
Trends
Solid tumors contain multiple hetero-
typic cell types and should be consid-
ered to be heterocellular systems.

Heterotypic cell types can differentially
process signals. When different cells
interact (via heterocellular signaling)
they expand their collective signal-pro-
cessing potential to achieve emergent
heterocellular phenotypes.

Cancer is an emergent phenotype
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Tissues contain multiple different cell types and can be considered to be
heterocellular systems. Signaling between different cells allows tissues to
achieve phenotypes that no cell type can achieve in isolation. Such emergent
tissue-level phenotypes can be said to ‘supervene upon’ heterocellular
signaling. It is proposed here that cancer is also an emergent phenotype that
supervenes upon heterocellular signaling. Using colorectal cancer (CRC) as an
example, I review how heterotypic cells differentially communicate to support
emergent malignancy. Studying tumors as integrated heterocellular systems –

rather than as solitary expansions of mutated cells – may reveal novel ways to
treat cancer.
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destabilize malignant systems as
treatments for cancer.
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Cancer as an Emergent Heterocellular Phenotype
Metazoan tissues are composed of multiple cell types (e.g., epithelial and mesenchymal cells,
leukocytes) [1] and can be thought of as heterocellular systems (see Glossary) [2]. For
example, consider the mammalian intestine. Healthy intestinal tissue is a heterocellular
system wherein several different cell types collaborate to form a functional organ. Notably,
epithelial enterocytes control nutrient uptake [3], whereas mesenchymal fibroblasts support
epithelial renewal [4], and tissue-resident lymphocytes and myeloid cells patrol against
infection [5].

Tumors also comprise multiple heterotypic cell types. For example, similarly to the healthy
colon, colorectal cancer (CRC) tumors contain epithelial cells, mesenchymal fibroblasts,
myeloid cells, and lymphocytes [6]. Like most solid tumors, CRC tumors are therefore not
merely homocellular systems or pools of epithelial cells but are integrated heterocellular
systems (Figure 1).

Heterotypic cells process and interpret signals completely differently [7,8]. This cell-specific
homocellular signaling enables differentiated cells to achieve distinct phenotypes (Figure 2A,
Key Figure). When multiple cell types are combined, heterocellular signaling between
cells can take place [2]. Because each cell type has a different signal-processing capacity,
heterocellular signaling can engage signaling pathways that each cell type cannot activate
autonomously [9]. This signaling expansion enables heterocellular systems to achieve pheno-
types beyond those of each cell type in isolation (Figure 2B). For example, myeloid dendritic
cells can use major histocompatibility complex (MHC) class-II signal processing to present
antigens to lymphoid cytotoxic T cells. In turn, activated T cells can use their unique signaling to
launch a cytotoxic immune response against the antigen. Together, the two cell types can
achieve adaptive immunity. In isolation they cannot.

