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Abstract 24 

 25 

Selective laser sintering (SLS) 3-dimensional printing is currently used for industrial 26 

manufacturing of plastic, metallic and ceramic objects. To date there are no reports on the 27 

use of SLS to fabricate oral drug loaded products, hence, However, the extreme printing 28 

conditions (temperatures >1000°C and high-energy lasers >250W) used in these fields have 29 

precluded its use in the pharmaceutical sector. tThe aim of this work was to explore the 30 

suitability of SLS printing for manufacturing medicines. Two thermoplastic pharmaceutical 31 

grade polymers, Kollicoat IR (75% polyvinyl alcohol and 25% polyethylene glycol copolymer) 32 

and Eudragit L100-55 (50% methacrylic acid and 50% ethyl acrylate copolymer), with 33 

immediate and modified release characteristics respectively, were selected to investigate the 34 

versatility of a new desktop SLS printer. Each polymer was investigated with three different 35 

drug loadings of paracetamol (acetaminophen) (5, 20 and 35%). To aid the sintering 36 

process, To improve the sintering process, 3% Candurin® gold sheen colourant was added 37 

to each of the powdered formulations. In total, six solid formulations were successfully 38 

printed; the printlets were robust, and no evidence of drug degradation was observed. In 39 

biorelevant bicarbonate dissolution media, the Kollicoat formulations showed pH- 40 

independent release characteristics, with the rate of release dependent on the drug content. 41 

In the case of the Eudragit formulations, these showed pH- dependent, modified -release 42 

profiles independent of drug loading, with complete release being achieved over 12 hours. In 43 

conclusion, this work has demonstrated that SLS is a versatile and practical 3D printing 44 

technology which can be applied to the pharmaceutical field, thuserefore widening the 45 

armamentarium number of 3D printing technologies available for the to manufacture of 46 

modern medicines.  47 

 48 

 49 

 50 

 51 

  52 



3 
 

1. Introduction 53 

 54 

3-Dimensional printing (3DP) is an additive manufacturing technology withwhich finds 55 

applications in myriadany different fields from including medical device manufacturing to, 56 

aeronautics, robotics, electronics, industrial goods and even the food industry (Sculpteo, 57 

2017) (Barnatt, 2013). 3DP for the fabrication of medicines has come to the fore in recent 58 

years, specifically for its revolutionary uses in personalised dose and dimension-specific 59 

dosage form printing. and it has been anticipated to have a revolutionary impact on 60 

healthcare. The replacement of conventional drug manufacture and distribution could 61 

provide patients with personalized polypills fabricated at the point of care to reduce cost and 62 

enhance therapy adherence (Choonara et al., 2016).  63 

The first attempt at using 3DP technology in pharmaceuticals dates back to 1996 (Wu et 64 

al., 1996), whereby a powder bed 3D printer (PB) was employed to produce a 3D solid form 65 

containing drug. PB technology, similarly to the widespread inkjet desktop printers that use 66 

an ink (black or colour) to print onto a paper sheet, selectively deposits a liquid binder 67 

material across a powder bed. The process is repeated layer-by-layer to fabricate a 3D 68 

object. This technology has been adopted to manufacture Spiritam®, the first FDA- approved 69 

3D printed drug product, that came into the market in 2016 for the treatment of epilepsy 70 

(Aprecia-Pharmaceuticals, 2016).  71 

An alternative 3DP technique termed stereolithograpy (SLA) has recently been used to 72 

manufacture printlets, containing either paracetamol or 4-ASA (Wang et al., 2016), and anti-73 

acne masks (Goyanes et al., 2016a). SLA technology uses a laser to solidify a 74 

photopolymerizable polymer solution containing drug. Advantages of this technology include 75 

production of high resolution objects at room temperature. However, limitations such as 76 

carcinogenic risk of the photopolymerizing material limits its short-term implementation and 77 

demands further investigations.  78 

Fused- deposition modeling (FDM) has been the most employed 3DP technology to 79 

date, due to it being inexpensive and easy to use. Here, previously extruded polymer-based 80 

filaments are forced through heated nozzles turning them into semi-liquid materials that are 81 

selectively deposited onto a printing platform layer-by-layer (Goyanes et al., 2014). For oral 82 

medicines, FDM printing was first used to manufacture polyvinyl alcohol (PVA)- based 83 

printlets, incorporating different drugs (Goyanes et al., 2014; Goyanes et al., 2015a; 84 

