, p<0.001, ηp
2=0.49). The effect was modulated by drug-type (probability x 

time x drug interaction: F6,238=3.10, p=0.006, ηp
2=0.07), but again not systematically 

related to differences in Δalertness (all p>0.06). Post-hoc (FDR-corrected) pairwise 

comparisons indicated that the impact of drug was driven by the ACh- group, which 
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showed significant log(RT) slowing compared to Placebo (t58=3.06, p=0.009, effect size 

Cohen’s d=0.80). Together, these results indicate that participants learned about the true 

stimulus transition contingencies, and that this learning was modulated by the 

pharmacological manipulations.  

Participants showed evidence of post-error slowing on correct trials following those on 

which they made an error (F1,119=108.25, p<0.001, ηp
2=0.48; Figure 4.3C). This effect 

was not modulated by drug-group (trial-type x drug interaction: p=0.957), or by 

Δalertness (p=0.608). Participants also demonstrated significant log(RT) slowing on 

correct, post-infrequent trials (true transition probability = 0.05) compared to all other 

correct trials (F1,119=441.12, p<0.001, ηp
2=0.79; Figure 4.3D), which was modulated by 

drug-group (F3,119=4.47, p=0.005, ηp
2=0.10) but not by Δalertness (p=0.652). This effect 

was driven by the ACh- group, with (FDR-corrected) pairwise comparisons revealing 

significant slowing compared to Placebo (t58=3.44, p=0.003 d=0.90). Error rates 

significantly decreased with increasing transition probability (main effect of probability: 

F1.54,183.50=143.60, p<0.001, ηp
2=0.55). The effect was again modulated by drug-type 

(probability x drug interaction: F4.63,183.50=5.21, p<0.001, ηp
2=0.12), but not by Δalertness 

(p=0.283). There was no between-subjects effect of drug-group (p=0.776). 

4.4.2 Model-based results 

4.4.2.1 Perceptual model 

Overall, the HGF tracked the true stimulus transitions well (Figure 4.4). Note that the 

model is uninformed about the true stimulus transition probabilities, but rather bases its 

estimates on the observed stimulus transitions only.  
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Figure 4.4 Estimated transition contingencies for two example participants. (A) 

Transitions between pairs of stimuli, from trial t-1 to trial t, were defined by transition 

matrices. Every 50 trials the transition matrix switched to a different matrix. (B) Each 

panel corresponds to one of 16 possible transitions between stimuli across 1200 trials. 

The black lines indicate the true transition contingencies. The blue lines reflect the 

participant’s inferred estimates (i.e., the posterior expectation of these contingencies, �̂�1) 

before seeing the stimulus outcome on each trial. The model tracked the true underlying 

contingencies and detected change-points. Here, in a representative participant from the 

Placebo group, the model tracked the true transition contingencies closely, whereas a 

participant from the ACh- group showed a greater discrepancy in the tracking of the true 

transition contingencies. This is reflected in the participants’ ω estimates: Placebo 

Participant 2 showed a higher transition contingency learning rate (ω=-3.27) than ACh- 

Participant 16 (ω=-5.84).  

The punctate change-points contained in the true generative process were detected 

implicitly by the HGF as an increase in learning rate (𝛼1; Figure 4.5), which reflects the 

influence of increased uncertainty and formally corresponds to a reduced contribution of 

belief precision (denominator in Equation 3.16) to the weighting of PE. 

 

Figure 4.5 Learning rate (α1) trajectories for the Placebo group. Increases in α1 are 

observed following a true change in context. This α1 increase is amplified for a more 

obvious switch from one easy-to-detect 0th-order context to a different 0th-order context. 
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In contrast, a switch to an Alternating context, which is trickier to detect, is accompanied 

by a modest, more gradual increase in α1. Data are mean ± SEM for truly occurring 

transitions.  

Importantly, when trials were categorised according to participants’ trial-wise estimates 

of transition contingencies, as provided by model parameter �̂�1 (five bins: 0.8-1, 0.6-0.8, 

0.4-0.6, 0.2-0.4, 0-0.2), the same decrease in log(RT) with increasing transition 

probability found in the model-agnostic results was observed (c.f. Figure 4.6 with Figure 

4.3A; significant effect of �̂�1: F1.68,188.02=297.92, p<0.001, ηp
2=0.73). As in the model-

agnostic results, this was modulated by drug-group (significant �̂�1 x drug interaction: 

F5.04,188.02=9.52, p<0.001, ηp
2=0.20), but not by Δalertness (p=0.112). 

 

Figure 4.6 Model-based changes in log(RT) mirror the model-agnostic results. In 

all four groups, faster responses were observed as participants’ estimates of the true 

transition contingencies increased, demonstrating that the HGF captured the same 

behavioural effect identified in the model-agnostic analyses, i.e., that participants learned 

to predict the stimulus transitions and prepared motor responses to high probability 

transitions (c.f. Figure 4.3A). Results are mean ± SEM, corrected for Δalertness.  

4.4.2.2 Response model 

Random effects Bayesian model selection established that Response Model 1 

(containing parameters 𝛿1, 𝜀3 and 𝜇3) was superior in all four pharmacological groups by 

a considerable margin. For the Placebo, NA-, ACh- and DA- groups respectively, the 

posterior model probabilities were 0.911, 0.828, 0.636 and 0.829; protected exceedance 

probabilities (i.e., the probability that Response Model 1 is more likely than any other 

model in the comparison set) were 1.000, 1.000, 0.963, 1.000 (Figure 4.7). Moreover, no 

significant difference in model frequencies between the Placebo group and any of the 

drug-groups was identified (NA- vs Placebo: p=0.958, ACh- vs Placebo: p=0.560, DA- 
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vs Placebo: p=0.955). Therefore, Response Model 1 was used for all subsequent 

analyses. 

 

Figure 4.7 Random effects Bayesian model selection results. Response Model 1 

was found to be superior in all four groups. Posterior probabilities quantify the likelihood 

of each model given the data. Protected exceedance probabilities quantify how likely it 

is that any given model is more frequently utilised by individuals than all other models in 

the comparison set, while also protecting against the possibility that the observed 

variability in (log-) model evidences could be due to chance. The dotted line indicates 

the threshold for chance-level posterior probabilities (p=0.33).  

All regression coefficients for the Placebo group were significantly greater than 0 (Figure 

4.2E), meaning that sensory PE (β1(𝛿1): t30=7.90, p<0.001, effect size d=1.41), precision-

weighted contingency PE (β2(𝜀3): t30=6.33, p<0.001, d=1.13) and phasic volatility 

estimates (β3(𝜇3): t30=5.49, p<0.001, d=0.98) all had slowing influences on log(RT), and 

that there was evidence of post-error slowing (β4(PostError): t30=5.85, p<0.001, d=1.05). 

Each of the drug-groups showed equivalent post-error slowing to the Placebo group (all 

p>0.54; Figure 4.9F), mirroring the model-agnostic result. The lack of a difference in the 

noise parameter ζ between the Placebo group and any of the drug-groups (all p>0.34; 

Figure 4.9A) indicates that the model’s ability to predict log(RT) was unaltered under the 

drug manipulations.  

4.4.3 The influence of noradrenaline and acetylcholine in perceptual 

uncertainty computations  

4.4.3.1 Noradrenaline antagonism increased phasic volatility learning rate  

The noradrenergic (α1-adrenoceptor) antagonist prazosin increased the rate at which 

individuals updated their volatility estimates, as reflected by an increase in ϑ (linear 

model: t60=2.32, p=0.033, effect size Cohen’s d=0.60; Figure 4.8A). A higher ϑ leads to 

greater fluctuations in participants’ phasic volatility estimates, 𝜇3, resulting in a more 

variable phasic learning rate. By contrast, there was no effect on ω (p=0.388; Figure 
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4.8B), indicating that the tonic learning rate about the probabilistic contexts remained 

unchanged. 

 

Figure 4.8 Perceptual model parameter results. (A-B) Compared to the Placebo 

group, NA and ACh antagonism modulated participants’ perceptual belief updating. NA- 

increased the rate at which participants updated their phasic volatility estimates 

(increased ϑ). ACh- decreased the rate at which participants learned about stimulus 

transition contingencies (decreased ω), and increased the rate at which participants 

updated their phasic volatility estimates (increased ϑ). Results are (mean Drug) – (mean 

Placebo), ± the standard error of the difference (SED) between the means of the two 

samples, and corrected for Δalertness. * p<0.05 following an FDR correction for three 

multiple comparisons. See Table 4.3 for Placebo group means.  

4.4.3.2 Acetylcholine antagonism slowed learning about stimulus transition 

contingencies   

Muscarinic cholinergic (M1-receptor) antagonism under biperiden had more widespread 

perceptual effects. While ϑ was again significantly increased compared to Placebo 

(t58=2.95, p=0.012 d=0.81; Figure 4.8A), ω estimates in the ACh- group were significantly 

reduced (t58=-2.68, p=0.025, d=-0.74; Figure 4.8B). The lower estimate of ω indicates 

that participants were slower to update their transition contingency estimates under 

biperiden and thus slower to adapt to the probabilistic contexts. 

4.4.3.3 Dopamine antagonism had no effect on learning about task structure 

The D1/D2 dopamine receptor antagonist haloperidol did not influence the rate at which 

participants learned about the task’s volatility or contextual transition contingencies 

compared to Placebo (ϑ and ω: both p>0.23). 
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To summarise, both NA and ACh antagonism altered learning of uncertain events arising 

from unexpected contextual changes in the environment. Only ACh antagonism 

disrupted learning of transition contingencies within probabilistic contexts. 

4.4.4 Neuromodulatory effects on response modulation  

4.4.4.1 Noradrenaline antagonism had no influence on responses 

The response model output revealed no significant effects of NA antagonism on 

participants’ capacity to modulate their motor responses according to their perceptual 

estimates of uncertainty (all p>0.09; Figure 4.9C-E). 

4.4.4.2 Acetylcholine antagonism reduced response sensitivity to perceptual 

beliefs 

Compared to Placebo, ACh antagonism reduced the sensitivity of participants’ motor 

responses to sensory PE (β1: t58=-3.27, p=0.004, d=-0.90), precision-weighted 

contingency PE (β2: t58=-2.67, p=0.026, d=-0.74) and phasic volatility estimates (β3: t58=-

3.95, p<0.001, d=-1.09) (Figure 4.9C-E). 

4.4.4.3 Dopamine antagonism reduced response sensitivity to phasic volatility 

Compared to Placebo, DA antagonism led to a decrease in the influence of phasic 

volatility estimates on log(RT) (β3: t61=-2.69, p=0.012, d=-0.67; Figure 4.9E). This 

indicates that DA antagonism suppressed the sensitivity of motor responses to higher-

level inference. There was no significant effect of DA antagonism on the sensitivity of 

motor responses to sensory PE or precision-weighted contingency PE (all p≥0.14). 
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Figure 4.9 Response model results. DA- antagonism decreased the sensitivity of 

participants’ trial-wise responses to their phasic volatility estimates (β3). DA- and ACh- 

antagonism also caused some general response slowing (β0). The three drug-groups 

and the Placebo group showed equivalent post-error slowing (β4) and Gaussian noise 

(ζ). Results are (mean Drug) – (mean Placebo), ± SED and corrected for Δalertness. * 

p<0.05, ** p<0.01, *** p<0.001 following an FDR correction for multiple comparisons. 

See 

Table 4.3 for Placebo group means.  

In addition to the effects reported above, the log(RT) constant output indicated that 

suppressing DA and ACh also led to some general log(RT) slowing (β0: t61=2.54, p=0.019 

d=0.64; t58=4.85, p<0.001, d=1.34 respectively; Figure 4.9B). Subjective Δalertness 

systematically modulated the effects observed on ϑ (t119=2.54, p=0.013, d=0.02), 

sensory PE (β1: t119=2.53, p=0.013, d=0.02) and precision-weighted contingency PE (β2: 

t119=-3.09, p=0.002, d=-0.02). 
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Parameter Mean SEM t-value p-value 

ϑ 0.0034 0.0035 - - 

ω -3.5849 0.1880 - - 

β0 5.7079 0.0992 57.567 <0.001 

β1(δ1) 0.1996 0.0253 7.9020 <0.001 

β2(ε3) 0.2256 0.0357 6.3260 <0.001 

β3(μ3) 0.5208 0.0949 5.4900 <0.001 

β4(Post-Error) 0.0620 0.0106 5.8520 <0.001 

ζ 0.0536 0.0013 - - 

 

Table 4.3 Average perceptual and response model parameters for the Placebo 

group. β0 reflects a constant component of log(RT). β1-4 reflect the influence of sensory 

PE (𝛿1), precision-weighted contingency PE (𝜀3), phasic volatility estimates (𝜇3) and 

post-error trials on log(RT). All β values were significantly greater than zero (all p<0.001), 

indicating that these parameters slowed log(RT). All data are corrected for Δalertness.  

4.4.5 Control analyses 

4.4.5.1 Physiological and subjective control measures 

Self-reported ratings for alertness, calmness and contentedness all changed significantly 

over the course of the experiment (F1.79,214.39=71.60, p<0.001, ηp
2=0.37; F1.88,225.25=5.96, 

p=0.004, ηp
2=0.05 and F2,240=25.65, p<0.001, ηp

2=0.18 respectively), but only alertness 

ratings showed a significant time x drug interaction (F5.36,214.39=6.40, p<0.001, ηp
2=0.14). 

On average, alertness decreased within-participants over the course of the experiment 

in all four groups. A one-way ANOVA with drug as a between-subjects factor revealed 

that the degree to which alertness decreased between Baseline (Figure 4.1A) and the 

time corresponding to peak drug concentration (Post-Drug) varied between groups 

(F3,120=7.92, p<0.001, ηp
2=0.17). More specifically, compared to Placebo, the alertness-

decrease was significantly more pronounced in the ACh- and NA- groups (t59=-4.31, 

p<0.001, d=-1.11 and t61=-2.76, p=0.007, d=-0.70 respectively). 

Heart rate (HR) varied significantly with time (F1.89, 226.71=129.25, p<0.001, ηp
2=0.52) and 

this effect was modulated by drug-group (F5.67,226.71=5.40, p<0.001, ηp
2=0.12). On 

average, all groups showed participant-specific HR decreases between Baseline and 

Post-Drug. The magnitude of HR deceleration differed between groups (F3,120=6.65, 

p<0.001, ηp
2=0.14), but only in the ACh- group was HR deceleration more pronounced 

than Placebo (t59=-3.14, p=0.002, d=-0.81). While systolic blood pressure (BP) varied 

with time (F2,240=7.12, p=0.001, ηp
2=0.06), there was no time x drug interaction 
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(F6,240=1.55, p=0.16). Diastolic BP showed no main effect of time (F2,240=0.37, p=0.695), 

but there was a significant time x drug interaction (F6,240=3.52, p=0.002, ηp
2=0.08). More 

precisely, participant-specific differences in diastolic BP between Baseline and Post-

Drug varied significantly between groups (F3,120=5.11, p=0.002, ηp
2=0.11) due to a 

significant decrease in diastolic BP in the NA- group compared to the Placebo group 

(t61=-3.49, p<0.001, d=-0.88). This is unsurprising given that the NA- drug administered 

(prazosin) is used clinically as an anti-hypertensive. A summary of the subjective and 

physiological measures is reported in Table 4.4. 

  Placebo NA- ACh- DA- 

A
le

rt
-

n
e
s
s
 

Baseline 

Post-Drug 

Post-Task 

64.4 ± 2.8 

60.7 ± 2.3 

59.5 ± 2.8 

64.7 ± 2.5 

52.5 ± 2.6 

48.7 ± 2.8 

65.2 ± 2.5 

48.0 ± 2.3 

49.9 ± 2.4 

65.1 ± 2.3 

59.6 ± 3.0 

52.8 ± 3.6 

C
a

lm
-

n
e
s
s
 

Baseline 

Post-Drug 

Post-Task 

66.9 ± 2.9 

70.6 ± 2.6 

60.8 ± 2.9 

68.9 ± 3.2 

68.5 ± 2.9 

66.4 ± 2.8 

66.4 ± 2.6 

62.9 ± 2.6 

60.2 ± 2.7 

61.5 ± 3.0 

67.3 ± 2.4 

63.5 ± 2.5 

C
o

n
te

n
t-

e
d
n

e
s
s
 Baseline 

Post-Drug 

Post-Task 

71.2 ± 2.3 

69.7 ± 2.2 

65.9 ± 2.4 

70.2 ± 2.6 

67.2 ± 2.5 

66.7 ± 2.4 

69.4 ± 2.1 

63.5 ± 2.1 

59.5 ± 2.1 

69.5 ± 2.3 

67.7 ± 2.3 

64.9 ± 2.2 

H
R

 

Baseline 

Post-Drug 

Post-Task 

69.8 ± 1.9 

61.2 ± 1.7 

62.8 ± 1.6 

78.7 ± 2.4 

72.7 ± 2.3 

73.1 ± 2.0 

71.0 ± 1.8 

55.8 ± 1.7 

56.6 ± 1.5 

74.8 ± 2.1 

65.3 ± 1.7 

66.7 ± 1.8 

S
y
s
to

lic
 

B
P

 

Baseline 

Post-Drug 

Post-Task 

110.8 ± 1.9 

109.5 ± 1.5 

110.1 ± 1.5  

121.7 ± 2.2 

117.5 ± 2.1 

121.6 ± 2.1 

111.5 ± 2.0 

109.8 ± 2.1 

116.3 ± 2.8 

117.6 ± 2.6 

114.5 ± 2.0 

116.4 ± 2.2 

D
ia

s
to

lic
 

B
P

 

Baseline 

Post-Drug 

Post-Task 

68.8 ± 1.3 

70.5 ± 1.4 

71.7 ± 1.4 

73.4 ± 1.1 

69.0 ± 1.5 

69.7 ± 1.3 

69.1 ± 1.4 

68.7 ± 1.5 

70.6 ± 1.9 

69.6 ± 1.7 

70.9 ± 1.4 

69.3 ± 1.8 

 

Table 4.4 Subjective and physiological measures for each experimental group. 

Readings were taken at baseline, immediately before participants started the PSRTT 

(i.e., when the drugs were at their most active; Post-Drug), and after completing the 

PSRTT (Post-Task). Data are mean ± SEM.  
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4.4.5.2 Permutation tests 

Aside from the effect of ACh- on β2, all significant effects observed in the multiple 

comparisons reported above (c.f. Figure 4.8 and Figure 4.9) were mirrored in the results 

of the permutation tests. 

 Comparison 

(drug vs Placebo) 

Direction of effect 

(for drug vs Placebo) 

p-value Significant? 

ϑ NA- vs Placebo ↑ 0.040 * 

ACh- vs Placebo ↑ 0.016 * 

DA- vs Placebo - 0.147 ns 

ω NA- vs Placebo - 0.203 ns 

ACh- vs Placebo ↓ 0.002 ** 

DA- vs Placebo - 00106 ns 

β0 NA- vs Placebo - 0.322 ns 

ACh- vs Placebo ↑ <0.001 *** 

DA- vs Placebo ↑ 0.011 * 

β1 NA- vs Placebo - 0.568 ns 

ACh- vs Placebo ↓ <0.001 *** 

DA- vs Placebo - 0.392 ns 

β2 NA- vs Placebo - 0.130 ns 

ACh- vs Placebo - 0.057 ns 

DA- vs Placebo - 0.104 ns 

β3 NA- vs Placebo - 0.122 ns 

ACh- vs Placebo ↓ <0.001 *** 

DA- vs Placebo ↓ 0.006 ** 

β4 NA- vs Placebo - 0.554 ns 

ACh- vs Placebo - 0.542 ns 

DA- vs Placebo - 0.711 ns 

ζ NA- vs Placebo - 0.571 ns 

ACh- vs Placebo - 0.098 ns 

DA- vs Placebo - 0.505 ns 

 

Table 4.5 Permutation test results. 10,000 permutations were run for each of the HGF 

model parameters, randomising drug assignment over participants. Aside from the effect 

of ACh- on β2, all significant effects observed in the multiple comparisons reported above 
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(c.f. Figure 4.8 and Figure 4.9) were mirrored in the results of the permutation tests. * 

p<0.05, ** p<0.01, *** p<0.001; ns = non-significant.  

4.4.5.3 Exhaustive response model comparison 

A family-wise model comparison established that Family 1 (containing models with 

different combinations of the parameters 𝛿1, 𝜀2, 𝜀3 and 𝜇3) was superior to Family 2 

(containing models with different combinations of the parameters �̂�1, �̂�2 and �̂�3) (posterior 

probability: 0.700; exceedance probability: 0.999; Table 4.6). Mirroring the model 

comparison results reported above (section 4.4.2.2), random effects Bayesian model 

comparison on all models in Family 1 identified Response Model 1 as superior (posterior 

probability: 0.270, protected exceedance probability: 0.844; Table 4.7). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.6 Results of family-wise Bayesian model comparison. To further verify that 

 Model 

Parameters 

Posterior 

Probability 

Exceedance 

Probability 

F
a
m

il
y

 1
 

𝛿1, 𝜀3, 𝜇3, PostError, 𝜁 

𝜀2, 𝜀3, 𝜇3, PostError, 𝜁 

𝛿1, 𝜀2, 𝜀3, 𝜇3, PostError, 𝜁 

𝛿1, PostError, 𝜁 

𝛿1, 𝜀2, PostError, 𝜁 

𝛿1, 𝜀2, 𝜀3, PostError, 𝜁 

𝛿1, 𝜀2, 𝜇3, PostError, 𝜁 

𝛿1, 𝜀3, PostError, 𝜁 

𝛿1, 𝜇3, PostError, 𝜁 

𝜀2, PostError, 𝜁 

𝜀2, 𝜀3, PostError, 𝜁 

𝜀2, 𝜇3, PostError, 𝜁 

𝜀3, PostError, 𝜁 

𝜀3, 𝜇3, PostError, 𝜁 

𝜇3, PostError, 𝜁 

 
 
 
 
 
 
 
 
 
 

0.700 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

0.999 

F
a
m

il
y

 2
 

�̂�1, PostError, 𝜁 

�̂�2, PostError, 𝜁 

�̂�3, PostError, 𝜁 

�̂�1, �̂�2, PostError, 𝜁 

�̂�2, �̂�3, PostError, 𝜁 

�̂�1, �̂�2, �̂�3, PostError, 𝜁 

 
 
 
 

0.300 

 
 
 
 

0.001 
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Response Model 1 offered the best means by which to explain trial-wise log(RT), a more 

exhaustive set of linear response models containing different combinations of 

parameters from the HGF were compared for the Placebo group. A family-wise model 

comparison was first run on models containing every combination of the parameters 𝛿1, 

𝜀2, 𝜀3 and 𝜇3 (Family 1) versus models containing every combination of �̂�1, �̂�2 and �̂�3 

(Family 2). Note that the quantities corresponded to the true transition that occurred on 

each trial. All models included post-error slowing. Family 1 was found to be superior 

(posterior probability: 0.700; exceedance probability: 0.999).  

 

Table 4.7 Bayesian model comparison results for Family 1. Each model contained a 

combination of the parameters 𝛿1, 𝜀2, 𝜀3 and 𝜇3, and a parameter for post-error slowing. 

Response Model 1 was again found to be superior (posterior probability: 0.270; protected 

exceedance probability: 0.844).  

4.4.5.4 Model parameter correlations 

Aside from two exceptions, Bayesian parameter averages (BPAs) for the different model 

parameters were only moderately correlated across groups (all absolute r≤0.660; Figure 

Model 

Number 

Model 

Parameters 

Posterior 

Probability 

Protected 

Exceedance 

Probability 

1 𝛿1, 𝜀3, 𝜇3, PostError, 𝜁 0.270 0.844 

2 𝜀2, 𝜀3, 𝜇3, PostError, 𝜁 0.023 0.000 

3 𝛿1, 𝜀2, 𝜀3, 𝜇3, PostError, 𝜁 0.024 0.000 

4 𝛿1, PostError, 𝜁 0.115 0.026 

5 𝛿1, 𝜀2, PostError, 𝜁 0.023 0.000 

6 𝛿1, 𝜀2, 𝜀3, PostError, 𝜁 0.022 0.000 

7 𝛿1, 𝜀2, 𝜇3, PostError, 𝜁 0.022 0.000 

8 𝛿1, 𝜀3, PostError, 𝜁 0.024 0.000 

9 𝛿1, 𝜇3, PostError, 𝜁 0.144 0.068 

10 𝜀2, PostError, 𝜁 0.023 0.000 

11 𝜀2, 𝜀3, PostError, 𝜁 0.038 0.000 

12 𝜀2, 𝜇3, PostError, 𝜁 0.021 0.000 

13 𝜀3, PostError, 𝜁 0.097 0.013 

14 𝜀3, 𝜇3, PostError, 𝜁 0.133 0.049 

15 𝜇3, PostError, 𝜁 0.021 0.000 
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4.10). Higher correlations existed between BPAs for ω (transition contingency learning 

rate) and 𝜇3_0 (the initial phasic volatility estimate) (r=-0.948, -0.764, -0.771, -0.983 for 

Placebo, NA-, ACh- and DA- respectively). This is to be expected on theoretical grounds 

because the two parameters perform very similar functions in the generative model. Note 

that the initial value of 𝜇3 was estimated as 𝜇3 was used as a predictor of log(RT) in the 

response model. However, when 𝜇3_0 was fixed there were no changes to any of the 

reported main effects. 

 

Figure 4.10 Model parameter correlations for the Bayesian parameter averages 

(BPAs). Note that 𝜇3_0 and 𝜎3_0 are the initial values of 𝜇3 (the phasic volatility estimate) 

and 𝜎3 (the uncertainty about the phasic volatility estimate) respectively.  

Higher correlations also occurred between BPAs for β0 (log(RT) constant) and β3(𝜇3) (the 

sensitivity of log(RTs) to phasic volatility estimates) (r=-0.877, -0.736, -0.630 and -0.880). 

Here the negative correlation indicates that both the constant component of log(RT) and 
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phasic volatility estimates had a similar slowing effect on log(RT). This reflects the fact 

that, while including 𝜇3 as a predictor of log(RT) significantly improves model evidence, 

it is much less variable than the other predictors because volatility inevitably changes at 

a slower time scale than transition contingencies. 

4.4.5.5 Residuals 

The distribution of residuals between the observed log(RTs) and those predicted by the 

HGF suggests that the model captured the patterns in the data well, and thus provided 

a good fit to the behavioural data (Figure 4.11). The mean (± SEM) correlations between 

observed log(RTs) and predicted log(RTs) were 0.38 ± 0.02, 0.36 ± 0.02, 0.26 ± 0.01 

and 0.36 ± 0.02 for Placebo, NA-, ACh- and DA- respectively.  

 

Figure 4.11 Residuals between observed and predicted log(RTs). The distribution of 

residuals between observed log(RTs) and those predicted by the HGF suggests that, 

across drug-groups, the model captured any patterns in the data well. Data are mean ± 

SEM.  

Moreover, autocorrelations between residuals for participants in each drug-group 

indicate that the model did not systematically under- or over-estimate log(RTs) at true 

contextual change-points (Figure 4.12).  
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Figure 4.12 Autocorrelations between residuals across trials. Across groups, the 

HGF did not systematically under- or overestimate log(RTs) at true change-points. Data 

are mean ± SEM.  

4.4.5.6 Simulations 

Simulated log(RT) data generated using the posteriors for each participant in the Placebo 

group as model parameters faithfully reflected the increase in log(RT) with decreasing 

stimulus transition probability that was observed in the Placebo group’s empirical data 

(Figure 4.13). Shifting the parameters significantly altered by the different drug 

manipulations by the difference between the Placebo group mean for those parameters 

and the relevant drug-group mean simulated log(RT) data comparable to the empirical 

data observed in each drug-group. Indeed, simulating NA antagonism by increasing ϑ 

generated log(RTs) comparable to those for the NA- group. The same was true when 

DA antagonism was simulated by simultaneously increasing β0 and decreasing β3. 

Similarly, simulating ACh antagonism by increasing ϑ and β0, and decreasing ω, β1, β2 

and β3 produced slower simulated log(RTs) that faithfully reflected the empirical ACh- 

log(RT) data. Note that, unlike the empirical data, there is no additional slowing caused 

by post-error effects in the simulated data. 
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Figure 4.13 Empirical and simulated log(RTs). Empirical data (filled bars) indicated 

that log(RT) increased as a stimulus’ true transition probability decreased. Simulated 

data (unfilled bars) generated for the Placebo group and for three “computationally 

drugged” groups faithfully reflected the empirical log(RTs) in each drug-group. Note that 

there are no post-error slowing effects in the simulated data. Data are mean ± SEM.  

The simulated data was also able to capture the increase in RT observed in the empirical 

data following true contextual change-points, as well as the learning that occurred across 

trials within a stable context. (Figure 4.14). The model-agnostic data shown in Figure 

4.14A is for mean (±SEM) ΔRT (collapsed across TM-types) for high-probability trials 

(p>=0.70, as defined in the relevant TM) on which participants made a correct response, 

following true change-points for each of the drug-groups. The trial-wise ΔRT measure is 

the difference between RT on each post-change trial and the average of the last three 

high probability, correct trials in the previous context. RTs increased on the trial following 

a true change-point across drug-groups (one-way ANOVA with Δalertness covariate: 

F4,119=6.52, p<0.001, ηp
2=0.18), with an additional between-subjects effect of drug-group 

(F4,119=7.50, p<0.001, ηp
2=0.16). Post-hoc comparisons (FDR-corrected) demonstrated 

that this RT increase was significantly attenuated in the ACh- group compared to the 

Placebo (t58=-4.14, p<0.001, d=-1.09) group. This is in line with the earlier assessment 

that individuals in the ACh- group showed poorer learning of the contextual transition 

contingencies. 

