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Abstract We conduct a superposed epoch analysis of Birkeland current densities from AMPERE (Active
Magnetosphere and Planetary Electrodynamics Response Experiment) using isolated substorm expansion
phase onsets identified by an independently derived data set. In order to evaluate whether R1 and R2
currents contribute to the substorm current wedge, we rotate global maps of Birkeland currents into a
common coordinate system centered on the magnetic local time of substorm onset. When the latitude of
substorm is taken into account, it is clear that both R1 and R2 current systems play a role in substorm onset,
contrary to previous studies which found that R2 current did not contribute. The latitude of substorm onset
is colocated with the interface between R1 and R2 currents, allowing us to infer that R1 current closes just
tailward and R2 current closes just earthward of the associated current disruption in the tail. AMPERE is the
first data set to give near-instantaneous measurements of Birkeland current across the whole polar cap,
and this study addresses apparent discrepancies in previous studies which have used AMPERE to examine
the morphology of the substorm current wedge. Finally, we present evidence for an extremely localized
reduction in current density immediately prior to substorm onset, and we interpret this as the first statistical
signature of auroral dimming in Birkeland current.

1. Introduction

The canon on the relationship between substorms and field-aligned currents (also called Birkeland cur-
rents) started over a century ago. Birkeland [1908] described events which he called “polar elementary
storms” and concluded that these storms must be caused by field-aligned currents near the auroral zone;
this description was the first physical description of the substorm. Over 50 years later, Akasofu [1964] used
a network of auroral imagers to identify two discrete phases of the substorm: the expansion phase (so
called because of a brightening in the aurora and subsequent rapid motion toward the geomagnetic pole)
and the recovery phase. Akasofu [1964] also defined the quiet phase as the period between the end of
one recovery phase and the beginning of the next expansion phase. It was later understood that this
phenomenon required a buildup of magnetic flux and energy, and so McPherron [1970] used ground magne-
tometer observations to define the growth phase as the missing phase of what he called the magnetospheric
substorm.

The growth phase of the substorm is characterized by the interplanetary magnetic field (IMF) interconnecting
with Earth’s magnetic field, resulting in the opening of flux and storage of energy in the magnetosphere. The
expansion phase is dominated by nightside reconnection closing these field lines, and the recovery phase is
the return of the system to quiescence. These three cycles repeat in a cycle of solar wind-magnetosphere cou-
pling [Dungey, 1961], driving convection of plasma in the magnetosphere, which is coupled to the ionosphere
by Birkeland currents [Birkeland, 1908, 1913]. As field lines are opened and closed, the polar cap expands
and contracts [Siscoe and Huang, 1985; Cowley and Lockwood, 1992], referred to as the expanding/contracting
polar cap (ECPC) paradigm [Lockwood and Cowley, 1992; Milan et al., 2007]; the Birkeland current ovals move
sympathetically, and previous studies have shown that the R1 current oval lies within 1∘ latitude of the
open/closed field line boundary [Clausen et al., 2013a].
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Magnetic perturbations were observed by Zmuda et al. [1966] which were later found by Cummings and
Dessler [1967] to be Birkeland currents. The global morphology of the currents was deduced by Iijima and
Potemra [1976, 1978], who described two regions of Birkeland current representing distinct currents into
and out of the ionosphere. The poleward region of current was defined as Region 1 (R1), closing via the
magnetopause; the equatorward region was defined as Region 2 (R2), closing in the partial ring current on the
nightside of Earth. At more active times, the R1 and R2 current systems lie farther equatorward than during
more quiescent times, which can be explained in the context of the ECPC paradigm [Clausen et al., 2012].
Birkeland currents are observed to be stronger during periods of enhanced magnetic reconnection at the
dayside magnetopause and, consequently, during southward IMF [e.g., Weimer, 2001; Anderson et al., 2014;
Coxon et al., 2014a, 2014b; Carter et al., 2016]. The amount of Birkeland current flowing is dependent not only
on magnetic reconnection but also on season and local time sector, due to ionospheric conductance, which
varies seasonally and diurnally [Fujii and Iijima, 1987]. However, the Northern Hemisphere appears to experi-
ence more current flow than the Southern Hemisphere even when accounting for variations in ionospheric
conductance [Coxon et al., 2016].