Goyanes et al., 2015b) with different geometries (Goyanes et al., 2015f) and drug 85 

distribution (Goyanes et al., 2015g). More recently, several pharmaceutical grade polymers 86 

have been reported to be suitable formulation candidates for FDM printing (Melocchi et al., 87 
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2016; Pietrzak et al., 2015), providing oral formulations with fast rapid drug release profiles 88 

(Okwuosa et al., 2016) and enteric properties (Goyanes et al., 2017; Okwuosa et al., 2017). 89 

However, limitations of FDM 3DP include use of high printing temperatures (>120°C), which 90 

may induce drug degradation, and a relatively low resolution of the printed objects. 91 

Selective laser sintering (SLS) is an industrial 3DP technology that uses a powder bed 92 

to build up the 3D object, similarly to PB. However, instead of using a spray solution, SLS 93 

uses a laser to bind the powder particles together. During the printing process, the laser is 94 

directed to draw a specific pattern onto the surface of the powder bed. Once the first layer is 95 

completed, a roller distributes a new layer of powder on top of the previous one. The object 96 

is built layer-by-layer, which will is then be recovered from underneath the powder bed. 97 

Advantages of SLS technology include the fact that it a solvent-free process and offers faster 98 

production as compared to PB, which instead requires the printed object to be left for up to 99 

48 hours to allow the solvent to evaporate (Rowe et al., 2000; Yu et al., 2009; Yu et al., 100 

2007). Compared to FDM, SLS is a one-step process that does not require the prior 101 

production of suitable filaments by hot melt extrusion (Goyanes et al., 2015b; Goyanes et al., 102 

2015g; Okwuosa et al., 2017) and produces objects of higher resolution due to the laser 103 

precision. However, commonly used materials are powdered forms of plastics, ceramics and 104 

metal alloys that require high temperatures (1000°C andor more higher) and high-energy 105 

lasers (250W and higheror more) to be sintered (Vrancken et al., 2012). . These harsh 106 

printing conditions have hindered entry of this technology into the pharmaceutical field. It is 107 

widely recognised that the high- energy input of the laser may degrade drugs if they are 108 

used as the starting material (Alhnan et al., 2016; Yu et al., 2008). For these reasons, the 109 

sole use of SLS printing in the medical field has been limited to either tissue engineering 110 

scaffolds (Partee et al., 2006) or drug delivery devices where the drug was included after the 111 

printing process (Cheah et al., 2002; Leong et al., 2006). So far, no studies have been 112 

reported investigating the production of drug loaded formulations using SLS. 113 

The aim of this study was to explore SLS printing as a suitable 3DP technology for the 114 

preparation of drug loaded oral dosage forms using pharmaceutical grade excipients. The 115 

versatility of the printer was evaluated using two different polymers commonly used to 116 

manufacture immediate and modified release oral formulations. 117 

 118 

2. Materials and methods 119 

Paracetamol USP grade (Sigma-Aldrich, UK) was used as a model drug (MW 151.16, 120 

solubility at 37ºC: 21.80 g/L (Yalkowsky and He, 2003)).  121 
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Kollicoat IR (BASF, UK) is a graft copolymer composed of 75% polyvinyl alcohol units 122 

and 25% polyethylene glycol units with a molecular weight of approximately 45,000 Daltons 123 

that is mainly used for instant release coatings (BASF, 2017). Eudragit L100-55, a 124 

copolymer of methacrylic acid and ethyl acrylate (1:1 ratio) a methacrylic acid co-polymer 125 

that dissolves at pH above 5.5 and above (Evonik, 2017), was donated by Evonik, UK. 126 

