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ABSTRACT Distributed antenna systems (DASs) have been widely implemented in the state-of-the-art
cellular communication systems to cover dead spots. Recent studies have also indicated that DAS has
advantages in wireless energy transfer (WET). In this paper, we study simultaneous wireless information
and power transfer for a multiple-input single-output DAS in the downlink, which consists of arbitrarily
distributed remote antenna units (RAUs). In order to save the energy cost, we adopt the energy cooperation
of energy harvesting (EH) and two-way energy flows to let the RAUs trade their harvested energy through
the smart grid network. Under individual EH constraints, per-RAU power constraints, and various smart grid
considerations, we investigate a power management strategy that determines how to utilize the stochastically
spatially distributed harvested energy at the RAUs and how to trade the energy with the smart grid
simultaneously to supply maximum wireless information transfer (WIT) with a minimum WET constraint
for a receiver adopting power splitting. Our analysis shows that the optimal design can be achieved in two
steps. The first step is to maximize a new objective that can simultaneously maximize both WET and WIT,
considering both the smart grid profitable and smart grid neutral cases. For the grid-profitable case, we
derive the optimal full power strategy and provide a closed-form result to see under what condition this
strategy is used. On the other hand, for the grid-neutral case, we illustrate that the optimal power policy has
a double-threshold structure and present an optimal allocation strategy. The second step is then to solve the
whole problem by obtaining the splitting power ratio based on the minimum WET constraint. Simulation
results are provided to evaluate the performance under various settings and characterize the double-threshold
structure.

INDEX TERMS Energy harvesting, distributed antennas, simultaneous wireless information and power
transfer, smart grid.

I. INTRODUCTION
Energy harvesting (EH) traditionally refers to the extrac-
tion of energy from ambient environment for cost-effective
and self-sustainable operation [1]–[4]. However, energy
harvested from ambient environments is passive, unre-
liable and uncontrollable to yield useful energy when
needed. A new trend hence has emerged to use radio-
frequency (RF) purposefully to transfer energy over the air
to charge devices for their communications. This technology
enables proactive energy replenishment of wireless devices,

resulting in advantages in supporting applications with
quality-of-service (QoS) requirement. True mobility would
be achieved because mobile devices no longer depend on
centralized power sources.

Wireless energy transfer (WET) has long been considered
as a possibility, dating back to as early as 1891 in Tesla’s
demonstration [5]. On the other hand, radio signals have
since been widely used for wireless information transmis-
sion (WIT). As a consequence, it is reasonable that simul-
taneous wireless information and energy transfer (SWIPT)
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has recently drawn an upsurge of interests, see e.g., [6]–[12].
Using this technique, mobile users are provided with not only
wireless data but also access to reliable energy supply at the
same time.

Varshney was the first to propose the idea of SWIPT
which was published in [6], where he characterized the
fundamental performance tradeoff with a capacity-energy
function. Later, Grover and Sahai [7] extended the result to
frequency-selective channels. More recently, optimal design
of different outage for the energy/rate tradeoffs was studied
in [8] subject to co-channel interference. In [9], practical
receiver designs were investigated for SWIPT. One major
concern for SWIPT is its drastically decaying WET effi-
ciency over the distance due to propagation loss. To alleviate
this, multiple-input multiple-output (MIMO) beamforming
systems [13]–[20] have been proposed to help improve the
WET efficiency. In particular, the authors in [13] charac-
terized the various achievable rate-energy (R-E) tradeoffs
by practical receiver designs. The results have subsequently
been extended to massive MIMO [14] and multiuser channel
setups [15], [16].

In order to achieve efficient WET, electromagnetic
energy should be concentrated into a sharp narrow beam,
referred to as energy beamforming which was studied
in [13] and [16]–[20] for different scenarios. Nevertheless,
only those users close to the energy transmitter can harvest
meaningful energy, while those far away from the transmitter
will get much less power. Such distance limitation for WET
can be prevented if energy receivers are brought closer to
the transmitters in distributed antenna systems (DASs) [21].
Specifically, the remote antenna units (RAUs) are more arbi-
trarily distributed over the cells, and the distance from any
given user equipment (UE) to its nearby RAU(s) is much
smaller, making SWIPT more viable.

