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Abstract: The central role that phosphates play in biological systems, suggests they also played an
important role in the emergence of life on Earth. In recent years, numerous important advances have
been made towards understanding the influence that phosphates may have had on prebiotic chemistry,
and here, we highlight two important aspects of prebiotic phosphate chemistry. Firstly, we discuss
prebiotic phosphorylation reactions; we specifically contrast aqueous electrophilic phosphorylation,
and aqueous nucleophilic phosphorylation strategies, with dry-state phosphorylations that are
mediated by dissociative phosphoryl-transfer. Secondly, we discuss the non-structural roles that
phosphates can play in prebiotic chemistry. Here, we focus on the mechanisms by which phosphate
has guided prebiotic reactivity through catalysis or buffering effects, to facilitating selective
transformations in neutral water. Several prebiotic routes towards the synthesis of nucleotides,
amino acids, and core metabolites, that have been facilitated or controlled by phosphate acting as
a general acid–base catalyst, pH buffer, or a chemical buffer, are outlined. These facile and subtle
mechanisms for incorporation and exploitation of phosphates to orchestrate selective, robust prebiotic
chemistry, coupled with the central and universally conserved roles of phosphates in biochemistry,
provide an increasingly clear message that understanding phosphate chemistry will be a key element
in elucidating the origins of life on Earth.

Keywords: prebiotic chemistry; phosphate; phosphorylation; nucleotides; amino acids; general
acid-base catalyst

1. Introduction

Phosphates are essential to modern biological systems, and their wide and varied range of
biological roles is a testament to their value in controlling chemistry and building robust structures in
an aqueous environment. They provide the stable ligation required to fix information in RNA and
DNA, contribute to cellular structure in phospholipids, serve as the basic currency of biochemical
energy (e.g., ATP, phosphoenol pyruvate (PEP), creatine phosphate (CP)) (Figure 1), and feature in a
wide variety of metabolites and commonly observed post-translational protein modifications [1].

Westheimer provided a detailed analysis of the essential role of phosphate in living systems
more than 30 years ago [2], highlighting in particular, that phosphates are ionized at physiological
pH, due to a low first pKa (pKa = 2.2, 7.2, 12.3). This ionic character renders phosphates hydrophilic,
and facilitates their retention within a cell membrane. Importantly, in the case of RNA and DNA
ligation, the ionic structure of phosphates allows the ligation of two nucleosides whilst retaining a
negative charge at the phosphodiester. The charge carried by the phosphodiester ligations between
nucleotides provides an essential solubilising element, and importantly, protects the phosphodiesters
from hydrolysis. Beyond the structural role phosphates play in biology, they also serve a multitude
of integral roles in energy metabolism, where again the kinetic stability afforded by ionization is
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an essential element in exploiting phosphates. Kinetic stability and thermodynamic activation are
coupled to excellent effect in phosphate moieties, to provide a robust chemical drive for biochemical
transformations, whilst allowing enzymatic modulation of reactions, and regulation of metabolic
pathways [3].
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postpone this question. Therefore, we will focus here on the chemistry of phosphate, and specifically 
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all phosphate chemistry relevant to the origins of life; rather, we seek to highlight a few key elements 
of phosphate chemistry that we have found especially instructive in our investigations of prebiotic 
chemistry. 

At this juncture, it must be noted that the availability of inorganic phosphate on the early Earth 
has been widely debated. Orthophosphate (PO43−), the most common form of phosphorus on the 
Earth [13], is largely found as apatite minerals, which are relatively insoluble in most geological 
settings. The insolubility of apatite minerals has been referred to as the ‘phosphate problem’ [14–16], 
and of course, useful production of soluble phosphate requires that this phosphate remains soluble 
long enough, and in sufficient quantity, to be utilised in prebiotic chemistry. This may imply a specific 
environment is required for exploitation of phosphate. For example, one might consider an aqueous 
environment low in soluble calcium, which would be expected to rapidly precipitate orthophosphate, 
might be essential to exploit phosphate at the origins of life, and that the key role of phosphates in 
life (and prebiotic chemistry) suggests that the liberation of phosphate by other bulk anions may have 
played a key role in the origins of life. The challenges imposed by geochemically accessing 
phosphorus in the environment are certainly not trivial, but these constraints suggest it is likely that 
phosphate (and its availability) could play a pivotal role in bringing together prebiotic chemistry and 
early Earth geochemical models, as well as a pivotal role in the origins of life itself.  Several reviews 
have discussed the availability of phosphorus on the early Earth, and numerous attempts to quantify 
phosphorus availability on the primitive Earth have been made (Scheme 1) [17–23]. We do not intend to 
recover this ground here; whilst the issue of phosphate availability will continue to stimulate debate 
within the field of prebiotic chemistry, it is clear that multiple mechanisms for the accumulation of 
useful phosphates under specific conditions on the early Earth are at least plausible.  Indeed, the 
total amount of soluble phosphate in the entire hydrosphere need not be high if prebiotic phosphorus 
chemistry was confined to specific (phosphorus-rich) niches [16,17,24]. Accordingly, effective and 
selective mechanisms for phosphate incorporation into organic molecules may pose a greater 
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information transfer, structure, and energy metabolism.

Given the deep-seated role phosphate plays in life’s most highly conserved processes, it is
essential to consider the role of phosphate at the origins of life. Numerous proposals have been
made that the earliest stages of evolution might not have used a phosphorus-based biochemistry,
including phosphate-free metabolism [4], lipids [5–8], and genetics [9–12], however, these hypotheses
do not address the fundamental question of how biology became addicted to phosphate; they merely
postpone this question. Therefore, we will focus here on the chemistry of phosphate, and specifically
P(V) phosphorus chemistry, which is the cornerstone of extant metabolism. We do not aim to
review all phosphate chemistry relevant to the origins of life; rather, we seek to highlight a few
key elements of phosphate chemistry that we have found especially instructive in our investigations of
prebiotic chemistry.

At this juncture, it must be noted that the availability of inorganic phosphate on the early Earth
has been widely debated. Orthophosphate (PO4