Usually, Birkeland currents flowing into the ionosphere are closed through Pedersen currents, which then con-
nect to Birkeland currents flowing out of the ionosphere, closing the system [e.g., Hoffman et al., 1994; Cowley,
2000]. However, the magnetospheric current system is drastically changed by a substorm. A current disruption
in the magnetotail causes current to be diverted along the magnetic field (as Birkeland currents) into the iono-
sphere, leading to an additional system known as the substorm current wedge (SCW) [Clauer and McPherron,
1974], in which there is some current disruption in the magnetotail which leads to a current flowing toward
the ionosphere on the dawnside and away from the ionosphere on the duskside of the reconnection site in
the magnetotail. The Birkeland currents diverted from the magnetotail in this manner are closed in the iono-
sphere by a substorm electrojet traditionally identified by the AL index [e.g., Boström, 1964; Davis and Sugiura,
1966, and references therein]. This picture has been supplemented by more detailed theories as to the nature
of the currents flowing; more recent models of the SCW propose that it involves R1 and R2 currents, as cur-
rent flows both toward and away from the ionosphere on both sides of the polar cap [Birn et al., 1999; Birn and
Hesse, 2014; Sergeev et al., 2011, 2014a], and some observations have also been made which appear to show
Region 0 (R0) current flowing poleward of the R1 current during substorms [Fujii et al., 1994; Hoffman et al.,
1994; Gjerloev and Hoffman, 2002]. Observations of far more intricate structure have been made by Cluster,
whereby tens of thin current sheets were observed, consistent with the traditional SCW when integrated over
large spatial scales [Forsyth et al., 2014a]. Observations of the Birkeland currents differ on the composition of
the SCW. A recent principal component analysis of Birkeland currents showed no sign of a principal variability
associated with substorms [Milan et al., 2015], but most authors have observed some signature, whether it
was the two-loop system [Coxon et al., 2014b; Sergeev et al., 2014a, 2014b] or only the traditional SCW [Clausen
et al., 2013a]. The DP-1 current system (the ionospheric signature of the substorm current wedge) was iden-
tified in a empirical orthogonal function analysis of SuperMAG data [Shore et al., 2017]. For a more complete
review of research into the substorm current wedge, we refer the reader to Kepko et al. [2015].

It has been confirmed that the Birkeland currents expand and contract in the same sense as the polar cap
[Clausen et al., 2012; Carter et al., 2016]. Coxon et al. [2014b] observed that the current magnitudes of R1 and R2
(integrated over the whole of the polar cap) both slowly increased toward substorm expansion phase onset.
Alongside this observation indicating that currents increase in a global sense, Murphy et al. [2012] observed a
localized reduction in upward current density immediately prior to auroral substorm onset which they inter-
preted as evidence for a change in magnetosphere-ionosphere coupling, as upward field-aligned currents
are colocated with the aurora both spatially and temporally [Boström, 1966; Murphy et al., 2012, 2013; Carter
et al., 2016]. Pellinen and Heikkila [1978] presented ground-based observations of aurora near substorm onset
in which they observed a reduction in auroral brightness 8–5 min before onset, and Murphy et al. [2012]
interpreted their result as the signature of auroral dimming in the Birkeland current system.

It should be noted that there is some debate as to whether the substorm current wedge comprises R1/R2
currents; if the R1/R2 system is defined by currents closing via the magnetopause/partial ring current, then the
SCW does not comprise R1/R2 currents because it maps to a disruption in the magnetotail. If, however, R1/R2
currents are simply defined by the sense of their ionospheric footprints, then the SCW can be well described
in terms of R1/R2 currents. We adopt the latter definition and describe the SCW using R1 and R2 currents, after
the example of some of the earliest work on this topic [Iijima and Potemra, 1978].
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In this paper, therefore, we examine the role of the R1 and R2 current systems during substorms. We determine
that both the R1 and R2 current systems contribute to the substorm current wedge [e.g., Coxon et al., 2014b],
rather than solely the R1 current system [e.g., Clausen et al., 2013a]. We also examine the Birkeland currents in
the coordinates close to substorm onset to determine that there is evidence for a highly localized reduction in
current density immediately prior to substorm onset, which is consistent with previous observations of aurora
and currents [Pellinen and Heikkila, 1978; Murphy et al., 2012].

2. Data
2.1. AMPERE
The properties of the Birkeland currents can be inferred from the Active Magnetosphere and Planetary Elec-
trodynamics Response Experiment (AMPERE) [Anderson et al., 2000, 2014; Waters et al., 2001]. AMPERE gives
the radial current density in altitude-adjusted geomagnetic coordinates (AACGM) at an altitude of 780 km on
a grid of 1∘ colatitude by 1 h magnetic local time (MLT). The data are computed over a 10 min sliding window,
which is approximately the interspacecraft separation but which is evaluated every 2 min. Hence, each new
2 min evaluation contains new data and features in the data are visible on timescales below 10 min as a result
of this approach [e.g., Clausen et al., 2013a]. Therefore, the cadence is arguably better than 10 min but defi-
nitely not as good as 2 min. If we adopt time steps of 6 min, over half the data contributing to the evaluation
is different between each time step. As such, we adopt 6 min time steps in this study, to show the evolution of
the current densities. This choice also facilitates easy comparison with the plots of Clausen et al. [2013a]. We
will use maps which AMPERE employs spherical cap harmonics to infer the current density across the polar
cap from the magnetometers aboard the member satellites of the Iridium constellation, comprising 66 satel-
lites in six orbital planes. A review of the work which has been done with the constellation is given by Coxon
et al. [2017].