Moreover, over the course of the context, there was a decrease in RT for high-probability 

trials, reflecting learning of the new context. Applying an ANOVA, with a Δalertness 

covariate, to compare the lines of best fit for each participant’s ΔRTs, demonstrated 

learning across the course of the contexts (reflected by the negative slopes; effect of 
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slope: F4,119=6.52, p<0.001, ηp
2=0.18) and modulation by drug-group (effect of drug: 

F3,118=6.31, p=0.001, ηp
2=0.14). Again, corrected post-hoc comparisons indicated slower 

learning in the ACh- group compared to the Placebo group (t58=4.05, p<0.001, d=1.06) 

group, in line with the finding of a reduced transition contingency learning rate (as 

reflected by model parameter ω) following ACh antagonism. 

Figure 4.14B indicates that the simulated data echoes the model-agnostic results: there 

are equivalent between-group differences, most notably a dampened RT increase 

following a true contextual switch, as well as a reduced learning rate, for the ACh- group.  

 

Figure 4.14 Empirical and simulated responses following true change-points. (A) 

Mean baseline-corrected RTs for the first 25 (high probability) trials in each context, 

where the baseline is the mean RT of the last three high probability trials in the previous 

context. RTs increase following a true contextual change-point, but fall as participants 

learn the new contextual rule. (B) As in A, but for simulated RTs. The model neatly 

captures the increase in RTs following true change-points, the reduction in RT that 

occurs with learning across the course of the new context, and the suppressed effects 

of change-points and learning on RTs in the ACh- group. Data are mean ± SEM. Raw 

RTs have been used here to simplify interpretation of ΔRT.  
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4.5 Discussion 

By implementing a novel PSRTT in conjunction with three pharmacological 

manipulations and placebo, it was possible to characterise the roles of three 

neuromodulatory systems during perceptual belief updating and response selection. 

Leveraging a hierarchical Bayesian learning model to decompose hierarchically-related 

forms of uncertainty meant that particular processes could be linked to NA, ACh and DA. 

While manipulating NA and ACh modulated perceptual uncertainty computations, DA 

receptor antagonism reduced the sensitivity of the motor system to perceptual estimates. 

A key benefit of the pharmacological approach used in the present study is that it 

permitted direct manipulation of the function of three different neuromodulatory systems 

and comparison of the resulting psychopharmacological effects to a placebo condition. 

This is relevant given likely functional overlap between the different neuromodulatory 

systems, as observed here. Indeed, manipulation of a single neuromodulatory system, 

or use of a single drug, would be agnostic to such an overlap and could make any one 

effect appear more relevant and specific than it is. The pharmacological approach also 

meant that it was possible to extend the interpretations of earlier neuroimaging studies 

(Iglesias et al., 2013; Payzan-LeNestour et al., 2013), from which it is not possible to 

infer with certainty that activations in particular brain regions, with inhomogeneous 

cellular compositions, reflect the activity of specific neuromodulatory neurons.  

4.5.1 Overlapping, but dissociable, noradrenergic and cholinergic influences 

on perceptual belief updating 

Considerable overlap in the influence of NA and ACh antagonism on perceptual belief 

updating was identified, but there were also quantitative differences between the drug 

conditions. While part-synergistic, part-antagonistic interactions between the two 

neuromodulators during uncertainty processing have been theorised previously (Yu and 

Dayan, 2005), to my knowledge this is the first study to directly assess these putative 

computational roles, and to distinguish them from dopaminergic effects, under three 

pharmacological manipulations and within the same computational framework. I propose 

that ACh guides probabilistic learning within environmental contexts, while NA has a 

more circumscribed role in modulating the rate at which an agent learns about the 

volatility latent in the environment.  
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4.5.1.1 Noradrenaline influences beliefs about unexpected environmental 

changes 

The present results suggest that NA antagonism under prazosin altered the rate at which 

individuals updated their volatility beliefs, as indicated by an increase in the model 

parameter ϑ. An influence of NA- on ϑ fits with the theorised role for NA in computing 

uncertainty arising from changes in environmental context (Yu and Dayan, 2005). 

Numerous studies have offered evidence that the NA system is sensitive to highly 

unexpected events that arise from a hidden contextual change. Noradrenergic neurons 

in the rat and nonhuman primate LC are responsive to environmental novelty and 

unexpected changes in reward contingencies (Sara and Segal, 1991; Vankov et al., 

1995; Aston-Jones et al., 1997; Bouret and Sara, 2004). Additionally, changes in pupil 

diameter, attributed at least in part to noradrenergic LC activity (Murphy et al., 2014; 

Varazzani et al., 2015; Joshi et al., 2016), have been shown to correlate with unexpected 

outcomes (Preuschoff et al., 2011; Nassar et al., 2012; Browning et al., 2015). I will return 

to this concept in Chapter 6. 

More specifically, in the present study, faster volatility belief updating was observed 

following NA antagonism. In the HGF model, ϑ represents the volatility of the volatility, 

and thus the results suggest that NA stabilises an agent’s estimate of environmental 

volatility. This is compatible with the notion that the volatility estimate has a relatively low 

baseline level, to which it returns after being pushed away. In a volatile environment, this 

is not an adaptive feature. Rather, the volatility estimate should remain high to enable 

revision of one’s beliefs. It is possible that NA prevents the volatility estimate from falling 

by reducing an agent’s ϑ estimate.  

The neurophysiological literature has distinguished two functional modes of LC 

noradrenergic release (Aston-Jones and Cohen, 2005b; Bouret and Sara, 2005). A 

phasic mode, characterised by a relatively low baseline firing rate and high phasic 

responsiveness to task relevant stimuli, has been linked to enhanced task engagement, 

and a tonic mode to increased distractibility, attention-shifting and exploratory behaviour 

(Aston-Jones et al., 1994; Usher et al., 1999; Aston-Jones and Cohen, 2005b, but see 

Jepma et al., 2010). More recently, BOLD activity in the human LC was demonstrated to 

correlate with “unexpected uncertainty” induced by a switch in reward probabilities 

associated with familiar stimuli (Payzan-LeNestour et al., 2013), although the negative 

sign of this correlation still seems to lack explanation. In both my task and that used by 

Payzan-LeNestour et al., contextual switches required participants to identify discrete 

changes in underlying transitions between familiar stimuli. To continue making accurate 
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predictions in light of new transition probabilities, participants had to increase their 

attentional engagement to facilitate an augmented learning rate. It is likely that in both 

cases a phasic LC activity mode was recruited, and that this would be recognised as a 

decrease in BOLD activity at a neuronal population level. Speculatively, it also suggests 

that the pharmacological NA manipulation in my study may have enabled more phasic 

NA responsiveness to emerge under suppression of tonic NA firing. Future investigations 

of the impact of noradrenergic drugs on LC activity profiles are needed to validate this 

theory. 

4.5.1.2 Acetylcholine balances the attribution of uncertainty within and between 

environmental contexts 

Muscarinic ACh receptor antagonism by biperiden led to slower updating of beliefs about 

stimulus transition contingencies, and so slower adaptation to the probabilistic contexts, 

as reflected by a decrease in the model parameter ω. I argue that this slowed adaptation 

also had knock-on effects higher up in the inferential hierarchy. Specifically, I propose 

that participants attributed perceived violations of their expectations to gross contextual 

switches as opposed to chance fluctuations in stimulus outcomes, which would be 

expressed as an increase in ϑ. In light of previous work, which I discuss next, it seems 

reasonable to suggest that by setting the rate at which an agent learns probabilistic 

associations, ACh facilitates the appropriate attribution of violated expectations to 

chance fluctuations in an environment’s statistical regularities, or to gross switches in 

environmental context. 

According to the structure of the HGF, a reduction in ω maps onto a reduced precision-

weighting of perceptual belief updates at level 2 (compare Equation 3.15 and Equation 

3.11). The present findings indicate that under biperiden less weight was given to 

sensory evidence, and updates of probability estimates became more reliant on current 

beliefs. This supports proposed roles for ACh in regulating the relative influences of 

stimulus-driven versus expectation-guided processing (McGaughy et al., 2008; Bentley 

et al., 2011) and attentional deployment (Bucci et al., 1998; Chiba et al., 1999). For 

instance, it has been shown that pharmacologically stimulating ACh augments bottom-

up sensory signalling in human primary auditory cortex in response to auditory stimuli, 

possibly by enhancing the gain of superficial pyramidal cells, to bias inference towards 

sensory data (Moran et al., 2013). 

In a recent study, Vossel et al. examined perceptual belief updating during a probabilistic 

attentional cueing paradigm. By applying a similar instantiation of the HGF to saccadic 

reaction times, the authors demonstrated faster learning about contextual probabilities 
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following administration of galantamine, an acetylcholinesterase inhibitor which 

increases the synaptic availability of ACh, as indicated by an increase in model 

parameter ω (Vossel et al., 2014a). In the present study, the opposite behavioural effect 

was observed with the opposite pharmacological manipulation (ACh receptor 

antagonism), offering independent evidence that ACh signalling guides belief updating 

about probabilistic associations within environmental contexts.  

The present results also indicate that ACh antagonism led individuals to update their 

volatility estimates more rapidly, reflected by an increase in the model parameter ϑ. This 

is consistent with the notion that ACh- participants’ impaired ability to learn transition 

contingencies led them to infer that contexts changed at a faster rate. Notably, in their 

theoretical framework, Yu and Dayan predicted that ACh depletions should cause an 

agent to underestimate the amount of randomness in a given context. In turn, this causes 

chance events occurring within a context to seem more significant than they are, 

meaning they are more likely to be incorrectly taken as indicative of a context change 

(see Figure 6D in Yu and Dayan, 2005). My experimental observations support this 

hypothesis and are compatible with data indicating that cholinergic antagonists increase 

distractibility (Jones and Higgins, 1995) while agonists suppress it (Prendergast et al., 

1998; Terry et al., 2002; O’Neill et al., 2003). 

It should be noted that, although the perceptual quantities used in this current work are 

not identical to those previously introduced by Yu and Dayan (Yu and Dayan, 2005), the 

HGF does embody versions of the same forms of uncertainty. The highest level of 

uncertainty in the Yu and Dayan (YD) framework was induced by abrupt, discrete, 

changes in contingencies, which induced what YD call “unexpected uncertainty” (and 

ascribed to NA). By contrast, the highest level of uncertainty in the HGF is the overall 

instability of the world, i.e., the rate at which volatility changes. It is this that I found to be 

modulated by the NA antagonist. Conversely, YD’s notion of “expected uncertainty” 

(ascribed to ACh) suggests that it arises from the known unreliability of predictive 

relationships within a familiar environmental context. Amongst other effects, the lower 

the expected uncertainty, the slower the learning – consistent with the effect of parameter 

ω in the HGF, which was found to decrease under cholinergic antagonism. Along with 

YD, I also argue that this change in learning has further knock-on effects for what 

participants perceive to be a chance random event, or a change of context (and hence 

unexpected uncertainty). 

In sum, my findings offer empirical support for the theoretical proposal that ACh and NA 

interact to construct appropriate cortical representations of volatile contexts, which 
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facilitates optimal inferences about the current environment (Yu and Dayan, 2005). By 

regulating high-level uncertainty representations, the two neuromodulators contribute to 

the updating of an individual’s perceptual beliefs, both within and between environmental 

contexts, an idea that is broadly supported by recent neuroimaging (Iglesias et al., 2013; 

Payzan-LeNestour et al., 2013; Diaconescu et al., 2017) and pharmacological (Vossel 

et al., 2014a) evidence.  

4.5.2 Dopamine sensitises motor responses to environmental volatility 

As per its construction, the present instantiation of the HGF allowed me not only to 

characterise perceptual belief updating under three pharmacological manipulations, but 

also to assess how each intervention influenced the deployment of motor responses in 

in light of individual estimates of uncertainty. Pharmacologically manipulating DA and 

ACh altered the degree to which participants’ perceptual beliefs modulated the 

preparation of their speeded responses to uncertain stimuli. In contrast, NA antagonism 

had no significant impact on the sensitivity of participants’ motor responses to their 

current perceptual beliefs, relative to placebo. 

I had originally predicted that an individual’s capacity to modulate response selection 

following a sensory PE would be dependent on DA. Indeed, it has previously been shown 

that pharmacological DA depletion impedes adaptive reactions to unexpected events 

occurring within predictable contexts (Bestmann et al., 2014). However, in the present 

study, there was no evidence to suggest that DA receptor antagonism influenced 

participants’ reactions to low-level sensory PE (𝛿1). Rather, suppressing DA significantly 

reduced β3, which I interpret as a reduction in the sensitivity of participants’ motor 

responses to their higher-level phasic volatility estimates (𝜇3).  

It is important to note that some key differences distinguish the present experimental 

design from previous paradigms. In earlier work, participants were pre-trained to respond 

to stimuli presented within one predictable context, defined by one transition matrix. 

Furthermore, switches from predictable to unpredictable contexts, consisting of random 

presentations of stimuli, were explicitly signalled (Bestmann et al., 2014). Therefore, any 

probabilistic learning and higher-level perceptual uncertainty was removed. In this earlier 

setting, dopaminergic antagonism under haloperidol selectively impaired participants’ 

reactions to unexpected events that elicited large sensory PEs. 

In contrast, the present task created a more complex, and arguably more ecologically 

valid, scenario in which individuals had to infer the current context for themselves and 

adapt to any contextual changes. Here, uncertainty representations had to be acquired 
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through direct sampling from a distribution of observations. To my knowledge, the current 

study is the first attempt to interrogate the impact of NA, ACh and DA on non-rewarded 

probabilistic learning within a single behavioural paradigm and a unified Bayesian 

framework. By estimating beliefs about various forms of uncertainty, I sought to identify 

neuromodulatory contributions specifically related to particular forms of uncertainty, as 

opposed to any confounding variables. 

Related to this point, a large body of literature examining the role of DA in the context of 

PE has focused on reward, rather than sensory, PE. Specifically, it is widely thought that 

phasic activity of dopaminergic neurons in the midbrain signals the discrepancy between 

the predicted and experienced reward of a particular event (Schultz et al., 1997; 

Hollerman and Schultz, 1998; O’Doherty et al., 2003; Nakahara et al., 2004; Bayer and 

Glimcher, 2005; Abler et al., 2006; Daw and Doya, 2006; Pessiglione et al., 2006; 

D’Ardenne et al., 2008; Hare et al., 2008; Matsumoto and Hikosaka, 2009; Zaghloul et 

al., 2009; Diederen et al., 2017). The fact that probabilistic learning was unrewarded in 

the present experiment is one possible reason why no dopaminergic effects on motor 

responses to low-level sensory PE were observed. 

Nonetheless, there have been reports of a role for DA in PE signalling outside the 

framework of reward (Redgrave et al., 1999; den Ouden et al., 2012; Friston et al., 2012; 

Galea et al., 2012; Bestmann et al., 2014; Tomassini et al., 2015). Further, it should be 

noted that the HGF’s perceptual model only outputs participant-specific (constant) 

parameters at the higher levels. As such, in the present study, it was not possible to 

compare the effects of DA antagonism on sensory PE to Placebo using the approach 

adopted to examine the effects of NA and ACh on parameters ϑ and ω. Within the 

framework of the current instantiation of the HGF, it would have been possible to identify 

an altered effect of sensory PE on motor responses (parameter β1) under DA 

antagonism, but not a general effect on the perception of sensory PE. Using fMRI, 

Iglesias et al. observed that activity in the dopaminergic midbrain correlated with 

precision-weighted sensory PE (parameter 𝜀2) during an alternative probabilistic learning 

task (Iglesias et al., 2013), providing a further indication that DA is involved in updating 

beliefs in light of low-level sensory PE. Indeed, the authors identified this correlation both 

when learning was orthogonal to monetary reward and when reward was omitted from 

the behavioural task entirely. Future work combining neuroimaging and pharmacological 

manipulations of DA will help to pinpoint the neuromodulator’s precise role in perceptual 

belief updating and response modulation. 
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The finding that haloperidol reduced the sensitivity of participants’ responses to their 

phasic volatility estimates does sit well with an alternative line of work highlighting the 

importance of DA in behavioural switching (Cools et al., 2009; van Holstein et al., 2011). 

For instance, Parkinson’s disease patients with DA dysfunction have an impaired 

capacity to switch from naming digits to letters when both types of stimuli are presented 

simultaneously, even when the task-shift is explicitly cued (Cools et al., 2001a). In 

summary, I propose that DA antagonism suppressed response modulation by impeding 

switching following complex contextual rule changes.   

Muscarinic ACh receptor antagonism under biperiden also led to decreased response 

modulation by parameters at all three hierarchical levels, sensory PE (𝛿1), precision-

weighted contingency PE (𝜀3) and phasic volatility estimates (𝜇3), compared to Placebo. 

I propose that ACh receptor antagonism impeded participants’ abilities to learn the 

statistical structure of the behavioural task, which in turn impaired their capacities to 

respond accordingly. Although both ACh and DA had effects on response modulation, in 

light of previous work, I suggest that DA’s role is to modulate motor responses according 

to the widespread perceptual effects of ACh. 

4.5.3 Limitations and future work 

One of the main constraints of the study is that although prazosin, biperiden and 

haloperidol are rather selective for NA, ACh and DA receptors respectively, there are 

complex interactions and dependencies between noradrenergic, cholinergic and 

dopaminergic systems. Such interactions are a main reason why direct quantitative 

comparison between drug groups would not have provided direct comparisons between 

the action of different neuromodulators, and therefore why the current study was 

designed to detect changes relative to placebo instead. While the results highlight 

qualitative differences in how NA, ACh and DA influence perceptual belief updating, 

future work will have to conduct direct quantitative comparisons of their roles. 

Further, it is the receptors rather than the neuromodulators themselves that bring about 

psychophysiological effects, and there are dissociable roles of different receptor sub-

types. For instance, the functions of nicotinic versus muscarinic cholinergic receptors in 

uncertainty signalling have yet to be directly compared. Distinctions have also been 

made between D1 and D2 dopaminergic receptor sub-types in regulating adaptive 

responses to unexpected stimuli (Bestmann et al., 2014). Thus, future work could 

usefully be extended with a range of selective agonists and antagonists for different 

receptor sub-types. In Chapter 5, I adopt an alternative behavioural genetics approach 
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to investigate the effects of natural inter-individual variations in DA neurotransmission on 

perceptual belief updating and response modulation. 

Finally, it is likely that all the neuromodulators operate over multiple timescales - for 

instance, separate, even competing, tonic and phasic effects have been a special target 

of investigation for NA (Aston-Jones and Cohen, 2005a). Teasing these timescales apart 

more fully is an ambition for the future, requiring a temporally richer design. 

Nevertheless, the current findings emphasise the necessity of studying the NA, ACh and 

DA systems conjointly, as tasks associated with uncertainty will tend to involve them all. 

4.5.4 Conclusion 

In summary, these results offer novel and direct insight into the complex and intricate 

effects of NA, ACh and DA during a PSRTT. Employing a hierarchical Bayesian learning 

model to interrogate various forms of uncertainty and PE, provided interventional 

evidence linking ACh and NA to uncertainty computations within and between 

behavioural contexts. In contrast, DA appears to be involved in sensitising motor 

responses to perceptual volatility estimates. While pharmacological manipulations do not 

selectively target particular neuromodulatory systems, the results offer a fresh 

perspective on the effects of noradrenergic, cholinergic and dopaminergic 

neurotransmission on the computational mechanics of perceptual belief updating 

according to Bayesian principles. Future studies will verify the generality of the observed 

effects to different behavioural paradigms with and without learning, reward, prediction 

and action. By characterising uncertainty computations and response modulation, the 

methodology reported here could also be used to offer fresh insight into the numerous 

neurological and psychiatric disorders in which there is dysregulation of processes 

dependent on NA, ACh and DA. 
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5 Genetic fingerprints of uncertainty 

5.1 Abstract 

Behavioural genetics offers an alternative means by which to investigate the relative 

contribution of different neuromodulators to human learning and action under 

uncertainty. A range of proteins, from receptors to transporters and degradative 

enzymes, regulate dopaminergic, noradrenergic and cholinergic neurotransmission. 

Polymorphisms in the genes that encode these proteins give rise to natural inter-

individual variations in neuromodulatory function and to alterations in behaviour. The 

Val158Met polymorphism in the COMT gene has received particular attention within the 

behaviour genetics literature, with an array of studies having identified variations in 

dopaminergic neurotransmission and behavioural flexibility as a function of COMT 

genotype. In this chapter, I employ the same probabilistic serial reaction time task 

(PSRTT) and the same instantiation of the Hierarchical Gaussian Filter (HGF) model 

used in Chapter 4 to study individual computations of uncertainty and motor response 

modulation in a naïve sample of 116 healthy human volunteers. I first replicate the 

behaviour displayed by the Placebo participants in Chapter 4, and verify the capacity of 

the HGF to capture individual perceptual belief updating and response modulation within 

a single computational framework of irreducible, estimation and volatility uncertainty. 

Next, I examine the impact of dopaminergic neurotransmission on these processes by 

assessing perceptual belief updating and response modulation as a function of COMT 

genotype. The participant sample size is shown to be insufficient to ascertain whether 

COMT genotype has any impact on dopamine-specific learning or action under 

uncertainty. I discuss how future behavioural genetics approaches could offer fresh 

insight into the relative roles of dopamine (DA), noradrenaline (NA) and acetylcholine 

(ACh) to learning and action in dynamic probabilistic environments.  
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5.2 Introduction 

Pharmacological manipulations offer one methodological tool with which to assess the 

neuromodulatory underpinnings of learning and action in uncertain environments. 

However, as discussed in Chapter 4, the technique does have its caveats. There are 

complex interactions and dependencies between different neuromodulatory systems, 

and different pharmacological agents have different specificities for different receptor 

sub-types. An alternative approach is to examine learning and action under the natural 

variations in neuromodulatory function that occur due to polymorphisms in the genes 

encoding neuromodulatory receptors, transporters and degradative enzymes (Frank et 

al., 2007, 2009; Tan et al., 2007a, 2007b; Green et al., 2008; Ullsperger, 2010; den 

Ouden et al., 2013; Doll et al., 2016). 

As discusses in Chapter 1, in the context of probing the relative contributions of NA, ACh 

and DA to learning and action under uncertainty, polymorphisms in the genes that 

encode the dopamine transporter (DAT), the noradrenaline transporter (NET), the 

degradative enzymes catechol-O-methyltransferase (COMT) and acetylcholinesterase 

(ACHE), and the dopaminergic D2-receptor are of particular interest.  A summary of the 

functions of these five proteins, known polymorphisms in the genes that encode them, 

and any established impact on neuromodulatory phenotype is provided in Table 5.1. For 

additional details, please refer back to Chapter 1. 

Gene Function Polymorphism Phenotype 

COMT Encodes the COMT 

enzyme, which catalyses 

the degradation of 

catecholamines, 

including DA, especially 

in the prefrontal cortex 

Val158Met single 

nucleotide 

polymorphism (SNP) at 

rs4680, resulting in Val 

and Met alleles 

Met allele is associated 

with decreased COMT 

activity and increased 

DA neurotransmission 

DAT1 Encodes the DAT, which 

mediates the reuptake of 

DA from the synaptic 

cleft, especially in the 

striatum 

Variable number 

tandem repeat (VNTR) 

at  rs28363170 (the 3’ 

untranslated region), 

commonly resulting in 

9- (9R) and 10-repeat 

(10R) alleles 

9R allele has been 

associated with altered 

DAT availability and a 

putative change in DA 

neurotransmission, but 

the precise functional 

impact is speculative 



5. Genetic fingerprints of uncertainty 

143 
 

DRD2 Encodes the DA D2-

receptor, of which there 

is a particularly high 

striatal density 

SNP at rs1800497, 

resulting in A1 and A2 

alleles 

A2 allele associated 

with increased DA D2-

receptor expression 

NET Encodes the NET, which 

mediates the reuptake of 

NA from the synaptic 

cleft 

SNP at rs2242446, 

resulting in C and T 

alleles 

Any functional impact 

on NA 

neurotransmission is 

unclear 

ACHE Encodes the ACHE 

enzyme, which catalyses 

the degradation of ACh 

SNP at rs2571598, 

resulting in A and G 

alleles 

Any functional impact 

on ACh 

neurotransmission is 

unclear 

 

Table 5.1 Summary of genetic polymorphisms that modulate neuromodulatory 

function. The Val158Met SNP in the COMT gene is one of the best studied 

polymorphisms in the behavioural genetics literature, with effects on COMT activity and 

DA neurotransmission being relatively well established. Polymorphisms in the DAT1 and 

DRD2 genes are also thought to impact on DA neurotransmission, but their precise 

functional effects are speculative. Any functional impact of the NET and ACHE 

polymorphisms on neuromodulatory transmission is also currently unclear.  

Behavioural genetics has several methodological advantages. First, it permits the effects 

of different neuromodulatory systems to be assessed within individuals and in a single 

experimental session. Second, it offers a means by which to investigate the relative 

contribution of neuromodulators to learning and action without any confounding effects 

of pharmacological interventions. For instance, pharmacological agents are often not 

wholly specific for particular receptor sub-types and they likely modify the baseline 

dynamics, interactions and compensatory mechanisms of different functionally-coupled 

neuromodulatory systems. Third, identifying the functional consequences of 

polymorphisms in the genes that encode different neuromodulatory receptors and 

transporters, with different relative distributions throughout the brain, holds the potential 

to better elucidate the contributions of different neuromodulatory signalling pathways to 

learning and action under uncertainty. 

This chapter was motivated by the possibility to characterise the effects of COMT, DAT1, 

DRD2, NET and ACHE genotypes on learning and response modulation within 



5. Genetic fingerprints of uncertainty 

144 
 

individuals undertaking the same PSRTT applied in Chapter 4. To recap, the PSRTT 

exposes participants to three distinct forms of uncertainty: irreducible uncertainty arising 

from the inherent randomness of the probabilistic transitions between consecutive 

stimuli, estimation uncertainty arising from an individual’s imperfect knowledge of the 

probabilistic relationships governing stimulus transition contingencies within contexts, 

and volatility uncertainty arising from contextual instability. By applying the novel 

instantiation of the HGF model to the behavioural data, the original aim was to 

characterise the impact of dopaminergic, noradrenergic and cholinergic genotypes on 

perceptual belief updating and response modulation in dynamic probabilistic 

environments. 

While the influence of COMT genotype on cortical dopaminergic neurotransmission is 

relatively well established (Gogos et al., 1998; Männistö and Kaakkola, 1999; Akil et al., 

2003; Chen et al., 2004; Tunbridge et al., 2004; Yavich et al., 2007), investigations of 

learning and action as a function of DAT1, DRD2, and particularly NET and ACHE, 

genotypes would have been more exploratory. Indeed, the functional impact of the latter 

four genes on dopaminergic, noradrenergic and cholinergic neurotransmission is 

currently more elusive. Nevertheless, behavioural investigations of polymorphisms in the 

COMT, DAT1, DRD2, NET and ACHE genes hold the potential to extend the 

pharmacological results in Chapter 4 by further elucidating the roles of DA, NA and ACh 

in learning and response modulation under uncertainty. In particular, in light of the finding 

that pharmacological DA antagonism reduced the sensitivity of motor responses to 

phasic volatility estimates but not to sensory prediction error (PE), a key motivation for 

investigating any impact of COMT and DAT1 genotypes on response modulation within 

the same computational framework was the possibility to identify separable cognitive 

(cortical) and motoric (striatal) DA-mediated processes underlying flexible behaviour, 

respectively.  

Unfortunately, careful scrutiny of the genetic data revealed that the laboratory that 

undertook the genotyping analyses had not provided reliable genotypic summaries for 

all five genes in the first cohort of individuals from whom genetic data was collected. As 

such, participant recruitment was halted early. One gene for which I do have reliable 

genotypic data from 116 participants is COMT. Therefore, in the following, I focus on 

assessing the effects of three dopaminergic COMT genotypes on perceptual belief 

updating and response modulation during the PSRTT. This approach complemented the 

methodology employed in Chapter 4 by facilitating an alternative examination of 

dopaminergic contributions to learning and action in uncertain environments, focusing 
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on cortical DA neurotransmission and free from potentially confounding effects of 

pharmacological DA manipulations. 

5.2.1 The Val158Met COMT polymorphism 

To reiterate Chapter 1, the COMT gene encodes the COMT enzyme which catalyses the 

degradation of catecholamines, particularly cortical DA (Gogos et al., 1998; Akil et al., 

2003; Tunbridge et al., 2004; Yavich et al., 2007). A single nucleotide polymorphism 

(SNP) at rs4680 results in an amino acid switch from valine (Val) to methionine (Met), at 

codon 158. The Met isoform has reduced thermostability at body temperature, resulting 

in a 3-4 fold decrease in COMT enzymatic activity compared to the Val isoform, and so 

higher synaptic DA concentrations (Männistö and Kaakkola, 1999; Chen et al., 2004). In 

contrast, the Val allele is associated with higher enzymatic activity and so lower synaptic 

DA availability. 