While there is strong interest to use EH to reduce or even
replace the energy purchased from the grid, the harvested
energy highly depends on environmental factors such as loca-
tion and weather, and is random and intermittent by nature.
Hence, it is difficult to maintain the prescribed QoS given the
uncertainty of the available power for each RAU if it relies
solely on EH. A better approach is therefore to have both EH
and the grid to power the RAUs [22]–[26]. Recent advances in
smart grids further enable power trading amongst consumers
via the use of smart meters [27]–[30]. Two-way energy flows
are possible between the grid and the RAUs, facilitating also
the RAUs to trade their unevenly harvested energy through
the smart grid. The fact that the mismatch between EH and
the RAU’s power demand leads to energy outage or energy
wastage (insufficient or excessive harvested energy) needs to
be addressed.

Overall, we see three critical challenges: SWIPT, EH wire-
less systems, and smart grid enabled EH wireless systems.
To the best of our knowledge, prior works tended to con-
centrate upon one or two of the three challenges. Motivated
by this, in this paper, we consider a DAS for SWIPT with
EH capability and smart grid coexisting, which involves

addressing all three challenges jointly. In particular, new
challenges arise for the design of power management for
each RAUwith random EH and the corresponding trade man-
agement with smart grid when serving the space-dependent
and time-varying SWIPT traffic. The fact that the harvested
energy is typically much cheaper than the energy purchased
from the grid, also motivates the maximization of the use of
the harvested energy to save cost. It is therefore reasonable to
assume that the smart grid will not be ‘‘trade-deficit’’ during
all trading with the RAUs.

In this paper, we focus on the use of power splitting (PS)
receivers permitting each user to receive both information and
energy from the RAU continuously at all time. Time switch-
ing (TS) receivers can be considered as a special case of PS
with only binary split power ratios [9], [13], and therefore
PS can in general achieve better rate-energy transmission
trade-off than TS. We show that the optimal design can be
achieved in two steps. The first is to maximize the WET
and WIT performance for two cases, namely the smart grid
profitable and smart grid neutral cases, with the full-power
and double-threshold power allocation policies, respectively.
Then the problem is addressed by finding the PS ratio from
the minimum WET constraint.

The rest of the paper is organized as follows. The system
model is presented in Section II. Section III analyzes the
characteristics of the optimal power allocation policy and also
provides some lemmas. We address the smart grid profitable
case in Section IV, while the smart grid neutral case will
be tackled in Section V. Numerical results are presented and
compared in Section VI. Section VII concludes the paper.

II. SYSTEM MODEL
In this section, we introduce our model for energy cooper-
ation and SWIPT for cellular systems, which is depicted in
Fig. 1. We consider a downlink single-cell DAS that has N
RAUswithM > 1 antennas each, all connected to a baseband
processing unit (BPU) using high-quality bidirectional wired
(e.g., radio-over-fiber) or wireless (e.g., microwave repeater)
links. The BPU is assumed to have all the necessary baseband
processing capability of a base station (BS), and the harvested
energy profile of all the RAUs. Moreover, it is assumed that
the DAS is to serve only one user for simplicity, and all RAUs
and the user know channel state information perfectly. Note
that all the power allocation is centrally controlled. Then the
received signal for the user is written as

y =
N∑
i=1

√
pigHi wis+ n, (1)

where pi is the transmit power consumed by the i-th RAU,
wi is defined as the beamforming column vector of lengthM
for the i-th RAU with unit norm (‖wi‖

2
= 1), s stands

for the transmitted signal with zero mean and unit vari-
ance, and n denotes the zero-mean additive white Gaussian
noise (AWGN) with variance σ 2, the superscript (·)H is the
Hermitian operation, and gi is the M × 1 channel vector to
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FIGURE 1. The system model where smart grid techniques enable power trading among the consumers via smart meters permitting power
transmission between the RAUs and the power grid.

characterize the channel state, which is modelled by

gi = hi
√
βi, (2)

where hi indicates the channel column vector for small-scale
fading with each entry assumed to have zero mean and unity
variance, and βi accounts for the large-scale fading which can
be factored into