3−), the most common form of phosphorus on the
Earth [13], is largely found as apatite minerals, which are relatively insoluble in most geological
settings. The insolubility of apatite minerals has been referred to as the ‘phosphate problem’ [14–16],
and of course, useful production of soluble phosphate requires that this phosphate remains soluble
long enough, and in sufficient quantity, to be utilised in prebiotic chemistry. This may imply a specific
environment is required for exploitation of phosphate. For example, one might consider an aqueous
environment low in soluble calcium, which would be expected to rapidly precipitate orthophosphate,
might be essential to exploit phosphate at the origins of life, and that the key role of phosphates in
life (and prebiotic chemistry) suggests that the liberation of phosphate by other bulk anions may
have played a key role in the origins of life. The challenges imposed by geochemically accessing
phosphorus in the environment are certainly not trivial, but these constraints suggest it is likely that
phosphate (and its availability) could play a pivotal role in bringing together prebiotic chemistry and
early Earth geochemical models, as well as a pivotal role in the origins of life itself. Several reviews
have discussed the availability of phosphorus on the early Earth, and numerous attempts to quantify
phosphorus availability on the primitive Earth have been made (Scheme 1) [17–23]. We do not intend
to recover this ground here; whilst the issue of phosphate availability will continue to stimulate debate
within the field of prebiotic chemistry, it is clear that multiple mechanisms for the accumulation of
useful phosphates under specific conditions on the early Earth are at least plausible. Indeed, the total
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amount of soluble phosphate in the entire hydrosphere need not be high if prebiotic phosphorus
chemistry was confined to specific (phosphorus-rich) niches [16,17,24]. Accordingly, effective and
selective mechanisms for phosphate incorporation into organic molecules may pose a greater challenge
to prebiotic chemistry than the global phosphorus inventory, and here, we will focus upon illustrative
examples of phosphate chemistry in prebiotic reactions.
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uridine (5) with cyanoformamide (6) in pH 8 1M phosphate solution furnishes only 1% – 4% uridine-
5’-phosphate (UMP) (Scheme 2) [25,28]. Incubation of sugars (for example, ribose (7)) with cyanogen 
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Scheme 1. An overview of suggested prebiotic routes to orthophosphate and condensed phosphates
production (black arrows), phosphate interconversion (green arrows), phosphate solubilisation
(red arrows), and urea-mediated phosphorylation (blue arrows). N = nucleoside, pN = nucleotide,
cTMP = cyclotriphosphate.

2. Phosphorylation in Water

Electrophilic phosphorylation reactions in water require a high degree of selectivity, for example,
the phosphorylation of a (nucleotide) hydroxyl moiety in water requires direct competition with
solvent (55 M water), which is (weakly) nucleophilic, and can be phosphorylated to yield inorganic
phosphate. The most widely investigated approach to prebiotic phosphorylation has been by
electrophilic activation of orthophosphate to generate activated (anhydride-type) intermediates,
which can in turn react with nucleophiles (e.g., hydroxyl groups) to afford phosphorylated products
(e.g., phosphate esters). numerous activating agents have been investigated, and cyanoacetylene
(1) [25], cyanogen (2) [26], cyanamide (3) [27], and cyanate (4) [28], are all noted worthy examples
of prebiotically plausible electrophiles that have been exploited in this role. However, aqueous
electrophilic phosphorylation reactions can suffer dramatically from adverse competition with water,
and typically aqueous phosphorylations are low yielding. For example, phosphorylation of 0.16
M uridine (5) with cyanoformamide (6) in pH 8 1 M phosphate solution furnishes only 1–4%
uridine-5’-phosphate (UMP) (Scheme 2) [25,28]. Incubation of sugars (for example, ribose (7)) with
cyanogen (2) or cyanamide (3) in phosphate solution, also affords phosphorylated sugars (for example,
ribose-1-phosphate (R1P)), but again with low yield (10–20%) [26,27].
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cyanogen (2), or cyanamide (3), in aqueous solution.

The soluble phosphates obtained by the oxidation of schreibersite, have been considered for
localised delivery of phosphate [29], and schreibersite has been used as a direct phosphorus source for
electrophilic phosphorylation. For example, aqueous solutions of glycerol and schreibersite incubated
at 65 ◦C under anaerobic conditions afforded glycerol phosphate (2.5%) [30], and minerals related
to schreibersite, such as Fe3P and Fe2NiP, when combined with nucleosides in aqueous solution,
also return mixtures of nucleotides in low yield (up to 1–6% of the total dissolved phosphorus) [31].
However, model studies of the aqueous oxidation of Fe3P (used as a model for schreibersite), affords
significant quantities of orthophosphate and pyrophosphate, alongside minor reduced phosphorus
species [20–22]. The amount of condensed phosphates returned have been increased by hydrogen
peroxide oxidation of the reduced-phosphorus species corroded from schreibersite [23], to afford
a good yield (up to 34%) of condensed phosphates, including pyrophosphate, triphosphate, and
cyclotriphosphate (cTMP); the rest of the phosphorus is returned as orthophosphate.

3. Phosphorylation in Water with Polyphosphates

Polyphosphates play a dominant role in biological activation and phosphorylation; they are also
intrinsically activated and generally more soluble than orthophosphate. Consequently, phosphorylation
reactions exploiting condensed phosphates have drawn significant attention. Numerous attempts have
been made to convert orthophosphate to polyphosphates, and pyrophosphate and triphosphate
synthesis has been achieved by various condensing agents in water [32–35], but perhaps the
simplest conditions for polyphosphate synthesis are heating phosphates (H3PO4, NaH2PO·H2O,
NH4H2PO4, etc.) in the dry-state at high temperature (80–160 ◦C). Dry-heating orthophosphate
salts furnishes pyrophosphate (5–50%), and triphosphate (1–30%), in 2 h at 160 ◦C [36], and
even at low temperature (37 ◦C), insoluble calcium and magnesium orthophosphates have been
condensed to afford pyrophosphate (albeit in 0.06% yield) [37]. Condensed phosphates have also
been produced by magmatic processing of mixtures of apatite and basalt [38], and the simplicity
and robustness of polyphosphate synthesis strongly suggests polyphosphates may have played
an important role in the origin of life, as well as extant biology. Moreover, urea (8), a simple,
highly prebiotically plausible compound, has been demonstrated to significantly improve phosphate
polymerisation. Orthophosphate has been converted to polyphosphates in high yield (60%) at
moderate temperatures (72 ◦C in 26 days) in the presence of urea (8), and under similar conditions,
in the presence of nucleosides, cyclotrimetaphosphate (cTMP) has been obtained in 23% yield [39].
The most facile transformations have been observed with NH4H2PO4, and the related mineral struvite
(MgNH4PO4·6H2O), which can be formed from soluble phosphates when ammonium concentrations
exceed 0.01 M [40], and appears to be kinetically favoured over the more thermodynamically stable
hydroxyapatite [41]. Struvite has been exploited in the phosphorylation of nucleosides [40], and
pyrophosphate can be obtained from struvite in up to 88% after 48 h at 85 ◦C [42].
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Linear polyphosphates, such as sodium triphosphate, and adenosine (9), afford mixtures of
adenosine 2’, 3’-, and 5’-phosphates in low yield (1%) when they are refluxed in basic aqueous
solutions for short periods (4–6 h). Though pyrophosphate is not observed to afford nucleotides under
similar conditions, longer polyphosphates, such as cyclic hexametaphosphate, afford the same set
of products as triphosphate, and in comparable yield [43]. However, of the various polyphosphates
examined, cyclotrimetaphosphate (cTMP) is of particular note (Scheme 3). Incubation of sodium
cTMP with 9 at high pH affords a mixture of 2’- and 3’-phosphates (9-2p and 9-3p; ~1:1) in 31%
yield. It is also of note that phosphorylation of 2’-deoxyadenosine (10), is an order of magnitude
less efficient under similar conditions, and only affords a mixture of 5′- and 3’-phosphates in 2%
yield [44]. Moreover, phosphorylation of adenosine-5’-phosphate (AMP) with cTMP at 100 ◦C
yields only small quantities of nucleotide polyphosphates (ADP and ATP in 0.03% and 0.09% yield,
respectively), accompanied by significant decomposition to adenosine (9) and free base (adenine) [45].
These results make clear the importance of the vicinal diol in efficient cTMP-phosphorylation of
ribonucleotides. The cTMP-mediated phosphorylation of 9 can also be performed at neutral pH,
if Mg2+ is present, however the reaction is sluggish and the absolute selectivity for diol phosphorylation
is lost, affording a mixture of 2′,3′-cyclicphosphate 11 (3.8%) and AMP (<1%) [46]. Interestingly,
however, exploiting a mixture of tetramethylammonium and sodium counter ions with cTMP results
in drastically improved reactivity, and furnishes a mixture of 2’- and 3’-phosphates in 70–90% yield
(at high pH) [47]. Nucleotide-5’-phoshates were not detected in these experiments, demonstrating
the remarkable selectivity for diol-phosphorylation in water. The suspected mechanism for these
high yielding reactions involves specific base-catalysed phosphorylation of vicinal diol by cTMP
to yield the nucleotide 2’- or 3’-triphosphate. The significantly lowered pKa of the diol results in a
highly regioselective triphosphorylation, and the close proximity of the second alcohol moiety of
the diol then results in attack at the α-phosphorus to form a 2’,3’-cyclic phosphate, whilst liberating
pyrophosphate. The strained cyclic phosphate then undergoes alkaline hydrolysis to afford a mixture
of 9-2p and 9-3p in excellent yield (Scheme 3). Though nucleotide 5’-phosphates are universally
exploited in extant biology, it is of note that RNA hydrolysis proceeds via the transient formation
of 2’,3’-cyclic phosphates. Therefore, it also appears likely that prebiotic RNA recycling would
exploit 2’,3’-cyclic phosphates, and 2’,3’-cyclic phosphates would provide the most direct entry point
for the advent of continuous (prebiotic) RNA evolution strategies. Though these cTMP-mediated
phosphorylations require preformed ribonucleoside, they are highly instructive for understanding the
value of 2’,3’-phosphates during the stepwise synthesis of ribonucleotides, and we will return to the
chemistry of nucleotide-2’,3’-phosphates in due course.