5.2.2 Probing a role for dopamine in perceptual belief updating and response 

modulation 

In Chapter 4, dopaminergic antagonism under haloperidol was found to decrease the 

sensitivity of participants’ motor responses to their beliefs about the environment’s 

volatility. In contrast, no effects of DA antagonism were observed on the rate at which 

participants learned about contextual transition contingencies or the volatility of these 

contingencies over time. As discussed in Chapter 4, I had originally predicted that DA 

would modulate an individual’s capacity to modulate response selection following a low-

level sensory PE owing to previous work demonstrating that pharmacological DA 

depletion impedes adaptive reactions to unexpected events occurring within predictable 

contexts (Bestmann et al., 2014). While the absence of an effect of DA on response 

modulation by sensory PE can be explained by differences in experimental paradigms, 

and while the finding that DA sensitises motor responses to phasic volatility estimates 

sits well with a hypothesised role for DA in behavioural switching (Cools et al., 2001a, 

2009; van Holstein et al., 2011), in the present experiment I sought to extend these 

findings beyond a pharmacological approach. 

5.2.2.1 Replication of learning and action during the PSRTT 

In particular, employing the same PSRTT and novel instantiation of the HGF applied in 

Chapter 4, I tracked human learning and response modulation in a dynamic probabilistic 

environment that gave rise to irreducible, estimation and volatility uncertainty. It was 

therefore possible to investigate whether the learning and behaviour observed in Chapter 
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4’s Placebo group could be replicated in a naïve cohort of healthy individuals, and 

whether the HGF model would perform as well as it had done in its first application.   

5.2.2.2 Replication of dopaminergic effects on learning and action 

Next, since the HGF captures an individual’s learning of the task’s structure and maps 

their beliefs onto their observed reaction time (RT) responses, participant-specific 

perceptual belief updating could be disentangled from the sensitivity of motor response 

to perceptual estimates. Further, it was possible to assess belief updating and response 

modulation as a function of COMT genotype. Given that COMT regulates DA 

neurotransmission, I aimed to: 

1. Replicate the finding that DA sensitises an individual’s motor responses to their 

phasic volatility estimates. Given that Met carriers show lower COMT activity 

and thus higher DA neurotransmission than Val/Val homozygotes, I 

hypothesised that motor responses in Val/Met and Met/Met individuals would 

show increased sensitivity to phasic volatility estimates (Figure 5.1E). 

2. Probe whether the sensitivity of an individual’s motor responses to their sensory 

PE varies as a function of COMT genotype, suggesting a modulatory role for 

DA. Based on previous work (Bestmann et al., 2014), I hypothesised that motor 

responses in Met carriers might show increased sensitivity to sensory PE 

(Figure 5.1D). However, the results of Chapter 4 would predict no effect of DA 

on this parameter.  

3. Replicate the finding from Chapter 4 that reduced DA neurotransmission leads 

to general RT slowing, echoing bradykinesia in Parkinson’s disease, a disorder 

characterised by DA depletion in the substantia nigra (Berardelli et al., 2001). I 

hypothesised that the constant component of RT would be increased in Val/Val 

homozygotes (Figure 5.1C).  

4. Replicate the finding that DA neurotransmission does not modulate the speed 

at which individuals update their beliefs about phasic volatility (Figure 5.1A) or 

contextual transition contingencies (Figure 5.1B). 



5. Genetic fingerprints of uncertainty 

147 
 

 

Figure 5.1 Predicted effects of COMT genotype on perceptual belief updating and 

response modulation. (A-B) Based on the pharmacological DA results of Chapter 4, 

increasing DA neurotransmission in Met carriers would be expected to have no effects 

on perceptual belief updating (i.e., on parameters ϑ and ω). (C-E) The pharmacological 

findings predict motor response modulation would vary between Met carriers and Val/Val 

homozygotes. Specifically, increased DA neurotransmission in Met carriers would be 

expected to decrease the constant component of log(RT) responses (β0) and increase 

the sensitivity of motor responses to phasic volatility estimates (β3). The pharmacological 

results would predict no effect of COMT genotype on the sensitivity of motor responses 

to sensory PE (β1) (D; dashed line) but, given previous work demonstrating that DA 

depletion is associated with impaired reactions to unexpected events occurring in 

predictable contexts, I hypothesised that motor responses in Met carriers would show 

increased sensitivity to sensory PE (D; solid line). 
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5.3 Methods 

5.3.1 Participants 

116 healthy participants (18 male, aged 18-31 years, 73 Caucasian) with normal or 

corrected-to-normal vision took part in this study after giving written informed consent. 

The experiment was run in collaboration with the University of Birmingham. The 

experimental protocol was approved by the University of Birmingham Research Ethics 

Committee. 

5.3.2 Probabilistic serial reaction time task 

The experimental setup and PSRTT used were based on those described in Chapter 4. 

In brief, participants sat facing a computer screen positioned approximately 60cm away. 

They were instructed to rest their left and right index and middle fingers on four marked 

keys on a computer keyboard, and to maintain this position throughout the task. On each 

trial, participants were required to respond to the presentation of one of four visual stimuli 

by making a speeded button-press before the end of a 1200ms intertrial interval (ITI). 

Each stimulus was associated with one particular button. The stimulus-response 

mappings remained consistent within an experimental session but were counterbalanced 

across participants. 

5.3.2.1 Training 

Each participant acquired the stimulus-response mappings for their session during a 

training block in which they received visual error feedback after each trial. The training 

session comprised at least 100 trials and did not finish until the participant had reached 

a minimum performance criterion of 85% accuracy on the last 20 trials. Participants were 

then given 15 practice trials, in which the stimuli were presented in a random order and 

without error feedback, to familiarise them with the timings of the main experiment. On 

average, participants responded correctly on 90.4 ± 1.1% (± SEM) of the practice trials, 

indicating adequate learning and retention of the mappings. 

5.3.2.2 Task design 

Each participant performed 800 trials of the PSRTT. At any given time, there was an 

underlying probabilistic rule, defined by one of eight transition matrices (TMs), which 

determined the probabilistic relationship between the stimulus presented on trial, t, and 

the stimulus presented on the previous trial, t-1. The TM switched every 50 trials without 

explicit indication to the participant. The TMs comprised the two 1st-order and four 0th-

order TMs used in Chapter 4 (Figure 2.1), as well as two additional 1st-order TMs (Figure 



5. Genetic fingerprints of uncertainty 

149 
 

2.2). Trials were drawn from each TM twice. The order of TMs was pseudorandom, with 

no consecutive repeats. The overall probability of each stimulus was equal across the 

800 trials.  

As in Chapter 4, the different TMs created contexts that the participants could infer from 

stimulus observations. For fast and accurate responses, participants had to track 

irreducible uncertainty arising from the inherent randomness of the probabilistic 

transitions between consecutive stimuli; estimation uncertainty arising from their 

imperfect knowledge of the probabilistic relationships governing stimulus transition 

contingencies within contexts; and volatility uncertainty arising from the unsignalled 

contextual instability. 

The pseudorandom order of TMs was used to generate one stimulus sequence that was 

used for all participants to ensure comparable learning processes and model parameter 

estimates. Rest periods occurred every 215 trials, orthogonal to TM switches. The 

importance of fast responses was stressed. Participants were told that by paying 

attention to any patterns in the order in which stimuli were presented, and to any switches 

in these patterns, it may be possible to respond faster. No further information about the 

nature of the experiment was provided. Anticipatory responses (<80ms) were recorded 

as incorrect. 

5.3.3 General procedure 

Participants were recruited from the University of Birmingham Undergraduate 

Psychology Student cohort. To ascertain the effects of DA neurotransmission on learning 

and action in uncertain environments, any differences in perceptual belief updating and 

response modulation during the PSRTT were assessed as a function of COMT genotype.  

5.3.4 Genotyping 

Genomic DNA was extracted from saliva samples collected from each participant using 

the Oragene OG-500 self-collection kit (Oragene, DNA Genotek Inc., Canada) according 

to the manufacturer’s recommendations. Molecular genetic analyses were performed at 

the West Midlands Genetic Laboratory at Birmingham Women’s Hospital. Next 

generation sequencing was conducted to genotype the SNP at rs4680 within the COMT 

gene. 

Salivary DNA was extracted according to standardised protocols and quantified using 

Qubit fluoriometry. Genotyping was carried out by multiplex polymerase chain reaction 

(PCR) amplicon resequencing. In brief, PCR amplicons flanking the SNP of interest were 
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designed via identification of their position in the UCSC hg19 reference genome. 

Reference sequences for +/- 200 base pairs flanking the SNP were retrieved and a 

sequencing amplicon was designed using Primer 3 (Untergasser et al., 2012) set for an 

annealing temperature of 60oC and with design conditions as recommended for Fluidigm 

Access Array primer design. Primers were validated using gradient PCR. 20ng of 

genomic DNA collected from participants was pooled and barcoded. Multiplex amplicon 

PCR was carried out using the Fluidigm Access Array system using standard conditions. 

The multiplexed library was diluted to a loading concentration of 4pM and sequenced on 

an Illumina MiSeq using a v2 500 cycle kit. Each amplicon was sequenced to a minimum 

read depth of 2000x. FASTQ files were exported from the sequencing instrument, quality 

trimmed with Trimgalore and aligned to the hg19 reference genome using Bowtie2 

(Langmead and Salzberg, 2012). SNP variants were called using FreeBayes (Garrison 

and Marth, 2012) and annotated using ANNOVAR (Yang and Wang, 2015). Variant QC 

was carried out by visual inspection of 10% of amplicon calls for 10% of samples using 

the UCSC genome browser. 

PCR primers were designed to flank the SNP, producing a 249 base pair amplification 

product (Table 5.2). 

 Forward primer Reverse primer 

COMT CGAGGCTCATCACCATCGAG GGGAGGACAAAGTGCGCAT 

 

Table 5.2 Sequence primers for the COMT SNP (rs4680).  

5.3.5 Model-agnostic analyses 

Trial-wise RT was calculated as the time between stimulus onset and the subsequent 

button press. The RT data were log-transformed (Bestmann et al., 2014; Marshall et al., 

2016). A series of conventional, model-agnostic analyses of behaviour were first 

conducted to assess whether participants learned about the underlying stimulus 

transition contingencies, whether the behavioural data replicated that observed in the 

Placebo group in Chapter 4, and whether learning was modulated by COMT genotype. 

To assess the interaction between stimulus transition probability and drug, trials were 

binned according to three probability levels corresponding to the presented stimuli’s true 

transition probabilities as existed in the TMs (High: 0.85 and 0.70; Mid: 0.20; Low: 0.05) 

(Galea et al., 2012; Bestmann et al., 2014; Marshall et al., 2016). A repeated-measures 

analysis of variance (RM-ANOVA) was used to compare mean log(RTs) for correct 

responses across these three probability levels. 
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To obtain a model-agnostic indication of learning across the course of the probabilistic 

contexts, a median split was performed on each 50-trial contextual block. A RM-ANOVA 

was used to compare mean Δlog(RTs) on correct Early (1-25) vs Late (26-50) trials at 

each probability level. 

To identify any evidence of post-error slowing during the PSRTT, i.e. slower responses 

on trials following those on which participants made an error (Rabbitt, 1966; Botvinick et 

al., 2001; Gehring and Fencsik, 2001; Cavanagh et al., 2014; Marshall et al., 2016), a 

RM-ANOVA was used to compare log(RTs) on correct trials that immediately followed 

correct and erroneous responses. A further RM-ANOVA compared log(RTs) on correct, 

post-infrequent trials, i.e., trials following those with a true transition probability of 0.05, 

and correct trials following trials with a true transition probability >0.05. 

5.3.6 Model-based analyses 

The same instantiation of the HGF used in Chapter 4 (see Figure 3.4, Figure 4.2 and 

Figure 5.2) was applied to the behavioural data. To recap, this version comprises a three-

level perceptual model and a response model. 

5.3.6.1 Perceptual model 

The perceptual model tracks each participant’s estimated beliefs about the PSRTT’s trial-

wise stimulus transitions, transition contingencies, the volatility of the transition 

contingencies, and the respective irreducible, estimation and volatility uncertainty about 

these beliefs. The participant-specific parameters ϑ and ω capture the respective rates 

at which an individual updates their beliefs about phasic volatility and transition 

contingencies, and allows for individual expression of approximate Bayes-optimal 

learning. 
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Figure 5.2 The Hierarchical Gaussian Filter (HGF). The perceptual model tracks an 

individual’s learning across three levels. State 𝒙1 represents trial-wise stimulus 

transitions from one stimulus to the next, 𝒙2 the transition contingencies, and 𝑥3 the 

phasic volatility, where t is the current trial number and bold font is used to indicate a 

matrix. Participants hold and update beliefs about the true quantities at each level, with 

a mean μ and a variance σ. ϑ and ω are participant-specific parameters that couple the 

levels and determine the respective speed of belief updating about phasic volatility and 

transition contingencies. The response model describes the mapping from a participant’s 

trial-wise beliefs onto their observed log(RT) responses.  

5.3.6.2 Response model 

The response model provides a mapping from each participant’s trial-wise beliefs, as 

provided by the perceptual model, onto his/her observed log(RT) responses. To verify 

that the response model applied in Chapter 4 was equally applicable in the present study, 

three response models were constructed and compared using random effects Bayesian 

model selection (Stephan et al., 2009; Rigoux et al., 2014). The three response models 

were identical to those compared in Chapter 4 (see section 4.3.5.2). To recap, the first 

specified that trial-wise log(RT) was a linear function of a constant component of log(RT), 
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sensory PE (𝛿1), precision-weighted contingency PE (𝜀3), estimated phasic volatility (𝜇3), 

post-error slowing, and Gaussian noise (ζ). 

Response Model 1: 

log(RT)(t) =  β0 +  β1(δ1
(t)

)  +  β2(ε3
(t)

)  +  β3(μ3
(t)

)  +  β4(PostError(t))  +  ζ(t) 

Equation 5.1 

The second contained the precision-weighted form of sensory PE (𝜀2) instead of 𝛿1. 

Response Model 2: 

log(RT)(t) =  β0 + β1(ε2
(t)

)  +  β2(ε3
(t)

)  +  β3(μ3
(t)

)  +  β4(PostError(t))  +  ζ(t) 

Equation 5.2        

Since 𝛿1 and 𝜀2 are highly correlated, a third response model containing both parameters 

was constructed. 

Response Model 3: 

log(RT)(t) =  β0 + β1(δ1
(t)

)  + β2(ε2
(t)

)  + β3(ε3
(t)

)  +  β4(μ3
(t)

)  +  β5(PostError(t))  +  ζ(t) 

Equation 5.3 

5.3.6.3  Model fitting 

The perceptual and response model priors were identical to those used in Chapter 4 (see 

Table 4.1). As in Chapter 4, the perceptual model assumed that participants updated 

their beliefs according to the stimulus presented on each trial, while the response model 

incorporated correct trials only. 

5.3.6.4 Parameters of interest 

To probe any dopaminergic effects on perceptual belief updating, the participant-specific 

phasic volatility learning rate (ϑ) and transition contingency learning rate (ω) were 

assessed as a function of COMT genotype. Similarly, to identify any dopaminergic effects 

on response modulation, the sensitivity of participants’ log(RTs) to their sensory PE (β1) 

and phasic volatility estimates (β3) were compared across COMT genotypes, as was the 

constant component of log(RT) (β0). 
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5.3.7 Statistical analyses 

In reporting statistical differences, a significance threshold of =0.05 was used. Where 

assumptions of sphericity were violated (Mauchly’s test p<0.05), the Greenhouse-

Geisser correction was applied. 

For comparisons across repeated-measures and across the three COMT genotypes 

(Val/Val, Val/Met and Met/Met), partial eta-squared (ηp
2) is reported as the effect size. 

For analyses of the perceptual and response model parameters of interest, one-way 

ANOVAs were first conducted to assess any impact of the three COMT genotypes. Due 

to the different sample sizes across genotypes (Table 5.4), further exploratory analyses 

were conducted. Here individuals with a Val/Met or Met/Met genotype were grouped to 

form a single set of 37 Met carriers. Independent t-tests were then applied to compare 

Met carriers to Val/Val homozygotes. To recap, the Met isoform produces a less active 

form of COMT, resulting in higher dopaminergic neurotransmission due to reduced 

catecholamine degradation. Before conducting each independent t-test, Levene’s test 

was used to verify that there was no significant difference in the variances of the 

populations from which the data samples had been drawn. For independent t-tests, 

Cohen’s d is reported as the effect size. 

5.3.8 Control analyses 

5.3.8.1 Model parameter correlations 

To demonstrate that the HGF provided a good fit to the behavioural data, the correlations 

between the Bayesian parameter averages (BPAs) for the model parameters were 

assessed. 

5.4 Results 

Data from 116 participants are reported. A summary of demographics is provided in 

Table 5.3. 
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 Participants 
(n = 116) 

Gender 
(number male) 
(number female) 

 
18 
98 

Age 
(years) 

19.6 ± 2.1 

Education Level 
(1-5) 

2.2 ± 0.1 

Ethnicity (%) 
Caucasian 
Asian 
African 
Mixed Race 
Other 

 
62.9 
23.3 
6.0 
6.0 
1.7 

 

Table 5.3 Summary details for all 116 participants. Education Level refers to the 

highest attained from the following: 1 = compulsory education (≤ 12 years); 2 = further 

education (13-14 years); 3 = undergraduate degree (15-17 years); 4 = one postgraduate 

degree (≥ 18 years); 5 = multiple postgraduate degrees. Age data are mean ± SD. 

Education data are mean ± SEM.  

5.4.1 Model-agnostic results 

On average, participants made correct responses on 88.5 ± 0.5% (± SEM) of trials, which 

was equivalent to the Placebo group’s mean correct response rate (90.3 ± 0.8% of trials) 

in Chapter 4 (t146=1.65, p=0.101). Note that Levene’s test indicated that that there was 

no significant difference in the variances of the populations from which the genetic and 

Placebo data samples were drawn (F=2.88, p=0.092). 

A 3 probability RM-ANOVA conducted on the log(RTs) for correct trials binned according 

to the four true conditional probabilities that existed in each of the transition matrices, 

grouped into High (0.85 and 0.70), Mid (0.20) and Low (0.05) transition probabilities, 

indicated that there was a significant increase in log(RTs) with decreasing transition 

probability (main effect of probability: F1.63,187.06=567.72, p<0.001, effect size ηp
2=0.83; 

Figure 5.3A).  

Moreover, a RM-ANOVA on Δlog(RTs) for Late vs Early trials indicated that, across the 

course of a contextual block (Figure 5.3B), participants became faster at responding to 

High and Mid probability and slower at responding to Low probability stimuli 

(F1.89,217.30=132.45, p<0.001, ηp
2=0.54). Together, these results demonstrate that 

participants showed learning of the true stimulus transition contingencies. 
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Figure 5.3 Model-agnostic results. Changes in log(RT) indicate that participants 

learned to predict the stimulus transitions, echoing the results for the Placebo group in 

Chapter 4. (A) An increase in log(RT) occurred as a stimulus’ true transition probability 

decreased. (B) A median split on each 50-trial contextual block was used to compare 

mean log(RTs) on Early (1-25) and Late (26-50) trials at each probability level. Over the 

course of a context, participants became faster at responding to High and Mid probability 

stimuli, and slower at responding to Low probability stimuli. Raw RTs are plotted here to 

simplify interpretation of ΔRT, but statistics were conducted on log(RTs). (C) Across 

drug-groups, participants showed evidence of post-error slowing on correct trials that 

followed an erroneous response compared to those that followed correct responses. (D) 

Participants also showed evidence of slowing on correct trials that followed an infrequent 

stimulus transition. Results are mean ± SEM. *** p<0.001.  

Participants in the genetics cohort also showed evidence of post-error slowing on correct 

trials that followed those on which they made an error (F1,115=119.14, p<0.001, ηp
2=0.51; 

Figure 5.3C). Participants also demonstrated significant log(RT) slowing on correct, post-
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infrequent trials (true transition probability = 0.05) compared to all other correct trials 

(F1,115=952.43, p<0.001, ηp
2=0.89; Figure 5.3D). 

These four findings replicate the results for the Placebo group in Chapter 4. Indeed, 

repeating the analyses with group (i.e., Genetics cohort or Placebo cohort) as a between-

subjects factor revealed no significant between-subjects effect of group on log(RTs) (all 

p≥0.14). 

Repeating each of the analyses with COMT genotype (Val/Val, Val/Met, Met/Met) as a 

between-subjects factor revealed no significant effects of genotype on log(RTs) across 

true transition probability levels (p=0.680), across the course of contextual blocks 

(p=0.167), on post-error trials (p=0.082) or on post-infrequent trials (p=0.494).  

5.4.2 Model-based results 

5.4.2.1 Perceptual model 

Overall, the HGF tracked the true stimulus transitions well (Figure 5.4). Note again that 

the model is uninformed of the true stimulus transition probabilities, but rather bases its 

estimates on the observed stimulus transitions only. 
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Figure 5.4 Estimated transition contingencies for an example participant. (A) 

Transitions between pairs of stimuli, from trial t-1 to trial t, were defined by transition 

matrices. Every 50 trials the transition matrix switched to a different matrix. (B) Each 

panel corresponds to one of the 16 possible transitions between stimuli across 800 trials. 

The black lines indicate the true transition contingencies. The blue lines reflect the 

participant’s inferred estimates (i.e., their posterior expectation of these contingencies, 

�̂�1) before seeing the stimulus outcome on each trial. The model tracked the true 

underlying contingencies and detected change-points. Here, in a representational 

participant from the Genetics cohort, the model tracked the true transition contingencies 

closely.  

Again, as demonstrated in Chapter 4, when trials were categorised according to 

participants’ trial-wise estimates of transition contingencies, as provided by model 

parameter �̂�1 (five bins: 0.8-1, 0.6-0.8, 0.4-0.6, 0.2-0.4, 0-0.2), the same increase in 
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log(RT) with decreasing transition probability found in the model-agnostic results was 

observed (c.f. Figure 5.5 with Figure 5.3A); significant effect of �̂�1: F2.04,175.53=269.14, 

p<0.001, ηp
2=0.76). 

 

Figure 5.5 Model-based changes in log(RT) mirror the model-agnostic results. 

Faster responses were observed as participants’ estimates of the true transition 

contingencies increased, demonstrating that the HGF captured the same behavioural 

effect identified in the model-agnostic analyses, i.e., that participants learned to predict 

the stimulus transitions and prepared motor responses to high probability transitions (c.f. 

Figure 5.3A). Results are mean ± SEM. *** p<0.001.  

5.4.2.2 Response model 

Random effects Bayesian model selection established that Response Model 1 

(containing parameters 𝛿1, 𝜀3 and 𝜇3) was superior by a considerable margin (posterior 

probability: 0.5643; protected exceedance probability, i.e., the probability that Response 

Model 1 is more likely than any other model in the comparison set: 0.9493; Figure 5.6A). 

This replicates the finding in Chapter 4 that Response Model 1 was superior. Moreover, 

no significant difference was found in the noise parameter ζ between the Genetics and 

Placebo cohorts (t146=1.46, p=0.146; Figure 5.6B), indicating that Response Model 1’s 

ability to predict log(RTs) was unaltered across the two experiments. Note that Levene’s 

test established that there was no difference in the variances of the populations from 

which the Genetics and Placebo ζ samples were drawn (F=1.783, p=0.184). 
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Figure 5.6 Model comparison results. (A) Random effects Bayesian model selection 

indicated that Response Model 1 was superior. Posterior probabilities quantify the 

likelihood of each model given the data. Protected exceedance probabilities quantify how 

likely it is that any given model is more frequent than all other models in the comparison 

set while also protecting against the possibility that the observed variability in (log-) 

model evidence could be due to chance. The dotted line indicates the threshold for 

chance-level posterior probabilities (p=0.33). (B) The lack of a difference in the noise 

parameter ζ between the Genetics cohort and the Placebo cohort (p=0.146) indicates 

that the model’s ability to predict log(RT) was unaltered across groups.  

5.4.3 Assessment of the effects of COMT genotype on perceptual belief 

updating and response modulation 

The number of participants with each COMT genotype is summarised in Table 5.4.  

Polymorphism Genotype Participants 

COMT Val/Val 79 

(rs4680) Val/Met 24 

 Met/Met 13 

 

Table 5.4 Number of participants with each COMT genotype.  

5.4.3.2 No identifiable effects of COMT genotype on perceptual belief updating 

The rate at which individuals updated their volatility estimates, as reflected by parameter 

ϑ, was equivalent across the three COMT genotypes (F2,113=0.76, p=0.471; Figure 5.7A). 

Similarly, the rate at which individuals updated their transition contingency estimates and 

thus adapted to the probabilistic contexts, as reflected by parameter ω, was unaltered 
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by COMT genotype (F2,113=1.40 p=0.251; Figure 5.7B). These results echo the finding in 

Chapter 4 that D1/D2 receptor antagonism under haloperidol did not influence the rate 

at which participants learned about the task’s volatility or contextual transition 

contingencies compared to Placebo. 

Similarly, comparing these two perceptual model parameters in Val/Val homozygotes 

and in individuals with higher DA neurotransmission (Met carriers) also indicated no 

effect of COMT genotype on ϑ (t114=0.50, p=0.618) or ω (t114=-0.84, p=0.404). Note that 

Levene’s test confirmed equality of variances across groups for both ϑ (F=0.72, p=0.397) 

and ω (F=1.80, p=0.182). 

 

Figure 5.7 Perceptual and response model parameter results. (A-E) No significant 

effects of COMT genotype on participants’ perceptual belief updating, or on the 

sensitivity of participants’ motor responses to their beliefs, were identified. Data are mean 

± SEM.  



5. Genetic fingerprints of uncertainty 

162 
 

5.4.3.3 No identifiable effects of COMT genotype on response modulation 

The response model output revealed no significant effects of the three COMT genotypes 

on participants’ capacity to modulate their motor responses according to their perceptual 

estimates of sensory PE (β1: F2,113=1.72, p=0.183; Figure 5.7D) or phasic volatility (β3: 

F2,113=0.72, p=0.487; Figure 5.7E). The three COMT genotypes also had no significant 

impact on participants’ general log(RTs) (β0: F2,113=0.57, p=0.568; Figure 5.7C).   

Similarly, comparing these response model parameters in Val/Val homozygotes and in 

individuals with higher DA neurotransmission (Met carriers) also indicated no effect of 

COMT genotype on the sensitivity of participants’ motor responses to their sensory PE 

(β1: t114=1.57, p=0.118) or phasic volatility estimates (β3: t114=-1.17, p=0.244), or on 

general log(RTs) (β0: t114=1.06, p=0.292). Again, Levene’s test confirmed equality of 

variances across groups for β1 (F=1.12, p=0.293), β3 (F=2.25, p=0.137) and β0 (F=2.41, 

p=0.123). 

For completeness, any effects of the three COMT genotypes on the sensitivity of 

participants’ motor responses to their precision-weighted contingency PE were probed. 

No significant effects were identified (β2: F2,113=1.88, p=0.157). There was also no 

significant difference in the degree of post-error slowing demonstrated by individuals with 

each COMT genotype (β4: F2,113=2.89, p=0.060). 

5.4.4 Control analyses 

5.4.4.1 Model parameter correlations 

Aside from two exceptions, Bayesian parameter averages (BPAs) for the different model 

parameters were only moderately correlated across groups (all absolute r≤0.352; Figure 

5.8). As in Chapter 4, a higher correlation existed between the BPAs for β0 (log(RT) 

constant) and β3(𝜇3) (the sensitivity of log(RTs) to phasic volatility estimates): r=-0.885. 

This negative correlation indicates that both the constant component of log(RT) and 

phasic volatility estimates had a similar effect on log(RTs). As mentioned in Chapter 4, 

this reflects the fact that, while including 𝜇3 as a predictor of log(RT) significantly 

improves model evidence, it is much less variable than the other predictors because 

volatility inevitably changes at a slower timescale than stimulus contingencies. In 

addition, a higher correlation existed between the BPAs for β1(𝛿1) (sensory PE) and 

β2(𝜀3) (precision-weighted contingency PE): r=-0.7139. Again this reflects the similar 

effect the two parameters had on log(RTs). 
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Figure 5.8 Model parameter correlations for Bayesian parameter averages (BPAs). 

Note that 𝜇3_0 and 𝜎3_0 are the initial values of 𝜇3 (the phasic volatility estimate) and 𝜎3 

(the uncertainty about the phasic volatility estimate) respectively.  

5.4.4.2 Sample size analysis 

Since the effects of different genotypes on behavioural parameters are typically small, 

we had originally planned to recruit at least 400 participants to this experiment, in line 

with previous work (den Ouden et al., 2013). However, due to inconsistent data reporting 

by the genetics laboratory that assessed the DNA samples, testing had to be stopped 

prematurely. Nonetheless, for exploratory purposes, I used the data collected from the 

116 tested participants to calculate the sample size (online materials: 

http://powerandsamplesize.com/Calculators/Compare-2-Means/2-Sample-Equality) that 

would be necessary to determine whether the sensitivity of motor responses to sensory 

PE (β1) and to phasic volatility estimates (β3) was altered by COMT genotype (Table 5.5). 