Candurin® Gold Sheen was purchased kindly donatedfrom by Azelis, UK. The salts for 127 

preparing the buffer dissolution media were purchased from VWR International Ltd., UK. 128 

 129 

2.1. Printing process 130 

For each formulation 100g of a mixture of drug and excipients were blended using a 131 

mortar and pestle (Table 1). 3% of Candurin® Gold Sheen colourant was added to the 132 

formulations as an absorbent material to enhance energy absorption from the laser and aid 133 

allow printability. 134 

Powder mixtures were then transferred to a Desktop SLS printer (Sintratec Kit, AG, Brugg, 135 

Switzerland) to fabricate the oral dosage formulations. AutoCAD 2014 (Autodesk Inc., USA) 136 

was used to design the templates of the cylindrical printlets (10 mm diameter x 3.6 mm 137 

height). 3D models were exported as a stereolithography (.stl) file into 3D printer Sintratec 138 

central software Version 1.1.13.  139 

Powder in the platform reservoir (150x150x150 mm) of the printer was moved by a sled 140 

to a building platform (150x150 mm) creating a flat and homogeneously distributed layer of 141 

powder. The printer was warmed up for at least one hour to allow the heat to be thoroughly 142 

distributed inside the printer including the whole reservoir of powder. Two different 143 

temperatures were chosen and kept the same for all formulations in this study: a chamber 144 

temperature (90°C), indicating the temperature inside the printer; and a surface temperature 145 

(110°C), indicating the surface temperature of the powder bed in the building platform. The 146 

printing process started with the activation of a When the heating process was completed, 147 

the 2.3 W blue diode laser (445 nm) was activated (laser scanning speed 90 mm/sec) to 148 

sinter the powder on to the building platform in a certain pattern based on the .STL file. At 149 

this point, the reservoir platform moved up, the building platform moved down and the sled 150 

distributed a thin layer of powder on top of the previous layer. This process was repeated 151 

layer-by-layer until the object was completed. Printlets were then removed from the powder 152 

bed and the excess power was brushed off. Five Ten printlets were printed at the same time 153 

for each formulation. 154 

 155 

2.2. Powder spectrophotometer analysis 156 
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UV-Vis-NIR spectrophotometer Shimadzu UV-2600 was employed to measure the 157 

absorbance in the solid state of the drug and/or excipient sand/or colourant material. 158 

Absorbance at wavelengths between 220-1400 nm, was measured at room temperature 159 

(approximately 25°C) using an integrating sphere as “Diffuse Reflectance Accessory (DRA)”. 160 

Here 0.15g of material to be evaluated (polymer, drug, colourant  or mixtures of themthese) 161 

was blended with 0.5g of barium sulphate and compressed to form a barium sulphate disk 162 

that is introduced in the spectrophotometer for analysis. 163 

 164 

2.3. Thermal analysis 165 

Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) wasere 166 

used to characterise the powders and the drug loaded printlets. DSC measurements were 167 

performed with a Q2000 DSC (TA instruments, Waters, LLC, USA) at a heating rate of 168 

10°C/min. Calibration for cell constant and enthalpy was performed with indium (Tm = 169 

156.6°C, ∆Hf =28.71 J/g) according to the manufacturer instructions. Nitrogen was used as a 170 

purge gas with a flow rate of 50 mL/min for all the experiments. Data were collected with TA 171 

Advantage software for Q series (version 2.8.394), and analysed using TA Instruments 172 

Universal Analysis 2000. All melting temperatures are reported as extrapolated onset unless 173 

otherwise stated. TA aluminium pans and lids (Tzero) were used with an average sample 174 

mass of 8-10mg.  175 

For TGA analysis, samples were heated at 10°C/min in open aluminium pans with a 176 

Discovery TGA (TA instruments, Waters, LLC, USA). Nitrogen was used as a purge gas with 177 

a flow rate of 25 mL/min. Data collection and analysis were performed using TA Instruments 178 