Phosphorylations with cTMP have found many applications beyond prebiotic nucleotide
synthesis. For example, small (simple) oligopeptides can be readily obtained by cTMP-mediated
coupling of amino acids in aqueous solution [48–50]. Incubation of glycine (Gly) with cTMP affords
diglycine in 35% yield at 70 ◦C after 70 h (Scheme 4); even at room temperature, the dipeptide
is obtained in moderate yield (20–22%) after 190 h. Alanine (Ala) and aspartic (Asp) acid have
also been observed to afford their corresponding dipeptides, however, the yields (12% and 2–5%,
respectively) [48,49] are significantly suppressed relative to diglycine [50]. Serine (Ser), on the
other hand, has only been observed to undergo O-phosphorylation, to afford small amounts of
O-phosphoserine (12; 4%) as the only product [49,51].

The proposed mechanism for cTMP activation of amino acids occurs by a two-step mechanism
(Scheme 5). First, nucleophilic attack of the amine moiety at phosphorus results in the formation of an
N-triphosphoramidate 13, then formation of a five-membered cyclic mixed anhydride intermediate
(phosphoramidate 14) occurs by attack of the carboxylate on the same phosphorus, coupled to
displacement of pyrophosphate. Nucleophilic attack at carbon of the (activated) mixed anhydride 14,
by the amine moiety of another amino acid, then affords a N-phosphoro-dipeptide and dipeptide upon
phosphoramide hydrolysis [52,53]. It is of note that this mechanism proceeds via a cyclic intermediate
akin to the phosphorylation of the vicinal diol of a nucleotide.
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The mechanism for cTMP-mediated peptide activation specifically favours the activation of
(simple proteinogenic) amino acids, such as glycine, whereas β-amino acids, such as β-alanine 15,
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that are widely viewed to be prebiotic, but not found in the proteome, are not observed to
be ligated by cTMP. Even incubation of β-alanine N-triphosphoramidate (16) does not result in
activation [54,55], but upon acidification, cyclisation of the amidotriphosphate occurs, to yield
cyclotrimetaphosphate (cTMP) [56,57]. It is thought that the homologous β-alanine (15) has a higher
activation energy associated with cyclisation, and the six-membered mixed anhydride is therefore
kinetically prohibited [58]. This mode of α-amino acid selective ligation could be a key mechanism
to select for the proteinogenic amino acids found in biology, however, it may also provide clues to
why serine is ineffectual, given that the hydroxyl moiety of serine is ideally positioned to intercept the
N-triphosphoramidate, to prevent activation by cyclic phosphoramidate formation. Moreover, though
appreciable yields of diglycine (35%) can be formed by cTMP activation, further oligomerization to
yield triglycine is only observed to occur in very low yield (<1%). A marginally improved yield of
oligoglycines can be obtained by stepwise ligation; when diglycine is incubated with cTMP under
neutral or slightly acidic conditions, moderate heating (38 ◦C) yields mixtures of tetraglycine and
hexaglycine (15% and 4%, respectively). In contrast to the reaction with amino acid monomers, the
formation a cyclic phosphoramidate is not possible; a plausible mechanism for dimer ligation involves
formation of linear acyl-O-triphosphate 17 from the zwitterionic dipeptide, followed by dipeptide
ligation. It is of note that different pH conditions are required for cTMP-mediated monomer and
dimer ligation, and even then, dimer ligation is not efficient. The amine moiety of the dipeptide has
a lower pKa than the amine moiety of the monomer (8.1 vs. 9.6), therefore it is likely the formation
of the N-triphosphate is more facile for the dipeptide than the monomer under the conditions of
these experiments. Phosphorylation of the dimer does not result in cyclisation (and cannot activate
the carboxylate moiety), therefore, this would account for the especially low yields of tripeptide
in the reaction of glycine, diglycine, and cTMP at basic pH. Significant cTMP-phosphorylation
of the dipeptide (to afford the N-triphosphate-glygly (18)) blocks further reaction with the cyclic
acylphosphoramidate 14 that is required to afford trimer (Scheme 6) [59]. Although the efficient ligation
of peptides with cTMP seems limited to glycine dimer (GlyGly), the intramolecular phosphorylation
of the carboxylate group of glycine (Gly) foreshadowed the remarkable use of amine catalysis in the
phosphorylation of sugars by cTMP.
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Scheme 6. Reaction of diglycine (GlyGly) with cTMP to yield tetraglycine (GlyGlyGlyGly). Under
strongly alkaline reaction conditions, the sole product is N-triphosphate 18 and no ligation reaction
occurs, whereas at neutral or slightly acidic reaction conditions O-triphosphate 17 is obtained, which
can be used to ligate the tetrapeptide GlyGlyGlyGly.