For simplicity, I computed the sample sizes that would be necessary to observe a 

significant effect of increased DA neurotransmission on these two response model 

parameters by comparing Met carriers to Val/Val homozygotes. A total of 374 

participants would be required to observe an effect of COMT genotype on β1 and 669 

participants would be required to observe an effect on β3, assuming a type I error rate 

(α) of 0.05 and a power (1-β, where β = type II error rate) of 0.8. 
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Parameter of interest β1 (sensory PE) β3 (precision-weighted 

contingency PE) 

Observed mean (Val/Val); n=79 0.2162 -0.0726 

Observed mean (Met carriers); n=37 0.1560 0.0637 

Observed total standard deviation 0.1929 0.5856 

Sampling ratio 2.14 2.14 

Required sample size (Val/Val) 255 456 

Required sample size (Met carriers) 119 213 

Required total sample size 374 669 

 

Table 5.5 Sample sizes required to observe an effect of COMT genotype on 

behaviour. The calculations assume a comparison between two means (Group 1: 

Val/Val homozygotes; Group 2 = Met carriers). Note that type I (α) error rate is assumed 

to be 0.05 and power (1-β, where β = type II error rate) is set to 0.8.  

5.5 Discussion 

Investigating learning and action during the PSRTT in a naïve cohort of 116 healthy 

human participants meant that the replicability of the results observed in Chapter 4’s 

Placebo cohort could be assessed. Further, by using the novel instantiation of the HGF 

to probe individual perceptual belief updating and response modulation as a function of 

COMT genotype, it was possible to examine any effects of natural inter-individual 

variations in cortical DA neurotransmission on learning and action under uncertainty.     

5.5.1 Replication of learning and response modulation under irreducible, 

estimation and volatility uncertainty 

The naïve cohort of 116 healthy human participants who undertook the PSRTT in the 

present experiment showed learning and behaviour comparable to that displayed by the 

Placebo participants in Chapter 4’s pharmacological study. Specifically, faster log(RTs) 

on trials with a high transition probability, which became even faster over the course of 

a contextual block, suggest that participants learned to predict the stimulus transitions, 

and to prepare appropriate motor responses, in the same way as the Placebo 

participants had in Chapter 4. In addition, findings of increased log(RTs) on post-error 

and post-infrequent trials were also replicated in the novel participant cohort.   

As in Chapter 4, the HGF’s perceptual model was found to track the true transition 

contingencies occurring in the PSRTT closely. Moreover, the same response model, 
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which captures trial-wise log(RT) as a function of a constant component of log(RT), 

sensory PE, precision-weighted contingency PE, phasic volatility estimate and post-error 

slowing, was found to be superior to alternatives. Together, these findings suggest that 

the PSRTT reliably evokes particular learning and behavioural processes in healthy 

individuals, which can be reliably captured by the novel instantiation of the HGF 

developed in Chapter 3 and applied in Chapter 4.  

5.5.2 No identified effects of COMT genotype on perceptual belief updating or 

response modulation 

In the present study, there was no evidence to suggest that COMT genotype, and hence 

the associated natural variations in cortical DA neurotransmission, had any effect on 

perceptual belief updating or motor response modulation between individuals. Indeed, 

no effects on learning and action were identified when the HGF’s perceptual and 

response model parameters were compared across individuals with a Val/Val, Val/Met 

and Met/Met genotype, or when Val/Val homozygotes were compared to Met carriers. 

5.5.3 Interpretation is limited by an insufficient sample size 

However, interpretation of the behavioural genetics results in the present study is limited 

by an insufficient sample size. Genotypic effects on behavioural parameters are typically 

small, meaning that large sample sizes are commonly required to detect a behavioural 

effect (den Ouden et al., 2013). For this reason, I had originally planned to recruit at least 

400 healthy participants. An additional complication is that distributions of different 

genotypes tend to be uneven across populations, as was indeed observed for the COMT 

genotype in the present experiment. This has the effect of reducing the statistical power 

to detect a behavioural effect as a function of genotype, further increasing the required 

sample size. Data collected from the 116 tested participants could be used to calculate 

the sample sizes needed to determine whether COMT genotype is associated with 

altered motor response sensitivity to sensory PE and phasic volatility estimates (the 

samples being 374 and 669, respectively). Therefore, while there is no evidence to 

suggest that COMT genotype modulated learning or behaviour in the present dataset, 

the experiment is not sufficiently powered to rule out the possibility that the Val158Met 

polymorphism does influence response modulation in uncertain environments. 

5.5.4 Limitations of a behavioural genetics approach 

While the behavioural genetics approach applied in the present experiment does hold 

the potential to identify inter-individual variations in DA-dependent learning and response 

modulation in a larger cohort of healthy individuals, there are several methodological 
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limitations. First, since the COMT enzyme actually degrades both DA and NA, any 

observed effect of COMT genotype on learning or action would have to be interpreted 

with caution. However, COMT’s effect on NA levels is thought to be minor, at least in the 

PFC (Tunbridge et al., 2006), meaning that any confounding noradrenergic influences 

are likely to be minor. Indeed, COMT knockout mice show increased baseline frontal DA 

levels, with no effect on NA (Gogos et al., 1998). Moreover, administration of the COMT 

inhibitor tolcapone increases extracellular DA, but has no impact on NA, in the rat medial 

PFC following induction of neuronal catecholamine release (Tunbridge et al., 2004).   

Second, categorising individuals according to genotype can often lead to unbalanced 

distributions of gender and ethnicity, as occurred in the present experiment. This means 

that confounding effects arising from distributional biases in genetic polymorphisms are 

possible. Indeed, an effect of gender on COMT activity has been identified in animal 

models (Gogos et al., 1998). Although statistical methods that account for the systematic 

differences that arise between experimental populations can help to address this issue, 

caution must be taken when basing conclusions on genetic polymorphisms that are rare 

and/or known to vary widely in frequency across males and females, or across different 

ethnic groups (Montana and Pritchard, 2004). 

Third, the function and regulation of the neuromodulatory systems is intricate. A multitude 

of proteins, from receptors to transporters to degradative enzymes, mediate 

neurotransmission. As such, the individual genes that encode these proteins function in 

complex networks, and polymorphisms in each of them can influence neuromodulatory 

function. Therefore, while the Val158Met polymorphism in the COMT gene might predict 

DA-mediated response modulation in volatile environments given a sufficient sample 

size, investigating the relative contributions of additional dopaminergic, noradrenergic 

and cholinergic genes could offer further insights. Indeed, there is evidence to suggest 

that the functional effects of the COMT polymorphism can be modulated by other 

dopaminergic polymorphisms, such as those in the DAT1 and DRD2 genes (Meyer-

Lindenberg et al., 2006; Nackley et al., 2006; Diaz-Asper et al., 2008).  

5.5.5 Future investigations of genotypic effects on learning and action under 

uncertainty 

5.5.5.1 Alternative genetic targets 

As discussed previously, the original aim of the present experiment was to assess the 

impact of COMT, DAT1, DRD2, NET and ACHE genotypes on perceptual belief updating 

and response modulation in uncertain environments. While it was only possible to probe 
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the effects of COMT here, the remaining genes remain sensible targets for future 

investigations. For instance, a VNTR in the DAT1 gene, linked to altered expression of 

the DAT and thus altered striatal DA neurotransmission (Caron, 1996; Heinz et al., 2000; 

Lewis et al., 2001; Mill et al., 2002; van Dyck et al., 2005; van de Giessen et al., 2009; 

Frank and Fossella, 2011; Spencer et al., 2013), could offer a means by which to garner 

further insight into the contributions of DA to learning and action under uncertainty. In 

particular, contrasting any impact of COMT and DAT1 genotypes on learning and 

response modulation during the PSRTT might enable cortical DA-mediated behavioural 

switching under volatility to be distinguished from striatal DA-mediated motoric 

responses to sensory PE. This would be of interest given the findings in Chapter 4 that 

pharmacological DA antagonism decreased the sensitivity of individuals’ motor 

responses to their phasic volatility estimates, possibly due to impaired behavioural 

switching, but had no impact on responses to sensory PE. The latter result was surprising 

given previous literature demonstrating impaired reactions to unexpected events 

occurring in predictable contexts following both pharmacological and pathological DA 

depletions (Galea et al., 2012; Bestmann et al., 2014). Analysing behaviour in the PSRTT 

as a function of DAT1 genotype would offer an alternative methodology with which to 

probe any DA-mediated motor responses to sensory PE. 

Behavioural switching also varies with levels of striatal DA D2-receptor expression 

(Stelzel et al., 2010, 2013; van Holstein et al., 2011). A SNP in the DRD2 gene is known 

to modify D2-receptor expression, particularly in the striatum (Noble, 2003). As such, 

investigating learning and action in the PSRTT as a function of DRD2 genotype might 

offer still more intricate insight into the underlying dopaminergic processes. Given the 

proposed contributions of NA and ACh to learning under volatility and estimation 

uncertainty, genes that regulate noradrenergic and cholinergic neurotransmission also 

make sensible targets for future investigations. Indeed, while it is currently unclear 

exactly how two known polymorphisms in the NET and ACHE genes modulate 

neuromodulatory function, they may offer a means by which to speculatively study inter-

individual differences in NA- and ACh-mediated learning, respectively. 

5.5.5.2 Gene scoring 

As mentioned above, the complexities of the neuromodulatory systems mean that a 

multitude of genetic polymorphisms can influence their function. For example, an 

individual might be a Met carrier for the COMT gene, a 10R carrier for the DAT1 gene 

and an A2 carrier for the DRD2 gene. As such, they might be expected to display 

relatively high cortical DA neurotransmission, low striatal DA neurotransmission and 
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increased DA D2-receptor expression. Further, it is possible that the relative levels of DA 

neurotransmission in particular brain regions might influence DA signalling in other brain 

regions, in addition to the function of the NA and ACh systems. This highlights the 

importance of considering the relative contributions of the various genes that modify 

neuromodulatory function when characterising the relative contributions of DA, NA and 

ACh to learning and action under uncertainty.  Nevertheless, researchers must consider 

the statistical constraint of correcting for multiple comparisons when designing studies 

that aim to address the behavioural impact of multiple genotypes. 

One possible way to address this is to adopt a gene scoring approach. Indeed, in their 

investigation of genetic variations in DA-mediated motor learning, Pearson-Fuhrhop et 

al. calculated a gene score that represented the additive effects of several 

polymorphisms with established effects on DA neurotransmission (Pearson-Fuhrhop et 

al., 2013). Genotypes thought to increase DA neurotransmission added 1 to the score 

while genotypes that decrease transmission added 0. As such, a higher DA polygene 

score corresponded to higher DA neurotransmission. A similar approach could be 

applied to assess whether the net effect of COMT, DAT1 and DRD2 polymorphisms on 

DA neurotransmission is associated with altered learning and response modulation 

during the PSRTT.  

It should be noted that subtle insights into the relative cortical and striatal processes 

supporting these functions would be lost using such a method, unless the gene score 

weighted the contributions of different genes appropriately. Moreover, each of these 

genes is likely to only subtly alter the net function of an entire neuromodulatory circuit, 

meaning that elucidating how various genetic factors interact with each other is inherently 

difficult. Nonetheless, hypothesis-driven investigations of the functional impact of target 

genes and genetic interactions is likely the best approach. Given the multitude of 

potential genes that could influence learning and behaviour, unconstrained exploratory 

analyses of genetic interactions would require prohibitively large sample sizes to counter 

multiple comparisons and type I errors (i.e., false positives) (Purcell et al., 2009; Shi et 

al., 2009; Stefansson et al., 2009).    

5.5.5.3 Combining genetics, pharmacological and neuroimaging approaches 

A behavioural genetics approach to studying neuromodulatory contributions to learning 

and response modulation provides an important extension to insights offered by 

pharmacological manipulations. Indeed, the precise effects of pharmacological 

manipulations of neuromodulatory function can be unclear. For example, evidence from 

the animal literature suggests that DA D2-receptor antagonists such as haloperidol, the 
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drug utilised in Chapter 4, may actually exert their effects primarily via presynaptic 

autoreceptors  (Richfield et al., 1989; Starke et al., 1989; Grace, 1995; Schoemaker et 

al., 1997; Schmitz et al., 2003; Frank and Fossella, 2011). Suppression of DA 

autoreceptor-mediated inhibitory feedback may actually increase phasic DA release, 

particularly in the basal ganglia where D2-receptors are highly expressed (Moghaddam 

and Bunney, 1990; Wu et al., 2002; Garris et al., 2003; Chen et al., 2005). It seems 

unlikely that this was the principal effect of haloperidol in Chapter 4 since the 

manipulation caused a general increase in RTs, echoing bradykinesia observed due to 

nigrostriatal DA depletions in Parkinson’s disease (Galea et al., 2012). Nonetheless, the 

intricacies of the neuromodulatory effects caused by pharmacological interventions, and 

the compensatory mechanisms they may trigger, highlight the need to combine insights 

from pharmacology with alternative methodologies, such as behavioural genetics. 

The correlational nature of behavioural genetics studies is another reason to combine 

them with insights offered by other methodologies. Indeed, corroboratory evidence 

acquired by adopting complementary methodologies will help to inspire confidence in the 

proposed contributions of different neuromodulatory systems to particular functions. For 

instance, Diaconescu et al. recently combined fMRI and behavioural genetics to 

demonstrate that low-level sensory PEs activate the dopaminergic midbrain and that 

these activations are influenced by the Val158Met polymorphism in the COMT gene, 

offering further weight to the notion that DA is implicated in signalling sensory PEs 

(Diaconescu et al., 2017).  Together, behavioural genetics, psychopharmacological and 

neuroimaging studies, both in healthy individuals and in patients with known 

neuromodulatory dysfunction, can help to elucidate the neuromodulatory contributions 

of DA, NA and ACh to learning and action in uncertain environments. 

A further reason to combine behavioural genetics and psychopharmacology is that 

individual behavioural responses to pharmacological manipulations can depend strongly 

on baseline levels of DA, NA and ACh neurotransmission (Kimberg et al., 1997; Mehta 

et al., 2004a; Roesch-Ely et al., 2005; Frank and O’Reilly, 2006; Cools et al., 2007b; 

Clatworthy et al., 2009). For example, pharmacological DA D2-receptor stimulation 

generally improves task performance in individuals with low baseline working memory 

span (Kimberg et al., 1997; Frank and O’Reilly, 2006), high impulsivity (Cools et al., 

2007b) or low baseline DA synthesis (Cools et al., 2009), but impairs performance in 

those showing the opposite baseline trait. Since multiple genes are thought to modulate 

baseline neuromodulatory function, there is strong reason to predict that individual 

differences in dopaminergic, noradrenergic and cholinergic drug effects are, at least in 

part, genetic. Indeed, DRD2 genotype has been shown to predict the direction of an 
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individual’s neural and behavioural responses to pharmacological DA D2-receptor 

stimulation (Cohen et al., 2007). I will return to this concept in Chapter 7. 

5.5.6 Conclusion 

In conclusion, by employing the PSRTT to interrogate learning and action in a naïve 

cohort of healthy participants exposed to dynamic, probabilistic environments, it was 

possible to replicate the behaviour displayed by the Placebo participants in Chapter 4. 

Moreover, the novel instantiation of the HGF showed a verifiable capacity to capture 

individual perceptual belief updating and response modulation within a unified 

computational framework of irreducible, estimation and volatility uncertainty. As such, 

the PSRTT and HGF appear to offer a robust means by which to investigate learning 

and response modulation in uncertain environments. While previous literature linking 

cortical DA neurotransmission and behavioural flexibility suggests that it is reasonable 

to predict that COMT genotype might modify the modulation of motor responses by 

phasic volatility estimates, future work will need to confirm whether this effect can be 

detected using the PSRTT in a larger participant cohort. Additional genetic, 

pharmacological and neuroimaging investigations of dopaminergic, noradrenergic and 

cholinergic neurotransmission will verify the generality of any behavioural effects to 

different behavioural tasks with and without learning, reward, prediction and action. 
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6 Dynamic noradrenergic computations of 

uncertainty 

This chapter was, in part, motivated by work presented in de Berker AO, Rutledge RB, 

Mathys C, Marshall L, Cross GF, Dolan RF & Bestmann S. (2016) Computations of 

uncertainty mediate acute stress responses in humans. Nature Communications. 

7:10996. 

6.1 Abstract 

Noradrenaline (NA) has been proposed to play an important role in learning under the 

uncertainty that arises from environmental volatility. Parallel lines of work have linked 

subjective uncertainty computations, and noradrenergic activity in the locus coeruleus 

(LC), to changes in pupil diameter. In this chapter, I combine a probabilistic learning task, 

pupillometry, pharmacological manipulations and the Hierarchical Gaussian Filter (HGF) 

model to characterise the impact of subjective beliefs and NA on pupillary dynamics in 

90 healthy human participants. Baseline pupil diameter was found to reflect an 

individual’s belief about the current relationship between environmental events. Dynamic 

pupillary dilation tracked both uncertainty and surprise arising from the probabilistic 

relationship between environmental events. Pharmacological manipulations of NA 

modulated pupillary responses to uncertainty and volatility estimates. Collectively, the 

results provide empirical support for the notion that pupil diameter offers an indirect 

measure of individual dynamic noradrenergic computations of uncertainty and volatility. 

Importantly, they also highlight the need for unified behavioural and computational 

frameworks in characterising the relative contributions of subjective beliefs and 

neuromodulatory dynamics to pupil dilation. 
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6.2 Introduction 

For several decades, pupil dilation at constant luminance has been considered a marker 

of central arousal (Hess and Polt, 1964; Kahneman and Beatty, 1966; Bradshaw, 1967; 

Kahneman et al., 1967; Beatty, 1982). More recently, it has been proposed that pupil 

diameter might offer an indirect measure of noradrenergic neuronal activity in the LC 

(Rajkowski et al., 1993; Phillips et al., 2000b; Aston-Jones and Cohen, 2005a; Murphy 

et al., 2014; Varazzani et al., 2015; Joshi et al., 2016). Further, as we saw in Chapter 4, 

NA has been linked to learning under volatility uncertainty (Yu and Dayan, 2005; Payzan-

LeNestour et al., 2013; Marshall et al., 2016). Inspired by these findings, researchers 

have started to probe whether transient changes in pupil diameter can be used as a 

proxy for physiological autonomic processes that occur during behavioural tasks, 

including those requiring NA-mediated learning under environmental uncertainty (Siegle 

et al., 2003; Aston-Jones and Cohen, 2005a; Critchley, 2005; Satterthwaite et al., 2007; 

Einhäuser et al., 2008; Hupé et al., 2009; Einhauser et al., 2010; Gilzenrat et al., 2010; 

Privitera et al., 2010; Jepma and Nieuwenhuis, 2011; Preuschoff et al., 2011; Fiedler and 

Glöckner, 2012; Nassar et al., 2012; Wierda et al., 2012; Eldar et al., 2013; de Gee et 

al., 2014; Browning et al., 2015; de Berker et al., 2016; Korn et al., 2016; van den Brink 

et al., 2016; Urai et al., 2017). The sensitivity of the pupil to such processes means that 

pupillometry might offer a simple, non-invasive and cost-effective tool with which to 

measure individual noradrenergic computations of uncertainty, without the need for 

pharmacological interventions or behavioural genetics analyses.    

6.2.1 Pupil diameter as an indirect measure of noradrenergic 

neurotransmission 

As discussed in detail in Chapter 1, converging bodies of electrophysiological (Rajkowski 

et al., 1993; Aston-Jones and Cohen, 2005a; Varazzani et al., 2015; Joshi et al., 2016), 

pharmacological (Phillips et al., 2000c) and human neuroimaging (Samuels and 

Szabadi, 2008; Murphy et al., 2014) evidence suggest a relationship between NA and 

pupil dilation under constant luminance. 

6.2.2 A proposed link between pupil diameter and perceptual beliefs 

A parallel line of work has sought to establish whether pupil diameter reflects an 

individual’s perceptual estimates by integrating pupillometry into studies of human 

learning and behaviour (Gilzenrat et al., 2010; Jepma and Nieuwenhuis, 2011). In 

particular, during the last five years, researchers have focused on developing 

quantitative models to formally test the hypothesised association between human pupil 
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dilation and the perceptual estimates underlying learning and behaviour in uncertain 

environments. Indeed, a range of studies has investigated the modulation of pupil 

diameter by perceptual quantities such as uncertainty, prediction error (which the pupil 

literature commonly conceptualises as surprise), and volatility (Preuschoff et al., 2011; 

Nassar et al., 2012; de Gee et al., 2014; Browning et al., 2015; de Berker et al., 2016). 

The results of these studies have offered varying evidence to suggest that pupil dilation 

is associated with each of these perceptual estimates. 

6.2.3 Pupil diameter as a proxy for dynamic noradrenergic uncertainty 

computations  

Given my finding in Chapter 4 that NA modulates learning under the uncertainty arising 

from environmental volatility, the notion that pupil dilation can be used as a proxy for 

dynamic noradrenergic uncertainty computations is appealing. However, the previous 

investigations of pupillary responses to perceptual estimates have been heterogeneous: 

they used different behavioural paradigms that exposed participants to different forms of 

environmental uncertainty, and the investigators probed the impact of different 

combinations of perceptual beliefs on pupil diameter. As such, it is difficult to isolate the 

contribution of particular perceptual estimates to pupil diameter with confidence. 

Therefore, in this chapter, I combine a probabilistic learning task, pupillometry and the 

HGF model to assess the impact of irreducible uncertainty, surprise and volatility on pupil 

diameter. Further, by utilising two pharmacological manipulations of NA, I causally 

assess whether any pupillary responses to these perceptual beliefs are under dynamic 

noradrenergic modulation. 

6.3 Methods 

6.3.1 Participants 

90 healthy participants (39 male, aged 19-38 years, 83 right-handed) with normal hearing 

and normal or corrected-to-normal vision took part in this study after giving written 

informed consent. The experimental protocol was approved by the UCL Research Ethics 

Committee. The following exclusion criteria applied: history of neurological or psychiatric 

disorder, baseline blood pressure below 100/60, intake of medication (other than 

contraceptives), self-reported regular smoking, self-reported recreational drug use, and 

current participation in other pharmacological studies. Following a screening interview to 

rule out intolerances or contraindications, the study clinician assigned participants 

pseudorandomly (i.e., ensuring a balanced distribution of gender, age and body weight) 
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to receive a NA antagonist, a NA reuptake inhibitor or a placebo. The experimenter (L.M.) 

was blind to the drug conditions. 

6.3.2 General procedure 

A double-blind, between-subjects design was employed. Each participant attended one 

experimental session during which they received a single, oral dose of one of the 

following: 4mg reboxetine (selective NA reuptake inhibitor; NA+ group), 1mg prazosin 

(α1-adrenoceptor antagonist; NA- group), or a placebo. Doses were selected in line with 

previous studies showing clear behavioural and neurophysiological effects (Dostert et 

al., 1997; Meintzschel and Ziemann, 2006; de Martino et al., 2007; Jepma et al., 2010; 

Korchounov and Ziemann, 2011; Marshall et al., 2016). On arrival, participants 

completed computerised versions of the Digit Span test, Barratt Impulsiveness Scale 

(BIS-11) (Patton et al., 1995), Domain-Specific Risk-Taking (DOSPERT) Scale (Blais 

and Weber, 2006) and Cognitive Failures Questionnaire (CFQ) (Broadbent et al., 1982). 

Participants also self-reported their baseline mood (alertness, calmness and 

contentedness) with 16 visual analogue scales (VAS) (Bond and Lader, 1974), and had 

their baseline heart rate (HR) and blood pressure (BP) measured. To assess any 

subjective and/or physiological drug effects, the VAS, HR and BP measurements were 

repeated before participants started the behavioural task and again once they completed 

it. 

All participants were administered two tablets thirty minutes apart. Two different active 

drug administration times were used, based on previous pharmacokinetic data, so that 

participants undertook the behavioural task when the drug was at its most active (Dostert 

et al., 1997; de Martino et al., 2007; Jepma et al., 2010). Reboxetine was administered 

two hours before the main behavioural task (Time A; Figure 6.1A), and prazosin 1.5 

hours in advance (Time B). Participants in the NA+ (reboxetine) group received a 

placebo at Time B, while participants in the NA- (prazosin) group received a placebo at 

Time A. Participants in the Placebo group received a placebo tablet at Time A and at 

Time B. Participants were told that they would receive either two placebo tablets, or one 

active drug and one placebo tablet. An independent clinician administered the drug or 

placebo while the experimenter was away from the testing room. For comparable drug 

absorption rates, participants were asked not to eat for at least one hour before Time A. 
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Figure 6.1 Task design. (A) Timeline for each experimental session. At baseline, heart 

rate (HR) and blood pressure (BP) measurements were taken, and participants self-

reported their alertness, contentedness and calmness via visual analogue scales (VAS) 

(Bond and Lader, 1974), and undertook a battery of psychometric tests to assess 

working memory, impulsivity, risk-taking and distractibility. HR, BP and VAS measures 

were repeated before and after completing the behavioural task. Due to different times-

to-peak plasma concentration across drugs, two different drug administration times 

(Time A and Time B) were used so that participants undertook the behavioural task when 

the drugs were at their most active. Participants in the active drug-groups received a 

placebo tablet at the administration time at which they did not receive an active drug. 

Placebo participants received two placebo tablets: one at Time A and one at Time B. (B) 

Trial sequence. Throughout the task, an isoluminant grey screen was displayed with a 

central black fixation cross and the words “Cow” and “Pig” on each side. On each trial, 

an auditory low-pitch (450Hz) or high-pitch (1000Hz) cue was presented for 300ms. 

Participants were required to make a speeded button-press response within a 1200 ± 

200ms window to indicate their prediction about which auditory outcome would follow. 

The auditory outcome was either the word “cow” or the word “pig”, presented for 600ms. 

This was followed by an intertrial interval (ITI) lasting 3200 ± 500ms. (C) The probabilities 

governing cue:outcome relationships shifted unpredictably over time, introducing 

volatility and thus producing fluctuations in uncertainty.   
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6.3.3 Probabilistic learning task 

Participants sat in a darkened room facing an isoluminant computer screen. They were 

instructed to rest their left and right index fingers on two response buttons, and to 

maintain this position throughout the task. Participants were asked to maintain fixation 

on a black fixation cross presented in the centre of a grey screen at a viewing distance 

of 60cm. During the probabilistic learning task (PLT), the diameter of the left pupil was 

measured using an infrared ASL Eye-Trac 6 System (Applied Science Laboratories, 

USA), sampled at 120Hz. To minimise movement, participants sat with their head 

supported by a forehead- and chin-rest (Figure 2.5). 

The PLT was closely modelled on a task used in three recent studies (den Ouden et al., 

2010; Iglesias et al., 2013; de Berker et al., 2016), but used auditory rather than visual 

stimuli so as to eliminate any effects of luminance changes on pupil diameter. Each 

participant completed a set of 320 trials. On each trial, participants were presented, via 

stereo headphones, with one of two auditory cues: a low-pitch (450Hz) or high-pitch 

(1000Hz) tone. The cue was presented for 300ms before participants were asked to 

make a prediction, signalled with a speeded button-press response, as to which auditory 

outcome (the word “cow” or the word “pig”) would follow (Figure 6.1B). This decision was 

made under time pressure, with a timeout period averaging 1200ms (± 200ms). The 

auditory outcome was followed by an intertrial interval (ITI) averaging 3200ms (± 500ms). 

The durations of the decision period and the ITI were jittered on each trial so that the 

pupil responses could be maximally divorced from different events. Jitter was 

implemented using a uniform distribution, discretised into chunks of a size determined 

according to the size of the interval in question. 

The probabilistic mapping between cue and outcome shifted over the course of the 

experiment (Figure 6.1C), requiring participants to constantly track the cue:outcome 

relationship over time in order to maximise their proportion of correct predictions. This 

resulted in fluctuations in the level of uncertainty about the outcome, given the cue. Each 

session of 320 trials was divided into 10 blocks of different cue:outcome probabilities, 

and of lengths that varied between 26 and 38 trials. The transitions between these blocks 

were not made explicit to the participant. The probabilities governing each block varied 

from highly biased (0.9/0.1), through moderately biased (0.7/0.3) to unbiased (0.5/0.5), 

allowing the effect of predictability (Iglesias et al., 2013) on pupil diameter (de Berker et 

al., 2016) to be examined. Each of the biased probability blocks was repeated four times 

(two for each bias direction, i.e. 0.7/0.3 and 0.3/0.7) and the unbiased blocks were 

repeated twice. 
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Participants were told that the cue:outcome probabilities would shift unpredictably over 

time and might sometimes be completely random, but they were uninformed as to the 

frequency of switches. The task therefore required participants to track the same three 

forms of uncertainty we have encountered in previous chapters: irreducible uncertainty 

arising from the inherent randomness of the probabilistic relationships between cues and 

outcomes, estimation uncertainty arising from incomplete knowledge of those 

probabilistic relationships within each block, and volatility uncertainty maintained by the 

unsignalled instability of the relationships over time  (Behrens et al., 2007; Mathys et al., 

2011, 2014; Payzan-LeNestour and Bossaerts, 2011; Iglesias et al., 2013; Payzan-

LeNestour et al., 2013; Hauser et al., 2014; Vossel et al., 2014a, 2014b, 2015; de Berker 

et al., 2016; Diaconescu et al., 2017). 

