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Abstract. The Dice score is widely used for binary segmentation due
to its robustness to class imbalance. Soft generalisations of the Dice
score allow it to be used as a loss function for training convolutional
neural networks (CNN). Although CNNs trained using mean-class Dice
score achieve state-of-the-art results on multi-class segmentation, this
loss function does neither take advantage of inter-class relationships
nor multi-scale information. We argue that an improved loss function
should balance misclassifications to favour predictions that are semanti-
cally meaningful. This paper investigates these issues in the context of
multi-class brain tumour segmentation. Our contribution is threefold. 1)
We propose a semantically-informed generalisation of the Dice score for
multi-class segmentation based on the Wasserstein distance on the prob-
abilistic label space. 2) We propose a holistic CNN that embeds spatial
information at multiple scales with deep supervision. 3) We show that
the joint use of holistic CNNs and generalised Wasserstein Dice score
achieves segmentations that are more semantically meaningful for brain
tumour segmentation.

1 Introduction

Automatic brain tumour segmentation is an active research area. Learning-based
methods using convolutional neural networks (CNNs) have recently emerged as
the state of the art [9,11]. One of the challenges is the severe class imbalance.
Two complementary ways have traditionally been used when training CNNs to
tackle imbalance: 1) using a sampling strategy that imposes constraints on the
selection of image patches; and 2) using pixel-wise weighting to balance the con-
tribution of each class in the objective function. For CNN-based segmentation,
samples should ideally be entire subject volumes to support the use of fully
convolutional network and maximise the computational efficiency of convolu-
tion operations within GPUs. As a result, weighted loss functions appear more
promising to improve CNN-based automatic brain tumour segmentation. Using
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Fig. 1. Left: tree on BraTS label space. Edge weights have been manually selected to
reflect the distance between labels. Right: illustration on a T2 scan from BraTS’15 [14].

soft generalisations of the Dice score (a popular overlap measure for binary seg-
mentation) directly as a loss function has recently been proposed [15,18]. By
introducing global spatial information into the loss function, the Dice loss has
been shown to be more robust to class imbalance. However at least two sources
of information are not fully utilised in this formulation: 1) the structure of the
label space; and 2) the spatial information across scales. Considering the class
imbalance and the hierarchical label structure illustrated in Fig.1, both of them
are likely to play an important role for multi-class brain tumour segmentation.

In this paper, we propose two complementary contributions that leverage
prior knowledge about brain tumour structure. First, we exploit the Wasser-
stein distance [7,17], which can naturally embed semantic relationships between
classes for the comparison of label probability vectors, to generalise the Dice
score for multi-class segmentation. Second, we propose a new holistic CNN ar-
chitecture inspired by [8,19] that embeds spatial information at different scales
and introduces deep supervision during the CNN training. We show that the
combination of the proposed generalised Wasserstein Dice score and our Holis-
tic CNN achieves better generalisation compared to both mean soft Dice score
training and classic CNN architectures for multi-class brain tumour segmenta-
tion.

2 A Wasserstein approach for multi-class soft Dice score

2.1 Dice score for crisp binary segmentation

The Dice score is a widely used overlap measure for pairwise comparison of binary
segmentations S and G. It can be expressed both in terms of set operations or
statistical measures as:

D =
2|S ∩G|
|S|+ |G|

=
2ΘTP

2ΘTP +ΘFP +ΘFN
=

2ΘTP

2ΘTP +ΘAE
(1)

with ΘTP the number of true positives, ΘFP /ΘFN the number of false posi-
tives/false negatives, and ΘAE = ΘFP +ΘFN the number of all errors.
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2.2 Dice score for soft binary segmentation