When several interacting constituents achieve an output beyond the sum of their inputs, an
emergent system is formed [10]. Such a system requires two core elements: (i) constituent
‘nodes’ and (ii) interacting ‘edges’ connecting the nodes. When considering tissue, ‘nodes’ can
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Glossary
Cell-autonomous signaling:
mutation-driven signaling within the
mutated cell.
Emergent system: emergence is a
process in which complex higher-
order features are formed from
interactions between multiple lower-
order entities.
Enterocyte: differentiated intestinal
epithelial cells that absorb nutrients
from the intestinal lumen.
Heterocellular emergence: a
process where complex phenotypes
are achieved through interactions
between different cell types (e.g.,
adaptive immunity).
Heterocellular signaling:
communication between different cell
types that each have their own
unique signal processing capacity.
This allows each cell type to expand
its signaling options.
Heterocellular system: a
population of cells composed of
multiple differentiated cell types (e.g.,
metazoan tissue).
Homocellular signaling:
communication between cell types
that each have the same signal-
processing capacity (e.g., epithelial–
epithelial cell-junction signaling).
Homocellular system: a population
of cells composed of a single
differentiated cell type (e.g.,
epithelium).
Lamina propria: sub-epithelial
intestinal structure containing
fibroblasts and leukocytes.
Mismatch repair (MMR)-deficient:
a subset of CRC cells with errors in
MMR DNA repair machinery.
Non cell-autonomous signaling:
deregulated signaling in a non-
mutated cell driven by mutations in a
local mutated cell.
Oncogenic mutation: a mutation
that drives malignant phenotypes.
Reciprocal signaling: deregulated
signaling in a mutated cancer cell as
a result of a non cell-autonomous
signal returning from a non-mutated
cell.
Supervene: an ontological
relationship whereby higher-level
properties of an emergent system
depend on lower-level entities.
Tumor microenvironment: all cells,
matrix, and nutrients in the vicinity of
a tumor.
be thought of as cells and ‘edges’ as intercellular signals. For example, several epithelial cells
(nodes) can interact via adherens junctions (edges) to form an emergent homocellular epithe-
lium – whereas non-interacting epithelial cells cannot. One way to expand the output of an
emergent system is to increase the ‘diversity’ between nodes. For example, while a homo-
cellular network of interacting epithelial cells can produce an epithelium, a heterocellular system
of interacting epithelia, myeloid cells, and lymphocytes can produce epithelium with adaptive
immunological surveillance. When different cell types interact to produce tissue-level pheno-
types, we can say that heterocellular emergence has occurred (Figure 2C). Heterocellular
emergence requires: (i) cell ‘nodes’, (ii) intercellular signaling ‘edges’, and (iii) heterotypic
‘diversity’ between cell nodes. Because heterocellular emergence requires different cell types
to communicate with each other, tissue-level phenotypes supervene upon heterocellular
signaling.

Similarly to healthy tissues, tumors are integrated heterocellular systems that achieve complex
phenotypes (e.g., metastasis, immune evasion). We can therefore suppose that malignant
phenotypes also supervene upon heterocellular signaling (Figure 2D). Anecdotal examples of
heterocellular signaling are widely reported across the tumor microenvironment of many
different cancers [11,12]. Nevertheless, despite the explicit heterocellularity of tumors, most
cancers are still studied as homocellular pools of cancer cells. For example, CRC has long been
considered to be a disease of mutated epithelial tumor cells. As such, most attempts to treat
CRC focus on inhibiting epithelial cells directly –with little regard to the tumor microenvironment
they occupy in patients. However, recent studies have revealed that CRC tumors are highly
heterocellular, and increased heterocellularity leads to poorer survival [13–16]. To treat cancer
more effectively, we must understand how heterotypic (diverse) cells (nodes) interact (edges) to
achieve malignant phenotypes. Using CRC as an example, I discuss here how heterotypic cells
interact to form an emergent malignant system – and how this integrated topology can be
targeted to treat cancer.

Homo- versus Heterocellular Signaling in CRC
The healthy colon is lined by a single sheet of continually renewing epithelial cells. This
physical barrier separates the intestinal lumen (containing nutrients, commensal microflora,
and pathogens) from subepithelial tissue. The healthy colonic epithelium is organized into
a repetitive crypt structure in which pluripotent intestinal epithelial stem cells either self-
renew at the crypt base or differentiate into absorptive enterocytes and goblet cells along
the crypt [3].

Colonic malignancy is driven by oncogenic mutations in epithelial cells. Common CRC
mutations include loss of APC function (�80%), loss of p53 (TP53,�60%), and hyperactivation
of KRAS (�40%) [17]. These mutations occur as a ‘big bang’ event in a limited subset of
epithelial cells [18] and seem to drive malignant phenotypes by rewiring cell-autonomous
signaling in epithelial cells. For example, loss of APC hyperactivates b-catenin signaling [19],
whereasKRAS point mutations hyperactivate the RAF–MEK–MAPK cascade [20]. This deregu-
lated cell-autonomous signaling promotes epithelial proliferation and self-renewal. Thus, when
viewed from a homocellular perspective, emergent malignant phenotypes appear to supervene
upon deregulated cell-autonomous epithelial signaling.