2.2. SOPHIE
We employ a recent technique, called SOPHIE (Substorm Onsets and Phases from H-Indices of the Electrojet),
to independently determine substorm expansion phase onsets [Forsyth et al., 2015]. The SOPHIE algorithm
uses the time differential of the SuperMAG indices SML and SMU [Newell and Gjerloev, 2011], which can be
considered equivalent to the AL and AU indices, to identify the onsets of expansion phases, recovery phases,
and possible growth phases from 1996 to 2014 at a cadence of 1 min. The expansion phase is identified by
times when the rate of change in SML is negative and is below some percentile threshold in the data. In this
study, the 75% threshold is used, as recommended by Forsyth et al. [2015]: For a detailed discussion of how
the expansion phase onsets identified by SOPHIE compare with other substorm lists, we refer the reader to
the paper. We only use expansion phase onsets which are preceded in the SOPHIE data set by a growth phase;
in this way, we filter out substorms which occur soon after another substorm, reducing the variability in the
events analyzed.

SOPHIE does not identify the location of onset, so we use the colatitude and MLT of the magnetometer
contributing to the SML index at each expansion phase onset time, in the same manner as the SuperMAG
substorm list [Newell and Gjerloev, 2011]. SOPHIE does, however, provide a flag for phase identifications which
occur when SMU and SML are of similar values [Forsyth et al., 2015]. Kamide and Kokubun [1996] showed that
the electrojets in the ionosphere are a combination of two factors: first, directly driven enhancements in iono-
spheric convection (due to magnetic reconnection) causing enhancements in the electrojets on the dawn
and dusk flanks of the polar cap and second, the unloading of energy from the magnetotail into the iono-
sphere by the substorm, causing an intense westward electrojet in the midnight sector [Kamide and Kokubun,
1996]. The flag in SOPHIE means that we can eliminate times at which SML and SMU are of similar magnitudes
and therefore eliminate times where an enhancement in ionospheric convection has been misidentified as a
expansion phase onset [Forsyth et al., 2015].

3. Methodology

In this paper, the polar projections of radial current density from AMPERE are used. We take current densities
in a 90 min window encompassing substorm onset for the list of substorm onsets determined by SOPHIE
[Forsyth et al., 2015]. For each substorm onset, we refer to the magnetometer colatitude 𝜃 and MLT m given in
the SuperMAG index data to determine the onset colatitude 𝜃0 and onset MLT m0 of the substorm. We rotate
the projection for each substorm by m0, such that the data are transformed into a coordinate system defined
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Figure 1. Histograms depicting the distribution of m0 for the substorms
contributing to (top) Figure 2 and for (bottom) Figure 4. We omit
substorms for which the onset MLT was on the dayside (6 < m0 < 18).

by substorm onset, in which m′
0 = 0 for

each epoch. We discarded substorms
for which 6 < m0 < 18, since they
are on the dayside, and a histogram of
the onset MLTs of the substorms which
remained can be found in Figure 1.

We perform a superposed epoch anal-
ysis of the current densities in order
to determine the behavior of the
Birkeland currents through the epoch
(Figure 2). We then filter our event
list, only selecting substorms for which
22∘< 𝜃0 ≤ 24∘, and then perform a
superposed epoch analysis of this sub-
set of the events (Figure 4).

The reason for transforming our coor-
dinate system and analyzing a subset
of the events is to reduce the amount
of spatial variability in the results of
our paper. By rotating each event by

m0, we ensure that any smoothing out of substorm features due to differences in the local time of substorm
onset is minimized, and we more accurately reproduce the signatures as a result of the substorm. The same is
true of taking a subset of the events defined by 𝜃0; by only taking events within a 2∘ range of onset colatitude,
we reduce the smoothing of features due to the change in onset latitude and again more accurately repro-
duce the signatures as a result of the substorm. Previous studies of substorms with AMPERE have not done
this [Clausen et al., 2013b, 2013a] and consequently have been at risk of spatial smoothing.

Figure 2. The median current densities for t = 0, 6, 12, and 18 min after substorm onset. Each panel is in polar
coordinates, depicting the colatitudes 0–30∘ in the Northern Hemisphere for all hours of MLT. The color bar refers to
(a) median current density j̄0 and the (b–d) difference in current density 𝛿 j̄. Substorms from all onset latitudes contribute
to the median. The SCW is visible in R1 currents in Figures 2b–2d and is indicated in Figure 2d by black arrows. For a key
to decipher which regions correspond to which features, see Figure 3. 4014 substorms contributed to these medians.
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Figure 3. A key to decipher the regions of Figures 2 and 4 to which
we refer in the text. (left) Regions found in plots of the median
current density j̄0 (Figures 2a and 4a). (right) Regions found in plots
of 𝛿 j̄ (Figures 2b–2d and 4b–4d). Dotted lines denote the poleward
boundaries of regions h, i, k, and l as observed in Figures 2b–2d.
Regions g, m, and n refer to features only in Figure 4. Regions do not
correspond exactly to the features at hand, and this schematic is
intended solely to guide the eye. Regions correspond to R1 current
(a and b), R2 current (c–e), NBZ currents (f–g), enhanced R1 current
(h and i), an expansion of the R1 current oval (k and l), and enhanced R2
current (m and n).