4. Phosphorylation in Water with Amine Catalysis

Glyceric acid 2- and 3-monophosphate 19-2p and 19-3p, which are key intermediates of glycolysis,
can be readily obtained in up to 40% yield in alkaline cTMP-mediated phosphorylation [60], or under
slightly acidic conditions (pH ≥ 6.0), when facilitated by charged-mediated absorption into a
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mineral bilayer (Scheme 7) [61]. The reaction of glucose and sucrose with cTMP under alkaline
(pH > 13) conditions has been observed to afford saccharide mono- and tri-phosphate derivatives at
room temperature [62]. However, glycolaldehyde phosphate (GCP) [63–65], undergoes homoaldol
condensation under the alkaline conditions required for phosphorylation, with cTMP hampering
these reactions [64]. Similar problems have also been encountered for the synthesis of glyceraldehyde
phosphate derivatives from glyceraldehyde (GA) by cTMP-mediated phosphorylation, and the former
undergoes facile (E1cB) elimination under basic conditions. However, these problems can be readily
ameliorated by amine catalysis. The reaction of ammonia with cTMP yields amidotriphosphate
(AmTP) in excellent yield, and the amido group of AmTP is capable of reversible imine formation
with carbonyl groups. The reversible capture of AmTP tethers the activated phosphate to the sugar
substrates, and once AmTP is tethered to the anomeric carbon, the α-phosphate is intramolecularly
delivered to the α-hydroxyl with exceptional control. This reactivity was exploited by Krishnamurthy
et al. in the synthesis of glycolaldehyde phosphate (GCP) [64]. Further development of the strategy
was undertaken by Mullen and Sutherland [66], who demonstrated that β-hydroxy-n-alkylamines
react readily with cTMP to form amphiphiles. Interestingly, they observed that a hydrophobic effect
dictated the product distribution of this reaction, such that short-chain β-hydroxy amines afford only
phosphoramide products, but intramolecular transfer and stable amphiphilic phosphate esters are
obtained from long-chain β-hydroxy amines.
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Scheme 7. (a) Cyclotrimetaphosphate (cTMP) mediated phosphorylation of glyceric acid (19).
(b) Ammonolysis of cyclotrimetaphosphate (cTMP) to obtain amidotriphosphate (AmTP) and
diamidophosphate (DAP). (c) Proposed pathway for the synthesis of glycolaldehyde phosphate (GCP)
from glycolaldehyde (GC) and AmTP. (d) Synthesis of ribose phosphates (20 and 21) by reaction of
ribose (7) and AmTP.

Eschenmoser’s tethered α-phosphorylation strategy has been extended to the syntheses of several
sugar phosphates. Glyceraldehyde (GA) can be converted specifically to glyceraldehyde-2-phosphate
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(GA2P), but the tetrose and pentose sugars (such as ribose (7)) react to afford 1,2-cyclic, and if the
2,3-hydroxyl moieties are cis-disposed, then also 2,3-cyclic phosphates. Therefore, the phosphorylation
of ribose (7) proceeds initially like glyceraldehyde (GA), but then ‘with a twist’, the full activation
potential of AmTP (the AmTP α-phosphate is activated twice, once with a pyrophosphate leaving
group, and once with an ammonia leaving group) is utilised to give ribose-1,2-cyclic phosphate
(ribo-20), and ribose-2,3-cyclic phosphate (21) (Scheme 7), which return the corresponding 2- or
3-phosphates upon acidification. Conversely, due to trans-disposition of the 2,3-diol moiety of
arabinose (22), similar 3-phosphorylation cannot lead to the formation of a 2,3-cyclic phosphate,
and therefore, only delivers arabinose-1,2-phosphate (arabino-20). Further ammonolysis of AmTP
affords diamidophosphate (DAP), which phosphorylates aldoses by a similar mechanism to AmTP,
but does not require Mg2+, and in the case of aldopentose sugars, higher yields are obtained with DAP
(71% vs. 29%) [67]. The reaction of glycolaldehyde (GC) or glyceraldehyde (GA) with DAP furnishes
the α-phosphate derivatives in excellent yield (>90%), and we have recently exploited this reaction, and
these simple sugar phosphates, to develop a network of prebiotically plausible reactions that synthesise
all of the intermediates of triose glycolysis [68]. For example, glyceraldehyde-2-phosphate (GA2P)
obtained by DAP phosphorylation can be readily oxidised to afford glyceric acid 2-phosphate (19-2p),
or dehydrated in pH 7 phosphate buffer to afford phosphoenol pyruvaldehyde (23) (Scheme 8), which
can be oxidised to deliver phosphoenol pyruvate (PEP)—biology’s highest energy phosphate—in
excellent yield, following the trajectory of triose glycolysis observed in extant biology [68].
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5. Nucleophilic Phosphorylation

Some of the problems associated with the electrophilic phosphorylation of hydroxyl moieties
can be overcome by tethering strategies, however, though these strategies have yielded excellent
syntheses of simple sugar phosphates and even phosphoenol pyruvate (PEP) in water, most major
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phosphorylation targets in prebiotic chemistry are isolated hydroxyl moieties (e.g., nucleosides) which
do not have suitably positioned carbonyl moieties to facilitate delivery of phosphate. Electrophilic
phosphorylation strategies that employ substrate tethering to facilitate intramolecular delivery
of phosphate, can rely upon very weakly activated electrophilic phosphorus centres, however,
intermolecular delivery often requires higher levels of activation, making these strategies particularly
susceptible to competitive hydrolysis. Accordingly, it is valuable to consider other approaches.
The incredibly important role that phosphate ionization plays in the character of phosphates
(at physiological pH), due its low first and second pKas (pKa = 2.2, 7.2, 12.3), has already been
noted [2], but this ionization also opens a different perspective on phosphate chemistry at neutral
pH. Whilst ionization provides kinetic stability to phosphate (di)esters, it also imparts significant
nucleophilicity to phosphate/phosphate monoesters at neutral pH, where the second ionization state is
readily accessed. This nucleophilicity is implicitly exploited in the electrophilic activation of phosphate,
for example, through reaction of phosphate with cyanate (4) to accrue electrophilic activation, however,
if electrophilic activation can be accrued in the substrate, then the direct phosphorylation of the
substrate can be achieved through reaction with phosphate in water. This is a particularly advantageous
strategy because phosphate (unlike hydroxyl groups) is significantly more nucleophilic than water
at neutral pH. This is a classic method to introduce ester and phosphoester moieties in organic
synthesis (e.g., Mitsonobu-type reactivity), however, at first glance, the hydroxyl motifs that are
key phosphorylation targets in prebiotic chemistry, do not easily lend themselves to activation as
electrophiles under prebiotic conditions. These problems are, however, a result of perspective, and
can be overcome by considering the approach to activation. Rather than specifically synthesising a
hydroxyl moiety and then pursuing subsequent activation of this hydroxyl group (following a classic
Mitsonobu strategy), which would be very challenging under prebiotic constraints, simple activating
strategies can be built into a chemical synthesis of a substrate from the start, without requiring an
intermediate hydroxyl moiety.