Trios software and % mass loss and/or onset temperature were calculated. 179 

 180 

2.4. X-ray powder diffraction (XRPD) 181 

Discs of 23mm diameter x 1mm height made from the mixtures of drug and excipients 182 

were 3D printed and analysed. Samples of pure paracetamol and the mixtures were also 183 

analysed. The X-ray powder diffraction patterns were obtained in a Rigaku MiniFlex 600 184 

(Rigaku, USA) using a Cu Kα X-ray source (λ=1.5418Å). The intensity and voltage applied 185 

were 15 mA and 40 kV. The angular range of data acquisition was 3–60° 2θ, with a stepwise 186 

size of 0.02° at a speed of 5°/min.  187 

 188 

2.5. Printlets Ccharacterisation of the printlets 189 

2.5.1. Determination of printlet morphology 190 
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The diameter and thickness of the printlets were measured using a digital calliper. 191 

Pictures were taken with a Nikon CoolpixS6150 with the macro option of the menu.  192 

2.5.2. Determination of printlet strength 193 

The crushing strength of ten printlets of each type was measured using a traditional 194 

tablet hardness tester TBH 200 (Erweka GmbH, Heusenstamm, Germany), whereby an 195 

increasing force is applied perpendicular to the printlet axis to opposite sides of a printlet 196 

until the printlet fractures.  197 

 198 

2.5.3. Determination of printlet friability 199 

Approximately 6.5 g of printlets were weighed and placed into the drum of a Friability 200 

Tester Erweka type TAR 10 (Erweka GmbH, Heusenstamm, Germany). The drum was then 201 

rotated at 25 rpm for 4 min and the sample re-weighed. The friability of the sample is given 202 

in terms of weight loss, expressed as a percentage of the original sample weight.  203 

 204 

2.5.4. Scanning Electron Microscopy (SEM)   205 

Surface and cross-section images of the printlets were taken with a scanning electron 206 

microscope (SEM, JSM-840A Scanning Microscope, JEOL GmbH, Germany). All samples 207 

for SEM testing were coated with carbon (~30–40 nm).  208 

 209 

2.5.5. X-ray Micro Computed Tomography (Micro-CT) 210 

A high-resolution X-ray micro computed tomography scanner (SkyScan1172, Bruker-211 

microCT, Belgium) was used to 3D visualize the internal structure, density and porosity of 212 

the printlets. All oral formulations were scanned using no filter with a resolution of 213 

2000x1048 pixels. 3D imaging was performed by rotating the object through 180° with steps 214 

of 0.4° and 4 images were recorded for each of those. The total acquisition time was about 215 

25 mins per sample. Image reconstruction was performed using NRecon software (version 216 

1.7.0.4, Bruker-microCT). 3D model rendering and viewing were performed using the 217 

associate program CT-Volume (CTVol version 2.3.2.0) software. The collected data was 218 

analysed using the software CT Analyzer (CTan version 1.16.4.1). Different colours were 219 

used to indicate the density of the printlets. Porosity values were calculated using the 3D 220 

analysis in the morphometry preview (200 layers were selected at the central part of the 221 

printlet as area of interest and analysed). 222 

 223 

2.5.6. Determination of Drug Content 224 
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Three individual printlets of each formulation A printlet (approximately 0.2 g) wereas 225 

placed in a separate volumetric flasks with deionized water (250ml).  In the case of the 226 

Eudragit-based printlets, 3 drops of 5N NaOH were added to the flasks to increase the pH in 227 

order to dissolve the polymers under magnetic stirring until complete dissolution. Samples of 228 

solution were then filtered through 0.45 mm filters (Millipore Ltd., Ireland) and the 229 

concentration of drug determined with HPLC (Hewlett Packard 1050 Series HPLC system, 230 

Agilent Technologies, UK). The validated high performance liquid chromatographic assay 231 

entailed injecting 20 mL samples for analysis using a mobile phase, consisting of methanol 232 

(15%) and water (85%), through an Ultra C8 5 µm column, 25 x 4.6 mm (Restek, USA) 233 

maintained at 40°C. The mobile phase was pumped at a flow rate of 1 mL/min and the 234 

eluent was screened at a wavelength of 247 nm. All measurements were made in triplicate. 235 