4. Reaction of the Birkeland
Currents to Substorm
Expansion Phase Onset
4.1. Median Morphology of the
Birkeland Currents During Substorms
Figure 2 shows a superposed epoch
analysis of 4014 substorms identified by
SOPHIE. Figure 2a shows the polar pro-
jection of the median current density j
at t = 0 m (henceforth j̄0), where t is
the time since expansion phase onset
determined from SOPHIE. We adopt the
usual convention that upward current
density is denoted by positive current
density and downward current density
is denoted by negative current density,
and we use red to denote j > 0 μA m−2

and blue to denote j < 0 μA m−2.
Figures 2b–2d show j̄0 subtracted from
the median current density before the

polar projection is plotted, such that these panels show the difference in the current system between a given
time t and t = 0 m, such that 𝛿 j̄ = j̄t− j̄0. In these panels, red and blue refer to currents becoming more positive
or more negative, rather than referring to the absolute value of current density. Figure 3 is drawn to aid the
reader in identifying the region at hand; regions mentioned by letter in the text refer to Figure 3. As detailed
in section 3, the current density corresponding to each substorm is rotated to the onset MLT of that substorm.

j̄0 (Figure 2a) shows the R1 and R2 current systems. The R1 current system is upward in the 12–22 MLT
sector and downward in the 00–11 MLT sector (regions a and b). The R2 current system is downward in the
23–11 MLT sector and upward in the 11–21 MLT sector (regions c and d). The boundary between the two
current systems at midnight is at a colatitude 𝜃 = 20∘, and the boundary at noon is at 𝜃 = 15∘, as a result of
the polar cap being centered slightly toward the nightside. The poleward edge of the R1 current is at 𝜃 ∼ 10∘,
and the equatorward edge of the R2 current is at 𝜃 ∼ 25∘.

At 𝜃<10∘, there is a region of downward j poleward of the R1 current system on the dusk flank within the polar
cap (region f ); this is the downward current of the NBZ current system. The NBZ current system is typically
only found on the dayside of the polar cap but in this case extends onto the nightside. At 𝜃 > 25∘, the region
of downward R2 current seems to wrap around to 09 MLT (region e). We do not expect dayside currents to be
well ordered by the location of substorm onset, and as such, rotating the maps by m0 as detailed in section 3
will cause currents being driven by dayside processes to be smeared out compared with an unrotated average;
as such, region e and the nightside part of region f can be attributed to the smearing out of dayside-driven
current systems by the rotation of the coordinate system to coordinates defined by a process occurring on
the nightside of the Earth (section 3).

We now turn to Figures 2b–2d, in which we plot the evolution of the current system after substorm onset.
On the nightside of Figure 2b (t = 6 m), there is a region of positive 𝛿 j̄ on the dusk flank (18–00 MLT) and a
region of negative 𝛿 j̄ on the dawn flank (00–06 MLT) at 𝜃>15∘ (regions h and i, respectively). These regions
intensify in Figures 2c and 2d (t = 12 m and 18 m). These regions (indicated by the arrows in Figure 2d) are
consistent with either an additional or enhanced R1 current and are colocated with the equatorward edge of
the R1 current systems. However, there is also a region of negative 𝛿 j̄ on the dusk flank (region k, bounded by
the dotted line in Figure 3) and a region of positive 𝛿 j̄ on the dawn flank (region l, bounded by the dotted line
in Figure 3) at 𝜃 < 15∘; these regions are colocated with the poleward edge of the R1 current.

4.2. Median Morphology During Substorms With Onset Colatitudes 22∘<𝜽0 ≤24∘
Previous studies [e.g., Milan et al., 2007] have shown that substorms at lower latitudes tend to be larger.
In Figure 4, we show similar results to Figure 2, but only for substorms with onset colatitudes 22∘< 𝜃0 ≤ 24∘.
Limiting the latitudinal range in this way reduces the number of events in the superposed epoch analysis
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Figure 4. As in Figure 2, but only substorms at onset colatitudes 22∘< 𝜃0 ≤ 24∘ contribute to the median. (a) A white
star indicates the latitude of substorm onset to guide the eye, colocated with the latitude of the interface between R1
and R2 current. (b–d) The SCW is visible in both R1 and R2 currents and is indicated in Figure 4d by black arrows.
For a key to decipher which regions correspond to which features, see Figure 3. 1144 substorms contributed to these
medians.

to 1144 and also reduces the spatial variability in the events. The R1 and R2 current systems are present in
Figure 4a in the same MLT sectors as Figure 2a but are stronger (Figure 3, regions a–e). In Figure 4a, the pole-
ward edge of the R1 current is at 𝜃∼ 15∘ at midnight and 𝜃∼ 10∘ at noon, and the equatorward edge of the
R2 current is at 𝜃∼27∘ at midnight and 𝜃∼24∘ at noon.

The interface between R1 and R2 in Figure 4a has moved equatorward, compared to the boundary seen in
Figure 2a, to a colatitude 𝜃 = 23∘ at midnight; this is colocated with the onset latitudes of the substorms
contributing to the plot and is illustrated by a white star overlaid in Figure 4a. This indicates that R1 current
is flowing into the ionosphere poleward of the latitude of substorm onset, and R2 current is flowing out of
the ionosphere equatorward of substorm onset. As in Figure 2a, the interface at noon is located 5∘ poleward,
at 𝜃=17∘.