During a seminal contribution to the investigation of prebiotic sugar phosphate synthesis,
Eschenmoser and co-workers reported an exemplary nucleophilic phosphorylation in aqueous
solution using orthophosphate. They observed the phosphorylation of oxarinecarbonitrile 24 to
yield glycoaldehyde phosphate (GCP), or its cyanohydrin (GCP·HCN), in good yields under basic
conditions (Scheme 9) [69]. Similar chemistry was used by the same group in the synthesis of
phosphoserine (12), constitutionally related to glycoaldehyde phosphate (GCP), by opening of
aziridine-2-carbonitrile (25) in moderate yield (26, 50% after recrystallization) in acetonitrile [70].
The prebiotic synthesis of oxirane 24 or aziridine 25 has yet to be demonstrated, but these reactions
provide valuable mechanistic insights; they make use of the nucleophilicity of phosphate to achieve
substrate phosphorylation, rather than relying on addition to electrophilically activated phosphate.

Recently, we have exploited a similar approach to demonstrate a prebiotic synthesis of
aminooxazoline-5’-phosphates (27), which are key intermediates in the prebiotic synthesis of
nucleotides. Previously, the synthesis of 27 had been achieved by reaction of ribose-5’-phosphate
(R5P) and cyanamide (3) [71], or glyceraldehyde-3-phosphate (G3P) and 2-aminooxazole (2AO) [72].
However, neither R5P nor G3P are prebiotically accessible, moreover, under neutral and basic
conditions, G3P undergoes facile (E1cB) elimination to give pyruvaldehyde (28) [73,74]. To exploit
nucleophilic phosphorylation, but now in a prebiotically plausible system, we began our synthesis
with acrolein (29) (Scheme 10). Oxidation of 29 at near neutral pH by hydrogen peroxide furnishes
an excellent yield of glycidaldehyde (30) (>90% at pH 7.5–9). This reaction provides the oxirane
moiety and activation required for phosphorylation in water. Glycidaldehyde (30) can then be
directly phosphorylated in neutral aqueous solution by inorganic phosphate to afford G3P, but G3P,
as expected, rapidly eliminates. This elimination can be readily sidestepped, however, if glycidaldehyde
(30) first reacts with 2-aminooxazole (2AO), and then phosphate. The reaction of 2AO and 30 yield
a five-carbon sugar moiety that is activated (at the C5’-carbon atom) to nucleophilic substitution.
The epoxide moiety of intermediate 31 can be phosphorylated by direct addition of inorganic
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phosphate to afford 27 in the first prebiotically plausible reaction process that specifically delivers
the natural 5’-phosphorylation patterns observed in canonical nucleotides [75]. Reversing the
order of aminooxazoline assembly not only yielded a highly selective 5’-phosphorylation, but also,
by introducing the phosphate at a distal position from the anomeric centre, prohibits the previous
deleterious E1cB elimination. The use of nucleophilic, rather than electrophilic, phosphorylation,
opens a wide palette of site selective reactivity, and clearly warrants further investigation in the context
of prebiotic chemistry, however nucleophilic phosphorylation strategies must be carefully considered
as reactivity is necessarily orchestrated by the preceding chemical reactions, and therefore, by in-built
activation accrued within an organic substrate.
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The reaction of glycidaldehyde (30) and 2-aminooxazole (2AO) followed by phosphorylation of
5’-activated oxirane 31 by inorganic phosphate yields aminooxazoline 5’-phosphate (27). Direct addition
of phosphate to glycidaldehyde (30) affords G3P, which decomposes to methyl glyoxal (28).



Life 2017, 7, 31 12 of 23

6. Phosphorylation in Dry-States Using Condensed Phosphates

As noted above, the competing effects of water have a tendency to significantly lower the yield of
phosphorylation reactions. Accordingly, excluding water through the simple process of evaporation
offers a remarkably interesting scenario in which to investigate prebiotic phosphorylation. Drying is
readily achieved by evaporation of water from a desired phosphorylation, and is a process that is very
easily envisaged on the early Earth. These dry-state reactions are of particular interest, because they
obfuscate the requirement for condensing agents, and rely only upon physical processing of phosphate
rich media.

Dry-state phosphorylation using orthophosphate as the source of phosphorus has been applied
to the synthesis of a wide range of molecules of prebiotic interest, however, phospholipids [76–78],
and nucleotides [79–81], which both carry a phosphate moiety essential to their function/structure,
have received the most attention. The phosphorylation of nucleotides, for example, proceeds rapidly
at high temperatures (16% phosphorylation after 2 h at 180 ◦C) [79], but requires several months to
achieve similar results at milder temperatures (65–85 ◦C). Total yields are limited by equilibration of
phosphorylated and non-phosphorylated products [81], but high levels of phosphate incorporation
can be driven by the irreversible formation of 2’,3’-cyclic phosphate. The efficiency of dry-state
phosphorylation reactions is significantly improved by the inclusion of urea (8) [82]. After evaporation,
urea (8) acts as both a catalyst for phosphoryl transfer and as a pseudo-solvent, providing fluidity at
elevated temperatures. Phosphorylation of nucleosides with mixtures of urea (8), ammonium chloride
and various phosphates (Na2HPO4 and Ca5(PO4)3OH) at temperatures ranging from 60 to 100 ◦C,
afford nucleotides. High degrees of total phosphate incorporation are observed (>96% for pyrimidine
nucleotides). Ammonium salts are also commonly used to avoid carbamylation (upon loss of ammonia
from urea (8)) and assist with the acidification of the reaction mixture, which promotes phosphorus
transfer [83–86].