However, this homocellular view ignores the explicit heterocellularity of metazoan biology. Both
in healthy and diseased tissue, colonic epithelia always interact with intestinal mesenchymal
cells, lymphocytes, and myeloid cells. Each of these heterotypic cell types processes signals
differently from epithelial cells, and can subsequently facilitate unique heterocellular pheno-
types. Consequently, an emergent model of cancer must include heterocellular signaling
between all cell types in the tumor microenvironment (Figure 3).
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Figure 1. Colorectal Cancer Is a Heterocellular System.Healthy colon and colorectal cancer (CRC) immunohistochemistry sections (from the Protein Atlas, www.
proteinatlas.org) [83] illustrate the explicit heterocellularity of intestinal tissue. Both healthy and CRC tissue contain epithelial cells (EpCAM+), myeloid macrophages
(CD11b+), T helper lymphocytes (CD4+), T cytotoxic lymphocytes (CD8+), B lymphocytes (CD19+), and mesenchymal fibroblasts (aSMA+).
A Heterocellular Environment
Nestled beneath the healthy colon epithelia is the lamina propria. This heterocellular structure
contains multiple leukocyte lineages and mesenchymal fibroblasts [4]. The healthy intestine is
entirely reliant on heterocellular signaling between epithelial cells and fibroblasts [21]. Notably,
fibroblasts are maintained by epithelial Hedgehog signaling [22] and, in turn, fibroblasts secrete
Wnt ligands and BMP antagonists to support the epithelial stem cell niche [4,23]. Neither cell
type alone is sufficient to maintain intestinal homeostasis – but together they perpetually
achieve heterocellular emergence.

Given the intimate relationship between epithelial and mesenchymal cells in the healthy colon, it
is perhaps unsurprising that fibroblasts are also involved in colonic malignancy. When colonic
epithelial cells acquire oncogenic mutations (such as loss of APC), proximal fibroblasts
proliferate [24]. This is accompanied by increased expression of the myofibroblast marker
aSMA and secretion of matrix metalloproteinases [25]. Increased myofibroblast abundance
drives epithelial liver metastasis and predicts CRC recurrence after surgery [26,27]. Increased
mesenchyme-derived desmoplasia also correlates with poor prognosis [28] and metastatic
recurrence in CRC [29,30]. Collectively, mesenchymal fibroblasts are a major marker of poor
prognosis in CRC [13,14].

Because oncogenic mutations only occur in epithelial cells, malignant mesenchymal pheno-
types must supervene upon heterocellular interactions. To achieve this, oncogenic epithelial
cells need to differentially communicate with fibroblasts (or, to use network parlance, ‘malignant
edges’ must form between epithelial and mesenchymal nodes). Although little is known
regarding specific heterocellular interactions in CRC, several studies have revealed that colonic
epithelial cells can activate fibroblasts via TGF-b [25,31] and poor-prognosis mesenchymal
CRC subtypes display TGF-b-induced epithelial expression signatures. In addition to TGF-b,
epithelial IL-33 also activates fibroblasts [32]. Reciprocally, these activated fibroblasts then
promote the proliferation and migration of intestinal epithelial cells via amphiregulin, HGF, FGF,
and Wnt signaling [33–35]. The pro-malignant role of mesenchymal cells is not limited to the
primary tumor because liver fibroblasts also support epithelial cancer cells in the metastatic
niche [36]. These observations support the hypothesis that mutated epithelial cells use the
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Key Figure

Cancer Phenotypes Supervene Upon Heterocellular Signaling.
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(Figure legend continued on the bottom of the next page.)