At 𝜃<10∘, there is a region of downward j poleward of R1 on the dusk flank (region f ) and there is an additional
region of upward j poleward of R1 on the dawn flank (region g). These signatures are again indicative of the
presence of an NBZ current system at high latitudes, and the presence of a downward current and an upward
current region can be explained by the lower spatial variability in Figure 4. The rotation of the current densities
to the local time of substorm onset results in the signatures extending into the nightside of the polar cap.

As in Figures 2b–2d, subsequent to substorm onset, there is an enhancement in the R1 current seen in
Figure 4b (t = 6 m), with this enhancement increasing in Figures 4c and 4d (t = 12 m and 18 m). Figure 4d
shows two regions of 𝛿 j̄ at 22∘>𝜃>15∘: a region of positive 𝛿 j̄ in the 12–21 MLT sector (region h) and a region
of negative 𝛿 j̄ in the 23–09 MLT sector (region i). These regions (indicated by “R1” arrows in Figure 4d) are
consistent with enhanced R1 current and are colocated with the equatorward boundary of the R1 current.
At 15∘>𝜃 > 10∘ there is a region of negative 𝛿 j̄ in the 12–21 MLT sector (region k) and a region of positive 𝛿 j̄
in the 23–09 MLT sector (region l); these regions are again consistent with R1 current oval expansion shortly
after the substorm.

Additionally, at 30∘>𝜃 > 22∘ in Figures 4b–4d, there is a region of downward 𝛿 j̄ in the 17–22 MLT
sector (region m) and a region of upward 𝛿 j̄ in the 23–04 MLT sector (section n). These two regions
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Figure 5. A plot of minutes since substorm onset t against mean current
density j for the local time of substorm onset and the latitudes shown in
the legend (relative to the latitude of substorm onset, such that positive
latitudes are poleward of the onset latitude and negative latitudes are
equatorward). The shaded area around each line is the standard error on
the mean. Only events in which the coordinate contained upward
current density (associated with downward precipitating electrons) are
selected for averaging. The number of events contributing to each mean,
from −2∘ to 2∘, is 232, 221, 140, 63, and 31.

(indicated by arrows to “R2” in Figure 4d)
are consistent with enhanced R2 cur-
rents and are colocated with the R2
current in Figure 4a. This enhance-
ment of R2 current was not apparent in
Figures 2b–2d, and we attribute this to
the lower spatial variability of Figure 4
compared with Figure 2. We thus estab-
lish that we can see the substorm cur-
rent wedge with AMPERE statistically
and with enhancements in both R1 and
R2 current in the case of Figure 4.

4.3. Upward Current Density Local
to Substorm Onset
As shown in Figures 2 and 4, there is
a global enhancement of the Birkeland
currents after onset. Here we examine
the behavior of the currents leading up
to substorm onset in order to investi-

gate whether the behavior of the currents is consistent with dimming of the aurora shortly before substorm
onset [Pellinen and Heikkila, 1978; Murphy et al., 2012].

In order to do that, we examine the current density at the MLT of substorm onset by plotting the mean current
density against time for latitudes within ±2∘ from the onset latitude of the substorm (Figure 5). We select the
mean rather than the median so that we can calculate the standard error, which is the shaded area plotted
on either side of each line. We iterate through each combination of MLT and latitude, and we select all the
substorms from our data set that had an upward current density for that combination throughout the epoch.
We repeat this for every combination of MLT and latitude, such that different events may be contributing to
the mean in each latitude plotted in Figure 5. The number of events contributing to each of the time series
are given in the caption of the plot. This criterion is adopted to better examine the upward current density,
associated with the downward precipitating electrons responsible for auroral emissions.

From t = −20 m until after substorm onset, the upward currents equatorward of the onset latitude rise.
In contrast, the upward currents poleward of the onset latitude decrease. The mean upward current at both

Figure 6. Maps of the mean current density against MLT and latitude relative to the location of substorm onset at
different times t. (a) The average current density j in μA m−2 at t=−16 m. (b–d) The difference in current density from
Figure 6a 𝛿 j̄, with substorm onset in Figure 6d. Only events in which the coordinate contained upward current density
(associated with downward precipitating electrons) are selected for averaging. The reader should note that 1 h of MLT is
equal to 15∘ , such that the x axis represents more distance than the y axis. The dashed box in Figure 6a shows the bins
which are plotted in Figure 5. As in Figure 5, positive latitudes are poleward of the onset latitude and negative latitudes
are equatorward. For the number of substorms contributing to each mean, see Figure 7.
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Figure 7. The same parameter space as shown in Figure 6, color coded by the number of substorms contributing to
each bin.

relative latitudes +1∘ and +2∘ shows a drop during −30 m< t < 5 m for +2∘ and during −20 m< t < 5 m for
+1∘. The current densities begin to rise sharply at t=−5 m and carry on rising after the substorm onset.

Figure 6 shows a map of the mean change in current density close to the local time and colatitude of substorm
onset (the number of events in each of the bins is plotted in Figure 7). Again, we iterate through each combi-
nation of MLT and latitude, selecting substorms for which the current density is upward at that combination
throughout the epoch, such that different events might contribute to each bin. In this figure, the current den-
sity at t=−16 m is subtracted from each subsequent plot to find the change in current density until substorm
onset. At t =−10 m, the current density increases across the parameter space, except for small decreases in
the currents in the midnight local time sector. In the plot of t=−6 m the current density is generally reduced,
up to 4∘ poleward of onset within 2 h of local time of onset; current density is generally increased equator-
ward of the latitude of onset. At t = 0 m, all current densities are substantially enhanced, indicating that any
reduction only happens immediately prior to onset.