The precise mechanistic role of urea (8) has not been proven, however, it is likely that urea (8)
displaces water from a tautomeric form of monoanionic phosphate, in which the charge state
facilitates dissociative loss of water, and nucleophilic attack (by urea (8)), to generate an activated
ureidophosphate intermediate 32 capable of transferring phosphate between hydroxyl moieties
(Scheme 11). Further evidence for this mechanism is found in the reversible phosphorylation of
hydroxyl groups, but the irreversible synthesis of 2’,3’-cyclic phosphates. Accordingly, and necessarily,
a different mechanism for cyclisation of 2’,3’-cyclic phosphates must operate under these conditions.
It seems likely that due to the high effective molarity of the 2’-hydroxyl to a 3’-phosphate (or vice versa),
the phosphorylation mechanism can switch to an associative mechanism, therefore allowing cyclic
phosphate synthesis, but prohibiting the degradation of 2’,3’-cyclic phosphates under these conditions.
It is the mechanistic switch that is responsible for the highly effective accumulation of phosphate in
ribonucleotides under these conditions, and therefore potentially an important contributing factor in
the selection of ribonucleotides as key metabolites to support life from prebiotic chemistry.
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This dry-state urea-mediated phosphorylation protocol has been applied to the phosphorylation
of various anhydronucleotides to good effect [86,87]. Upon phosphorylation of anhydronucleotides,
under the conditions of urea-mediated phosphoryl-transfer, a third mechanism comes into play,
exploiting the activation inherent in the anhydronucleotide bond to synthesise a cyclic phosphate;
but rather than by dissociative phosphoryl-transfer, is followed by associative cyclisation, now
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dissociative phosphoryl-transfer is followed by intramolecular rearrangement by attack of (tethered)
nucleophilic phosphate on an activated carbon atom. Akin to the activation that was discussed
above, built into the synthesis of an oxirane, here, the stepwise assembly of an anhydronucleotide
can be used to chemospecifically direct the activation of a carbon atom to facilitate the synthesis
of a new phosphate group. As this phosphorylation mechanism exploits the activation of the
C2’-carbon atom to SN2-nucleophilic displacement, anhydro-arabinofuranosyl nucleosides arabino-33
and arabino-34 are phosphorylated, and rearrange to deliver the natural ribofuranosyl nucleotides as
their stable 2’,3’-cyclic phosphates 35 and 36. The phosphorylation of anhydronucleotides displays
remarkable selectivity for phosphorylation of the 3’-OH [86,87], as a result of both the kinetic
(n→π* donation supresses nucleophilicity of the 5’-OH) and thermodynamic (irreversible 2’,3’-cyclic
phosphate synthesis) characteristics [86–88]. To further emphasise the potential of this strategy, we
have recently applied the urea-mediated phosphorylation to the divergent synthesis of pyrimidine
and 8-oxo-purine ribonucleotide, wherein it is remarkable to note that a minor modification of
the purine moiety (C8 oxidation) leads to divergent reaction pathways to canonical pyrimidine
nucleotides and 8-oxo-purine ribonucleotides, from one common intermediate. Importantly, though
the specific heterocyclic motifs of the intermediate anhydro-nucleotides arabino-33 and arabino-34
(Scheme 12) are different, they both display n→π* suppression of 5’-OH nucleophilicity, and both
undergo 3’-OH selective phosphorylation, followed by intramolecular inversion to yield the natural
β-ribo-stereochemistry.

Once again, through careful consideration of the method used to construct the organic substrates,
it was possible to build two substrates (one purine and one pyrimidine) that both directed
phosphorylation chemistry via the same chemical strategy. Both pathways exploit dry-state dissociative
phosphoryl-transfer, that is (partially) controlled through stereoelectronic effects, both pathways
exploit tethered nucleophilic attack to deliver a new cyclic phosphate moiety, and finally, both
pathways exploited in-built electrophilic activation of a carbon atom through the formation of
an anhydronucleotide bond to the C2’ carbon atom. Though more work is required to realise a
prebiotic synthesis of the canonical purines, the continued success of these strategies warrants further
investigation of dry-state nucleotide phosphorylations.
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Beyond the phosphorylation of nucleotides, the reversible characteristics of urea-mediated
phosphorylations have also been exploited to furnish phospholipid-type molecules selectively
from a mixture of alcohols. Dry-state phosphorylation exploits evaporation to remove water from
phosphorylation reactions, and accordingly, simple alcohols (such as the oxygenate products of
Fischer–Tropsch synthesis) can be readily fractionated by evaporation during these phosphorylation
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reactions. Long chain alcohols, such as decanol (37), can be phosphorylated in preference to shorter
chain alcohols, such as hexanol (38) and ethanol (39), to selectively yield decyl-phosphate (40),
by simple virtue of comparative volatility (Scheme 13) [29].Life 2017, 7, 31  14 of 23 
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The ability of urea (8) to facilitate phosphoryl-transfer derives from the nucleophilicity of
the urea oxygen atom towards phosphorus electrophiles. This property is certainly not unique to
urea (8), for example, formamide will also (albeit less efficiently, likely due to significantly reduced
nucleophilicity of the amide vs. urea oxygen) promote phosphoryl-transfer [86,87,89–92].

The excellent efficiency and selectivity, and the remarkable simplicity of amide/urea-mediated
phosphorylation, will no doubt see its continued application in unpicking the origins of life, and the
sheer volume of research, and the number of years that these phosphorylation strategies have been
employed, are a testament to the efficiency and reproducibility of dry-state phosphorylation as a
method, and perhaps this, more than anything else, is an indication that it might come to be recognised
as a key element in facilitating the incorporation of phosphate in living systems.

7. Phosphate as a Catalyst

As has been made clear in the above discussions, phosphate is an important constitutional
component of life, and numerous methods for its incorporation into metabolites under prebiotic
conditions are being developed. Another feature of prebiotic phosphate chemistry, which has received
far less attention, but can be nonetheless striking in its application, are the catalytic and (pH/chemical)
buffering capabilities of phosphate. Whilst phosphate is inherently required as a constitutional
component for the assembly of RNA, phosphoenol pyruvate (PEP), phospholipids, etc., it has also
been shown to have a critical, multi-faceted, and often very subtle non-structural role in prebiotic
synthesis. For example, during the prebiotic synthesis of pyrimidine ribonucleotides reported by
Powner et al. [87], all steps in the sequence from 2- and 3-carbon atom building blocks are carried
out in the presence of phosphate (Scheme 14). The phosphate is ultimately the source of phosphorus
for urea-mediated phosphorylation and 2′-inversion [87], and it was therefore deemed important to
demonstrate phosphate could be present from the start, and throughout the reaction sequence, however,
phosphate also performs numerous other crucial roles at critical stages in the synthesis. For example,
whilst most steps proceed efficiently at near-neutral pH, the formation of 2-aminooxazole (2AO), from
glycolaldehyde (GC) and cyanamide (3), initially appeared to require alkaline conditions, to allow
the key base-catalysed steps to proceed smoothly [93]; indeed, a complex mixture of intermediate
addition products were returned in neutral water. The requirement for high-pH conditions in this first
step are negated, however, in the presence of phosphate buffer. A high yield of 2AO is obtained
at pH 7 in phosphate solution, due to the efficient general acid–base catalysis exhibited by the
phosphate anion/dianion (pKa 7.2). By lowering the pH of this first step (through general acid–base
catalysis), phosphate brings this step into consonance with the rest of the route that requires near
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neutral pH conditions (pH 6–7). Furthermore, excess cyanamide (3), which has the potential to
interfere in later stages, particularly upon introduction of glyceraldehyde (GA), slowly reacts in
the presence of phosphate to afford urea (8), a compound that is later instrumental in catalysing
the phosphorylation/rearrangement step (discussed above). Phosphate also acts as a pH buffer
in the reaction of 2AO with glyceraldehyde (GA) to give the aminooxazolines 41, as a mixture of
diasteriomers (arabino:ribo:xylo:lyxo 15:25:6:4). Ribose aminoxazoline (ribo-41) is the least soluble of
these, and can be isolated by direct crystallization; as such, the arabinose aminooxazoline (arabino-41)
becomes the major product in the supernatant [94]. The precipitated ribose aminooxazoline (ribo-41)
can be redissolved in phosphate solution, and equilibrated with the arabino-configuration via a
phosphate-mediated isomerisation process, where again, phosphate acts as a general acid–base catalyst
for the epimerisation of C2’-carbon atom of the aminooxazolines 41 [95].
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Scheme 14. Prebiotic synthesis of pyrimidine ribonucleotides (35), in which each step is facilitated by
phosphate (Pi).