(A) Heterotypic cell types can differentially process and interpret signals. In isolation each cell type is limited to its own homocellular signaling potential. (B)
When diverse cell types are allowed to interact with one another, a heterocellular system is formed. This increased signal-processing capacity allows heterocellular
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Figure 3. Homo- and Heterocellular Oncogenic Signaling. (A) Similarly to many cancers, colorectal cancer (CRC) is
often viewed as a homocellular system (i.e., only epithelial cancer cells are studied). When viewed from this homocellular
perspective, epithelial oncogenic mutations can only drive malignant phenotypes through cell-autonomous signaling (e.g.,
loss of APC function hyperactivates epithelial b-catenin signaling). (B) However, because CRC tumors are explicitly
heterocellular (Figure 1), oncogenic mutations can explore a wide range of heterocellular signaling options. This hetero-
cellular diversity increases oncogenic signaling opportunities (e.g., cell-autonomous, non cell-autonomous, and reci-
procal signaling) – enabling tumors to achieve complex emergent malignant phenotypes.
alternative signal-processing capacity of mesenchymal cells to achieve emergent malignant
phenotypes in CRC.

While focusing on epithelial–mesenchymal heterocellular interactions provides more insight
than studying epithelial cells alone, mesenchymal fibroblasts are only one of many non-
epithelial cell types in CRC tumors. For amore complete heterocellular perspective, interactions
between epithelial cells, fibroblasts, and tissue-resident leukocytes cells must also be
considered.
systems to achieve new phenotypes that each cell type cannot accomplish in isolation. (C) Homocellular interactions can produce simple emergent phenotypes (e.g., an
epithelium). However, the increased signal-processing diversity provided by heterocellular interactions can producemore-complex phenotypes (e.g., an epitheliumwith
adaptive immune surveillance). (D) Emergent ontology model of heterocellular cancer. As heterocellular interactions increase, malignant phenotypes emerge from
increased signaling options.
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Immunological Diversity
The gastrointestinal tract is a major site of host–pathogen interaction. As a result, healthy
intestinal tissue is richly populated with leukocytes that patrol against infection [5]. Macro-
phages are the most profuse leukocyte in the colon [5], and their abundance increases further
during CRC tumorigenesis [24]. Similarly to myofibroblast expansion, heterocellular signaling
also drives the recruitment of myeloid macrophages. For example, epithelial cancer cells
produce IL-10 [37] and CCL2 [38] to recruit tumor-associated macrophages (TAMs). In turn,
TAMs express SIRPa, which can reciprocally increase epithelial migration via CD47 [37]. TAMs
can also secrete IL-6 to activate epithelial JAK–STAT signaling to promote proliferation and
invasion [39–42]. Moreover, TAMs play a major role in processing CRC extracellular matrix
(ECM), and can also regulate collagen production by fibroblasts [43]. These emergent hetero-
cellular phenotypes supervene upon reciprocal signaling between epithelial cells, mesen-
chymal fibroblasts, and TAMs.

In addition to myeloid TAMs, multiple lymphocytes infiltrate into the lamina propria during CRC
tumorigenesis [24,44]. Adaptive immunity is regulated by heterocellular interactions in both
homeostatic tissue and cancer. For example, mutations in epithelial CRC cells produce unique
neo-antigens that can be recognized by tumor-infiltrating T cells [45] (including oncogenic
KRAS specifically [46]). As a result, CRC tumors with increased lymphocytic reaction have a
better prognosis [47–50]. This proinflammatory response can be regulated by TAMs and prime
T cells towards an antitumor response [51]. Conversely, suppressed T lymphocyte cytotoxicity
facilitates epithelial cancer cell metastasis [52]. The role of B lymphocytes is less clear –

although recent evidence suggests they may be tumor-suppressive [53]. Thus, both in the
primary tumor and in distant metastasis, tumor immunogenicity supervenes upon heterocel-
lular interactions between epithelial cancer cells, myeloid cells, and lymphocytes.