2.5.7. Dynamic dissolution testing conditions 236 

Drug dissolution profiles for the formulations were obtained with a USP-II apparatus 237 

(Model PTWS, Pharmatest, Germany): 1) the formulations were placed in 750 mL of 0.1 M 238 

HCl for 2 h to simulate gastric residence time, and then 2) transferred into 950 mL of 239 

modified Hanks (mHanks) bicarbonate physiological medium for 35 min (pH 5.6 to 7); 3) and 240 

then in modified Krebs buffer (1000ml) (pH 7 to 7.4 and then to 6.5). The modified Hanks 241 

buffer based dissolution medium (Liu et al., 2011) (136.9 mM NaCl, 5.37 mM KCl, 0.812 mM 242 

MgSO4.7H2O, 1.26 mM CaCl2, 0.337 mM Na2HPO4.2H2O, 0.441 mM KH2PO4, 4.17 mM 243 

NaHCO3) forms an in-situ modified Kreb’s buffer (Fadda et al., 2009) by addition of 50 mL of 244 

pre-Krebs solution (400.7 mM NaHCO3 and 6.9 mM KH2PO4) to each dissolution vessel. 245 

The formulations were tested in the small intestinal environment for 3.5 h (pH 5.6 to 7.4), 246 

followed by pH 6.5 representing the colonic environment (Fadda et al., 2009; Goyanes et al., 247 

2015c; Goyanes et al., 2015d; Liu et al., 2011). The medium is primarily a bicarbonate buffer 248 

in which bicarbonate (HCO3
-) and carbonic acid (H2CO3) co-exist in an equilibrium, along 249 

with CO2 (aq) resulting from dissociation of the carbonic acid. The pH of the buffer is 250 

controlled by an Auto pH SystemTM (Merchant et al., 2012; Merchant et al., 2014), which 251 

consists of a pH probe connected to a source of carbon dioxide gas (pH-reducing gas), as 252 

well as to a supply of helium (pH-increasing gas), controlled by a control unit. The control 253 

unit is able to provide a dynamically adjustable pH during testing (dynamic conditions) and to 254 

maintain a uniform pH value over the otherwise unstable bicarbonate buffer pH.  255 

The paddle speed of the USP-II was fixed at 50 rpm and the tests were conducted at 37 256 

+/-0.5 °C (n=3). Sample of the dissolution media (1mL) was withdrawn every hour and the 257 

drug concentrations were determined by HPLC to calculate the percentage of drug released 258 

from the formulations. 259 

 260 
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3. Results and discussion 261 

Two thermoplastic excipients frequently used in hot melt extrusion, Kollicoat IR 262 

(Kollicoat) and Eudragit L100-55 (Eudragit), were initially tested to evaluate their printability 263 

by SLS 3DP, alone or in combination with 5% paracetamol. However, in the preliminary 264 

experiments, the laser did not lead to sintering of the powders.have any effect on the 265 

polymer powders.  266 

SLS printers use a unique binding thermal process to connect the powder particles 267 

together (Shirazi et al., 2015). The laser is aimed to draw a specific pattern on the powder 268 

bed that increases the local temperature. If the temperature reaches a value between the 269 

melting temperature (Tm) of the material and Tm/2, a solid-state sintering will happen that 270 

partially fuses the powder particles together. If the temperature overcomes the Tm, a full 271 

melting occurs producing stronger objects with reduced porosity, as the molten polymer will 272 

infiltrate into the voids between the powder particles. 273 

The ideal temperature can be reached by adjusting the internal temperature of the 274 

printer and the laser scanning speed. By reducing the laser scanning speed, a longer 275 

interaction time between the powder particles and the laser beam leads to a higher 276 

transmission of energy producing denser objects. On the contrary, upon increasing the laser 277 

scanning speed, less energy is transmitted leading to the production of weaker and more 278 

porous objects (Shirazi et al., 2015).  279 

Since even a slower laser scanning speed did not produce any sintering effect on the 280 

powder bed it was supposed hypothesized the absence of interaction between the laser 281 

beam and the powder.that the powder absorbance was not adequate. The evaluation of the 282 

absorbance characteristics for the two polymers and paracetamol was obtained using a 283 