Phosphate plays a particularly essential role in the reaction of the aminooxazolines (41)
with cyanoacetylene (1). In water, the reaction of 41 and 1 results in the formation of cytidine
nucleotides [71,96]; ribose aminooxazoline (ribo-41) affords α-cytidine (α-42), and arabinose
aminooxazoline (arabino-41) gives β-arabinosyl-cytidine (43). These products, α-42 and 43, require
further stereochemical manipulation to get to the natural β-cytidine (β-42), which has a greatly adverse
impact on the overall yield, but perhaps more importantly (without pH buffering), poor regioselectivity
of cynanovinylation is observed, and a wide range of by-products result alongside α-42 and 43, from
these reactions. However, if the cyanovinylation is performed in the presence of phosphate buffer
at pH 6.5, anhydronucleoside (33) is furnished in near quantitative yield. The anhydronucleotide
linkage of 33 is unstable without phosphate, due to the tendency for the solution pH to increase
as the reaction proceeds, but hydrolysis to α-42 or 43 is completely suppressed in the presence
of phosphate buffer. The arabino-anhydrocytidine (arabino-33) can then be efficiently converted to
β-cytidine-2’,3’-cyclic phosphate (35) through urea-mediated phosphorylation and C2’-stereochemical
inversion. The overall efficiency of the cyanovinylation reaction is markedly improved in the presence
of phosphate, by stabilising the solution pH (alkaline), hydrolysis of both anhydronucleotide 33 and
cyanoacetylene (1) are minimised, which would otherwise limit the yield. Finally, the phosphate
in this reaction acts as a chemical buffer; excess cyanoacetylene (1) is sequestered by phosphate to
give cyanovinyl phosphate (44), preventing overreaction with the desired nucleotide product, and,



Life 2017, 7, 31 16 of 23

importantly, 44 is a phosphorylating agent in its own right that goes on to react further with phosphate,
to yield pyrophosphate (PPi). Pyrophosphate can be subsequently used in the anhydronucleotide
phosphorylation step to afford improved yield, and reduce hydrolytic by-products. Thus, phosphate
behaves not just as a reagent in prebiotic nucleotide synthesis, but also as a catalyst, a pH buffer, and
a chemical buffer, removing potentially detrimental reactive species such as cyanoacetylene (1) and
cyanamide (3) from solution.

The isomerisation of glyceraldehyde (GA) to dihydroxyacetone (DHA) is promoted by phosphate
catalysis. This equilibrium, which strongly favours DHA, had been seen as an undesired reaction,
with the potential to hamper the formation of aminooxazolines (41) en route to ribonucleotides. Though
photoreduction of DHA affords a lipid precursor (glycerol) and valine precursor (acetone) [89], DHA
would be detrimental to selective ribonucleotide synthesis, opening an interesting conundrum for
the origins of RNA. The phosphate rich conditions that favour nucleotide assembly, catalyse the loss
of GA (an essential nucleotide precursor) to DHA. In pursuit of a solution to this ‘DHA-problem’,
we observed that incubation of DHA with β-mercaptanoacetaldehyde (BMA) and cyanamide (3)
in phosphate buffer (pH 7), produced pure glyceraldehyde aminal (45) in excellent yield (>85%)
(Scheme 15). Importantly, 45 is sequestered as a crystalline precipitate, and this crystallisation inverts
the thermodynamic preference for DHA > GA [97,98]. In the same way, glycolaldehyde (GC) and
2-aminothiazole (2AT) produce the corresponding crystalline aminal (46), however, as glycolaldehyde
(GC) is symmetric with respect to Lobry de Bruyn–van Ekenstein transformation, and it cannot
equilibrate with a ketose isomer, therefore, crystallisation of 46 is significantly more rapid than
crystallisation of 45 from DHA. The precipitation of 45 is effectively time-resolved from precipitation
of 46 through phosphate catalysed Lobry de Bruyn–van Ekenstein rearrangement, because precipitation
of 45 requires slow release of GA from a more stable ketose isomer, DHA. Therefore, when complex
mixtures of aldoses and ketoses (up to 26 different sugars), and 2AT (or stoichiometric BMA and
cyanamide (3)) are incubated in phosphate solution, selective sequestration of firstly, glycolaldehyde
(GC), and then GA, occurs. This sequestration and resolution of C2 and then C3 sugars, solely
as their aldose forms, from complex mixtures, predicates the order that is required for selective
assembly of ribonucleotides from complex prebiotically plausible mixtures. Once again, phosphate
acts as an essential general acid–base catalyst in this sequestration and selection process, and the
phosphate-facilitated isomerization of DHA/GA is essential to the separation of these two important
aldoses for the synthesis of ribonucleotides [98].

As well as catalysing aldo–keto isomerisation (Lobry de Bruyn–van Ekenstein transformation),
phosphate has been shown to promote imine–enamine–aldehyde tautomerization, and the Amadori
rearrangement. For example, glycolaldehyde (GC) can be coupled to the purine precursor
5-amino-imidazole-4-carboxamide (47), via an amine linkage through Amadori rearrangement by
mild heating (60 ◦C) in phosphate solution to furnish azepinomycin (48)—a guanine deaminase
inhibitor—in one protecting-group-free step, from low cost commercial materials (Scheme 16). This
Amadori rearrangement raises the prospect of an alternative, mild method for coupling sugars
with nitrogenous bases [99], but also highlights an important role that efficient prebiotic chemistry
can play in delivering synthetically valuable reaction strategies that can find general application in
organic chemistry. Recently, Szostak and co-workers have demonstrated the remarkable efficiency of
NMP activation by 2-aminoimidazole (2AI) [100], which is of particular note, due to its generational
relationship with 2-aminoxazole (2AO) and 2-aminothiazole (2AT) (that are discussed above) through
a phosphate catalysed Amadori rearrangement (Scheme 16) [98,101].