Although typically considered as hubs for signal processing and ECM production, it is
becoming increasingly clear that mesenchymal fibroblasts play a major role in regulating
both innate and adaptive immune responses. For example, myofibroblast abundance corre-
lates with the increased presence of cytotoxic T cells in CRC [27]. This can result from
fibroblast Toll-like receptor (TLR) activation, which upregulates proinflammatory cytokines
that can recruit lymphocytes and myeloid cells into a tumor [54]. Intestinal fibroblasts can also
act as non-professional antigen-presenting cells (APCs) to the adaptive immune system
[55,56]. This suggests that fibroblasts may interact with lymphocytes in the tumor microen-
vironment to support immunosurveillance. However, intestinal myofibroblasts can also sup-
press the proliferation of helper T cells [57], induce colonic regulatory T cells (Tregs) [58], and
secrete anti-inflammatory IL-11 [59,60] – and can be considered to be immunosuppressive
[61]. As a result, the exact role of fibroblasts in regulating CRC immunogenicity is still under
investigation.

Cancer immunogenicity is a complex heterocellular process. This emergent phenotype can
only be achieved by a heterocellular system composed of epithelial, myeloid, lymphoid, and
mesenchymal cells. No individual cell type possesses the signal-processing capacity to achieve
such emergence on its own. Given the important role of both myofibroblast activation and
cancer immunogenicity in CRC prognosis, this provides further evidence that tumors can only
be understood as interconnected heterocellular systems (Figure 4).

Targeting Heterocellular Emergence
If malignant phenotypes supervene upon heterocellular signaling, then perturbing heterocellular
nodes and/or edges could present a powerful approach to treat cancer. Although our knowl-
edge of CRC as a heterocellular system is deeply incomplete, attempts to disrupt heterocellular
signaling are already underway.
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Figure 4. Established Heterocellular Signaling In Colorectal Cancer (CRC). Known heterocellular interactions that
drive emergent phenotypes in CRC. While much progress has been made, our understanding of heterocellular signaling in
cancer is vastly incomplete. For example, in CRC, epithelial–lymphoid and myeloid–stromal interactions are poorly
characterized. Moreover, how oncogenic mutations in epithelial cells (e.g., loss of APC, KRASG12D

[342_TD$DIFF], loss of p53) regulate
these heterocellular signaling pathways is currently unknown. Abbreviations: AR, amphiregulin; CCL, chemokine
(C-C motif) ligand; FGF, fibroblast growth factor; HGF, hepatocyte growth factor; IL, interleukin; SIRP, signal regulatory
protein; SHH, Sonic hedgehog; TGF, transforming growth factor.
Several studies have focused on disrupting epithelial–mesenchymal interactions [6]. Notably,
perturbation of FAP+

[343_TD$DIFF] fibroblasts can inhibit CRC progression [62], inhibition of mesenchymal
IL-33 signaling blocks epithelial CRC proliferation [63], and inhibition of mesenchymal TGF-bR1
signaling disrupts epithelial CRC metastases [14]. In addition to epithelial–mesenchymal
interactions, disruption of myeloid and lymphoid interactions in CRC is an area of intense
interest [64]. For example, inhibition of CCL5 signaling between T lymphocytes and macro-
phages can reduce epithelial CRC metastasis [65]. This finding suggests that interactions
between discrete myeloid and lymphocyte lineages can regulate the emergent malignant
phenotype of epithelial cells – further emphasizing the interconnected nature of heterocellular
emergence.

Although CRC tumors do not demonstrate dramatic responses to immune-checkpoint
inhibitors (as observed for melanoma and lung cancer [66]), disrupting epithelial–lymphocyte
interactions has shown some promise in CRC patients. For example, mismatch-repair
(MMR)-deficient (also known as microsatellite instable, MSI) epithelial CRC cells express
higher levels of PD-L1, have a higher neo-antigen load [67], and subsequently respond better to
T lymphocyte PD-1 blockade [68]. However, because only 15% of patients are MMR-deficient,
much is still unknown regarding epithelial–immune interactions in CRC. Interestingly, high
myeloid infiltrate (as seen in CRC) can suppress checkpoint inhibitor efficacy, and inhibition of
myeloid-specific PI3Kg signaling improves T cell cytotoxicity towards epithelial cancer cells
[69]. These results suggest combined inhibition of cell-specific signaling nodes such as myeloid
PI3Kg, lymphocyte PD-1, and mesenchymal TGF-bR1 could provide a powerful way to treat
CRC as an interconnected heterocellular system.
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Outstanding Questions
How do oncogenic mutations (e.g.,
loss of APC, KRASG12D, loss of p53)
regulate heterocellular signaling?