Extensions to soft binary segmentations [1,2] rely on the concept of disagreement
for pairs of probabilistic classifications. The classes Si and Gi of each voxel
i ∈ X can be defined as random variables on the label space L = {0, 1} and
the probabilistic segmentations can be represented as label probability maps:
p = {pi := P (Si = 1)}i∈X and g = {gi := P (Gi = 1)}i∈X. We denote P (L) the
set of label probability vectors. We can now generalise ΘTP and ΘAE to soft
segmentations:

ΘAE =
∑
i∈X

|pi − gi|, ΘTP =
∑
i∈X

gi(1− |pi − gi|) (2)

In the common case of a crisp segmentation g (i.e. ∀i ∈ X, gi ∈ {0, 1}), the
associated soft Dice score can be expressed as:

D(p, g) =
2
∑

i g
ipi∑

i(g
i + pi)

(3)

A second variant has been used in [15], with a quadratic term in the denominator.

2.3 Previous work on multi-class Dice score

The easiest way to derive a unique criterion from the soft binary Dice score for
multi-class segmentation is to consider the mean Dice score:

Dmean(p, g) =
1

|L|
∑
l∈L

2
∑

i g
i
lp

i
l∑

i(g
i
l + pil)

(4)

where {gil}i∈X, l∈L, {pil}i∈X, l∈L are the set label probability vectors for all voxels
for the ground truth and the prediction.

A generalised soft multi-class Dice score has also been proposed in [4,18] by
generalising the set theory definition of the Dice score (1):

DFM (p, g) =
2
∑

l αl

∑
i min(pil, g

i
l)∑

l αl

∑
i(p

i
l + gil)

(5)

where {αl}l∈L allows to weight the contribution of each class. However, those
definitions are still based only on pairwise comparisons of probabilities associated
with the same label and don’t take into account inter-class relationships.

2.4 Wasserstein distance between label probability vectors

The Wasserstein distance (also sometimes called the Earth Mover’s Distance)
represents the minimal cost to transform a probability vector p into another one
q when for all l, l′ ∈ L, the cost to move a unit from l to l′ is defined as the
distance Ml,l′ between l and l′. This is a way to map a distance matrix M (often



4 Lucas Fidon et al.

referred to as the ground distance matrix ) on L, into a distance on P (L) that
leverages prior knowledges about L. In the case of a finite set L, for p, q ∈ P (L),
the Wasserstein distance between p and q derived from M can be defined as the
solution of a linear programming problem [17]:

WM (p, q) = min
Tl,l′

∑
l,l′∈L

Tl,l′Ml,l′ ,

subject to ∀l ∈ L,
∑
l′∈L

Tl,l′ = pl, and ∀l′ ∈ L,
∑
l∈L

Tl,l′ = ql′ .
(6)

where T = (Tl,l′)l,l′∈L is a joint probability distribution for (p, q) with marginal

distributions p and q. A value T̂ that minimises (6) is called an optimal transport
between p and q for the distance matrix M .

2.5 Soft multi-class Wasserstein Dice score

The Wasserstein distance WM in (6) yields a natural way to compare two label
probability vectors in a semantically meaningful manner by supplying a distance
matrix M on L. Hence we propose using it to generalise the measure of dis-
agreement between a pair of label probability vectors and provide the following
generalisations:

ΘAE =
∑
i∈X

WM (pi, gi) (7)

Θl
TP =

∑
i∈X

gil(W
M (l, b)−WM (pi, gi)), ∀l ∈ L \ {b} (8)

where WM (l, b) is shorthand for Ml,b and M is chosen such that the background
class b is always the furthest away from the other classes. To generalise ΘTP , we
propose to weight the contribution of the classes similarly to (5):

ΘTP =
∑
l∈L

αlΘ
l
TP (9)

We chose αl = WM (l, b) to make sure that background voxels do not contribute
to ΘTP . The Wasserstein Dice score with respect to M can then be defined as:

DM (p, g) =
2
∑

lW
M (l, b)

∑
i g

i
l(W

M (l, b)−WM (pi, gi))

2
∑

l[W
M (l, b)

∑
i g

i
l(W

M (l, b)−WM (pi, gi))] +
∑

iW
M (pi, gi)

(10)
In the binary case, setting M = [ 0 1

1 0 ] leads to WM (pi, gi) = |pi−gi| and reduces
the proposed Wasserstein Dice score to the soft binary Dice score (2).