Recently, the prebiotic synthesis of high-energy (glycolysis) metabolite phosphoenol pyruvate
(PEP) was demonstrated [68], and once again, the synthesis highlighted the multiple roles that
phosphorus can occupy in robust prebiotic synthesis. The α-phosphorylation of glycolaldehyde
(GC) and glyceraldehyde (GA) by diamidophosphate (DAP) was rapidly and efficiently achieved in
phosphate solution, where phosphate’s buffering capacity acts to off-set the detrimental pH increase
due to release of ammonia, which had otherwise been found to inhibit phosphorylation, and required
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manual and continuous pH adjustments to offset this effect. Incubation of glyceraldehyde-2-phosphate
(GA2P) in neutral phosphate solution then resulted in a high-yielding dehydration to furnish
phosphoenol pyruvaldehyde (23), the direct precursor (via oxidation) to PEP (Scheme 8). Similarly,
phosphate catalysis was demonstrated to efficiently convert glycolaldehyde phosphate (GCP) directly
to phosphoenol pyruvaldehyde (23), through a one-pot aldol condensation and elimination with
formaldehyde (49). Formation of glyceraldehyde phosphate (GA2P), from the aldol reaction of GCP
and 49, was known to occur slowly under alkaline conditions [63], but incubation at 60 ◦C in phosphate
solution allowed a phosphate catalysed aldolisation and subsequent dehydration to be carried out
rapidly and cleanly at neutral pH, once again demonstrating the remarkable effect of phosphate
catalysis. The efficiency of phosphate catalysis, and the effective role that it can play catalysing proton
transfer at near neutral pH in aqueous solution, suggests that there is a great deal more to discover
with respect to the subtle effects that phosphate can induce within the context of prebiotic chemistry.
One is struck by the simplicity of this catalyst and this simplicity, as well as its ideal pKa match for
neutral pH reactivity, which is likely, in part, responsible for its broad scope of application. New roles
for phosphates will continue to be found, such as the remarkable hydrotropic properties of ATP that
lead to enhanced protein solubility [102], and it is the combination and breadth of the various attributes
of phosphate chemistry that define the value of phosphates in biology and biochemistry, but when
these remarkable properties are considered with the deep-seated evolutionary history of phosphate in
life, it becomes more pressing than ever to respond to the availability of phosphates in a positive light,
rather than retreating from this challenge.
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8. Conclusions and Outlook

Significant progress has been made towards understanding the prebiotic chemistry of phosphorus,
but is clear that the ‘phosphate problem’ is still to be conclusively resolved. However, efforts to
demonstrate further prebiotic chemistry of phosphates should not be hindered by this lack of
geophysical certainty; modern biochemical evidence suggests that phosphates are very likely to have
played a significant part in the chemical origins of life. Moreover, there are multiple potential solutions
to the problem of phosphate availability, and several plausible phosphate-producing environments
can now be considered. Volcanic activity may provide ortho-, pyro-, and tripolyphosphate from
apatite and basalt [38]; the same compounds can be obtained by the oxidation of schreibersite [20–23],
a mineral found in meteorites. Furthermore, instead of focusing on ‘global’ phosphorus availability
(in oceans), the essential role that phosphates play in biology may suggest that accumulation in
local environments (e.g., ponds, lakes, or craters) played an essential role in defining the setting for
prebiotic (phosphate) chemistry. In such environments, systems tailored to phosphate release and
accumulation, such as cation/anion fractionation, can be readily envisaged. If these ponds, lakes,
or pools are linked together by rivers or stream systems, and/or to hydrothermal activity and volcanic
out-gassing, the in-flow of solutions containing prebiotic feedstocks, in combination with atmospheric
delivery, may provide the nutrients required under the conditions essential to orchestrate the first
steps towards life. The important role that phosphates can play in this chemistry is clear, but it is
also clear that phosphate availability is highly dependent upon the given environment, therefore,
as well as phosphate taking an essential role in orchestrating the initial steps of life, phosphate,
by virtue of its environment dependent restrictions, could play an essential role in identifying likely
scenarios and environmental constraints for the origins of life. Even the most optimistic scenarios
currently suggest limited amounts of phosphorus would have been soluble in the prebiotic ocean,
and this may suggest that the early oceans were not the nurseries of life, rather, local environments
and conditions (for example, lake or river environments) could have yielded greater solubility of
phosphorus species, through stepwise precipitation or salt leaching, and might have provided key
environments for the origins of life on Earth. The unknown availability of phosphates under prebiotic
constraints inevitably leads to questions over their prebiotic relevance, but their biological importance
is irrefutable, moreover, the simplicity of fixing ammonia (which aids in phosphate mobilisation)
through cyanide reduction, together with the valuable catalytic role that can be played by simple
organic amides, such as urea (8) and formamide, suggests that further investigation of the availability
of phosphate needs to be considered from a systems chemistry perspective [103], together with the
geochemical constraints for phosphate availability. By proactively seeking environmental conditions
to access phosphate, we will undoubtedly learn more about the location of life’s origin.
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98. Islam, S.; Bučar, D.K.; Powner, M.W. Prebiotic selection and assembly of proteinogenic amino acids and
natural nucleotides from complex mixtures. Nat. Chem. 2017, 9, 584–589. [CrossRef]

99. Coggins, A.J.; Tocher, D.A.; Powner, M.W. One-step protecting-group-free synthesis of azepinomycin in
water. Org. Biomol. Chem. 2015, 13, 3378–3381. [CrossRef] [PubMed]

100. Li, L.; Prywes, N.; Tam, C.P.; O’Flaherty, D.K.; Lelyveld, V.S.; Izgu, E.C.; Pal, A.; Szostak, J.W. Enhanced
nonenzymatic RNA copying with 2-aminoimidazole activated nucleotides. J. Am. Chem. Soc. 2017, 139,
1810–1813. [CrossRef] [PubMed]

101. Fahrenbach, A.C.; Giurgiu, C.; Tam, C.P.; Li, L.; Hongo, Y.; Aono, M.; Szostak, J.W. Common and potentially
prebiotic origin for precursors of nucleotide synthesis and activation. J. Am. Chem. Soc. 2017. [CrossRef]
[PubMed]

102. Patel, A.; Malinovska, L.; Saha, S.; Wang, J.; Alberti, S.; Krishnan, Y.; Hyman, A.A. ATP as a biological
hydrotrope. Science 2017, 356, 753–756. [CrossRef] [PubMed]

103. Islam, S.; Powner, M.W. Prebiotic systems chemistry: Complexity overcoming clutter. Chem 2017, 2, 470–501.
[CrossRef]

© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1038/nchem.2703
http://dx.doi.org/10.1039/C5OB00210A
http://www.ncbi.nlm.nih.gov/pubmed/25658692
http://dx.doi.org/10.1021/jacs.6b13148
http://www.ncbi.nlm.nih.gov/pubmed/28117989
http://dx.doi.org/10.1021/jacs.7b01562
http://www.ncbi.nlm.nih.gov/pubmed/28640999
http://dx.doi.org/10.1126/science.aaf6846
http://www.ncbi.nlm.nih.gov/pubmed/28522535
http://dx.doi.org/10.1016/j.chempr.2017.03.001
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Phosphorylation in Water 
	Phosphorylation in Water with Polyphosphates 
	Phosphorylation in Water with Amine Catalysis 
	Nucleophilic Phosphorylation 
	Phosphorylation in Dry-States Using Condensed Phosphates 
	Phosphate as a Catalyst 
	Conclusions and Outlook 