βi =
1
dαi
, (3)

where α is the decay exponent. The received signal power is
split for simultaneous WIT and WET, a ρ ∈ (0, 1] portion
of the received signal power to the WIT, and the remaining
(1− ρ) portion for the WET under SWIPT. As a result, the
split signal for the WET of the user is given as

yWET
=
√
1− ρy. (4)

Accordingly, the energy transferred to the user is proportional
to the split signal which is given by

Q = ξ (1− ρ)

∣∣∣∣∣
N∑
i=1

√
pigHi wi

∣∣∣∣∣
2

+ σ 2

, (5)

where ξ ∈ (0, 1] stands for the energy conversion efficiency.
Furthermore, the split signal for WIT is expressed as

yWIT
=
√
ρy+ z, (6)

where z is the AWGN with zero mean and variance τ 2 during
the WIT process. Thus, the user’s achievable rate is given as

R = log2

1+

ρ

∣∣∣∣ N∑
i=1

√
pigHi wi

∣∣∣∣2
ρσ 2 + τ 2

. (7)

Each RAU i is equipped with an EH device that deliv-
ers a harvesting energy rate Ei > 0 at the beginning of
transmission, for i = 1, . . . ,N . In practice, the value of
pi varies according to the harvested energy at each RAU as
well as the channel state information between the i-th RAU
and the user. By combining the harvested energy rate Ei
and the transfer power pi, we use Di to indicate the energy
shortage leading to energy borrowing from the smart grid,
i.e., grid discharging, and Ci to present the energy surplus
of renewable energy which can be paid/traded back to the
smart grid, i.e., grid charging. Since these two values are
usually independent, it is likely that some RAUs are short of
renewable energy to match demand (i.e., Di > 0), while the
other RAUs are adequate in renewable energy (i.e., Ci > 0).
Such a geographical diversity requires some RAUs to borrow
Di energy from the grid but the other RAUs to pay/trade back
the extra renewable energy Ci in order to trade or reuse the
renewable energy by other RAUs rather than being wasted.
These can be accommplished by energy cooperation which
enables two-way energy flows between the smart grid and
the RAUs [27]–[30]. From these two variables, the transmit
power pi for each RAU is calculated as

pi = Ei + Di − Ci. (8)

Note that by definition, Ci ≥ 0, Di ≥ 0, pi ≥ 0 ∀i. From (8),
it imposes that Ei + Di − Ci ≥ 0 on Di and Ci.
It is impossible to deliver power between the RAUs and

the smart grid without any loss, i.e., perfect sharing of power
is not possible among the RAUs. There will be energy loss
efficiency η in electric power transmission between RAUs
and the smart grid. To minimize the energy use from the grid,
we assume that the smart grid will not be ‘‘trade-deficit’’
during all trading with the RAUs, which we refer to as the
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green smart constraint. Specifically, this is formulated as

N∑
i=1

Si ≥ 0, (9)

where Si denotes the current trade state between the i-th RAU
and the smart grid, which can be further described as

Si = ηCi −
Di
η
. (10)

The coupling of SWIPT and the power utilization opti-
mization introduces new challenges on the design of green
energy-enabled wireless networks. In this paper, we aim
to maximize the WIT performance with a minimum WET
constraint and the per-RAU power constraint as well as the
green smart constraint. From (5) and (7), we can assert that
when the WIT performance is maximized with ρ remaining
fixed, theWET performance is alsomaximum. Therefore, our
optimization problem is first to maximize |

∑N
i=1
√
pigHi wi|

2

with the variable ρ being fixed and then to adjust the value
of the PS variable ρ according to the WET constraint. Hence,
we can see that the main problem is to tackle the former one.
The latter can be easily solved by figuring out the splitting
power ratio based on the minimum WET constraint using
simple calculation. As a result, our focus is on solving the
first problem, which is formulated as

max
pi,wi

∣∣∣∣∣
N∑
i=1

√
pigHi wi

∣∣∣∣∣
2

(11a)

s.t.
N∑
i=1

Si ≥ 0 (11b)

0 ≤ pi ≤ pmax , ∀i ∈ {1, 2, . . . ,N } (11c)

Di ≥ 0, Ci ≥ 0, ∀i ∈ {1, 2, . . . ,N } (11d)

‖wi‖
2
= 1, ∀i ∈ {1, 2, . . . ,N } (11e)

where pmax is the per-RAU power constraint. In general, it is
hard to obtain an explicit solution for this joint optimization
problem since it is strictly non-convex. We first provide some
useful lemmas for subsequent use. Then we characterize the
optimal policy by wisely combining the methods of Lagrange
multipliers and considering the problem in two scenarios.