2.6 Wasserstein Dice loss with crisp ground truth

Previous work on Wasserstein distance-based loss functions for deep learning
have been limited because of the computational burden [17]. However, in the
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case of a crisp ground-truth {gi}i, and for any prediction {pi}i, a closed-form
solution exists for (6). An optimal transport is ∀l, l′ ∈ L, T̂l,l′ = pilg

i
l′ and the

Wasserstein distance becomes:

WM (pi, gi) =
∑
l,l′∈L

Ml,l′p
i
lg

i
l′ (11)

We define the Wasserstein Dice loss derived from M as LDM := 1−DM .

3 Holistic convolutional networks for multi-scale fusion

We now describe a holistically-nested convolutional neural network (HCNN) for
imbalanced multi-class brain tumour segmentation inspired by the holistically-
nested edge detection (HED) introduced in [19]. HCNN has been used success-
fully for some imbalanced learning tasks such as edge detection in natural im-
ages [19] and surgical tool segmentation [8]. The HCNN features multi-scale
prediction and intermediate supervision. It can produce a unified output using
a fusion layer while implicitly embedding spatial information in the loss. We
further improve on the ability of HCNNs to deal with imbalanced datasets by
leveraging the proposed generalised Wasserstein Dice loss. To keep up with state-
of-the-art CNNs, we also employ ELU as activation function [3] and use residual
connections [10]. Residual blocks include a pair of 33 convolutional filters and
Batch Normalisation [20]. The proposed architecture is illustrated in Fig.2.

3.1 Multi-scale prediction to leverage spatial consistency in the loss

As the receptive field increases across successive layers, predictions computed at
different layers embed spatial information at different scales. Especially for im-
balanced multi-class segmentation, different scales can contain complementary
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Fig. 2. Proposed holistically-nested CNN for multi-class labelling of brain tumours.
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information. In this paper, to increase the receptive field and avoid redundancy
between successive scale predictions, max pooling and dilated convolutions (with
a factor of 2 similar to [13]) have been used. As predictions are computed regu-
larly at intermediate scales along the network (Fig.2), we chose to increase the
number of features before the first prediction is made. For simplicity reasons,
we then selected the same value for all hidden layers (fixed to 70 given memory
constraints).

3.2 Multi-scale fusion and deep supervision for multi-class
segmentation

While classic CNNs provide only one output, HCNNs provide outputs ŷs at S
different layers of the network, and combine them to provide a final output ŷfuse:

(ŷfusel )l∈L = Softmax
(( S∑

s=1

wl,sŷ
s
l

)
l∈L

)
.

As different scales can be of different importance for different classes we learn
class-specific fusion weights wl,s. This transformation can also be represented by
a convolution layer with kernels of size 13 where the multi-scale predictions are
fused in separated branches for each class, as illustrated in Fig. 2 similarly to
the scalable layers introduced in [5]. In addition to applying the loss function
L to the fused prediction, L is also applied to each scale-specific prediction
thereby providing deep supervision (coefficients λ̄ and λs are set to 1/(S + 1)
for simplicity):

LTotal((ŷ
s)Ss=1, ŷ

fuse, y) = λ̄L(ŷfuse, y) +

S∑
s=1

λsL(ŷs, y)