5. Discussion
5.1. Median Morphology of the Birkeland Currents
Do both the R1 and R2 current systems contribute to the substorm current wedge after substorm onset?
A clear Region 1 current (regions a–b) and a clear R2 current system (regions c–e) are visible in the median
current density at substorm onset (Figures 2a and 4a). Figures 2b–2d clearly show the R1 current system after
substorm onset, as can be seen by examination of regions h and i. The expansion of the R1 current oval can also
be seen in regions k and l, but there is no corresponding R2 current system (see regions m and n), seemingly
supporting past results implying that the SCW is only seen in R1 currents [Clausen et al., 2013b, 2013a].

In Figure 4, we analyze that a subset of the events by 𝜃0 reduces the spatial variability in latitude, and so
the clearly observed R1 and R2 currents seen in Figures 4b–4d show that the lack of R2 current observed in
Figure 2 is simply an effect of latitudinal averaging. The enhancement and the expansion of the R1 current
oval (regions h–l) is present as it is in Figures 2b–2d, but there is also an enhancement of the R2 current
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oval (regions m and n), which is consistent with previous observations [Murphy et al., 2013; Chu et al., 2014;
Coxon et al., 2014b; Sergeev et al., 2014b]. Clausen et al. [2013a] did not rotate the Birkeland currents to the
MLT of the substorm onset and also did not bin them by the latitude of substorm onset, such that the spatial
variability in their study was high; we conclude that by reducing the spatial variability, the signature of the
SCW is clearer. Since there are regions of 𝛿 j̄ consistent with R1 and R2 current enhancement (regions h, i, m,
and n), we conclude that both contribute to the SCW.

At onset, the current magnitudes increase quickly, with R1 current density increasing faster than R2 current
density. This is consistent with observations of current magnitude made by Coxon et al. [2014b], who con-
cluded that this was a signature of the substorm electrojet (from the schematic of Clauer and McPherron
[1974]). R1 current flowing into the polar cap (region i) must flow out of the polar cap again, and this usually
occurs via a Pedersen current flowing to a region of upward R2 current (from region i to region n). However,
as the R1 current density shows larger enhancements than the R2 current density, this implies that some R1
current must flow west (toward dusk) and close through the upward R1 current on the other side of the polar
cap (from region i to region h) [Coxon et al., 2014b].

The existence of region 2 current in the SCW supports several models of the SCW which have suggested
that this should be the case. In one model [Birn et al., 1999; Birn and Hesse, 2014], R1 current is closed by the
substorm electrojet in the ionosphere and by a current flowing across the magnetotail, but the R2 current is
supplied by two closed loops on either side of the current disruption in the magnetotail, and the R2 current is
smaller than the R1 current [Kepko et al., 2015; after Birn et al., 2011, Birn et al., 2011]. Work suggesting that the
SCW is composed of multiple “wedgelets,” driven by bursty bulk flows, implies that azimuthal flow channels
lead to shears which then lead to R1 and R2 currents [Birn and Hesse, 2013], but it should be noted that recent
papers do not necessarily support a wedgelet-driven model of the SCW [Forsyth et al., 2014b]. An alternative
explanation for the R2 currents observed in the SCW is one in which both R1 and R2 are closed by the sub-
storm electrojet in the ionosphere and currents flowing across the magnetotail [Ritter and Lühr, 2008; Sergeev
et al., 2011, 2014a]. The primary difference in these two models is to do with how the currents close in the
magnetosphere, which we cannot investigate with the view of the ionospheric current systems afforded by
AMPERE. Until the models make quantitative predictions on the ionospheric current flow during a substorm,
we cannot differentiate between the two.

It is well known that the location of substorm onset varies in both local time and latitude [Frey et al., 2004]. The
extent of the substorm bulge varies from event to event, although is generally larger for substorms initiated
at lower latitudes [Milan et al., 2009]. Furthermore, the duration of each substorm expansion phase is variable.
As such, creating maps of the average substorm currents using a superposed epoch will naturally average over
these modes of variability. We note, for example, that the superposed epoch analysis results of the AMPERE
data presented by Clausen et al. [2013a] show very little current in the 23–01 MLT sectors. In this study, we
have removed two of these modes of variability by rotating the data into a coordinate system such that there
is a common local time of substorm onset and by selecting those substorms whose onset occurs in a narrow
colatitudinal range (22∘< 𝜃0 ≤ 24∘). As a result of this, our results show the Region 1 and Region 2 currents
extending across the whole of the nightside, which is in contrast to the results of Clausen et al. [2013a].