Shimadzu UV-3600 Plus UV-VIS-NIR spectrophotometer with an integrating sphere. The 284 

absorbance values checked at the same wavelength of the blue diode laser provided with 285 

the printer (445 nm) were all close to the baseline indicating that the selected excipients did 286 

not absorb the laser light precluding the sintering process. Candurin® gold sheen an Since 287 

the laser is in the blue spectrum, the maximum absorbance occurs with its complementary 288 

colours, orange or yellow. Therefore, a GRAS approved pharmaceutical excipient colorant 289 

used for coating of tablets (Candurin® gold sheen) was selected and included into the drug 290 

and polymer mixture at 3% w/w and showeddue to its  a good degree of absorbance at 445 291 

nm. suggesting a possible laser sintering.  292 

In contrast to the previous tests without colourant,By including the colourant Candurin® 293 

gold sheen absorbent materialin the mixtures, the powder particles in the area where the 294 

laser was aimed were sintered and well connected. For this study, a chamber temperature of 295 
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90 °C, a surface temperature of 110 °C and a laser scanning speed of 90 mm/sec were 296 

found to be suitable parameters which were maintained throughout printing of all the 297 

formulations. The manufacture of solid dosage forms was successfully achieved and the 298 

printing process was then repeated to obtain six different formulations containing 3% w/w 299 

Candurin® gold sheenabsorbent materialcolourant, based on either Kollicoat IR or Eudragit 300 

L100-55, each with three different drug loadings (5, 20 and 35% w/w) (Table 1). The 301 

formulations produced were all smooth and yellow in colour (Figure 1).  302 

The printlet strength data for Kollicoat formulations exceeded the highest value that the 303 

equipment could measure because the printlets did not break but they deformed. For 304 

Eudragit formulations, crushing strength values ranged between 284N and 414N (Table 2). 305 

Friability of all the formulations was less than 1%, complying with the US pharmacopeia 306 

requirement for uncoated tablets, making them suitable for handling and packing (USP, 307 

2017).  308 

X-ray micro-CT was employed to calculate closed and open porosity of the printlets 309 

(Table 2) and to visualise their internal structures (Figure 2). Kollicoat formulations showed 310 

similar total porosity (closed + open porosity) values for all three drug loadings, whereas the 311 

Eudragit formulations showed a clear reduction in total porosity with increasing drug content. 312 

Additionally, the higher the drug content, the more the closed porosity (in E5 there were 313 

almost no closed pores, while in E35 more than 80% of the total porosity was made up of 314 

closed pores) suggesting that the material was more sintered or even melted. Different 315 

colours were given depending on the density levels. All printlets showed similar density 316 

values except for E35 that which was denser, in part due to explained by its very low 317 

porosity and high crushing strength (Table 2). 318 

SEM images of the printlets provided a visual confirmation of the porosity and the 319 

strength values discussed above (Table 2). Kollicoat formulations images show a sintering 320 

process for K5 (limited molten areas) that becomes a combination of sintering/melting (more 321 

molten areas are visible) for K20 and an almost total melting for K35 leading to stronger 322 

printlets. The same trend is clearly visible for Eudragit formulations, where the single 323 

spherical polymer particles can be easily distinguished in E5 while they become 324 

indistinguishable for the 35% loaded printlets. Additionally, it is clearly visible in E5 as the 325 

sintering process, created mainly open pores, while E35, being effectively melted, has 326 

mainly closed pores.  327 

Since the laser degradation of the drug was a main concern of the feasibility study, the 328 

drug content of the printlets were evaluated. All the values were close to the theoretical drug 329 

loading (5, 20 and 35%) and no other peaks other than paracetamol were present in the 330 
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HPLC chromatograms, indicating that the drug degradation did not take place occur during 331 

printing (Table 2). 332 

DSC and X-ray analyses of the drug, mainindividual polymers, mixed materials before 333 

printing and printlets were performed to explore the drug phase state and to which degree 334 

the drug is incorporated into the polymers (Figures 4 and 5). DSC data shows that 335 

paracetamol raw material melts at around 168°C indicative of form I (Goyanes et al., 2015e). 336 