Do heterocellular signals converge on
common pathways – or does each
patient have a unique heterocellular
signaling structure that can be
targeted?

Are heterocellular signaling pathways
distinct across different cancer types –
or do all cancers employ similar heter-
ocellular signaling networks?

How does heterocellular signaling in
the primary tumor differ from that in
distant metastases?
Collectively, these nascent observations suggest that coordinated inhibition of cell-specific
mesenchymal, myeloid, and lymphoid signaling nodes can disrupt malignant emergence in
CRC. However, experience from other cancer types should prompt caution. For example,
when inhibitors of mesenchymal SMO were used to treat pancreatic ductal adenocarcinoma
(PDA), patients actually performed worse [70]. This may be because, in addition to supporting
pro-tumor fibroblasts, [344_TD$DIFF]SMO signaling is also essential for antitumor T lymphocyte activity [71].
By focusing only on epithelial–mesenchymal signaling, pro-tumor consequences of the drug in
other cell types were overlooked. Future efforts to target heterocellular signaling need to
consider the response of all cell types in a tumor – and not only of those [345_TD$DIFF][346_TD$DIFF]thought to contain
the hypothesized drug target.

Concluding Remarks
The heterocellularity of metazoan life allows tumors to explore a broad range of signaling
options. This expanded signaling potential enables cancer to achieve heterocellular pheno-
types that no cell type can accomplish in isolation. As a result, tumors cannot be understood by
monitoring cancer cells alone – cancer must be studied as an integrated heterocellular system.

Our current knowledge of the tumor microenvironment comes from assembling anecdotal
heterocellular signaling events. However, to study cancer as a truly integrated heterocellular
system, we eventually need to measure not only epithelial–mesenchymal interactions, or how
myeloid cells signal to lymphocytes – but how all the cell types simultaneously collaborate to
drive tumors (see Outstanding Questions). Although extremely challenging, such integrative
studies are now theoretically possible. Biomimetic (e.g., organoid co-cultures) and genetically
engineered mouse models provide solid experimental systems to observe heterocellular
emergence. These model systems can then be interrogated using new cell-specific signaling
technologies that enable researchers to measure heterocellular signaling at the systems-
biology level (reviewed in [2]). Methods such as heterocellular multivariate proteomics
[72,73] and single-cell mass-cytometry [74,75] can provide cell-specific signaling data from
complex heterocellular models. Advances in dimensional reduction [76,77] and mutual infor-
mation analysis [78] can then compute cell-specific signaling data into predictive models of
heterocellular phenotypes. By combining genetically engineered metazoan models, cell-spe-
cific signaling technology, and high-dimensional computational analysis, future researchers will
be able to study tumors as integrated heterocellular signaling systems.

Previous research suggests that heterotypic (diverse) cells (nodes) interact (signal) to achieve
complex heterocellular emergence. By treating cancers as integrated heterocellular systems –
rather than as simple homocellular expansions of cancer cells – new therapeutic opportunities
are already being discovered. Future attempts to treat cancer will likely involve disrupting novel
heterocellular interactions across epithelial, mesenchymal, myeloid, and lymphoid cells.
Because comparable heterocellular interactions have been reported across many solid tumors
– including breast [79], pancreatic [80], prostate [81], and ovarian cancers [82] – heterocellular
emergence is likely to be a universal feature of cancer.
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