4 Implementation details

4.1 Brain tumour segmentation

We evaluate our HCNN model and Wasserstein Dice loss functions on the task
of brain tumour segmentation using BraTS’15 training set that provides mul-
timodal images (T1, T1c, T2 and Flair) for 220 high-grade gliomas subjects
and 54 low-grade gliomas subjects. We divide it randomly into 80% for train-
ing, 10% for validation and 10% for testing so that the proportion of high-grade
and low-grade gliomas subjects is the same in each fold. The scans are labelled
with five classes (Fig. 1): (0) background, (1) necrotic core, (2) edema, (3) non-
enhancing core and (4) enhancing tumour. The most common evaluation criteria
for BraTS is to use the Dice scores for the whole tumour (labels 1,2,3,4), the core
tumour (labels 1,3,4) and the enhanced tumour (label 4). All the scans of BraTS
dataset are skull stripped, resampled to a 1mm isotropic grid and co-registered
to the T1-weighted volume of each patient. Additionally, we applied histogram
standardisation to each imaging modality independently [16].
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Table 1. Evaluation of different multi-class Dice scores for training and testing.
LDMtree−PT stands for pre-training the HCNN with mean Dice score (4 epochs) and
retraining it with LDMtree (85 epochs).

Loss function Evaluation: Mean(std) Dice scores (%)

Whole Core Enh. Mean Dice DM0−1 DMtree

Mean Dice 83(13) 70(21) 68(26) 60(12) 77(11) 80(12)
L

D
M0−1 86(12) 59(29) 69(23) 48(5) 82(6) 85(5)

LDMtree 88(8) 73(23) 70(25) 54(7) 84(5) 86(5)
LDMtree−PT 89(6) 73(22) 74(23) 59(10) 84(4) 87(4)

4.2 Implementation details

We train the networks using ADAM [12] with a learning rate lr = 0.01, β1 =
0.9 and β2 = 0.999. To regularise the network, we use early stopping on the
validation set and dropout in all residual blocks before the last activation (as
proposed in [20]), with a probability of 0.6. We use multi-modal volumes of
size 803 from one subject concatenated as input during training and a sampling
strategy to maximise the number of classes in each patch. Experiments have been
performed using Tensorflow 1.1 4 and a Nvidia GeForce GTX Titan X GPU.

5 Results

We evaluate the usefulness of the proposed soft multi-class Wasserstein Dice
loss and the proposed HCNN with deep supervision. We compare the soft multi-
class Wasserstein Dice loss to the state-of-the-art mean Dice score [5,13] for the
training of our HCNN in Table 1 and 2. We also evaluate the segmentation at
the different scales of the HCNN in Table 3.

5.1 Examples of distance metrics on BraTS label space

To illustrate the flexibility of the proposed generalised Wasserstein Dice score,
we evaluate two semantically driven choices for the distance matrix M on L:

M0−1 =


0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

 , and Mtree =


0 1 1 1 1
1 0 0.6 0.2 0.5
1 0.6 0 0.6 0.7
1 0.2 0.6 0 0.5
1 0.5 0.7 0.5 0

 .

M0−1 is associated with the discrete distance on L with no inter-class relation-
ship. Mtree is derived from the tree structure of L illustrated in Fig. 1. This
tree is based on the tumour hierarchical structure: whole, core and enhancing
tumour. We set branch weights to 0.1 for contiguous nodes and 0.2 otherwise.

4 The code is publicly available as part of NiftyNet (http://niftynet.io)

http://niftynet.io
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Ground Truth
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Generalised Wasserstein 
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Mean-class Dice Loss

Fig. 3. Qualitative comparison of HCNN predictions at testing after training with the
proposed Generalised Wasserstein Dice loss (LDMtree−PT ) or mean-class Dice loss.
Training with LDMtree−PT allows avoiding implausible misclassifications encountered
in predictions after training with mean-class Dice loss (emphasized by white arrows).

5.2 Evaluation and training with multi-class Dice score

The mean Dice corresponds to the mean of soft Dice scores for each class as
used in [5,13]. Results in Table 1 confirm that training with mean Dice score,
DM0−1 or DMtree allow maximising results for the associated multi-class Dice
score during inference.