The DSC data of the printlets showed no evidence of melting at around 168°C, indicating 337 

that the drug is either molecularly dispersed within the polymer matrix as a solid dispersion 338 

or that the drug is dissolved into the polymer during the temperature increase within the DSC 339 

process. It is possible to observe an endotherm attributed to the melting of paracetamol in 340 

the physical mixture for all the polymers even at the lowest drug content, indicating that part 341 

of the drug is in the crystalline form.  342 

In accordance with the DSC, X-ray diffractograms showed semi-crystalline patterns with the 343 

presence of the characteristic paracetamol peaks in all the physical mixtures. 344 

 345 

X-ray powder diffractograms for Kollicoat printlets show paracetamol peaks and the patterns 346 

of the polymers are similar to those of the physical mixture (Figure 5). This confirms that at 347 

least part of the drug is present in a crystalline form.  348 

Diffractograms of the Eudragit printlets do not show any paracetamol peaks at any level of 349 

drug loading (Figure 5). This confirms that the drug in the Eudragit printlet is present in an 350 

amorphous phase within the polymer matrix, as observed in the DSC. Paracetamol, which 351 

has a high melting point of about 168°C, may have dissolved in the molten polymer during 352 

the printing process.  353 

Figures 6 and 7 show the dissolution characteristics of all the formulations. Printlets 354 

were tested in the dynamic in vitro model, which simulates gastric and intestinal conditions of 355 

the gastrointestinal tract (Goyanes et al., 2015c). A reduction in the size of the formulations 356 

during the dissolution tests was observed, indicating that erosion processes may be involved 357 

in modulating drug release from these 3DP formulations, as previously suggested (Goyanes 358 

et al., 2016b).  359 

The dissolution profiles of Kollicoat printlets show that drug release commenced during 360 

the gastric phase and was not affected by the pH of the media, indicating that the 361 

formulations were pH independent (Figure 6). 362 

 363 

K5 reached over 80% of drug release in about 30 mins whereas K20 and K35 reached the 364 

same value in about 2h and 5h, respectively (Figure 6). A complete drug release was 365 

achieved in about 2h for K5, compared to about 10h for both K20 and K35. As previously 366 
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seen (Figures 2 and 3, Table 2), an increasing drug content leads to more sintered/melted 367 

and less porous printlets that will require longer time to dissolve. For all three Kollicoat 368 

formulations, after 24h dissolution test, a small residue of printlet was found in the vessels; 369 

however, the drug was already entirely released.  370 

The dissolution results for Eudragit printlets showed some drug release in the gastric 371 

phase (acidic medium) that increased during the intestinal phase (biorelevant bicarbonate 372 

buffers), being dependent on the nature or pH of the media (Figure 7). 373 

 374 

 375 

Eudragit L100-55 is an enteric polymer, however some paracetamol was released during the 376 

first 2h (acidic environment) for all three formulations. This may be as a consequence of their 377 

matrix structure, whereby the drug is evenly distributed including at the external surface, 378 

permitting release once in contact with the dissolution media. As expected, dissolution data 379 

after 2h showed about 18%, 14% and 6% paracetamol release for E5, E20 and E35, 380 

respectively. These values are correlated with the open porosity of the printlets (Table 2); E5 381 

is highly porous and only 0.1% of its total porosity is due to closed pores, allowing the acidic 382 

media to come into contact with a large surface area of the printlet. Conversely, E35 has a 383 

very low porosity that is mainly due to closed pores inside the printlet, limiting the surface in 384 

contact with the media and thus the drug release. 385 

After the first 2h, all three formulations started to release faster in intestinal conditions at 386 

pH 5.5 and above with the right pH threshold (above pH 5.5) leading to a complete 387 

dissolution in about 12h. However, in the case of E5, drug release slowed down the release 388 

of drug in colonic conditions (after 5h 30mins’) probably presumably because the formulation 389 

was composed of 92% w/w enteric polymer, which was likely to be more affected by the 390 

reduction in pH, compared to E20 and E35. . 391 

Interestingly, the overall release from the Eudragit printlets fabricated using SLS at three 392 

different drug loadings was analogue very similar. The samesimilar release profile was for 393 