III. ANALYSIS OF THE OPTIMAL POLICY
We first provide an efficient beamforming strategy which
achieves nearly the same performance compared to the opti-
mal approach. From [31], we have the following lemma to
design the beamforming vectors wi.
Lemma 1: For given pi’s, the optimal beamforming solu-

tion is identical to that of [31] under a single-user
multiple-input single-output (MISO) DAS, i.e., the distributed
maximum ratio transmission (DMRT), or w∗i =

gi
‖gi‖

for
i = 1, . . . ,N.
Different from the conventional iterative algorithms which

optimize the two parameters in an alternating fashion, in our
case, we set w∗i =

gi
‖gi‖

independent of pi. Thus, we do not

need to update wi iteratively. Substituting w∗i =
gi
‖gi‖

into the
optimization, our problem can be reformulated as

max
Ci,Di

(
N∑
i=1

√
piγi

)2

(12a)

s.t.
N∑
i=1

Si ≥ 0 (12b)

0 ≤ pi ≤ pmax , ∀i ∈ {1, 2, . . . ,N } (12c)

Di ≥ 0, Ci ≥ 0, ∀i ∈ {1, 2, . . . ,N } (12d)

where γi is the update channel gain, equalling to di−
α
2 ‖hi‖.

Without loss of generality, we assume that all γi’s are
sorted in descending order as γ1 > γ2 > · · · > γN .
In order to further derivations, we also introduce the follow-
ing lemma.
Lemma 2: For η < 1, the solution to (12) satisfies

CiDi = 0 for all i, i.e., the optimal policy of each RAU never
enables the grid charging and discharging simultaneously.

Proof: Let {[Ci,Di]}Ni=1 be a feasible power policy
which satisfies CjDj > 0 for some j. Let

C̄i =
[
Ci −

Di
η2

]+
, (13)

D̄i =
[
Di − η2Ci

]+
, (14)

where

[x]+ =

{
x, x ≥ 0
0, x < 0.

(15)

For all i 6= j, let C̄i = Ci and D̄i = Di. Note that the
current trade states in (10) are unaffected by this change,
since ηCi − Di/η = ηC̄i − D̄i/η, for all i. Therefore, the
allocation policy

{[
C̄i, D̄i

]}N
i=1 is feasible. On the other hand,

the resulting transmit power p̄j at the j-th RAU becomes

p̄j = Ej + D̄j − C̄j =

{
Ej +

Di
η2
− Ci, ηCi >

Di
η
,

Ej + Di − η2Ci, otherwise,
(16)

and as such p̄j > pj due to η < 1, and Ci,Di > 0. Since
the objective function (12a) is increasing in p, the power
allocation policy

{
[C̄i, D̄i]

}N
i=1 achieves better SWIPT than

{[Ci,Di]}Ni=1, and the latter policy cannot be optimal.
We observe from Lemma 2 that we haveCi > 0 andDi = 0

(grid-charging), or Ci = 0 and Di > 0 (grid-discharging), or
Ci = 0 and Di = 0 (referred to as grid-passive). The optimal
policy does not store and retrieve energy simultaneously at
any time. Through Lemma 2, we can also see that

Ci = [Ei − pi]+, (17)

Di = [pi − Ei]+. (18)

Since the problem now in (12) is a convex optimization
problem, Karush-Kuhn-Tucker (KKT) conditions are neces-
sary and sufficient for optimality. Therefore, the Lagrangian
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function can be obtained as

L =
(

N∑
i=1

√
piγi

)2

+

N∑
i=1

λipi +
N∑
i=1

νi(pmax − pi)

+

N∑
i=1

θiCi +
N∑
i=1

ξiDi + µ
N∑
i=1

Si, (19)

where λi, νi, θi, ξi, ∀i and µ are the non-negative Lagrange
multipliers corresponding to the constraints.