The visual display remained stable throughout, with the word “cow” displayed to the left 

of the fixation cross and the word “pig” to the right. Rest periods lasting 90 seconds 

occurred every 65 trials, orthogonal to cue:outcome probability switches.  Before starting 

the PLT, participants underwent a volume matching procedure to ensure that they 

perceived the different auditory cues and outcomes as equally loud, and a training block 

to familiarise themselves with making button-press predictions in response to auditory 

cues (see sections 6.3.5 and 2.1.2.3 for details).  

To encourage task engagement, participants were paid a base rate of £25 and informed 

that they would receive an extra £5 if they could make correct predictions on more than 

68% of trials. This threshold was based on the average number of correct predictions 

made by participants who undertook a similar experiment conducted in my work with de 

Berker et al. (de Berker et al., 2016). It was not explicitly signalled to the participant 

whether each outcome reflected a correct or incorrect prediction on their part. 

6.3.4 Control task 

After completing the PLT, participants undertook an additional control task (CT) 

consisting of two blocks of 30 trials each. The CT was identical to the PLT except that 

this time there was no uncertainty about which auditory outcome would follow which 

auditory cue. Rather, participants were explicitly told at the beginning of each block which 

cue and which outcome would occur on each of the next 30 trials. One cue was paired 

with one outcome for the first block, and the other cue was paired with the other outcome 

for the second block. On hearing the auditory cue at the start of each trial, participants 

were required to make a speeded button-press response to indicate their “prediction” as 

to which outcome they knew would follow. Timings for the CT were identical to those 

used in the probabilistic task. The exact pairings between cues and outcomes, and their 
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assignment to the first or second block of the CT were counterbalanced across 

participants. As before, the diameter of the left pupil was recorded online at 120Hz. As 

one would expect, participants were highly accurate during the CT: the mean percentage 

of correct “predictions” was 100% for participants in the NA- and NA+ groups, and 98.3% 

for those in the Placebo group. 

6.3.5 Volume matching 

Before undertaking the behavioural task, participants underwent an adaptive, two-

alternative forced choice procedure in order to match the subjective loudness of the two 

cues and the two outcomes used in the PLT. On each trial, participants were played the 

two cues or the two outcomes in succession and asked to report whether the second 

sound was louder or quieter than the first. The volumes of the low-pitch cue and the 

outcome “cow” were kept constant throughout. The level of the high-pitch cue and the 

outcome “pig” were varied according to a maximum likelihood procedure (Green, 1993; 

Soranzo and Grassi, 2014) to obtain estimates of the attenuation required for subjective 

volume equality. For the two cues and the two outcomes, three adaptive runs of 10 trials 

were performed. The average final attenuation values for the cues and outcomes were 

used in the PLT and CT. 

6.3.6 Training 

Participants were trained on the PLT before starting it. During four training blocks of five 

trials each, participants familiarised themselves with making predictions by button press 

following the presentation of auditory cues. Participants were told at the start of each 

training block which cue and which outcome would be presented on each of the following 

five trials. After the outcome was presented, they were provided with visual error 

feedback. Each combination of cue and outcome was presented across the four training 

blocks. The order of the four training blocks (i.e., the pairings between each cue and 

each outcome) was counterbalanced across participants. To familiarise themselves with 

the timings of the PLT, participants then completed 12 practice trials without error 

feedback. On each trial there was a 50% probability that either cue would be followed by 

either outcome. 

6.3.7 Pupillometry 

The ASL Eye-Trac system calculates pupillary gaze by measuring the distance between 

the location of a participant’s pupil and corneal reflection (CR). For each participant, the 

eyetracker was calibrated to account for inter-participant differences in the relationship 

between the pupil and CR. Each participant was instructed to sequentially fixate nine 
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calibration points arranged in a 3x3 square on the computer screen ahead of them. The 

central calibration point was positioned at the location of the centre-point of the fixation 

cross used during the PLT, which was horizontally centred on the computer screen and 

in line with the participant’s line of vision when looking straight ahead. During the PLT 

and CT, calibration was repeated after each rest period to adjust for any subtle 

differences in head position. In order to align the pupil diameter timecourse with 

experimental events occurring in the PLT and CT (i.e., the precise timing of cue, 

response and outcome onsets), triggers were sent via the testing computer’s parallel port 

to the eyetracker system. Pupil diameter was sampled at 120Hz. 

6.3.8 Model-agnostic analyses 

A series of conventional, model-agnostic analyses of behaviour were first conducted to 

assess whether participants showed evidence of learning the underlying cue:outcome 

relationships during the PLT, and whether learning was influenced by the 

pharmacological interventions. 

6.3.8.1 Accuracy and decision time 

Accuracy was defined as the percentage of correct responses. Decision time was 

calculated as the time between cue onset and the subsequent button-press response 

made to indicate the predicted outcome. 

First, accuracy and decision times during the unbiased (0.5/0.5) blocks were assessed 

to verify that they were equivalent across drug-groups. Here no probabilistic advantage 

arose from the cue:outcome relationship, meaning that any participant who fully 

understood the task requirements and was actively engaged in the PLT would be 

expected to perform at close to chance level. Indeed, any drug effect would indicate a 

non-specific effect on behaviour rather than an effect specific to altered uncertainty 

computations. 

To obtain a model-agnostic indication of learning across the course of the probabilistic 

blocks, a median split was performed on each block. A 3 bias (high/moderate/none) x 2 

time (Early/Late) x 3 drug repeated-measures analysis of variance (RM-ANOVA) was 

used to compare accuracy on Early (first half of each block) and Late (second half of 

each block) trials at each bias level, and between drug-groups. As two bias directions 

had been used for each bias level, I collapsed across highly biased blocks (0.9/0.1 and 

0.1/0.9), and across moderately biased blocks (0.7/0.3 and 0.3/0.7). A second bias x 

time x drug RM-ANOVA was applied to assess decision times in the same way. 
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6.3.8.2 Performance score 

Since improved performance on the PLT is reflected by a higher accuracy rate and lower 

decision times (Volkmann, 1934; Yeung et al., 2004; Fetsch et al., 2014), a performance 

score that captured these two components was calculated as follows: 

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑆𝑐𝑜𝑟𝑒 =
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

𝐷𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑇𝑖𝑚𝑒
 

A higher performance score reflects improved performance owing to an increased 

accuracy and/or decreased decision time. RM-ANOVAs were applied to compare mean 

performance scores across the three bias levels, Early and Late Trials, and across drug-

groups. 

6.3.9 Model-based analyses 

A three-level instantiation of the HGF model was applied to the behavioural data to 

quantify participants’ (approximate) inferences and subjective expectations about trial-

wise auditory stimulus outcomes.  

To recap Chapter 3, the original instantiation of the HGF applied here consists of a 

perceptual model (i.e., a generative and recognition model) that tracks an individual’s 

learning of the PLT’s structure: the trial-wise auditory stimulus outcomes at level 1, the 

probabilistic relationship between cue and outcome at level 2, and the volatility of the 

cue:outcome relationship at level 3. Trial-wise trajectories of a participant’s estimates at 

each level evolve according to the predictions made and outcomes experienced by that 

individual (Figure 6.2). At levels 2 and 3, these beliefs are represented as Gaussian 

distributions characterised by a mean (μ) and a variance (σ). This framework naturally 

captures irreducible uncertainty resulting from the probabilistic relationships between 

cues and outcomes, estimation uncertainty resulting from imperfect knowledge of these 

probabilistic relationships, and volatility uncertainty reflecting the instability of these 

relationships over time. 

Importantly, the model does not assume fixed learning across participants but rather 

contains participant-specific parameters that couple the hierarchical levels and allow for 

individual expression of approximate Bayes-optimal learning. ϑ determines the speed of 

learning about phasic volatility, and ω captures how rapidly individuals update their 

beliefs about the cue:outcome relationship. 
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Figure 6.2 The Hierarchical Gaussian Filter (HGF). (A) The model tracks an 

individual’s learning of the task’s structure across three levels. State 𝑥1 represents trial-

wise auditory stimulus outcomes, 𝑥2 the probabilistic relationship between cue and 

outcome, and 𝑥3 the phasic volatility of this relationship, where t is the current trial 

number. Participants hold and update beliefs about the true quantities at each level. (B-

E) Examples of the trial-wise dynamics at levels 1 and 3 for Placebo Participant 2. At 

level 1, irreducible uncertainty (�̂�1) results from a sigmoid transformation of the estimated 

probabilities (𝜇2) represented at level 2. As such, 𝜇1
(𝑡)

 reflects the participant’s current 

belief about the true cue:outcome probabilities (𝑥2; grey line in D), which the participant 

tracks closely. Irreducible uncertainty gives rise to trial-wise estimates of surprise, which 

is mathematically equivalent to sensory prediction error (|𝛿1|; E). At level 3, 𝜇3 reflects 

the participant’s belief about the true phasic volatility (𝑥3). 𝜇3 tends to increase following 

the true switches in cue:outcome probability (marked by grey dashed lines in C), and 

decreases over the course of the highly biased blocks as the participant learns the new 

cue:outcome relationship and thus perceives the environment as increasingly stable. An 

individual’s uncertainty about their predicted phasic volatility estimate is captured by �̂�3 

(B).  

6.3.9.1 Parameters of interest 

To probe dynamic noradrenergic responses to uncertainty, four key parameters from the 

HGF were assessed. In my previous work with de Berker et al., we found evidence to 
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suggest that decision times are modulated by low-level irreducible uncertainty and that 

pupil diameter appears to track both irreducible uncertainty and surprise (de Berker et 

al., 2016). Therefore, the effect of irreducible uncertainty and surprise on behaviour and 

pupil diameter was also assessed in the current study. Irreducible uncertainty (�̂�1) arises 

from the inherent randomness of the probabilistic cue:outcome relationships. It is a 

quantity closely related to entropy, with an inverted-U relationship to probability that 

peaks at p=0.5. Trial-wise values are equivalent to 1-𝑥1, where 𝑥1 is the probability of the 

predicted outcome. Irreducible uncertainty gives rise to sensory prediction error (|𝛿1|), 

which the pupil literature commonly describes as surprise. 

In Chapter 4, I found evidence to suggest that NA influences learning of uncertain events 

arising from unexpected changes in the environment, a finding in line with previous 

literature linking NA to uncertainty arising from environmental volatility (Yu and Dayan, 

2005; Payzan-LeNestour et al., 2013; Marshall et al., 2016). In a parallel line of research, 

it has been proposed that pupil dilation reflects an individual’s subjective volatility 

estimates (Browning et al., 2015). Moreover, pupil dilation has been suggested to offer 

an indirect measure of NA activity (Murphy et al., 2014; Varazzani et al., 2015; Joshi et 

al., 2016). Therefore, I also assessed the impact of two further parameters from level 3 

of the HGF on pupil diameter. First, the trial-wise estimate of phasic volatility (𝜇3), and 

second the uncertainty about phasic volatility beliefs (�̂�3). 

Inspired by literature linking volatility estimates to learning rate (Behrens et al., 2007; den 

Ouden et al., 2010; Browning et al., 2015; Jepma et al., 2016), I also assessed learning 

rates (𝛼1) at level 1 across drug-groups. 

6.3.9.2 Model fitting 

The HGF model was implemented using the ‘tapas_hgf_binary’ code contained in the 

HGF Toolbox (http://www.translationalneuromodeling.org/tapas/). Where priors were 

required, they were generated by running a Bayes optimal version of the model (using 

the function ‘tapas_bayes_optimal_binary_config’), under suitably uninformative priors. 

The resulting posterior estimates were then used to define the priors for the subsequent 

inversion of the full model given the behavioural data (see Table 6.1). In other words, the 

prior means in the empirical data analysis corresponded to those parameter values for 

which the stimulus sequence would generate minimal surprise (in an observer with the 

aforementioned uninformative priors). Note that these priors are in line with those used 

in our previous study using a visual version of the PLT (de Berker et al., 2016). 

http://www.translationalneuromodeling.org/tapas/
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6.3.9.3 Decision times according to beliefs 

To verify the HGF’s capacity to capture participants’ beliefs about the true cue:outcome 

probabilities, trials were binned according to 10 evenly-spaced irreducible uncertainty 

belief levels (model parameter �̂�1) ranging from 0/1 to 1/0. Since two bias directions had 

been used in the PLT, the data were symmetrical. Therefore, I next collapsed across 

equivalent beliefs in each bias direction to create five bias categories (i.e., 0-0.1/0.9-1, 

0.1-0.2/0.8-0.9. 0.2-0.3/0.7-0.8, 0.3-0.4/0.6-0.7, 0.4-0.5/0.5-0.6). A 5 bias x 3 drug RM-

ANOVA was used to compare mean decision times across these five belief levels and 

between drug-groups. Since the model is informed of participants’ trial-wise predictions, 

but not their decision times, an increase in decision time as irreducible uncertainty, and 

hence the belief about cue:outcome probabilities, approach 0.5/0.5 would indicate that 

the HGF had captured participants’ beliefs well, assuming participants showed typical 

Parameter Notes Prior 

ϑ  Metavolatility belief parameter; controls the 

step size of the Gaussian random walk at 

level 3. Estimated in logit space. 

Mean 
Variance 
 

0 
16 

 

ω  Tonic volatility belief parameter; a constant 

component of the learning rate at level 2. 

Mean 
Variance 

-3 
16 

Stimuli 

(𝑥1) 

The stimulus predictions are a sigmoid 

transformation of the probabilities 

represented in 𝑥2, and so do not have a 

starting value. 

𝜇1: 
Mean 
Variance 

 
NaN 
NaN 

𝜎1: 
Mean 
Variance 

 
NaN 
NaN 

Probabilities 

(𝑥2) 

A starting value of 0 implies neutrality 

between outcomes. 

𝜇2: 
Mean 
Variance 

 
0 
0 

𝜎2: 
Mean 
Variance 

 
log(0.1) 

log(1) 

Volatility 

(𝑥3) 

The absolute starting value of 𝑥3 is arbitrary 

as changes in fitted parameters affect 

scaling. 

𝜇3: 
Mean 
Variance 

 
1 

0.1 

𝜎3: 
Mean 
Variance 

 
log(1) 

0 

Table 6.1 A summary of HGF parameters and priors. 

All priors are specified in the space in which they are estimated. For an account of how 

this relates to the native space of that parameter, please refer to Chapter 3 and to the 

original description of the model (Mathys et al., 2011).  
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decision time slowing with increasing uncertainty (Volkmann, 1934; Yeung et al., 2004; 

Fetsch et al., 2014). 

6.3.9.4 Learning rate 

As in Chapter 4, I examined the learning rate (model parameter 𝛼1), across the course 

of the PLT and at true context change-points, i.e., following a switch in cue:outcome 

probability. Where differences in learning rate at change-points were calculated, the 

mean 𝛼1 for the last three trials of the previous context were subtracted from the mean 

𝛼1 for the first two trials of the next context. ANOVAs were applied to assess whether 

learning rates differed across drug-groups, and whether the noradrenergic manipulations 

modulated how learning rates changed at context change-points.   

6.3.10 Statistical analyses of behavioural data 

In reporting statistical differences, a significance threshold of =0.05 was used. Where 

assumptions of sphericity were violated (Mauchly’s test p<0.05), the Greenhouse-

Geisser correction was applied. Since a significant time x drug interaction on self-

reported alertness was identified (see section 4.4.5.1 for details), the participant-specific 

difference in alertness between baseline and the time corresponding to peak drug 

concentration, Δalertness, was used as a covariate in all analyses to control for any inter-

participant variability in subjective drug effect. 

For comparisons across the three drug-groups, partial eta-squared (ηp
2) is reported as 

the effect size. The key experimental question pertained how noradrenergic 

manipulations influence behaviour, and pupillary responses to uncertainty estimates, 

compared to placebo. Therefore, for behavioural data, planned comparisons were made 

between the two active drug-groups (NA- and NA+) and the Placebo group. Here a 

Benjamini-Hochberg correction for two pairwise comparisons was applied to account for 

the false discovery rate (FDR) (Benjamini and Hochberg, 1995). For pairwise 

comparisons, Cohen’s d is reported as the effect size. 

6.3.11 Analysis of pupil diameter 

For the purpose of analysis, pupil data were exported using ASL software and then 

imported into Matlab (MathWorks, USA). Blinks (defined as pupil losses lasting ≤300ms) 

were detected using a custom-made algorithm and removed by linear interpolation of 

samples 50ms either side of the blink. Additional artefacts (<50ms) were identified in the 

data by taking the first derivative of the pupil series to detect rapid (sample-wise) 

changes in pupil diameter measuring >10% of the maximum pupil diameter. These 
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artefacts were removed by the same linear interpolation method. Pupil losses lasting 

longer than 300ms were removed by NaN padding. The interpolated pupil time series 

were low-pass filtered (4Hz, 3rd order Butterworth) (de Gee et al., 2014; de Berker et al., 

2016), detrended, and z-scored. In line with Browning et al., 2015, trials in which more 

than 50% of the eyetracking data were interpolated or lost were not used in subsequent 

analyses (mean ± SEM: 2.8 ± 0.8% of trials for NA-, 1.4 ± 0.6% for Placebo, and 2.5 ± 

1.1% for NA+).  

6.3.11.1 Event-related analysis of pupil diameter 

To gain insight into the role played by uncertainty, the pupillary response was epoched 

by trial (i.e., from -200ms from cue onset on trial t to -200ms from cue onset on trial t+1). 

Each epoch was baseline-corrected by subtracting the mean of all pre-trial pupil diameter 

values in the window from -200 to 0ms from cue onset from the pupil diameter trajectory 

for that trial. Each trial-wise, baseline-corrected pupil diameter trajectory was separated 

into three epochs: 1) -0.2 to 0.3s from cue onset, 2) -0.2 to 1s from response onset (i.e., 

the button-press that indicated a participant’s decision), and 3) -0.2 to 3s from outcome 

onset. Any trials on which participants failed to indicate a decision by button-press before 

outcome presentation was excluded. The percentage of missed button-press responses 

was very low across drug-groups (mean ± SEM: 0.55 ± 0.17% of trials for NA-, 0.34 ± 

0.09% for Placebo, and 0.76 ± 0.29% for NA+). 

A one-way ANOVA was applied to assess peak pupil diameter during the post-response 

and post-outcome periods across drug-groups. For the post-response period, the peak 

pupil was calculated as the mean of a 100ms window spanning the time of the average 

peak pupil measurement. For the outcome period, a 250ms window was used. Trial-wise 

pupillary responses during the PLT were contrasted with trial-wise pupillary responses 

during the CT, which was identical in structure to the PLT but gave rise to no uncertainty 

about the cue:outcome relationship. Again, the percentage of (excluded) missed button-

press responses was very low in the CT across drug-groups (mean ± SEM: 0.33 ± 0.04% 

of trials for NA-, 0.05 ± 0.02% for Placebo, and 0.10 ± 0.05% for NA+). 

6.3.11.2 Pupil diameter at baseline 

Within the framework of the HGF model, information about irreducible uncertainty on the 

current trial is available to participants before the trial begins since it is computed on the 

basis of trial history (Mathys et al., 2011). Therefore, in line with my previous work (de 

Berker et al., 2016), baseline pupil diameter, computed as the mean of all pre-trial values 

in the window from -200ms to 0ms from cue onset, was interrogated in order to determine 
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whether it reflected participants’ current beliefs, and whether this relationship differed 

across drug-groups. As with the decision time data, trials were first binned according to 

10 evenly-spaced belief levels (model parameter �̂�1) ranging from 0/1 to 1/0. For 

statistical comparisons, I collapsed across equivalent probability beliefs in each bias 

direction to create five bias categories (i.e., 0-0.1/0.9-1, 0.1-0.2/0.8-0.9. 0.2-0.3/0.7-0.8, 

0.3-0.4/0.6-0.7, 0.4-0.5/0.5-0.6). A 5 bias x 3 drug RM-ANOVA was used to compare 

mean baseline pupil diameter across these five belief levels and between drug-groups. 

6.3.11.3 Pupil diameter modulation by predictions and beliefs 

For an initial model-agnostic assessment of pupil diameter modulation across post-

response and post-outcome periods, trials were binned according to whether participants 

had made a correct or incorrect prediction about outcome type. In my previous work with 

de Berker et al., it was possible to show that pupil responsivity to probabilistic outcomes 

is influenced by participants’ beliefs about surprise and irreducible uncertainty (de Berker 

et al., 2016). Therefore, I next implemented median splits to separate trials according to 

whether they were high or low in participant-specific surprise (model parameter |𝛿1|) and 

irreducible uncertainty (�̂�1). 

Note that �̂�1 reflects participants’ estimated beliefs of the current cue:outcome 

probabilities. These estimates lie between 0 and 1 and encapsulate two bias directions, 

e.g., a �̂�1 estimate of 0.1 indicates an equivalent bias magnitude as a �̂�1 estimate of 0.9, 

but in the opposite bias direction. Maximal irreducible uncertainty occurs at p=0.5. Since 

�̂�1 showed a symmetrical inverted-U relationship with baseline pupil diameter (see 

section 6.4.3.1), the median splits were conducted using a �̂�1 parameter that had been 

adjusted to scale between 0 and 0.5. As such, any raw �̂�1 values between 0 and 0.5 

remained unchanged, while those between 0.5 and 1 were transformed as follows: 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 �̂�1 =  −�̂�1 + 1 

Equation 6.1 

In accordance with the prediction that NA would influence phasic volatility estimates (𝜇3) 

and/or phasic volatility uncertainty (�̂�3), I also performed additional median splits on high 

and low 𝜇3 and �̂�3. Note that �̂�3 captures an individual’s uncertainty about their current 

phasic volatility estimate, in contrast to volatility uncertainty which is the uncertainty that 

arises due to environmental instability. 

RM-ANOVAs were applied to assess peak pupil diameter during the post-response and 

post-outcome periods for these different trial-types and across drug-groups. Peak pupil 
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responses were calculated according to the method described in section 6.3.11.1. Where 

significant drug effects were identified, additional exploratory analyses were conducted 

on the individual drug-groups to further characterise the effect of beliefs on pupil 

diameter. A Benjamini-Hochberg correction was applied to each of these additional 

analyses to control for FDR. No analyses were conducted on the post-cue period as it 

was fixed at 300ms to minimise overlap with the timing of the button-press responses 

(Table 6.4). 

6.3.11.4 Regression analyses 

To extend these analyses by pinpointing the specific effects of participants’ beliefs on 

pupil diameter, and assessing the impact of the noradrenergic manipulations on these 

pupil responses, a regression approach implemented by Browning et al. was adopted 

(Browning et al., 2015). Specifically, regression analyses were conducted to examine the 

effects of trial-wise estimates of surprise, irreducible uncertainty, phasic volatility, and 

phasic volatility uncertainty on pupil dilation during the post-response and post-outcome 

periods. For the Placebo group, pupil diameter during the post-response period (0 to 1s 

from response onset) was sampled using 120 8.3ms bins (i.e., 1s/sample rate). Pupil 

diameter during the post-outcome period (0 to 3.3s from outcome onset) was sampled 

using 396 8.3ms bins. The total duration of the post-outcome period entered into the 

regression analyses was the minimum that could occur on any given trial. 

Regression analyses were conducted for each of these bins, with surprise (|𝛿1|), 

irreducible uncertainty (�̂�1), phasic volatility estimate (𝜇3), and phasic volatility 

uncertainty (�̂�3) entered as regressors of interest. As in section 6.3.11.3, the adjusted 

irreducible uncertainty measure, which peaks at p=0.5 (see Equation 6.1), was used in 

all regression analyses. 

Cue type (-1 for low-pitch tone, 1 for high-pitch tone), response type (-1 for left button-

press, 1 for right button-press), and outcome type (-1 for “cow”, 1 for “pig”) were entered 

into the analysis as control regressors. 

For each participant in each of the active drug-groups, the mean Placebo regression 

beta weights across the post-response and post-outcome periods were subtracted from 

the time-series of beta weights for that participant. 

The resulting time-series of beta weights (for the Placebo group) and Δbeta-weights (for 

the active drug-groups) for the constant component of pupil diameter, surprise, 

irreducible uncertainty, phasic volatility estimate, and phasic volatility uncertainty were 

down-sampled to give mean beta weight estimates of the effects of each factor on pupil 
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dilation for 6 sequential 166.7ms bins across the post-response period and 19 sequential 

167.7ms bins across the post-outcome period.  

For the Placebo group, t-tests were used to determine whether each down-sampled 

beta-weight bin differed significantly from zero. Each active drug-group was compared 

to Placebo by using t-tests to determine whether each down-sampled Δbeta-weight bin 

differed significantly from zero. Since 6 comparisons were made across the post-

response period, 19 comparisons were made across the post-outcome period, and these 

comparisons were made across three drug-groups, a Benjamini-Hochberg correction 

was applied to correct for the FDR arising from the total of 75 comparisons. 

6.3.12 Behaviour vs pupil responses 

To assess whether the pupillary responses to participants’ beliefs were associated with 

altered behaviour during the PLT, correlation analyses were conducted. Specifically, for 

each of the three drug-groups, a Pearson’s correlation was used to compare the mean 

volatility beta weight from 0-1.7s post-outcome, and the mean irreducible uncertainty 

beta weight from 0.7-1.7s post-outcome, to participants’ mean learning rate and mean 

performance score. 

6.3.13 Control analyses 

6.3.13.1 Model parameter correlations 

To verify that the output of the regression analyses was not complicated by high 

correlations between the model parameters entered as regressors, correlations between 

|𝛿1|, �̂�1, 𝜇3 and �̂�3 were assessed. 

6.4 Results 

Behavioural data for 90 participants are reported. The three groups were matched for 

gender (Kruskal-Wallis test: H2=0.00, p=1.000), age (one-way ANOVA: F2,89=1.29, 

p=0.281), body weight (F2,89=0.082, p=0.921), education level (H2=4.79, p=0.091), and 

all other baseline psychometric measures taken (Table 6.2). Pupil data for one 

participant from the NA+ group is missing due to a technical problem with the eyetracker 

at the time of recording. 

6.4.1 Model-agnostic results 

On average, 45.9 ± 1.28% (±SEM), 47.9 ±1.28% and 46.5 ± 1.28% of predictions made 

during the unbiased (0.5/0.5) blocks were correct in the NA-, Placebo and NA+ groups 
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respectively, indicating that participants were performing close to chance level when 

there was no cue:outcome bias (Figure 6.3A). A one-way ANOVA indicated that 

accuracy (i.e., the percentage of correct responses) in the unbiased blocks did not differ 

between drug-groups (F2,86=0.55, p=0.581). Similarly, decision times during unbiased 

blocks were equivalent across drug-groups (F2,86=0.36, p=0.697; Figure 6.4A), indicating 

that the drug manipulations did not merely modulate participants’ ability to respond 

quickly. Neither effect was modulated by Δalertness (both p≥0.74). 

 Placebo 
(n = 30) 

NA- 
(n = 30) 

NA+ 
(n = 30) 

Between-
groups 

difference? 

Gender 
(number male)# 

13 13 13 
ns 

p = 1.000 

Age 
(years) 

24.1 ± 4.2 26.0 ± 5.9 24.8 ± 3.9 
ns 

p = 0.281 

Weight 
(kg) 

69.5 ± 2.8 68.3 ± 2.2 68.5 ± 1.8 
ns 

p = 0.921 

Education Level 
(1-5)# 

2.8 ± 0.2 3.1 ± 0.1 3.4 ± 0.2 
ns 

p = 0.091 

Digit Span 
(forwards + backwards)# 

12.8 ± 0.5 12.8 ± 0.4 13.4 ± 0.4 
ns 

p = 0.334 

Impulsivity: 
BIS-11 

64.4 ± 2.0 61.5 ± 1.4 61.4 ± 1.4 
ns 

p = 0.337 

Risk-taking: 
DOSPERT (total) 

113.1 ± 3.6 104.3 ± 4.0 108.2 ± 3.8 
ns 

p = 0.699 

Distractibility: 
CFQ 

39.5 ± 2.0 41.4 ± 2.6 40.0 ± 2.2 
ns 

p = 0.833 

Sleep quantity on the 
previous night (hours)# 

7.0 ± 0.2 7.6 ± 0.3 7.1 ± 0.2 
ns 

p = 0.107 

Sleep quality on the 
previous night (1-8)# 

5.2 ± 0.2 5.4 ± 0.2 5.5 ± 0.3 
ns 

p = 0.615 

Fatigue during task 
(0 – 100) 

45.4 ± 3.9 44.7 ± 3.8 46.6 ± 4.1 
ns 

p = 0.941 

Active drug 
(%)# 

37 57 73 p = 0.017 

 

Table 6.2 Summary details for participants in each experimental group. Between-

groups comparisons revealed no significant differences (ns = non-significant) for gender, 

age, body weight, education level, baseline working memory (Digit Span), impulsivity 

(Barratt Impulsiveness Scale; BIS-11), risk-taking (Domain-Specific Risk-Taking Scale; 

DOSPERT), distractibility (Cognitive Failures Questionnaire; CFQ), fatigue during the 

task, or sleep quality or quantity on the previous night. For continuous data, one-way 

ANOVAs were used to test for any between-group differences. For discrete data (#), 

Kruskal-Wallis tests were applied. Education Level refers to the highest attained from the 

following: 1 = compulsory education (≤ 12 years); 2 = further education (13-14 years); 3 

= undergraduate degree (15-17 years); 4 = one postgraduate degree (≥ 18 years); 5 = 
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multiple postgraduate degrees. Age data are mean ± SD. Remaining data are mean ± 

SEM. Active drug refers to the percentage of participants within each group who reported 

at the end of the experiment that they believed they had received an active drug.  