While DMtree takes advantage of prior information about the hierarchical
structure of the tumour classes it makes the optimisation more complex by
adding more constraints. To relax those constraints, we propose to pretrain the
network using the mean Dice score during a few epochs (4 in our experiment)
and then retrain it using DMtree . This approach leads to the best results for all
criteria, as illustrated in the last line of Table 1. Moreover, it produces segmenta-
tions that are more semantically plausible compared to the HCNN trained with
mean Dice only as illustrated by Fig. 3.

5.3 Impact of the Wasserstein Dice loss on class confusion

Evaluating brain tumour segmentation using Dice scores of label subsets like
whole, core and enhancing tumour doesn’t allow measuring the ability of a model
to learn inter-class relationships and to favour voxel classifications, be it correct
or not, that are semantically as close as possible to the ground truth. We propose
to measure class confusion using pairwise comparisons of all labels pair between
the predicted segmentation and the ground truth (Table 2). Mathematically, for
all l, l′ ∈ L, the quantity in row l and colomn l′ stands for the soft binary Dice
score:

Dl,l′ =
2
∑

i g
i
lp

i
l′∑

i(g
i
l + pil′)

(12)
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Table 2. Dice score evaluation of the confusion after training the HCNN using different
loss functions. Each line (resp. column) corresponds to the mean(standard deviation)
Dice scores (%) of a region of the ground truth (resp. prediction) with all regions of
the prediction (resp. ground truth) computed on the testing set.

Mean Dice Prediction

Ground truth Background Necrotic core Edema Non-enh. Enh.

Background 99.6(0) 0(0) 0.8(0) 0.1(0) 0.1(0)
Necrotic core 0.(0) 36.8(30) 1.2(3) 8.3(9) 1(1)
Edema 0.3(0) 0.9(1) 62.9(18) 21.7(13) 4.3(6)
Non-enh. 0.1(0) 8.7(9) 6.5(8) 33(15) 14.8(11)
Enh. 0(0) 0.9(1) 0.3(0) 6.9(7) 67.6(25)

LDMtree Prediction

Ground truth Background Necrotic core Edema Non-enh. Enh.

Background 99.7(0) 0(0) 0.3(0) 0(0) 0(0)
Necrotic core 0(0) 0(0) 2.4(5) 28.2(22) 1.4(1)
Edema 0.6(0) 0(0) 71.3(12) 8.5(7) 3.5(5)
Non-enh. 0.1(0) 0(0) 15.4(13) 28.9(14) 14.2(10)
Enh. 0(0) 0(0) 1.7(1) 6.9(7) 70.5(25)

LDMtree−PT Prediction

Ground truth Background Necrotic core Edema Non-enh. Enh.

Background 99.7(0) 0(0) 0.2(0) 0(0) 0(0)
Necrotic core 0(0) 20.2(27) 2.3(5) 23.2(18) 1(1)
Edema 0.6(0) 0.3(0) 73.3(11) 5.7(5) 3.1(4)
Non-enh. 0.1(0) 2.1(7) 16.1(13) 30(17) 13(8)
Enh. 0(0) 0(0) 2.4(2) 3.8(4) 73.5(22)

Results in Table 2 compare class confusion of the proposed HCNN after being
trained either using mean Dice loss, tree-based Wasserstein Dice loss (LDMtree ) or
tree-based Wasserstein Dice loss pre-trained with mean Dice loss(LDMtree−PT ).
The first one aims only at maximising the true positives (diagonal) while the
two other additionally aim at balancing the misclassifications to produce sem-
natically meaningful segmentations.

The network trained with mean Dice loss segments correctly most of the vox-
els (diagonal in Table 2) but makes misclassifications that are not semantically
meaningful. For example, it makes poor differentiation between the edema and
the core tumour as can be seen in the line corresponding to edema in Table 2
and in Fig. 3.