Eudragit formulations is explained by a proportionally stronger sintering/melting effect on 394 

increased drug loaded printlets, as previously discussed (Figures 2 and 3, Table 2).This is 395 

different to FDM printlets that dissolved proportionally faster with an increased drug content 396 

(Goyanes et al., 2017; Goyanes et al., 2016b; Goyanes et al., 2015g). The same release 397 

profile for Eudragit formulations is explained by a proportionally stronger sintering/melting 398 

effect on increased drug loaded printlets, as previously discussed (Figures 2 and 3, Table 2). 399 

Eudragit formulations might then provide a platform that allows to maintain the same release 400 

profile during a therapy with a progressive modulation of the drug dosage.  401 

Formatted: Indent: First line:  0 cm
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Overall, the dissolution data shows the versatility of SLS printing to produce medicines 402 

with different pharmaceutical polymers release profiles and different drug loadings. More 403 

importantly, since no drug degradation was detected during this study, this work opens up 404 

the SLS 3DP technology to further investigation in the pharmaceutical field. 405 

 406 

4. Conclusion 407 

 408 

In this proof- of- concept study, a desktop SLS printer was used to manufacture oral 409 

medicines using pharmaceutical grade excipients without degradation of the drug. The 410 

versatility of SLS technology has been demonstrated with the successful manufacture of 411 

immediate- release and modified -release formulations with three different drug loadings. 412 

This work demonstrates the potential of SLS 3DP to produce personalized medicines;, 413 

adding SLS to the armamentarium widening the number of 3DP technologies available for 414 

the commercial to manufacture of medicines.  415 

 416 

 417 

  418 
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Figure Captions 519 

 520 

Figure 1. Image of the printlets, on the top from left to right K5, K20, K35; at the bottom, 521 

from left to right E5, E20, E35. 522 

 523 

Figure 2. X-ray micro-CT images of a quarter section of the printlets. On the top from left to 524 

right K5, K20, K35. On the bottom, from left to right E5, E20, E35. 525 

 526 

Figure 3. SEM images of the printlets vertical sections, on the top from left to right K5, K20, 527 

K35. On the bottom, from left to right E5, E20, E35. 528 

 529 

Figure 4. DSC thermograms of pure paracetamol, mainindividual polymers, mixtures before 530 

printing and printlets. 531 

 532 

Figure 5. X-ray powder diffractograms of pure paracetamol, mixtures before printed and 533 

3DP discs. 534 

 535 

Figure 6. Drug dissolution profiles from Kollicoat printlets. Red line shows the pH values of 536 

the media. 537 

 538 

Figure 7. Drug dissolution profiles from Eudragit printlets. Red line shows the pH values of 539 

the media. 540 

 541 



 

 

 

Table 1. Printlets composition 

Formulation* Kollicoat IR (%) Eudragit L100-55 (%) Paracetamol (%) 

K5 92 - 5 

K20 77 - 20 

K35 62 - 35 

E5 - 92 5 

E20 - 77 20 

E35 - 62 35 

*All formulations contain 3% w/w Candurin® Gold Sheen. 

Table 1



 

 Table 2. Physical properties of the printlets   

Formulation 
Drug 

loading 

Crushing 

strength (N) 

Friability 

(%) 

Closed porosity 

(%) 

Open porosity 

(%) 

K5 4.9 > 485 0.02 0.2 33.3 

K20 20.4 > 485 0.08 0.4 24.6 

K35 35.7 > 485 0.13 0.8 24.0 

E5 5.0 284 0.56 0.1 29.3 

E20 20.1 285 0.31 1.0 20.3 

E35 35.3 414 0.11 4.7 1.0 
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