6.4.1.1 Accuracy increases with increasing cue:outcome bias 

A 3 bias (high/moderate/none) x 2 time (Early/Late trials) x 3 drug RM-ANOVA revealed 

that accuracy increased significantly as the true cue:outcome bias increased (effect of 

bias: F1.70,146.55=337.45, p<0.001, ηp
2=0.80; Figure 6.3B). Additional (FDR-corrected) 

exploratory analyses revealed that the effect of bias existed in all three drug-groups (NA-

: F1.58,44.17=155.68, p<0.001, ηp
2=0.85; Placebo: F1.66,46.44=118.37, p<0.001, ηp

2=0.81; 

NA+: F2,56=81.65, p<0.001, ηp
2=0.75). Together with the significant increase in accuracy 

over the course of a contextual block (effect of time F1,86=20.58, p<0.001, ηp
2=0.19), this 

indicates that participants learned to estimate the true cue:outcome probabilities. The 3 

bias x 2 time x 3 drug RM-ANOVA indicated a significant bias x time interaction 

(F1.83,157.39=7.80, p=0.001, ηp
2=0.08), but none of the main effects were modulated by 

drug (all p>0.21) or Δalertness (all p>0.13). 

Since learning would not be expected over the course of an unbiased block, I examined 

whether the bias x time interaction was driven by an increase in accuracy during the 

biased, but not the unbiased, blocks. A 2 time x 3 drug RM-ANOVA on the percentage 

correct responses in the unbiased blocks indeed revealed no effect of time (p=0.604) 

and no modulation by drug (p=0.808) or Δalertness (p=0.940). In contrast, a 2 bias x 2 

time x 3 drug RM-ANOVA on the highly and moderately biased blocks revealed 

significant effects of bias (F1,86=437.97, p<0.001, ηp
2=0.84) and time (F1,86=41.20, 

p<0.001, ηp
2=0.32), and no modulation by drug (all p>22) or Δalertness (all p>0.09). The 

increase in accuracy over time was equivalent across highly and moderately biased 

blocks (no probability x time interaction: p=0.168). 

Further (FDR-corrected) exploratory analyses indicated that accuracy increased across 

the course of the highly biased blocks in all three drug-groups (NA-: F1,28=9.94, p=0.004, 

ηp
2=0.26; Placebo: F1,28=36.87, p<0.001, ηp

2=0.57; NA+: F1,28=5.76, p=0.023, ηp
2=0.17), 

and across the course of the moderately biased blocks in the NA- (F1,28=5.85, p=0.022, 

ηp
2=0.17) and Placebo groups (F1,28=10.281, p=0.003, ηp

2=0.27). NA+ group accuracy 

remained unchanged across the course of the moderately biased blocks (p=0.627). 
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Figure 6.3 Model-agnostic analysis of accuracy. Participants in all three drug-groups 

demonstrated learning of the underlying the cue:outcome relationships. (A) Across 

groups, participants made correct predictions on a higher percentage of trials as the true 

cue:outcome bias increased. (B) This learning was observed over the course of the 

biased contextual blocks, with participants in all three drug-groups achieving a higher 

accuracy on trials in the second half of the highly biased blocks. Accuracy rates in the 

NA- and Placebo groups also increased over the course of the moderately biased blocks. 

Accuracy remained unchanged over the course of the unbiased blocks in all three drug-

groups. Results are mean ± SEM, corrected for Δalertness. * p<0.05, ** p<0.01, *** 

p<0.001, after an FDR correction for three multiple comparisons.  

6.4.1.2 Decision times decrease with increasing cue:outcome bias 

A 3 bias (high/moderate/none) x 2 time (Early/Late trials) x 3 drug RM-ANOVA indicated 

that participants’ decision times decreased significantly as the true cue:outcome bias 

increased (effect of bias: F2,172=17.96, p<0.001, ηp
2=0.17; Figure 6.4B), again indicative 

of learning of the true cue:outcome probabilities. Additional (FDR-corrected) exploratory 

analyses revealed that the effect of bias existed in the NA- (F2,56=11.50, p<0.001, 
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ηp
2=0.29) and Placebo (F2,56=5.58, p=0.006, ηp

2=0.17) groups, and there was a trend-

level effect in the NA+ group (F2,56=3.15, p=0.051, ηp
2=0.10). However, there was no 

significant change in decision time over the course of the contextual blocks (no effect of 

time: p=0.164). The 3 bias x 2 time x 3 drug RM-ANOVA indicated that the effect of bias 

was not modulated by drug (p=0.173) or Δalertness (p=0.708). However, there was a 

significant time x drug interaction (F2,86=4.24, p=0.018, ηp
2=0.09).  

Again, since there was a bias x time interaction (F2,72=6.64, p=0.002, ηp
2=0.07), and 

because a decrease in decision time would not necessarily be expected across the 

course of the unbiased blocks, a 2 time x 3 drug RM-ANOVA was conducted on the 

decision times in the unbiased blocks. This indeed revealed no significant effect of time 

(p=0.155), and no modulation by drug (p=0.127) or Δalertness (p=0.183). In contrast, a 

2 bias x 2 time x 3 drug RM-ANOVA on the highly and moderately biased blocks revealed 

significant effects of bias (F1,86=27.63, p<0.001, ηp
2=0.24) and time (F1,86=16.09, 

p<0.001, ηp
2=0.16), and a significant time x drug interaction (F2,86=3.18, p=0.047, 

ηp
2=0.07). Post-hoc (FDR-corrected) pairwise comparisons between the active drug-

groups and Placebo indicated that the time x drug interaction was driven by the NA+ 

group, with participant-specific differences in decision times on Late vs Early trials 

demonstrating less speeding across biased blocks compared to Placebo (t56=2.52, 

p=0.014, Cohen’s d=0.67). There was a trend-level bias x drug interaction (F2,86=3.05, 

p=0.053, ηp
2=0.07), but none of the effects were modulated by Δalertness (all p>0.41). 

Further (FDR-corrected) exploratory analyses indicated that decision time decreased 

across the course of the highly biased blocks in the NA- (F1,28=12.139, p=0.002, 

ηp
2=0.30) and Placebo (F1,28=16.304, p<0.001, ηp

2=0.37) groups, but not in the NA+ 

group (p=0.693). Uncorrected analyses indicated that Placebo group decision times also 

decreased over the course of the moderately biased blocks (F1,28=5.93, p=0.022, 

ηp
2=0.18), but the result did not survive an FDR correction for multiple comparisons. No 

change in decision times across the course of the moderately biased blocks was 

observed in the NA- or NA+ groups (both p>0.88). 

In summary, the increasing accuracy and decreasing decision time that accompanied an 

increase in cue:outcome bias, and continued over the course of the biased blocks, 

indicates that participants in all three drug-groups demonstrated learning of the task’s 

underlying probabilistic structure. Moreover, the smaller decrease in decision times 

across biased blocks in the NA+ group compared to Placebo is indicative of a modulation 

of learning by reboxetine.  
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Figure 6.4 Model-agnostic analysis of decision times. (A) Decision times decreased 

as the true cue:outcome bias increased, further demonstrating learning of the task’s 

structure in the three drug-groups. (B) Learning was observed over the course of the 

biased contextual blocks, with participants in the NA- and Placebo groups showing 

decreased decision times on trials in the second half of the highly biased blocks. A trend-

level decrease in decision time was also observed across the course of the moderately 

biased blocks in the Placebo group. Decision times remained unchanged over the course 

of the unbiased blocks in all three drug-groups. Results are mean ± SEM, corrected for 

Δalertness. * p<0.05, ** p<0.01, *** p<0.001, # trend, after an FDR correction for three 

multiple comparisons.  

6.4.1.3 Task performance is modulated by cue:outcome bias and noradrenaline 

Next, accuracy and decision time were combined to calculate a performance score 

(Figure 6.5). A 3 bias x 2 time x 3 drug RM-ANOVA on performance scores demonstrated 

that performance improved significantly as the true cue:outcome bias increased (effect 

of probability: F1.66,142.92=252.41, p<0.001, ηp
2=0.75) and as a contextual block 

progressed (effect of time: F2,86=23.73, p<0.001, ηp
2=0.22). There was a significant bias 
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x time interaction (F2,172=15.50, p<0.001, ηp
2=0.153) and a trend-level time x drug 

interaction (F2,86=3.08, p=0.051, ηp
2=0.07). Post-hoc pairwise (FDR-corrected) 

comparisons on the participant-specific differences in performance scores on Late vs 

Early trials demonstrated that this interaction was driven by the NA+ group (Figure 6.5C). 

Indeed, performance was poorer in the NA+ group compared to Placebo (t56=2.67, 

p=0.016, d=0.71). In the 3 bias x 2 time x 3 drug RM-ANOVA, neither the effect of bias 

nor the bias x time interaction was modulated by drug (both p>0.52). None of the effects 

were modulated by Δalertness (all p>0.09). 

 

Figure 6.5 Model-agnostic analysis of performance scores. In each case, a higher 

score indicates better performance since it reflects a higher accuracy and/or faster 

decision time. (A)  Performance improved significantly in each drug-group as the true 

cue:outcome probability increased. (B) Performance also improved across the course of 

the contextual blocks with subjects achieving higher performance scores on Late trials 

(i.e., those in the second half of the contextual blocks) compared to Early trials (i.e., those 

in the first half of the contextual blocks). Here the data have been collapsed across the 

three bias levels. (C) Assessment of the participant-specific differences in performance 
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scores on Late vs Early trials across the three bias levels indicates that performance was 

poorer in the NA+ group compared to Placebo. Data are mean ± SEM, corrected for 

Δalertness. * p<0.05, ** p<0.01, *** p<0.001. 

6.4.2 Model-based results  

6.4.2.1 Decision times are modulated by irreducible uncertainty 

Participants’ estimated beliefs about the current cue:outcome probabilities, and hence 

their current irreducible uncertainty (model parameter �̂�1), predicted their decision times 

(Figure 6.6A). Indeed, a curve describing the variance of a Bernoulli distribution 

representing beliefs about probabilities, which is the formulation of irreducible uncertainty 

�̂�1 used here, predicts mean decision times across the three drug-groups (Pearson’s 

correlations for NA: r=0.942, p<0.001; Placebo: r=0.902, p<0.001; NA+: r=0.931, 

p<0.001), replicating my previous work with de Berker et al. (de Berker et al., 2016) 

A 5 bias x 3 drug RM-ANOVA indicated that participants’ decision times increased 

significantly as their estimates of cue:outcome bias decreased, and thus as their 

estimated irreducible uncertainty increased (effect of bias: F2.38,188.25=60.69, p<0.001, 

ηp
2=0.43; Figure 6.6B). Additional (FDR-corrected) exploratory analyses revealed that 

the effect of bias existed in all three drug-groups (NA-: F1.88,48.75=19.48, p<0.001, 

ηp
2=0.43; Placebo: F2.50,64.98=36.69, p<0.001, ηp

2=0.59; NA+: F2.89,72.22=13.97, p<0.001, 

ηp
2=0.36). Indeed, the effect of estimated bias on decision times was not modulated by 

drug (p=0.723), or by Δalertness (p=0.310). 

Since the HGF is informed of participants’ trial-wise predictions, but not their decision 

times, this increase in decision time with decreasing bias and increasing irreducible 

uncertainty (i.e., as beliefs approach p=0.5) indicates that the model captured 

participants’ beliefs well. Indeed, the relationship between decision time and probability 

is clearer when trials are categorised according to participants’ estimated beliefs about 

the current cue:outcome probability compared to when trials are categorised according 

to the true cue:outcome probabilities, which were hidden from participants (c.f. Figure 

6.4). 
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Figure 6.6 Decision times according to participants’ cue:outcome probability 

beliefs. (A) Participants’ estimated beliefs about cue:outcome probabilities (and their 

beliefs about irreducible uncertainty) lay between 0 and 1. Across drug-groups, the 

distribution of decision times across these estimates conformed closely to a Bernoulli 

distribution (grey dashed line), with decision times peaking with maximal irreducible 

uncertainty (�̂�1=0.5). (B) For statistical analysis of the effect of irreducible uncertainty on 

decision times, bins showing an equivalent bias magnitude (but in opposite directions) 

were collapsed, to create 5 bias bins spanning 0/1 to 0.5/0.5. Across the three drug-

groups, decision time increased significantly as irreducible uncertainty about the 

cue:outcome relationships increased. Since the HGF is uninformed of participants’ 

decision times, this relationship with estimated irreducible uncertainty indicates that the 

model captured participants’ beliefs well. Data are mean ± SEM, corrected for 

Δalertness. *** p<0.001, after an FDR correction for three comparisons.  
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6.4.3 Pupil analyses 

6.4.3.1 Baseline pupil diameter is modulated by irreducible uncertainty 

Baseline pupil diameter on each trial displayed a clear inverted-U relationship with belief 

about the current cue:outcome probabilities, and thus with estimates of irreducible 

uncertainty, as reflected by model parameter �̂�1 (Figure 6.7A). This recapitulates the 

relationship between decision times and irreducible uncertainty, and replicates my 

previous work with de Berker et al. (de Berker et al., 2016). A curve describing the 

variance of a Bernoulli distribution representing beliefs about cue:outcome probabilities 

predicts mean baseline pupil diameter extremely well across the three drug-groups 

(Pearson’s correlations for NA: r=0.886, p<0.001; Placebo: r=0.921, p<0.001; NA+: 

r=0.938, p<0.001).  

A 5 bias x 3 drug RM-ANOVA indicated that participants’ baseline pupil diameter 

increased significantly as their estimates of cue:outcome bias decreased and therefore 

as their estimated irreducible uncertainty increased (effect of bias: F1.91,149.25=16.98, 

p<0.001, ηp
2=0.18; Figure 6.7B). Additional (FDR-corrected) exploratory analyses 

revealed that the effect of bias existed in all three drug-groups (NA-: F1.98,51.49=5.68, 

p<0.001, ηp
2=0.18; Placebo: F1.83,47.49=6.17, p<0.001, ηp

2=0.19; NA+: F1.86,44.59=9.83, 

p<0.001, ηp
2=0.29). Indeed, the effect of estimated bias on baseline pupil diameter was 

not modulated by drug (p=0.613), or by Δalertness (p=0.564). 
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Figure 6.7 Baseline pupil diameter according to participants’ cue:outcome 

probability beliefs. (A) Across drug-groups, the relationship between pupil diameter 

and beliefs about cue:outcome probabilities (and thus irreducible uncertainty) closely 

conformed to a Bernoulli distribution (grey dashed line), with pupil diameters peaking 

with maximal irreducible uncertainty (�̂�1=0.5). (B) For statistical analysis of the effect of 

irreducible uncertainty on pupil diameter, bins showing an equivalent bias magnitude (but 

in opposite directions) were collapsed to create 5 bias bins spanning 0/1 to 0.5/0.5. 

Across the three drug-groups, pupil diameter increased significantly as irreducible 

uncertainty about the cue:outcome relationships increased. Data are mean ± SEM, 

corrected for Δalertness. *** p<0.001, after an FDR correction for three comparisons.  

6.4.3.2 Event-related analysis of pupil diameter 

By epoching pupil diameter during the PLT by trial, and then according to cue, response 

and outcome onset within each trial, it was possible to characterise pupil diameter 

modulations during the post-response and post-outcome periods (Figure 6.8). Across 
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drug-groups, pupil diameter started to increase after cue onset, and continued to 

increase following the button-press response participants made to indicate their 

prediction about which outcome would follow. Following outcome onset, pupils showed 

a positive evoked response. The peak post-response increase in pupil diameter was 

identical across drug-groups (p=0.802). Compared to Placebo, the peak post-outcome 

increase in pupil diameter tended to be augmented in the NA+ group and suppressed in 

the NA- group. However, a one-way ANOVA on the post-outcome pupillary peak 

revealed no significant modulation by drug-group (p=0.202). No reported effects were 

modulated by Δalertness (p≥0.37). 

 

Figure 6.8 Trial-wise pupil diameter during the probabilistic learning task (PLT). 

Data have been baseline-corrected and epoched according to (1) cue, (2) response and 

(3) outcome onset. Across the three drug-groups, pupil diameter begins to increase after 

cue onset, continues to increase following the button-press response participants make 

to indicate their prediction about which outcome will follow, and then shows a positive 

evoked response following outcome onset. Compared to Placebo, there was a tendency 

for the post-outcome increase in pupil diameter to be augmented in the NA+ group and 

suppressed in the NA- group. Data are mean pupil diameter across participants. Error 

bars indicate the maximum SEM for each drug-group.  

Applying the same epoching approach to the control data, pupil diameter was again 

found to start increasing after cue onset, and to continue increasing following the 

participants’ button-press response (Figure 6.9). Unlike during the PLT, there was no 

positive evoked response following outcome presentation in any of the drug-groups. 
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Figure 6.9 Trial-wise pupil diameter during the control task (CT). Data have been 

baseline-corrected and epoched according to (1) cue, (2) response and (3) outcome 

onset. Across the three drug-groups, pupil diameter begins to increase after cue onset, 

and continues to increase following the button-press response participants make to 

indicate their “prediction” about which outcome will follow. Unlike during the PLT, there 

is no positive evoked response following outcome presentation. Data are mean pupil 

diameter across participants. Error bars indicate the maximum SEM for each drug-group.  

The key difference between the PLT and the CT was that the latter was free from 

uncertainty about which outcome would follow the cue on any given trial. Therefore, the 

fact that no increase in pupil diameter was observed post-outcome in the CT suggests 

that the evoked response observed during the PLT was indeed due to uncertainty and/or 

surprise about trial-wise outcome presentation. 

In both the PLT and CT, an increase in pupil diameter was observed following the button-

press response participants made to indicate their prediction about which outcome would 

follow. Given that this pupillary response was observed under both conditions of 

uncertainty and conditions of no uncertainty about outcome type, this suggests that the 

increase in pupil diameter at this stage in the trial is linked to the act of making a decision 

by button-press. Moreover, across drug-groups, the maximum pupil diameter during the 

post-response period was greater during the PLT (mean for NA-: 0.445; Placebo: 0.416; 

NA+: 0.427) than the CT (mean for NA-: 0.299; Placebo: 0.253; NA+: 0.263), and was 

sustained for longer, suggesting that uncertainty during the PLT may have had an 
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additional dilatory effect on pupils over and above the effect of making a button-press 

response. 

6.4.3.3 Model-agnostic analyses of pupil diameter modulation across post-

response and post-outcome periods 

A RM-ANOVA indicated that the peak increase in pupil diameter following outcome 

presentation was greater on trials on which participants had made an incorrect prediction 

about outcome type compared to when they had made a correct prediction (F1,85=29.91, 

p<0.001, ηp
2=0.26; Figure 6.10). However, this effect was modulated by drug-group 

(F2,85=29.91, p=0.002, ηp
2=0.14). Indeed, additional exploratory analyses demonstrated 

that this increased pupillary response on incorrect trials existed in the NA- (F1,28=11.17, 

p=0.003, ηp
2=0.29) and NA+ (F1,27=18.22, p<0.001, ηp

2=0.40) groups, but not in the 

Placebo group (p=0.348). None of these effects were modulated by Δalertness (p>0.34). 

In contrast, there was no effect of drug on post-response pupillary dilation (p=0.224).  

 

Figure 6.10 Pupil diameter on trials with correctly and incorrectly predicted 

outcomes. An incorrect prediction augmented the post-outcome dilatory pupillary 

response in the NA- and NA+ groups. Data are mean pupil diameter across participants. 

Error bars indicate the maximum SEM for each trial-type.  

6.4.3.4 Model-based analyses of pupil diameter modulation across post-

response and post-outcome periods 

Using estimates of participants’ trial-wise beliefs, as provided by the HGF, to categorise 

trials indicated that high surprise (|𝛿1|) and high irreducible uncertainty (�̂�1) were 

associated with an increase in the pupillary response observed in the post-outcome 

period compared to low surprise (F1,85=45.52, p<0.001, ηp
2=0.35; Figure 6.11A) and low 

irreducible uncertainty (F1,85=45.15, p<0.001, ηp
2=0.35; Figure 6.11B), respectively.  The 

positive effect of surprise on post-outcome pupil diameter is reassuring given the positive 
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effect of incorrect responses observed previously (Figure 6.10), and given that the 

surprise quantity estimated by the HGF is correlated with correct/incorrect predictions 

(NA-: mean r=0.589 ± 0.03 (± SEM); Placebo: r=0.611 ± 0.03; NA+: r=0.562 ± 0.04). 

These effects were equivalent across drug-groups (all p>0.50). There was also a 

significant effect of high irreducible uncertainty during the post-response period 

(F1,85=7.05, p=0.009, ηp
2=0.08), but this effect was not significant within the individual 

NA- (p=0.465), Placebo (p=0.465) or NA+ (p=0.054) groups. 

A RM-ANOVA with drug-group as a between-subjects factor indicated that high phasic 

volatility estimates (𝜇3) were associated with an increased post-outcome pupillary 

response (F1,85=11.89, p=0.001, ηp
2=0.12; Figure 6.11C). Additional exploratory 

analyses indicated that this effect was driven by the NA- group (F1,28=11.49, p=0.006, 

ηp
2=0.29), but not the Placebo (p=0.110) or NA+ (p=0.433) groups. Similarly, high phasic 

volatility uncertainty estimates (�̂�3) were associated with an increased post-outcome 

pupillary response when drug-group was included in a RM-ANOVA as a between-

subjects factor (F1,85=6.81, p=0.011, ηp
2=0.07; Figure 6.11D), but additional analyses on 

the individual drug-groups demonstrated that this effect was not significant within the NA- 

(p=0.033), Placebo (p=0.259) or NA+ (p=0.141) groups. There was also a significant 

effect of high phasic volatility uncertainty during the post-response period (F1,85=5.98, 

p=0.021, ηp
2=0.18), but again this effect was not significant within the individual drug-

groups (all p≥0.058). None of the reported effects were modulated by Δalertness (all 

p>0.09). 
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Figure 6.11 Model-based analysis of pupil diameter. Median splits indicated that, 

across drug-groups, high surprise (|𝛿1|; A) and high irreducible uncertainty (�̂�1; B) were 

associated with an increased pupil diameter in the post-outcome period compared to low 

surprise and low irreducible uncertainty. High phasic volatility estimates (𝜇3; C) were 

associated with increased post-outcome pupillary dilation in the NA- group only. There 

was a tendency for high phasic volatility uncertainty (�̂�3; D) to be associated with 

increased post-outcome pupil diameter, but the effect was not significant within individual 

drug-groups. There was also a tendency for high irreducible uncertainty and high 

volatility uncertainty to increase pupil diameter in the post-response period across drug-

groups. Data are mean pupil diameter across participants. Error bars indicate the 

maximum SEM for each trial-type.  

6.4.3.5 Regression analyses: Placebo data 

Regression analyses enabled the specific pupillary effects of participants’ estimates of 

surprise, irreducible uncertainty, phasic volatility, and phasic volatility uncertainty during 

the post-response and post-outcome periods to be identified. Reassuringly, the 

regression analysis of the Placebo group pupil data identified a constant component of 

pupil diameter (Figure 6.12A) with a trial-wise trajectory strikingly similar to the mean 

pupil diameter trajectory shown in Figure 6.8. FDR-corrected t-tests indicated that pupil 

diameter was significantly greater than baseline during the 0-1s post-response period 

(all FDR-corrected p<0.001), and from 0-1.5s post-outcome (all p≤0.001). Pupil diameter 

then decreased below baseline levels from 2.3-3.2s post-outcome (all p≤0.03). 

Surprise significantly increased pupil diameter from 1.2-2.3 and 2.7-3.2s post-outcome 

(all p≤0.04); Figure 6.12B). Again, this result is reassuring given the positive effect of 

surprise and incorrect predictions on pupil diameter observed previously (Figure 6.11A). 

Irreducible uncertainty had a tendency to increase pupil diameter 0-1s post-response (all 

uncorrected p≤0.03), but this result did not survive correction for multiple comparisons. 

Irreducible uncertainty did significantly increase pupil diameter 0-1.s post-outcome (all 

FDR-corrected p≤0.04; Figure 6.12C). 

Phasic volatility estimates showed a tendency to decrease pupil diameter 0.8-1s post-

response (uncorrected p=0.038), but this result did not survive correction for multiple 

comparisons (Figure 6.12D). No significant effects of phasic volatility uncertainty on pupil 

diameter were observed (Figure 6.12E). 
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In summary, pupil diameter tracked both surprise and irreducible uncertainty. Additional 

control regressors for cue type, response type and outcome type were included in the 

analysis but had no significant influence on pupil diameter (all FDR-corrected p>0.09). 

 

Figure 6.12 Regression analyses on Placebo pupil data. The output indicates the 

effects of Placebo participants’ beliefs on pupil diameter. The constant component of 
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pupil diameter strongly reflects the mean pupil diameter trajectory (see Figure 6.8).  Data 

are mean ± SEM. * p<0.05 (FDR-corrected), + p<0.05 (uncorrected).  

6.4.3.6 Regression analyses: Noradrenergic manipulations 

Next the output of the regression analyses for each of the active drug-groups was 

compared to the output of the regression analysis for the Placebo group (Figure 6.13). 

Compared to Placebo, individuals in the NA+ group showed a general tendency towards 

an increased pupil diameter in the post-outcome period, indicated by an augmented 

constant component of pupil diameter 0.7-1.3s and 1.7-2.3s post-outcome (all p≤0.04; 

Figure 6.13A). However, these results did not survive FDR-correction for multiple 

comparisons. While the NA- group showed a numerical decrease in the constant 

component of post-outcome pupil diameter compared to Placebo approximately 0.7-1.3s 

post-outcome, this decrease was not statistically significant (all uncorrected p≥0.12). 

Compared to Placebo, surprise tended to have a reduced influence on pupil diameter in 

the NA- group 0-1s post-response (all uncorrected p≤0.05), and in the NA+ group 1.5-

2.3s post-outcome (all uncorrected p≤0.05). However, these results did not survive 

correction for multiple comparisons (Figure 6.13B). 

Irreducible uncertainty estimates had a significantly reduced effect on pupil diameter in 

the NA- group 0.5-1s post-response (all FDR-corrected p≤0.05; Figure 6.13C) and 0-

1.8s post-outcome (all p≤0.05). In the NA+ group, a reduced effect of irreducible 

uncertainty on pupil diameter was only observed after outcome onset, specifically 0.7-1s 

and 1.3-1.7s post-outcome (all p≤0.05). 

Compared to Placebo, phasic volatility estimates significantly increased pupil diameter 

in both drug-groups (Figure 6.13C). In both the NA- and NA+ groups, volatility increased 

pupil diameter 0.5-1s post-response (all FDR-corrected p≤0.02). For the post-outcome 

period, volatility increased pupil diameter 0-1.2s post-outcome in the NA- group, and 0-

2s post-outcome in the NA+ group (all FDR-corrected p≤0.03). 

Phasic volatility uncertainty estimates tended to decrease pupil diameter during the 0.2-

0.5s post-response in the NA+ group compared to Placebo (all uncorrected p≤0.05; 

Figure 6.13D), but this result did not survive FDR-correction for multiple comparisons. 

There was no effect of NA- on pupil diameter modulation by phasic volatility uncertainty.  

In summary, noradrenergic antagonism (NA-) modulated the pupil response to volatility 

and irreducible uncertainty. Boosting noradrenergic function (NA+) had the tendency to 

increase the general responsivity of the pupil, and also modulated the pupil response to 

volatility and irreducible uncertainty. 
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Figure 6.13 Regression analyses on NA- and NA+ pupil data. The output indicates 

noradrenergic manipulations of participants’ beliefs on pupil diameter. Data are Drug – 

mean Placebo, ± the standard error of the difference (SED). * p<0.05 (FDR-corrected), 

+ p<0.05 (uncorrected).  
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6.4.4 Learning rate 

As in Chapter 4, the punctate change-points contained in the PLT’s true generative 

process are detected implicitly as an increase in learning rate (α1; Figure 6.14A). This 

implies that, as one would expect, higher learning rates following a true change-point 

reflect behaviour that is strongly controlled by recent outcomes. 

 

Figure 6.14 Mean learning rates across drug-groups. (A) An increase in mean 

learning rate was identified following true context change-points. Error bars indicate the 

maximum SEM for each drug-group. (B) Mean learning rates across the PLT. (C) Mean 

difference in learning rate at all context change-points. For B and C, data are mean ± 

SEM.  

A one-way ANOVA demonstrated that mean learning rates across the PLT were 

equivalent across drug-groups (F2,86=0.07, p=0.928; Figure 6.14B) and that there was 

no modulation by Δalertness (F1,86=0.42, p=0.520). Moreover, the drug manipulations did 
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not alter the mean difference in learning rate across all types of context switch 

(F2,86=0.61, p=0.547; Figure 6.14C). However, across the three drug-groups, there were 

differences in the degree to which learning rates changed across different types of 

context switch (Figure 6.15). Indeed, an 8 context switch-type x 3 drug RM-ANOVA 

indicated that the type of context switch significantly altered the difference in learning 

rate (F2.80,25.15=3.99, p=0.021, ηp
2=0.31). There was a trend-level modulatory effect of 

drug-group (F5.59,25.15=2.02, p=0.105, ηp
2=0.31, and no modulation by Δalertness 

(p=0.742). 