In contrast, the network trained with LDMtree makes more meaningful con-
fusion but it is not able to differentiate necrotic core and non-enhancing tumour
at all (columns 2 and 4). It illustrates the difficulty to train the network with
LDMtree starting from a random initialisation because LDMtree embeds more
constraints than the mean Dice loss.
LDMtree−PT allows combining advantages of both loss function: pre-training

the network using the mean Dice loss allows initialising it so that it produces
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Table 3. Evaluation of scale-specific and fused predictions of the HCNN with Dice
score of whole, core, enhancing tumour and DMtree after being pre-trained with mean
Dice score (4 epochs) and retrained with LDMtree (85 epochs).

Prediction Mean(Std) Dice score (%)

Whole tumour Core tumour Enh. tumour DMtree

Scale 1 84(8) 68(23) 70(25) 84(5)
Scale 2 89(5) 73(22) 74(23) 87(4)
Scale 3 88(6) 72(23) 71(22) 86(4)
Scale 4 89(5) 72(22) 71(21) 86(3)
Fused 89(6) 73(22) 74(23) 87(4)

quickly an approximation of the segmentation, and retraining it with LDMtree

allows reaching a model which provides semantically meaningful segmentations
(Fig. 3) with a higher rate of true positives compared to training with LDMtree

or mean Dice loss alone (Table 2).

5.4 Evaluation of deep supervision

Results in Table 3 are obtained after pre-training HCNN with mean Dice score
during 4 epochs and then training it with LDMtree during 85 additional epochs.
Scales 2 to 4 and fused achieve similar Dice scores for whole, core tumour and
the objective function DMtree while scale 1 obtains lower Dice scores. Holes in
tumour segmentations produced by scale 1, as illustrated in Fig. 4, suggest an
unsufficient receptive field could account for those lower Dice scores. The best
result for the enhancing tumour is achievied by both scale 2 and fused, which
was expected as this is the smallest region of interest and the full resolution is
maintained until scale 2. Moreover, as illustrated in Fig. 4, scales 3 and 4 fail at
segmenting the thinest regions of the tumour because of their lower resolution
contrary to scales 1 and 2 and fused. However, scales 1 to 3 contained implausi-
ble segmentation regions contrary to scale 4 and fused. This suggests trade-offs
between high receptive field and high resolution that are class specific. It con-
firms the usefulness of the multi-scale holistic approach for the multi-class brain
tumour segmentation task.

6 Conclusion and future work

We proposed a semantically driven generalisation of the Dice score for soft multi-
class segmentation based on the Wasserstein distance. This embeds prior knowl-
edge about inter-class relationships represented by a distance matrix on the label
space. Additionally, we proposed a holistic convolutional network that uses multi-
scale predictions and deep supervision to make use of multi-scale information.
We successfully used the proposed Wasserstein Dice score as a loss function to
train our holistic networks and show the importance of multi-scale and inter-class
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Ground Truth Fused Scale Scale 1

Scale 2 Scale 3 Scale 4

Fig. 4. Qualitative comparison of fused and scales predictions at testing after training
our HCNN with the proposed Generalised Wasserstein Dice loss (LDMtree−PT ). White
arrows emphasize implausible misclassifications.

relationships for the imbalanced task of multi-class brain tumour segmentation.
The proposed distance matrix based on the label space tree structure leads to
higher Dice scores compared to the discrete distance. Because the tree-based
distance matrix used was heuristically chosen we think that better heuristics
or a method to directly learn the matrix from the data could lead to further
improvements.

As the memory capacity of GPUs increases, entire multi-modal volumes could
be used as input of CNN-based segmentation. However, it will also increase the
class imbalance in the patches used as input. We expect this to increase the im-
pact of our contributions. Future work includes extending the use of Wasserstein
distance by defining a matrix distance on the entire output space X × L simi-
larly to [6]. This would allow embedding spatial information directly in the loss,
but the computation burden of the Wasserstein distance, in that case, remains
a challenge [17].
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