However, the remaining sources of variability will still cause smoothing out in terms of the change in the
median current density through the substorm. Our observed change in median current density 𝛿 j̄ is of a mag-
nitude consistent with previous studies [Clausen et al., 2013b, 2013a], but the median current density 𝛿 j̄0 is
equal to no more than 0.2 μA m−2 in Figures 2a and 4a, whereas most observations of Birkeland currents show
them to be in the range 0.15≤ j≤1.0 μA m−2 [e.g., Clausen et al., 2012, Figure 2]. We interpret the fact that j̄0
is lower in Figure 2a than in Figure 4a as an indication that increased averaging over colatitude leads to a reduc-
tion in the median and we therefore infer that our medians are lower than expected due to the remaining
sources of variability in the substorm.

The identification of substorm onsets will also, naturally, influence the results of the superposed epoch
analysis study. Here we use the expansion phase onsets immediately preceded by an interval of no sub-
storm activity from the SOPHIE technique [Forsyth et al., 2015]. This technique identifies substorm expansion,
recovery phases using the SuperMAG AL (SML) index, which is generated from over 100 magnetometer sta-
tions distributed throughout the auroral region [Newell and Gjerloev, 2011]. Forsyth et al. [2015] showed that
the substorm onset times identified by this technique were closely aligned with those from orbiting imagers.
In this study, the onset location is defined as the location of the magnetometer station providing the SML
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index at the time of substorm onset. While there is some uncertainty in the location of onset due to the spa-
tial coverage of the magnetometers contributing to the SuperMAG data set, we do a good job of identifying
the onset from ground magnetometers given the lack of a reliable onset list based on auroral data.

A region of NBZ current (region f in Figure 2a and regions f and g in Figure 4a) is within the polar cap, at high
latitudes (𝜃<10∘). The observation of NBZ current on the dayside is consistent with previous observations
of NBZ currents within the polar cap on the dayside [Iijima et al., 1984; Zanetti et al., 1984; Weimer, 2001].
The observed NBZ currents in Figures 2a and 4a indicate that there are substorms for which IMF is northward
at the point of substorm onset. Northward turnings of the IMF are often coincident with substorm onset,
despite not being required to trigger substorm onset [Freeman and Morley, 2009]. Superposed epoch analyses
of dayside reconnection rateΦD also show that the dayside reconnection rate peaks when t < 0 m [Coxon et al.,
2014b], which is consistent with less southward IMF at t = 0 m. The statistical locations of the NBZ currents
found in Weimer [2001] confirm that these currents are of the appropriate sense for the NBZ current system
and also confirms that the downward NBZ current density dominates the upward current density, which
explains why higher spatial variability in Figure 2 obscures this signature. We do not interpret this signature as
a region 0 (R0) current associated with the SCW, because previous observations and modeling of R0 current
during substorms have found R0 to be very narrow and only just poleward of the R1 current sheet. The region
identified as NBZ is thicker and farther poleward than the R0 currents previously observed during substorms
[Fujii et al., 1994; Hoffman et al., 1994; Gjerloev and Hoffman, 2002].

In Figures 2b–2d and 4b–4d, regions k and l indicate that the R1 current at the poleward edge is decreasing,
consistent with an expansion of the current ovals to lower latitudes leading to less current flowing at high
latitudes. Although the expanding/contracting polar cap paradigm [Cowley and Lockwood, 1992] indicates
that the onset of nightside reconnection should lead to a contraction of the polar cap (and therefore the
current ovals), observations of the average colatitude of the Birkeland current ovals during substorms have
shown that this contraction does not begin until t ∼ 20 m [Coxon et al., 2014b]. Since all the plots presented
show times before this point, the current ovals will be expanding in each plot, consistent with the observations
herein. Two caveats should be noted regarding this point, however. First, auroral images have shown that the
auroral oval at local times near midnight contracts nearly instantaneously after the onset of a substorm, which
may indicate that the oval is not expanding at nightside MLTs [Gjerloev et al., 2007] despite previous studies
showing an increase in average colatitude after onset [Coxon et al., 2014b]. Second, these observations are
also consistent with observations of narrow R0 current sheets playing a part in the SCW, flowing poleward
of R1 current and in the opposite direction to R1 current. Gjerloev and Hoffman [2002] proposed a model in
which R0 current flows poleward of R1 current on both sides of midnight, and previous observations have
also shown R0 current flowing during substorms [Fujii et al., 1994; Hoffman et al., 1994]. As such, while the
observations herein are consistent with an expansion such as the one reported by Coxon et al. [2014b], they
are also consistent with the model of Gjerloev and Hoffman [2002].

In Figure 4, the interface between the R1 and R2 current systems is located at 𝜃=23∘ at midnight, and the
onset latitudes of the events plotted in this figure are 22∘< 𝜃0 ≤24∘. We interpret this as evidence that the
onset latitude of the substorm and the latitude of the interface between current systems are related. Previous
observations of substorm onsets show that substorm onset typically occurs close to the Harang discontinuity
[Lyons et al., 2003, 2005; Weygand et al., 2008; Zou et al., 2009, 2013], which is associated with the interface
between R1 and R2 current [Iijima and Potemra, 1978]. This implies that the latitude of the interface between
R1 and R2 current should be the latitude of substorm onset, which is consistent with R1 currents colocated
with the open/closed field line boundary [Cowley, 2000; Clausen et al., 2013a] and R2 currents mapping to the
partial ring current [Iijima and Potemra, 1978]. The implication is also consistent with the two-loop SCW model,
which predicts R1 and R2 current flowing from the current disruption in the tail to the ionosphere [Sergeev
et al., 2011, 2014a]; this result implies that the R1 current flows from the ionosphere and some region tailward
of the current disruption, and R2 current flows from the ionosphere to some region earthward of the current
disruption.