 

Figure 6.15 Mean learning rates at all types of context change-point. Augmented 

increases in learning rate were observed for more obvious context switches (e.g., from 

a highly biased context to a context highly biased in the opposite direction, or from a 

highly biased to a moderately biased context) than for less obvious context switches 

(e.g., from a moderately biased to an unbiased context). Error bars indicate the maximum 

SEM for each drug-group.  

For exploratory purposes, I next assessed whether the drug manipulations altered the 

degree to which learning rates changed following the three most obvious context 
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changes (i.e., switches from a highly biased context to either a different highly biased, 

moderately biased or unbiased context) using three individual (FDR-corrected) one-way 

ANOVAs (Figure 6.16). No significant effect of drug was observed at switches to highly 

biased (p=0.974), moderately biased (p=0.792) or unbiased contexts (p=0.276). Note 

that the uncorrected comparisons were also non-significant (p=0.974, p=0.528 and 

p=0.092, respectively). 

 

Figure 6.16 Mean learning rate differences at context change-points. No significant 

effects of drug on the difference in learning rate were identified following a switch from a 

highly biased block to a different highly, moderately or unbiased block. Data are mean ± 

SEM, corrected for Δalertness.  

6.4.5 Behaviour vs pupil data 

To ascertain whether the effect of participants’ beliefs on pupil diameter was associated 

with behavioural changes during the PLT, correlational analyses were conducted on the 

volatility and irreducible uncertainty pupil beta weights, mean learning rates and mean 

performance scores.  

The influence of volatility estimates on pupil diameter was negatively correlated with 

mean learning rate in the NA+ group (Pearson’s r=-0.418, p=0.024; Figure 6.17A) but 

not in the NA- (r=0.021, p=0.911) or Placebo (r=-0.215, p=0.254) groups. Volatility’s 

effect on pupil diameter was not correlated with mean performance score in any of the 

drug-groups (NA-: r=-0.218, p=0.247; Placebo: r=-0.156, p=0.411; NA+: r=-0.123, 

p=0.524; Figure 6.17B). 

 



6. Dynamic noradrenergic computations of uncertainty 

211 
 

 

Figure 6.17 The effect of phasic volatility estimates on pupil diameter compared to 

behaviour. The influence of phasic volatility estimates on pupil diameter was negatively 

correlated with mean learning rate in the NA+ group. No other significant correlations 

were identified.  

The influence of irreducible uncertainty estimates on pupil diameter were not correlated 

with mean learning rate in any of the drug-groups (NA-: r=-0.016, p=0.935; Placebo: r=-

0.160, p=0.412; NA+: r=0.217, p=0.259; Figure 6.18A). Irreducible uncertainty’s effect 

on pupil diameter was positively correlated with mean performance score in the NA+ 

group (r=0.0374, p=0.045; Figure 6.18B), but not in the NA- (r=0.106, p=0.579) or 

Placebo (r=0.006, p=0.976) groups. 
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Figure 6.18 The effect of irreducible uncertainty on pupil diameter compared to 

behaviour. The influence of irreducible uncertainty estimates on pupil diameter were 

positively correlated with mean performance score in the NA+ group. No other significant 

correlations were identified.  

6.4.6 Control analyses 

6.4.6.1 Physiological and subjective control measures 

Self-reported ratings for alertness and contentedness changed significantly over the 

course of the experiment (F1.74,151.73=42.63, p<0.001, ηp
2=0.33; F1.71,148.93=12.84, 

p<0.001, ηp
2=0.13 respectively); calmness ratings remained unchanged (F2,174=0.88, 

p=0.42). Alertness ratings showed a significant time x drug interaction (F3.48,151.73=3.34, 

p=0.016, ηp
2=0.07). A one-way ANOVA with drug as a between-subjects factor revealed 

that the degree to which alertness decreased between Baseline (Figure 6.1A) and the 

time corresponding to peak drug concentration (Post-Drug) varied between groups 

(F2,87=6.56, p=0.002, ηp
2=0.13). More specifically, (FDR-corrected) pairwise 
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comparisons indicated that, compared to Placebo, the alertness-decrease was 

significantly more pronounced in the NA+ group (t58=-3.59, p=0.002, d=-0.94). 

Heart rate (HR) varied significantly with time (F2,174=13.11, p<0.001, ηp
2=0.13) and this 

effect was modulated by drug-group (F4,174=4.22, p=0.003, ηp
2=0.09). On average, all 

groups showed mild participant-specific HR decreases between Baseline and Post-Drug. 

The magnitude of HR deceleration differed between groups (F2,87=5.13, p=0.008, 

ηp
2=0.11), with the deceleration being less pronounced in the NA- (t58=2.24, p=0.027, 

d=0.59) and NA+ (t58=3.10, p=0.006, d=0.81) groups compared to Placebo. Systolic 

blood pressure (BP) did not change significantly over time (p=0.783) and there was no 

modulation by drug-group (p=0.088). Diastolic BP did vary significantly with time 

(F2,174=3.30, p=0.039, ηp
2=0.04) and this effect was modulated by drug-group 

(F4,174=5.81, p<0.001, ηp
2=0.12). Indeed, in line with the known effect of NA on BP, an 

effect of drug-group on the participant-specific difference in diastolic BP between 

Baseline and Post-Drug (F2,87=13.42, p<0.001, ηp
2=0.24) was driven by a significant 

increase in BP in the NA+ group compared to Placebo (t58=3.22, p=0.004, d=0.85) and 

a trend-wise decrease in BP in the NA- group (t58=-1.90, p=0.061, d=-0.50). A summary 

table of the subjective and physiological measures is reported in (Table 6.3). 

6.4.6.2 Parameter correlations 

The parameters entered into the pupil regression analyses were not highly correlated 

(Figure 6.19). The highest correlation existed between surprise (|𝛿1|) and phasic volatility 

estimates (𝜇3) (mean for NA-: r=0.534; Placebo: r=0.536; NA+: r=0.498). The absolute 

mean for all other correlations was r≤0.055 for NA-, r≤0.134 for Placebo, and r≤0.056 for 

NA+.  
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  NA- Placebo NA+ 

A
le

rt
-

n
e
s
s
 

Baseline 

Post-Drug 

Post-Task 

70.9 ± 2.8  

61.8 ± 3.5  

56.6 ± 3.2  

68.9 ± 2.9  

64.7 ± 3.0  

60.4 ± 2.9 

69.3 ± 2.8  

52.2 ± 3.6  

49.9 ± 3.8 

C
a

lm
-

n
e
s
s
 

Baseline 

Post-Drug 

Post-Task 

72.2 ± 3.2 

67.2 ± 4.2  

64.4 ± 3.8 

67.6 ± 2.7  

72.4 ± 2.8  

67.0 ± 2.9 

61.5 ± 2.8  

64.9 ± 3.0  

66.0 ± 2.6 

C
o

n
te

n
t-

e
d
n

e
s
s
 Baseline 

Post-Drug 

Post-Task 

72.9 ± 2.6 

69.4 ± 2.6  

65.7 ± 2.4 

78.0 ± 2.5 

75.5 ± 2.2  

73.2 ± 2.6 

71.4 ± 2.5  

64.6 ± 2.9  

62.1 ± 3.9 

H
R

 

Baseline 

Post-Drug 

Post-Task 

73.9 ± 2.1  

71.1 ± 2.1  

68.3 ± 1.8 

71.8 ± 1.6  

64.1 ± 1.6  

64.1 ± 1.6 

69.2 ± 2.3  

68.2 ± 2.2  

69.3 ± 2.2 

S
y
s
to

lic
 

B
P

 

Baseline 

Post-Drug 

Post-Task 

121.6 ± 2.8  

117.5 ± 2.6  

120.3 ± 2.7 

 118.6 ± 2.4  

116.7 ± 2.4  

118.7 ± 2.8 

120.1 ± 2.6  

124.2 ± 2.9  

121.9 ± 2.3 

D
ia

s
to

lic
 

B
P

 

Baseline 

Post-Drug 

Post-Task 

75.2 ± 1.6  

71.4 ± 1.5  

73.5 ± 2.4 

74.3 ± 1.5 

74.1 ± 1.5  

77.3 ± 1.5 

74.1 ± 1.6  

80.1 ± 2.0  

79.4 ± 2.2 

 

Table 6.3 Subjective and physiological measures for each experimental group. 

Readings were taken at baseline, immediately before participants started the PLT (i.e., 

when the drugs were at their most active; Post-Drug), and after completing the PLT and 

CT (Post-Task). Data are mean ± SEM.  

 

Figure 6.19 Model parameter correlations. The parameters used in the regression 

analyses were not highly correlated with each other (all mean absolute r≤0.534 for NA-, 

r≤0.536 for Placebo, and r≤0.498 for NA+).   
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6.4.6.3 Decision times during the PLT and CT 

On average, mean and minimum decision times during the CT tended to be faster than 

during the PLT across drug-groups (Table 6.4). This is to be expected given that 

participants knew with certainty which cue and which outcome would be presented on 

each trial. 

 NA- Placebo NA+ 

PLT Mean Decision 

time (ms) 
651.6 ± 20.7  661.7 ± 22.0 676.5 ± 20.5 

Mean Minimum 

Decision time (ms) 
300.3 ± 14.9 315.1 ± 14.2  327.6 ± 14.1 

CT Mean Decision 

time (ms) 
392.3 ± 21.2  422.1 ± 23.4 428.8 ± 21.4 

Mean Minimum 

Decision time (ms) 
232.0 ± 12.2 234.8 ± 11.6 242.0 ± 14.0 

 

Table 6.4 Mean and minimum decision times during the PLT and CT. Data are mean 

± SEM. 

6.5 Discussion 

By combining a probabilistic learning task with pharmacological manipulations, 

pupillometry and a hierarchical Bayesian learning model, it was possible to characterise 

the impact of NA and dynamic uncertainty computations on changes in pupil diameter. 

Implementing a unified framework of hierarchically-related forms of uncertainty meant 

that I could assess the degree to which individuals’ computations of irreducible 

uncertainty, surprise, phasic volatility and phasic volatility uncertainty were reflected by 

the pupil, and compare the effects of two drugs, with different effects on NA 

neurotransmission, on individuals’ subjective beliefs, behaviour and pupillary responses.  

6.5.1 Baseline pupil diameter reflects individual irreducible uncertainty 

The finding that baseline pupil diameter increases with increasing irreducible uncertainty 

replicates our previous finding with a visual version of the PLT (de Berker et al., 2016). 

It also echoes a finding by Nassar et al. that baseline pupil diameter reflects the reliability 

with which recent event history indicates the current probabilistic relationship between 

environmental events during predictive inference (Nassar et al., 2012). Strikingly, the 

inverted-U relationship observed between pupil diameter and irreducible uncertainty in 



6. Dynamic noradrenergic computations of uncertainty 

216 
 

the present study was strongly reflected in the relationship between irreducible 

uncertainty and decision time, indicative of a tight link between irreducible uncertainty 

computations, baseline pupil diameter and behaviour. However, these relationships do 

not appear to be dependent on NA. Indeed, neither downregulating NA 

neurotransmission with prazosin nor upregulating NA neurotransmission with reboxetine 

appeared to alter the relationships between irreducible uncertainty, baseline pupil 

diameter and decision time. 

6.5.2 Pupil diameter tracks irreducible uncertainty and surprise 

Using median splits to compare peak pupil diameter on trials high in subjective surprise 

and irreducible uncertainty suggested that each of the perceptual quantities had a 

positive effect on pupil diameter in the Placebo group, replicating our previous work (de 

Berker et al., 2016). Estimates of phasic volatility and phasic volatility uncertainty did not 

appear to modulate pupil diameter. However, this method of analysis only offers a 

relatively crude way of repeatedly categorising trials according to subjective beliefs. 

Importantly, in the present study, regression analyses were implemented to pinpoint the 

relative contributions of individuals’ subjective beliefs on pupil diameter during the post-

response and post-outcome periods. The Placebo group showed increases in pupil 

diameter during the post-outcome period that were dependent on subjective estimates 

of irreducible uncertainty and surprise, echoing the median split analyses used both here 

and in previous work (de Berker et al., 2016). Pupillary dilation due to post-outcome 

surprise has also been observed by other research groups (Preuschoff et al., 2011; 

Browning et al., 2015), albeit with subtly different quantifications of surprise. In particular, 

my finding of a positive effect of surprise on pupil diameter 1.2-3.2s post-outcome 

replicates Browning et al.’s observation that surprise increases pupil diameter in a 1-3s 

post-outcome window during probabilistic learning (Browning et al., 2015; c.f. Figure 

6.12B and Figure 6.20A). 

As anticipated by the median split method, regression analyses did not reveal a 

significant effect of individuals’ estimates of phasic volatility or phasic volatility 

uncertainty on pupil diameter. The lack of an effect of volatility estimates on pupil dilation 

contradicts a finding by Browning et al. that volatility increases post-outcome pupil 

diameter (Browning et al., 2015; c.f. Figure 6.12C and Figure 6.20B). However, the 

authors observed the pupil diameter increase 2-5s post-outcome, a window that lay 

outside the limits of the minimum ITI used in the current task. Therefore, it is possible 

that the post-outcome period used in the present experiment was not long enough to 

capture this effect. 
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Figure 6.20 The effects of surprise and volatility on post-outcome pupil diameter 

during aversive probabilistic learning observed by Browning et al. (A) The post-

outcome pupillary response to surprise is strikingly similar to that observed in the present 

study (c.f. Figure 6.12B). (B) Browning et al. also identified a positive effect of 

environmental volatility on pupil diameter post-outcome, which I did not replicate (c.f. 

Figure 6.12C). Figure adapted from Browning et al., 2015.  

Another notable difference between Browning et al.’s study and the experiment 

conducted here is the behavioural paradigm used to generate volatility. Browning et al. 

manipulated the volatility of trials in a block-wise manner so that participants had to learn 

one probabilistic relationship during a stable block of 90 trials (i.e., approximately three 

times the block-length used in the present study) or track multiple changes in a 

probabilistic relationship during a volatile block of 90 trials. This method may have offered 

a superior means by which to manipulate individuals’ volatility estimates and may thus 

have produced larger effects on pupil diameter. However, since Browning et al.’s 

outcome stimuli were electric shocks rather than auditory stimuli, the possibility that the 

effect of volatility estimates on pupil diameter was increased under exposure to aversive 

stimuli cannot be ruled out. Indeed, our previous work has highlighted the relevance of 

pupillary dilation as an acute stress response during learning under uncertain threat of 

aversive stimuli (de Berker et al., 2016). Nonetheless, it would certainly be interesting to 

adopt Browning et al.’s method of manipulating the volatility of a probabilistic relationship 

between auditory cues and auditory outcomes. As such, it would be possible to 

determine whether this paradigm has a superior ability to capture a post-outcome effect 

of volatility estimates on pupil diameter in the absence of aversive stimuli. 
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6.5.3 Noradrenaline influences pupillary responses to trial outcome, volatility 

and irreducible uncertainty 

6.5.3.1 Noradrenaline modulates the constant component of pupil diameter 

The opposing noradrenergic manipulations tended to have opposite effects on the 

constant component of pupil diameter. Upregulating NA neurotransmission with 

reboxetine resulted in a trend-wise increase in post-outcome pupil diameter, whereas 

NA antagonism under prazosin tended to decrease the post-outcome pupil diameter. 

While these results should be interpreted with caution since they did not survive 

correction for multiple comparisons, they do fit well with previous literature that has 

assessed the impact of noradrenergic agents on pupillary dynamics. Indeed, α2-

adrenoceptor agonists, such as clonidine, which decease the activity of central 

noradrenergic neurons (and thus have a similar effect to α1-adrenoceptor antagonists 

such as prazosin), have been shown to decrease baseline pupil diameter and increase 

spontaneous pupillary fluctuations. In contrast, α2-adrenoceptor antagonists, such as 

yohimbine, which have the opposite effect on central NA, have been shown to have the 

opposite effect on pupils, i.e., an increase in baseline pupil diameter and decreased 

pupillary fluctuations (Phillips et al., 2000b). Moreover, the fact that these noradrenergic 

effects on the constant component of pupil diameter are observed post-outcome, but not 

post-cue or post-response, suggests that they are event-specific. 

6.5.3.2 Noradrenaline modulates pupillary responses to volatility 

Both noradrenergic manipulations increased the effect of subjective volatility on post-

response and post-outcome pupil dilation. This interaction between NA, volatility and 

pupil diameter sits well with the finding in Chapter 4 that NA plays an important role in 

learning under uncertainty that arises from environmental volatility (Yu and Dayan, 2005; 

Payzan-LeNestour et al., 2013; Marshall et al., 2016) and with suggestions that pupil 

diameter offers an indirect measure of noradrenergic neuronal activity in the LC (Aston-

Jones and Cohen, 2005a; Varazzani et al., 2015; Joshi et al., 2016). 

Nonetheless, the fact that the direction of the effect on pupil diameter was identical under 

two drugs with supposedly opposing effects on NA neurotransmission is puzzling. This 

likely speaks to the complexities and subtleties of the neuromodulatory systems with 

which the pharmacological agents interacted. Prazosin acts as an antagonist at α1-

adrenoceptors, a high density of which exist in the LC, at least in rats (Jones et al., 1985; 

Stone et al., 2004), and in the human neocortex (Zilles et al., 1993). As such, one would 

expect it to have reduced LC-NA neurotransmission to the cortex. In contrast, reboxetine 
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is a selective NA reuptake inhibitor (SNRI) that works by blocking the action of the NA 

transporter (NET), thereby slowing the rate at which NA is cleared from the synaptic cleft. 

Since reboxetine increases extracellular NA concentrations, it is thought to increase NA 

neurotransmission. 

However, it has been proposed that, while SNRIs primarily increase NA levels due to 

reuptake inhibition, secondary indirect activation of inhibitory presynaptic α2-

autoreceptors reduces noradrenergic activity in areas such as the LC (Invernizzi and 

Garattini, 2004). It is therefore possible that reboxetine may have actually reduced 

noradrenergic firing in the LC in some individuals. However, given the observation of a 

trend-wise increase in the constant component of pupil diameter under reboxetine, in line 

with previous accounts that upregulating NA results in pupillary dilation (Phillips et al., 

2000b), this seems unlikely in the present study, at least on average. It has also been 

proposed that the net effect of a SNRI’s two actions likely depends on dosage and on an 

individual’s baseline NA activity (Coull, 2001; de Rover et al., 2012). Future studies will 

need to determine whether any polymorphisms in the NET gene are associated with 

inter-individual differences in baseline NA activity and, if so, whether these 

polymorphisms are linked to altered responses to SNRIs and altered pupillary responses 

to volatility estimates.    

Furthermore, the extent to which pharmacological manipulations of NA modulate phasic 

and tonic modes of NA activity is currently unclear. As discussed in Chapter 4, the 

neurophysiological literature has described two functional modes of NA 

neurotransmission in the LC (Aston-Jones and Cohen, 2005b; Bouret and Sara, 2005). 

A phasic mode, characterised by a relatively low baseline firing rate and high phasic 

responsiveness to task relevant stimuli, has been linked to enhanced task engagement. 

A tonic mode (lacking phasic activity) has been linked to increased distractibility, 

attention-shifting and exploratory behaviour (Aston-Jones et al., 1994; Usher et al., 1999; 

Aston-Jones and Cohen, 2005b, but see Jepma et al., 2010). Some pharmacological 

manipulations of NA have been shown to shift the balance between phasic and tonic 

noradrenergic activity. 

In Chapter 4, I discussed the possibility that prazosin may have enabled more phasic NA 

responsiveness to emerge under suppression of tonic NA firing. Related to this point, a 

recent study in rats found that the NET-blocker atomoxetine reduces baseline LC activity 

while preserving the stimulus-evoked phasic LC response, leading to an increase in 

phasic relative to tonic LC activity (Bari and Aston-Jones, 2013). It is therefore possible 

that drugs that block NET, including reboxetine, enhance neural responses to stimuli that 
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evoke large LC responses. However, it should be noted that atomoxetine also blocks the 

serotonin transporter (SERT) and dopamine transporter (DAT), meaning that its effects 

on phasic and tonic NA activity may not be NET-specific. Further investigations utilising 

electrophysiological recordings in animals are required to characterise the relative 

impact of other noradrenergic drugs on phasic and tonic NA activity. 

In summary, the fact that the two noradrenergic manipulations used in the present study 

modulated the pupillary response to volatility provides weight to the notion that pupil 

diameter reflects, in part, noradrenergic volatility computations. However, to determine 

the precise neurophysiological bases of these responses, future work and continued 

cross-talk between human and animal research are required to pinpoint the effects of 

different pharmacological manipulations on NA neurotransmission. 

6.5.3.3 Noradrenaline modulates pupillary responses to irreducible uncertainty 

Both noradrenergic manipulations decreased the effect of subjective irreducible 

uncertainty on post-outcome pupil dilation. NA antagonism under prazosin also 

decreased the post-response effect of irreducible uncertainty on pupil diameter. Again, 

the fact that the effect was negative in both drug groups is surprising, but the same 

considerations regarding the complex effects of pharmacological manipulations on 

intricate neuromodulatory systems discussed in the previous section apply here.  

Importantly, the finding of an interaction between NA, irreducible uncertainty and pupil 

diameter highlights the need to consider the impact of multiple parameters when using 

pupil diameter as a proxy for subjective uncertainty computations. As is apparent in the 

present experiment, the pupil does not reflect a single belief but is rather modulated by 

estimates of irreducible uncertainty, surprise and volatility. Thus, unified frameworks of 

uncertainty, such as that offered by the HGF, are an important tool for pinpointing the 

relative contributions of individuals’ subjective estimates on pupil diameter. 

6.5.4 Pupil dilation follows a motor response indicating a decision 

In addition to the post-outcome pupillary responses observed in the present study, pupil 

dilation also occurred following the button-press response participants made to indicate 

their prediction as to the trial’s outcome. Since post-response pupillary dilation occurred 

during both the PLT, where there was always a degree of uncertainty about whether the 

decision was correct, and during the CT, where participants were certain of the outcome 

that would follow each cue, it appears that this pupillary response is, at least in part, 

driven by the motor response used to report the choice. Moreover, the fact that post-

response pupillary dilation was augmented and sustained under conditions of uncertainty 
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during the PLT, compared to certainty during the CT, is indicative of an additional dilatory 

effect of post-decisional uncertainty about whether the predicted outcome was correct or 

incorrect. Indeed, in line with this, the regression analysis on the Placebo pupil data 

indicated a tendency for irreducible uncertainty to increase pupil diameter during the 

post-response period.  

In accordance with this interpretation, it has been previously proposed that pupil-linked 

neuromodulatory systems are activated by the termination of decision processes and 

consequently that these systems affect the post-decisional brain state. Indeed, pupil 

dilation has been linked to the final choice terminating a decision process (Einhäuser et 

al., 2008; Hupé et al., 2009; Einhauser et al., 2010). Some research groups have 

suggested that decision-related noradrenergic brainstem activity, and thus  pupil dilation, 

is driven by an individual’s final commitment to a choice (Aston-Jones and Cohen, 2005a; 

Einhäuser et al., 2008), and others that it is driven by the motor response used to report 

that choice (Hupé et al., 2009). The present results are compatible with the notion that 

post-response pupillary dilation is modulated by both factors. 

In contrast, de Gee et al. have argued that pupil dilation is actually primarily driven during 

the course of making a decision, rather than once a decision has been made (de Gee et 

al., 2014). Specifically, sustained pupil dilation has been shown to coincide with the 

course of decision formation during an isoluminant visual detection task in which 

participants were required to decide whether or not a visual contrast signal was 

embedded in dynamic noise. Moreover, the magnitude of this intra-decisional pupil 

dilation was found to be greater than the transient increase in pupil diameter that 

occurred following a decision indicated by button-press. The noradrenergic intra-

decisional computations of uncertainty that this pupillary dilation may reflect are 

notionally sensible since estimating uncertainty before choice commitment would allow 

for anticipatory behavioural adaptation. Indeed, Urai et al. recently demonstrated that 

pupil dilation occurring after a perceptual choice but before feedback not only reflects 

decision uncertainty (i.e., the probability that a choice was correct given the sensory 

evidence) but also predicts subsequent behavioural biases (Urai et al., 2017). 

Unfortunately, it is not possible to determine with confidence whether decision-making 

during the PLT used in the present experiment had a dilatory effect on pupils, or whether 

any dilatory effect was modulated NA, because the importance of decision speed was 

stressed to participants, meaning the time period between cue and response was often 

short. However, pupil diameter did appear to start increasing from cue-onset (Figure 6.8), 

suggesting a potential influence of an intra-decisional component on pupil diameter. 
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Nevertheless, since pupil diameter also tends to increase from cue-onset during the CT 

(Figure 6.9), this component does not seem specific to uncertainty modulations. 

It should also be noted that, in contrast to de Gee’s study, the design of the present task 

meant that irreducible uncertainty could be computed on the basis of trial history, and 

therefore that participants could estimate its current magnitude before a new trial began. 

Indeed, this was reflected by an increase in baseline pupil diameter with increasing 

irreducible uncertainty estimates (Figure 6.7). As such, an intra-decisional increase in 

pupil diameter, possibly reflecting an uncertainty computation, would not necessarily be 

comparable in this instance. In sum, while a potential additional influence of intra-

decisional processes on pupil diameter cannot be ruled out, the present results do 

suggest that the act of making a motor response to indicate a decision does have a 

dilatory effect on pupils. 

6.5.5 The link between behaviour and pupillary responses to subjective beliefs 

is unclear 

The effects of the noradrenergic manipulations on behaviour during the PLT were subtle, 

with boosted NA neurotransmission under reboxetine leading to a smaller improvement 

in (model-agnostic) task performance across the course of biased blocks compared to 

Placebo. There was no difference in (model-based) learning rates across drug-groups. 

Any associations between the effect of participants’ beliefs on pupil diameter and 

behavioural changes during the PLT were also subtle. Indeed, correlations between 

pupillary responses and behaviour only existed in the NA+ group. Here, the influence of 

volatility and irreducible uncertainty estimates on post-outcome pupil diameter were 

negatively correlated with mean learning rate, and positively correlated with mean task 

performance score, respectively. 

As such, how pupillary responses to subjective beliefs are linked to behaviour is unclear. 

This is likely to be, at least in part, due to the fact that performance was very good across 

all three drug-groups, with very little behavioural difference under the noradrenergic 

manipulations. Jepma et al. have recently offered alternative evidence that atomoxetine, 

which upregulates NA, modulates learning rate following an environmental switch. 

Critically, the direction of this effect was found to be dependent on an individual’s 

baseline learning rate under placebo (Jepma et al., 2016). Due to the between-subjects 

design of the current experiment, it is not possible to replicate this analysis. Nonetheless, 

it would be fruitful to repeat the present experiment with a within-subjects placebo 

session to determine whether baseline-corrected learning rates correlate with the 
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pupillary response to volatility estimates, and thus whether there is any association 

between pupillary and behavioural responses to volatility. 

6.5.6 A unified computational framework of uncertainty will facilitate future 

comparisons between different drugs and neuromodulatory systems 

While the notion that pupil diameter offers an indirect measure of noradrenergic neural 

activity in the LC has received particular attention (Aston-Jones and Cohen, 2005a; 

Varazzani et al., 2015; Joshi et al., 2016), activity in the cholinergic basal forebrain has 

also been suggested to modulate pupil dilation (Yu, 2012). Pupil dilation is controlled by 

two muscles: the sphincter for contraction and the dilator for dilation. These two muscles 

are innervated by ACh and NA respectively. Both the muscarinic ACh antagonist 

scopolamine and the nicotinic ACh antagonist mecamylamine have been shown to 

increase pupil diameter in healthy elderly individuals (Little et al., 1998). Moreover, 

Alzheimer’s disease patients, who have a severe and specific cholinergic deficit, have 

been found to have larger pupil diameters than healthy control individuals, both tonically 

and in reflexive response to light. Administering these patients an acetylcholinesterase 

inhibitor, which increases extracellular ACh concentrations, leads to pupillary responses 

reminiscent of those in healthy individuals (Fotiou et al., 2009). Furthermore, it has 

recently been demonstrated that pupillary fluctuations are highly correlated with activity 

of both NA and ACh projections to the cortex (Reimer et al., 2016). 

Further work is needed to determine whether cognitive control of pupil diameter is under 

both ACh and NA influence, as opposed to NA alone, and to elucidate how these two 

neuromodulatory systems interact. In particular, there is a need for continued cross-talk 

between animal and human research so that electrophysiological recordings of 

neuromodulatory neurons can be linked to pupillary fluctuations in animals (Joshi et al., 

2016) and to the effects of different pharmacological manipulations on behaviour and 

pupil dilation in humans. A unified computational framework of uncertainty, such as that 

applied in the present study, offers an ideal tool with which to make comparisons 

between the effects of different drugs and different neuromodulatory systems on dynamic 

uncertainty computations and their impact on pupil diameter. 

It should also be noted that NET, the transporter targeted by reboxetine, can also 

reuptake extracellular dopamine (DA) (Bymaster et al., 2002; Swanson et al., 2006; Koda 

et al., 2010). Due to the extensive connectivity of its neuromodulatory network, DA, like 

NA, holds the potential to modulate synaptic transmission across the brain. Moreover, 

LC activity can trigger co-release of DA from noradrenergic terminals, at least in rats 

(Devoto and Flore, 2006), and there are bidirectional projections between the 
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dopaminergic ventral tegmental area and the noradrenergic LC (Sara, 2009). The 

neurocognitive literature has established that DA neurons respond to novel and 

unexpected stimuli, and that individuals with Parkinson’s disease, and thus DA 

dysfunction, have an impaired capacity to switch between task-specific behaviours 

(Cools et al., 2001a; Cools and Robbins, 2004; Wise, 2004). As such, DA appears well-

placed to support behavioural switching, which is an adaptive process under 

environmental volatility. Furthermore, in Chapter 4, DA was found to sensitise motor 

responses to subjective estimates of phasic volatility. Therefore, at present, additional 

dopaminergic modulation of the pupillary response to volatility cannot be ruled out. 