5.2. Upward Current Density Local to Substorm Onset
In three case studies, Murphy et al. [2012] examined the current density from AMPERE at the local time of
onset, in a range of 6∘ close to the latitude of substorm onset, and found evidence for a reduction in Birkeland
current densities immediately prior to substorm onset. The authors interpreted this for evidence of auroral
dimming after the result of Pellinen and Heikkila [1978]. In order to determine the existence of this reduction
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in Birkeland current statistically, we examine the upward current density at latitudes close to substorm onset
(Figures 5 and 6).

Interestingly, we do indeed observe a reduction in Birkeland current density prior to substorm onset 1–2∘

poleward of the substorm. However, we find no evidence for a similar reduction at or equatorward of the
latitude of the substorm. The observed decrease in current density is very localized, but despite this, we
interpret it as a reduction in current rather than a movement of current, since we do not observe a com-
mensurate increase in current density equatorward of the substorm latitude. Our observations are consistent
with the result of Murphy et al. [2012], who also observed a reduction in current density poleward of the sub-
storm onset latitude, and also consistent with the result of Pellinen and Heikkila [1978], who reported Airborne
Ionospheric Laboratory observations showing a quiet arc fading and then reappearing 1–2 m before an arc
to the south developed into a major auroral breakup (marking substorm onset).

We specifically examine the upward current density because it is that which is associated with the down-
ward precipitating electrons associated with auroral emissions. Despite the fact that the electrons which carry
Birkeland current may not be responsible for auroral emission, studies have shown that current and aurora
are generally colocated [Armstrong et al., 1975; Kamide and Akasofu, 1976]. More recently, work by Murphy
et al. [2012] showed that discrete auroral forms were colocated with regions of upward Birkeland current, and
Carter et al. [2016] compared AMPERE data to IMAGE data by parameterizing both data sets using solar wind
data, in order to evaluate the correspondence between auroral emission and Birkeland current. They found a
good correspondence between upward current density and auroral emission at all local times, which further
bolsters the assumption made here.

We cautiously interpret the reductions in Figures 5 and 6 as evidence for auroral dimming, but it must be
stressed that these results are at the very limit of AMPERE’s ability to resolve the current systems, both spatially
and temporally. Because we select only intervals that are all upward current, the number of events in each
mean is lower than the number in the averages presented and discussed in sections 4.1 and 5.1 by an order
of magnitude, and the decrease is only just beyond the margin of error. With these caveats in mind, we inter-
pret the result as evidence for auroral dimming in observations of upward Birkeland currents in support of
Murphy et al. [2012]. We leave further studies of this phenomenon using higher-resolution and higher-cadence
instrumentation as work for the future.

6. Conclusion

In this paper, we use AMPERE to address apparent disparities between previous studies of the structure of
the substorm current wedge. In order to do this, we rotate current maps provided by AMPERE [Anderson et al.,
2000; Waters et al., 2001] to the MLT of substorm expansion phase onset provided by SuperMAG [Gjerloev,
2012] and SOPHIE [Forsyth et al., 2015], before binning the substorms by the latitude of substorm onset. By
doing this, we demonstrate that both R1 and R2 current densities on the nightside increase subsequent to
substorm onset, consistent with the two-loop substorm model [Sergeev et al., 2011, 2014a] and supporting
results [Coxon et al., 2014b; Sergeev et al., 2014b].

Additionally, we explore the morphology of the currents at and after substorm onset. We observe NBZ currents
[Iijima et al., 1984] at the point of substorm onset and attribute this signature to a northward turning of the
IMF on average at substorm onset [Freeman and Morley, 2009]. We also find that the latitude of the boundary
between the R1 and R2 current systems on the nightside of the polar cap in the polar projection of the median
current density is coincident with the latitudes of the substorms contributing to the median. We link this to
studies relating the Harang discontinuity to substorm onset [e.g., Zou et al., 2013]. Modern models of the SCW
predict an R2 component to the SCW but disagree on how this current closes in the magnetotail [e.g., Birn
and Hesse, 2014; Sergeev et al., 2014a]. Either more experimental work is needed to measure the signature of
the SCW within the magnetotail or more concrete predictions of ionospheric signatures are needed for these
models to be tested using AMPERE data.

Finally, we examine statistical evidence for auroral dimming [Pellinen and Heikkila, 1978; Murphy et al.,
2012] and we find evidence which suggests that the upward field-aligned current density is reduced
between 15 and 5 min before onset, consistent with the timescales of the previous auroral observations
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[Pellinen and Heikkila, 1978]. The phenomenon appears to be very localized, which is also consistent with
previous attempts to link auroral dimming to current density [Murphy et al., 2012]. Further work, with
instrumentation of higher resolution and cadence, is needed to fully quantify this phenomenon.
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