Again, pharmacological manipulations of the dopamine network within the same 

behavioural and computational framework would help to address this. 

6.5.7 Conclusion 

In summary, the results presented in this chapter offer novel insight into the relative 

contributions of uncertainty, surprise, volatility and noradrenaline to dynamic changes in 

behaviour and pupil diameter. Baseline pupil diameter strongly reflects an individual’s 

belief about the current relationship between environmental events, as reflected by their 

irreducible uncertainty estimates. Dynamic pupillary dilation tracks both subjective 

irreducible uncertainty and surprise. NA modulates pupillary responses to irreducible 

uncertainty and volatility estimates. Pupillometry may therefore offer a useful proxy for 

computations of uncertainty, surprise and volatility, which appear to be, at least in part, 

dependent on NA. Importantly, changes in pupil diameter reflect dynamic beliefs about 

several perceptual parameters. This means that, while pupillometry offers a cheap and 

simple adjunct to behavioural paradigms, it should be used with suitable caution. Indeed, 

unified computational frameworks of uncertainty, such as the HGF, are required to fully 

capture the relative contributions of uncertainty, surprise and volatility to pupillary 

dilation. Future work utilising consistent behavioural and computational frameworks to 

contrast the impact of different pharmacological agents will help to elucidate the 

complexities of noradrenergic (and possible cholinergic and dopaminergic) modulations 

of behaviour and pupil diameter during learning. 
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7 General discussion 

Learning the world’s underlying statistical structure enables individuals to predict the 

likelihood of future environmental events, facilitating anticipatory action preparation and 

the execution of fast, accurate motor responses. In this thesis I have shed light upon the 

neuromodulatory processes that contribute to learning and response modulation in 

dynamic, probabilistic environments by examining the impact of pharmacological 

manipulations of noradrenaline (NA), acetylcholine (ACh) and dopamine (DA) (Chapters 

4 and 6), and genetic variations in DA neurotransmission (Chapter 5), within a unified 

computational framework of uncertainty (Chapter 3). I have demonstrated that NA and 

ACh modulate learning under uncertainty. Specifically, NA influences learning of 

uncertain events that arise due to the environment’s volatility. Further, dynamic 

noradrenergic computations of uncertainty and volatility can be measured indirectly 

using pupillometry. ACh balances the attribution of uncertainty to chance fluctuations 

within environmental contexts or to gross environmental violations following a contextual 

switch. In contrast, DA supports the use of perceptual estimates, namely volatility 

representations, to engender adaptive motor responses. Since each experimental 

chapter contains a relatively extensive discussion of the issues pertinent to that study, in 

this summary I draw together some common threads between the experiments, discuss 

the implications and limitations of this body of work, and formulate suggestions for future 

extensions to the field. 

7.1 Benefits and limitations of the behavioural paradigms 

7.1.1 The probabilistic serial reaction time task 

A key benefit of the novel probabilistic serial reaction time task (PSRTT) implemented in 

Chapters 4 and 5, is the scope to characterise learning and response modulation under 

irreducible, estimation and volatility uncertainty. Its design created a more complex, and 

arguably more ecologically valid, scenario than earlier paradigms that explicitly signalled 

contextual rules and switches (Galea et al., 2012; Bestmann et al., 2014). Instead, 

individuals were required to infer a current environmental context for themselves and 

adapt to contextual changes. Within the framework of a novel instantiation of the 

Hierarchical Gaussian Filter (HGF) model, it was possible to interrogate the relative 

contributions of NA, ACh and DA to learning of the task’s contextual probabilistic rules 

and to motor response modulation in light of individuals’ beliefs about those rules 

(Marshall et al., 2016). 
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However, despite offering a paradigmatic advance, one should be mindful of the fact that 

the PSRTT is not fully representative of real-world learning and response modulation. 

Indeed, future work employing alternative task designs will be needed to verify the 

generality of the effects reported in Chapter 4 to alternative behavioural paradigms with 

and without learning, reward, prediction and action. For instance, while using a paradigm 

that combined learning and action has the aforementioned merits, one could argue that 

indirectly inferring participants’ predictions from their reaction times (RTs) is not the 

cleanest approach for investigating learning under different sources of environmental 

uncertainty. Indeed, contrasting the impacts of pharmacological manipulations of NA and 

ACh within a volatile predictive learning paradigm would offer a useful means by which 

to validate my finding that NA and ACh play respective roles in mediating learning 

between and within environmental contexts, in the absence of motor response 

modulation. Moreover, by introducing reward to the PSRTT, it might be possible to 

identify dopaminergic contributions to motor response modulation under reward 

prediction error (PE) rather than sensory PE. 

In addition, while the use of speeded button-press responses and a novel response 

model enabled me to quantify the modulation of an individual’s RTs by their perceptual 

beliefs, the approach offers little insight into how uncertainty modulates the quality of 

executed actions. The predominant approach to studying behavioural adaptation to 

perceptual estimates has been to examine when individuals initiate an action (Beierholm 

et al., 2013; Guitart-Masip et al., 2014; Vossel et al., 2014a, 2014b, 2015; Marshall et 

al., 2016). However, this only captures part of the picture. Environmental sources of 

uncertainty also influence how individuals execute actions (Bays and Wolpert, 2007). A 

simple yet fruitful extension to the work in this thesis would be to have individuals use a 

force button-box to complete the PSRTT. By requiring individuals to respond to the 

presentation of trial-wise stimuli by pressing an appropriate button quickly and within a 

required force range, it would be possible to investigate how irreducible, estimation and 

volatility uncertainty influenced the quality of action execution, here force generation, as 

well as the speed of action selection. 

7.1.2 The probabilistic learning task 

The major advantage of adopting the probabilistic learning task (PLT) (den Ouden et al., 

2010) in Chapter 6 was that it enabled direct comparisons to be made to our previous 

study that had used the same fundamental paradigm (de Berker et al., 2016). 

Importantly, by applying the same HGF model to a novel dataset acquired from 

participants that received a noradrenergic drug or placebo, it was possible to replicate 
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our earlier finding that baseline pupil diameter reflects irreducible uncertainty, and to 

extend previous results by establishing that pupil dilation is modulated by surprise and 

noradrenergic computations of volatility in a quantitatively rigorous fashion. My review of 

the previous pupillometric literature in Chapter 1 highlighted the diversity of paradigmatic 

approaches implemented to study changes in pupil diameter under different 

combinations of uncertainty, surprise and volatility. A key rhetoric of this thesis is the 

need for researchers to adopt unified frameworks of uncertainty, surprise and volatility, 

such as that offered by the HGF, in order to develop comparable tasks powered to isolate 

the relative contributions of different neuromodulators to learning under different 

perceptual quantities. 

In Chapter 6, I noted that no post-outcome pupillary response to volatility was observed 

under placebo. This finding contrasts with Browning et al.’s observation of post-outcome 

pupillary dilation in response to both surprise and volatility (Browning et al., 2015), and 

is likely due to the fact that volatility was not explicitly manipulated in the PLT. A fruitful 

extension to the current work would therefore be to investigate the impact of 

pharmacological manipulations of NA on pupillary responses to perceptual estimates 

within a modified version of the PLT that manipulated volatility over time. I would 

anticipate that, by modulating individuals’ volatility estimates, this approach would 

produce larger effects on pupil diameter, thus making it possible to observe pupillary 

responses to volatility under placebo. I would also expect to replicate my finding that 

noradrenergic manipulations modulate the influence of volatility estimates on pupil 

diameter. 

7.2 Benefits and limitations of the HGF model 

The HGF is a general-purpose, heuristic Bayesian inference model. Taking inspiration 

from reinforcement learning schemes, the HGF seeks to overcome the computational 

complexity of traditional Bayesian approaches, and offers a means by which to capture 

differences in learning across individuals. A key advantage of the HGF is that it provides 

a generic hierarchical framework for individual learning that can be applied to a diverse 

set of behavioural paradigms (Iglesias et al., 2013; Diaconescu et al., 2014, 2017; 

Hauser et al., 2014; Vossel et al., 2014a, 2014b, 2015; de Berker et al., 2016; Marshall 

et al., 2016). Given that the brain would likely benefit from a flexible mechanism by which 

to modify learning and action, and therefore facilitate adaptation to novel environments 

characterised by unfamiliar contextual rules, this is arguably a sensible computational 

strategy. 
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7.2.1 A unified computational framework of uncertainty  

In this thesis I have verified the HGF as a useful tool with which to model individual 

learning and behaviour under various forms of uncertainty inherent in the environment. 

In Chapter 6, I presented confirmatory evidence of the HGF’s ability to capture individual 

learning under irreducible, estimation and volatility uncertainty. Furthermore, Chapters 

4 and 5 demonstrated that the novel instantiation of the HGF developed in Chapter 3 

could capture separable influences of uncertainty on learning and motor response 

modulation (Marshall et al., 2016). Importantly, the generalisable nature of the HGF 

means it can be used to probe learning and action across different behavioural 

paradigms, but within a unified computational framework of uncertainty.  

7.2.2 Alternative models of learning and action 

Nevertheless, a heuristic framework is not the only viable approach to modelling 

individual learning and action under uncertainty. An alternative strategy is to develop 

task-specific models. 

7.2.2.1 The Forgetful Observer Model 

In an ongoing collaboration with Franziska Bröker and Peter Dayan, we are seeking to 

test whether individual behaviour during the PSRTT might be captured more faithfully by 

a simpler, task-specific model. Specifically, a Forgetful Observer Model (FOM) has been 

built to reflect the properties of the PSRTT more closely by taking additional task-relevant 

information into account (Bröker, 2016). Like the HGF, the FOM features a perceptual 

model that captures individual learning and a response model that predicts participants’ 

behaviour based on their perceptual beliefs. However, while the HGF is initially minimally 

adapted to a given behavioural task, such as the PSRTT, the FOM assumes that 

individuals make use of their prior knowledge of the task’s structure. As such, the HGF 

assumes that individuals’ beliefs about the transition probabilities between successive 

stimuli evolve independently of each other in the PSRTT, whereas the FOM implements 

a generative model that closely resembles the PSRTT’s true generative process. On one 

hand, a task-specific model seems reasonable given that participants were informed 

before starting the task that one of four possible stimuli would be presented on each trial, 

meaning that the state space was constrained. Nonetheless, one could argue that the 

brain is not afforded the luxury of a constrained state space in real-world scenarios, 

instead requiring sufficient computational flexibility to account for unexpected events.  

Another feature of the FOM is that it applies an exponential forgetting process to prior 

expectations. The forgetting rate weights past experience exponentially. As such, it offers 
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a heuristic means by which more recent transitions can have a greater impact on current 

probability estimates. The forgetting rate is conceptually related to the transition 

contingency learning rate, ω, in the HGF and allows the model to learn the transition 

probabilities within the different transition matrices implemented in the PSRTT. 

Preliminary data suggest that, compared to the HGF, the FOM is superior at capturing 

individual learning and action in the PSRTT (Bröker, 2016). This is not necessarily 

surprising; one would expect a task-specific model to be more accurate, at least during 

initial learning. Further, a simpler model is not penalised by complexity. Whether the 

brain facilitates behavioural adaptation by constructing a multitude of task-specific 

models, and indeed whether the mechanisms underlying the FOM map onto 

neurophysiological processes, is another matter. In terms of physiological and 

behavioural relevance, both the HGF and the FOM have appealing properties. A 

heuristic, general-purpose model like the HGF would provide the brain with a flexible 

mechanism by which to adapt to any environmental context (Kumaran and Duzel, 2008; 

Shohamy and Wagner, 2008), but it is also possible that evolutionary experience has led 

the brain to fine-tune an array of environmentally valid, context-specific models of the 

world. In the latter case, an individual might learn the underlying rules of a novel 

environment by retrieving a similar pre-existing contextual model (Heckers et al., 2004) 

and adapting it to the current environmental parameters. An interesting avenue for future 

research would be to determine if and how individuals switch between different 

perceptual and response models when exposed to different environmental contexts 

(Boorman and Rushworth, 2009; Kumaran et al., 2009; Daw et al., 2011), perhaps via a 

hippocampal mechanism (Eichenbaum, 2000; Preston et al., 2004).   

7.2.2.2 Modelling changes in volatility and metavolatility 

It should also be noted that although the FOM features an heuristic forgetting rate that 

allows the model to learn the transition probabilities within the PSRTT’s different 

transition matrices, it does not explicitly capture volatility uncertainty arising from 

contextual instability. Rather, it assumes a fixed, optimal learning process. This is in 

contrast to the HGF whose metavolatility parameter, ϑ, captures the rate at which 

volatility changes, with higher values implying a belief in a more unstable world and 

leading to a more variable learning rate. Given the relevance of volatility estimates to 

learning and action demonstrated in this thesis, it is important that future models 

incorporate a means by which to track volatility uncertainty since changes in this 

perceptual estimate indicate when and how learning rate should be adapted, with 

consequences for belief updating and response modulation. 
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A useful extension to both the HGF and the FOM would be an additional hierarchical 

level that allows estimates of metavolatility to change over time. Indeed, it seems 

reasonable that an individual’s phasic volatility learning rate would vary across different 

environments with different degrees of volatility that change over different timescales. 

7.2.2.3 Modelling change-points under environmental volatility 

In both the PSRTT and PLT, participants were exposed to volatile environments 

characterised by discrete switches in probabilistic context. Neither the HGF nor the FOM 

acknowledges these punctate change-points directly. This contrasts with an alternative 

class of models that capture learning under volatility by modelling change-points 

explicitly (Adams and MacKay, 2007; Fearnhead and Liu, 2007; Nassar et al., 2010; 

Wilson et al., 2010, 2013). Early attempts to identify change-points using Bayesian 

inference relied on pre-specification of the rate at which they occur, i.e., the hazard rate. 

These models were limited practically by requiring the unrealistic assumption that the 

hazard rate was fixed and known in advance (Adams and MacKay, 2007; Fearnhead 

and Liu, 2007). Robert Wilson, Matthew Nassar and Joshua Gold offered an important 

methodological advancement by developing a hierarchical extension to earlier models 

that allowed the hazard rate itself to be inferred from the data, in turn facilitating 

identification of change-points (Wilson et al., 2010). Further developments permitted 

efficient Bayesian inference in volatile environments to be approximated by a 

computationally simple mixture of error-driven “delta” rules (Wilson et al., 2013). While 

the HGF does not explicitly model the change-points contained in the true generative 

process underlying the PSRTT and the PLT, I have demonstrated that true change-

points are detected implicitly by the model as an increase in learning rate. In so doing, 

the HGF offers a flexible means of tracking individual learning in dynamic environments. 

To summarise, in this thesis, I have validated the HGF as a useful tool with which to 

model individual learning and response modulation under various forms of environmental 

uncertainty. I have verified the capacity of the HGF’s original instantiation to capture 

individual learning under irreducible, estimation and volatility uncertainty, and I have 

developed a novel instantiation of the HGF that is capable of capturing separable 

influences of uncertainty, prediction error and volatility on learning and action (Marshall 

et al., 2016). The heuristic computational framework offered by the HGF offers an 

important tool with which to probe the neuromodulatory mechanisms implemented by the 

brain to support learning and adaptive motor behaviour. The suggested extensions to 

the model may help to elucidate these mechanisms more precisely.      
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7.2.3 Relevance for machine learning 

It is also worth noting that, compared to contemporary machine learning methods, 

humans are exceptionally good at inferring hidden probabilistic and causal relationships 

from limited experience. Indeed, as demonstrated in Chapters 4, 5 and 6, individuals 

can closely track the probabilistic associations within a given environment and rapidly 

adapt to changes in contextual rules. Refining models of human learning and behaviour 

under uncertainty holds the potential to better elucidate the strategies employed by the 

brain to make these inferences. Since the brain offers seemingly efficient and effective 

solutions to the computational and implementational challenges of probabilistic 

inference, this approach might inspire new methodologies in machine learning and 

artificial intelligence. Nevertheless, the vast parameter space of heuristic models such 

as the HGF does present challenges. Different parameters relate to a variety of variables 

and testing the impact of each of them on learning, behaviour and/or pupil diameter 

presents a multiple comparisons problem. It is therefore important that all future 

computational analyses are hypothesis-driven. Indeed, this highlights an excellent case 

for the pre-registration of research studies, whereby researchers commit to their 

research predictions and methods before starting their experiments.   

7.3 Combining pharmacology and neuroimaging 

A number of key papers that inspired the work presented in this thesis used human 

functional magnetic resonance imaging (fMRI) to link the noradrenergic, cholinergic and 

dopaminergic systems to computations of different forms of environmental uncertainty. 

Indeed, blood-oxygenation-level-dependent (BOLD) activity in the noradrenergic locus 

coeruleus (LC) has been shown to dynamically track volatility uncertainty (Payzan-

LeNestour et al., 2013), BOLD activity in the cholinergic basal forebrain reflects an 

individual’s estimation uncertainty (specifically, their precision-weighted contingency 

PE), and BOLD activity in the dopaminergic midbrain correlates with individual estimates 

of precision-weighted sensory PE (Iglesias et al., 2013; Diaconescu et al., 2017). It is not 

possible to infer with certainty that activations in particular brain regions, with 

inhomogeneous cellular compositions, reflect the activity of specific neuromodulatory 

neurons. Adopting a pharmacological approach in Chapters 4 and 6 made it possible to 

corroborate and extend the interpretations of these neuroimaging studies. 

A recommendation for future investigations of the neuromodulatory bases of learning 

and/or behaviour under uncertainty would be to combine pharmacology and 

neuroimaging approaches (Mattay et al., 2000; Coull et al., 2001; Thiel et al., 2001, 2002; 



7. General discussion 

232 
 

Bentley et al., 2011; Chowdhury et al., 2013; Crockett et al., 2013). Taking advantage of 

the two complementary methodologies will enable researchers to pinpoint the 

contributions of NA, ACh and DA to different neurophysiological processes occurring in 

different brain regions. Future work will also be required to characterise the physiological 

roles of the different neuromodulators acting at different receptor sub-types and over 

multiple timescales. Related, continued cross-talk between human and animal research 

will facilitate the isolation of neuromodulatory contributions to these processes. By 

developing behavioural tasks and computational learning models that can be translated 

to different species, it will be possible to utilise a wide repertoire of methodologies, 

including more invasive techniques such as neuronal lesions, electrophysiological 

recordings and optogenetics, to characterise the specific neuromodulatory 

underpinnings of learning and action in uncertain environments. As recently set out by 

Krakauer et al., human behavioural neuroscience is well-placed to elucidate an 

understanding of learning and action under uncertainty through careful experimental 

decomposition of behaviour which, with associated pharmacological, behavioural 

genetics and neuroimaging approaches, can be linked to different neuromodulatory 

systems and brain regions. In turn, this sets the stage to causally test the precise neural 

implementation of behaviour using invasive interventions in animals (Krakauer et al., 

2017). Nonetheless, as argued throughout this thesis, critical to this approach will be the 

use of unified computational models with which to interrogate the contributions of 

different perceptual and behavioural parameters to the neural activations revealed by 

neuroimaging. 

7.3.1 Neural implementation of uncertainty computations 

While the focus of this thesis has been to characterise the relative contributions of NA, 

ACh and DA to learning and response modulation under uncertainty, parallel lines of 

work focus on how computations of uncertainty are implemented at a neural coding level 

(Ma and Jazayeri, 2014; Pouget et al., 2016). Three types of neural code have been 

proposed (Sanger, 1996; Pouget et al., 2003; Ma et al., 2006). First, in probabilistic 

population coding, uncertainty is represented implicitly in neuronal population activity. 

For instance, increased uncertainty may correspond to a lower total spike count. Second, 

in sampling coding, the activity of a neuron at a given time-point is a sample from the 

belief distribution that is to be represented, and the probability of a variable of interest is 

directly mapped onto neuronal firing rate. Third, in explicit population coding, the activity 

of a neuron tuned to a stimulus feature is monotonically related to the probability density 

of that feature. Higher uncertainty is represented by a wider activation pattern across the 

population. The details of how the brain represents probability distributions are currently 
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unknown (Pouget et al., 2013), but, in addition to animal work, human neuroimaging 

methods such as fMRI repetition suppression hold the potential to elucidate the 

underlying neural mechanisms employed by the noradrenergic, cholinergic and 

dopaminergic systems (Barron et al., 2016). The use of fMRI will also help to isolate the 

precise neural networks that support uncertainty encoding (Behrens et al., 2007; Iglesias 

et al., 2013; Payzan-LeNestour et al., 2013; Silvetti et al., 2013; McGuire et al., 2014; 

Diaconescu et al., 2017). 

7.4 Combining pharmacology and behavioural genetics 

As I addressed in Chapter 5, behavioural genetics holds the potential to extend the 

insights offered by pharmacological and neuroimaging investigations of the 

neuromodulatory contributions to learning and response modulation. Importantly, a 

further reason to combine pharmacology and behavioural genetics is that individual 

behavioural responses to pharmacological manipulations can depend strongly on 

baseline neurotransmission (Kimberg et al., 1997; Mehta et al., 2004a; Roesch-Ely et 

al., 2005; Frank and O’Reilly, 2006; Cools et al., 2007b; Clatworthy et al., 2009). Since 

multiple genes are thought to modulate baseline neuromodulatory function, there is 

strong reason to predict that individual differences in noradrenergic, cholinergic and 

dopaminergic drug effects are, at least in part, genetic.  

For instance, it has been demonstrated that the direction of cognitive effects produced 

by pharmacological catechol-O-methyltransferase (COMT) inhibition under tolcapone is 

determined by an individual’s COMT Val158Met genotype (Farrell et al., 2012). 

Specifically, tolcapone improves working memory performance in Val carriers but impairs 

performance in Met carriers. This is thought to be due to an inverted-U relationship 

between cortical DA neurotransmission and cognitive function (Figure 7.1). Val/Val 

homozygotes show higher baseline COMT activity, and thus lower baseline DA 

neurotransmission, than Met/Met homozygotes (Männistö and Kaakkola, 1999; Chen et 

al., 2004). Due to the supposed inverted-U relationship between cortical DA and 

cognitive function, Val/Val homozygotes show inferior baseline working memory 

performance compared to Met carriers. COMT inhibition under tolcapone increases 

cortical DA neurotransmission in all individuals but the different baseline DA levels 

between individuals, and the inverted-U relationship between DA and working memory, 

mean that the functional consequences of this shift differ between COMT genotypes. 

Val/Val individuals move closer to optimal performance, while Met individuals move past 

the peak, resulting in a deterioration in working memory performance. 
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Similarly, amphetamines, which alter catecholaminergic neurotransmission by blocking 

the action of transporters at dopaminergic, serotonergic and noradrenergic neurons, 

show variable effects in individuals with different COMT genotypes (Mattay et al., 2003). 

Moreover, pharmacological DA D2-receptor stimulation generally improves task 

performance in individuals with low baseline working memory span (Kimberg et al., 1997; 

Frank and O’Reilly, 2006), high impulsivity (Cools et al., 2007b) or low baseline DA 

synthesis (Cools et al., 2009), but impairs performance in those showing the opposite 

baseline trait. Further, the modulatory effect of atomoxetine, which upregulates 

catecholamines such as DA and NA, on an individual’s learning rate is dependent on 

their learning rate at baseline (Jepma et al., 2016), potentially indicative of inter-individual 

genetic variations in baseline NA neurotransmission and an inverted-U relationship 

between NA and cognitive function. 

 

Figure 7.1 COMT genotype determines the direction of cognitive effects produced 

by pharmacological COMT inhibition. An inverted-U relationship between cortical DA 

neurotransmission and cognitive function has been proposed. Val/Val homozygotes 

show higher COMT activity and lower DA neurotransmission than Met/Met homozygotes. 

As such, they sit further to the left on the curve at baseline, showing inferior cognitive 

performance. COMT inhibition under tolcapone shifts all individuals to the right because 

DA neurotransmission increases. The functional correlates of this shift differ between 

genotypes. In an n-back working memory task, Val/Val individuals move closer to optimal 

performance, while Met/Met individuals move to the right of the peak, resulting in 

declining performance. A similar effect on risk aversion is observed during a gambling 

task. Figure adapted from Farrell et al., 2012.  

Combining behavioural genetics and pharmacology will therefore help to improve our 

mechanistic understanding of the neuromodulatory contributions to learning and action 

in uncertain environments. The methodologies implemented in this thesis can be applied 

to large cohorts of healthy individuals, facilitating a refined insight into the contributions 



7. General discussion 

235 
 

of the different neuromodulatory systems, and the impact of different pharmacological 

interventions, in individuals with different genotypes. Again, the conclusions of studies 

adopting this strategy will only be as sophisticated as the computational models used to 

interrogate learning and behaviour. The approach also has clinical relevance since 

dopaminergic, noradrenergic and cholinergic drugs are used to treat a wide range of 

neurological and psychiatric disorders. This means that elucidating the relationship 

between baseline levels of neurotransmission and pharmacological responses will aid 

the development of personalised therapeutic strategies. 

7.5 Functional overlaps between the noradrenergic, cholinergic 

and dopaminergic systems 

It important to note that there are functional overlaps between the noradrenergic, 

cholinergic and dopaminergic systems, which limit the confidence with which the findings 

of this thesis can be inferred. For example, the noradrenergic LC receives inputs from 

several brain regions, some of them supplying dopaminergic (substantial nigra/ventral 

tegmental area; SN/VTA) and cholinergic (pedunculopontine tegmental nucleus; PPN) 

neuromodulatory influences (Samuels and Szabadi, 2008). Combining imaging of the 

functional activity in the SN/VTA, PPN and LC with pharmacological manipulatuons of 

DA and NA could offer fruitful insight by elucidating the interaction between the regions, 

the neuromodulatory underprinnings of these interactions, during learning and response 

modulation under uncertainty. 

There is also considerable neurophysiological evidence that the catecholamines NA and 

DA have similar, partially overlapping, post-synaptic effects by boosting the efficacy of 

synaptic interactions between neurons, thus increasing cortical neural gain (Sutton et al., 

1967; Servan-Schreiber et al., 1990; Berridge and Waterhouse, 2003; Winterer and 

Weinberger, 2004; Aston-Jones and Cohen, 2005a). By selectively increasing gain 

following unexpected outcomes, the catecholamine systems are in a position to promote 

belief updating in a strongly stimulus-driven manner. Chapter 4 offered important insight 

into the neuromodulators’ relative roles by establishing the impact of pharmacological 

NA, ACh and DA manipulations on learning and action under uncertainty. Nonetheless, 

the complex interactions and dependencies between the noradrenergic, cholinergic and 

dopaminergic systems mean that future corroborative studies using a range of drugs that 

target different receptor sub-types, combined with behavioural genetics and 

neuroimaging approaches, are required to characterise the neuromodulatory 

mechanisms in more detail.  
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7.6 Insights into neurological disorders 

By characterising uncertainty computations and response modulation, the methodology 

reported in this thesis holds the potential to offer fresh insight into the numerous 

neurological and psychiatric disorders in which there is dysregulation of processes 

dependent on NA, ACh and DA (Iglesias et al., 2016). Further, the development of 

behavioural paradigms with the power to detect aberrant neuromodulatory function might 

offer clinically relevant diagnostic tools. As discussed previously, patients with 

Parkinson’s disease, and therefore nigrostriatal dopaminergic depletions, show an 

impaired ability to make adaptive responses to unexpected sensory events that occur 

within a broadly predictable context and thus elicit a large sensory prediction error (Galea 

et al., 2012). It is possible that patients demonstrate these deficits early in their disease 

course (Braak et al., 2003; Anderson, 2004; Santangelo et al., 2017), meaning that tasks 

such as the PSRTT may offer a useful foundation for developing diagnostic behavioural 

markers of a dopaminergic disease state. Moreover, there has been a recent move to 

integrate computational neuroscience into psychiatry in an effort to better elucidate the 

pathophysiological mechanisms of disorders such as schizophrenia, which is also linked 

to (primarily cortical) dopaminergic dysfunction (Friston et al., 2014). Pinpointing the 

relative contributions of the neuromodulatory systems to learning and action in healthy 

individuals holds the potential to identify aberrant neuromodulatory processing in 

psychiatric disorders through assessment of learning and behaviour in tasks, such as 

the PSRTT and the PLT, within a unified computational framework of uncertainty, such 

as that offered by the HGF.  

7.7 Concluding Remarks 

By adopting a unified computational framework to characterise individual learning and 

action under irreducible, estimation and volatility uncertainty, it is possible to utilise 

neuropharmacology and behavioural genetics to identify the contributions of different 

neuromodulatory systems to perceptual belief updating and response modulation in 

dynamic probabilistic environments. The experiments presented in this thesis offer a 

foundation for future work combining pharmacology, behavioural genetics and 

neuroimaging to pinpoint the specific neurophysiological mechanisms by which the 

human brain supports learning and action in uncertain environments at cellular, network 

and behavioural levels. 
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