The corresponding additional complimentary slackness
conditions are given by

λipi = 0, νi(pmax − pi) = 0, ∀i ∈ {1, . . .N } (20a)

θiCi = 0, ξiDi = 0, ∀i ∈ {1, . . .N } (20b)

µ

N∑
i=1

Si = 0. (20c)

Next, we derive the power allocation solution for DAS with
DMRT. Based on the additional complimentary slackness
condition (20c), we design the strategy by separately solving
two scenarios, namely, smart grid profitable:

∑N
i=1 Si > 0

and smart grid neutral:
∑N

i=1 Si = 0 and then give the entire
optimal policy based on the strategy of each scenario.

IV. OPTIMAL DESIGN OF POWER ALLOCATION FOR
SCENARIO I: SMART GRID PROFITABLE
In this scenario, we can know that

∑N
i=1 Si > 0, and can

obtain µ = 0 from (20c). The KKT optimality conditions
are found by taking the derivatives with respect to Ck and Dk
for k = {1, . . .N } as

∂L
∂Ck
= −

γk
∑N

i=1
√
piγi

√
pk

− λk + νk + θk , (21)

∂L
∂Dk
=
γk
∑N

i=1
√
piγi

√
pk

+ λk − νk + ξk . (22)

The optimal power allocation pk of the k-th RAU can be
divided into three mutually exclusive cases according to the
additional complimentary slackness conditions (20a):

(
p∗k , λ

∗
k , ν
∗
k
)
=


(
0, λ∗k , 0

)
,(

p∗k , 0, 0
) ∣∣0 < p∗k < pmax,(

pmax, 0, ν∗k
) (23)

Theorem 1: The full-power policy: if the smart grid is to
be profitable, i.e.,

∑N
i=1 Si > 0, then the optimal strategy is

that all the RAUs transmit with the maximum power pmax , i.e.,
p∗i = pmax , ∀i ∈ {1, . . . ,N }.

Proof: We consider the three mutually exclusive cases.

Case 1:
(

0, λ∗k ,0
)

When p∗k = 0, we know νk = 0. Thus, setting the Lagrange
function to zero leads to

∂L
∂Ck
= −

γk
∑N

i=1
√
piγi

√
pk

− λk + θk = 0, (24)

∂L
∂Dk
=
γk
∑N

i=1
√
piγi

√
pk

+ λk + ξk = 0. (25)

With the power p∗k = 0, the left-hand-side of (25) becomes
infinity, which contradicts the KKT conditions. Therefore, it
is impossible to allocate zero power to the k-th RAU for ∀k .

Case 2:
(

p∗k ,0,0
) ∣∣∣0 < p∗k < pmax

When the power falls within the constraint 0 < p∗k < pmax,
we know λk = 0 and νk = 0. Similarly, setting the Lagrange
function to zero leads to

∂L
∂Ck
= −

γk
∑N

i=1
√
piγi

√
pk

+ θk = 0, (26)

∂L
∂Dk
=
γk
∑N

i=1
√
piγi

√
pk

+ ξk = 0. (27)

From Case 1, we know all the power p∗k > 0,∀k . Combining
γk > 0, ξk ≥ 0, θk ≥ 0,∀k , the left-hand-side of the above
equation is greater than zero, which contradicts with the KKT
conditions. Thus, the optimal transmission power of the k-th
RAU is pmax for ∀k ∈ {1, . . . ,N }.

This theorem illustrates that if the harvested energy profile
is good enough, not only will the user receive the maximum
SWIPT, but also the smart grid will be power replenished.
This theorem also reveals an interesting strategy in the opti-
mal power allocation pattern, as summarized below.
Lemma 3: Assuming pi = pmax , ∀i ∈ 1, . . . ,N, if we can

obtain that
N∑
i=1

Ei ≥ Npmax +

(
1− η2

)∑
i∈G

(Ei − pmax), (28)

where G denotes the set of the RAUs whose EH rate is greater
than the transmit power (i.e., grid-charging), then p∗i = pmax ,
∀i ∈ 1, . . . ,N is the optimal power allocation strategy.

Proof: Since {G} + {L} + {PA} = {1, 2, . . . ,N }, where
the set L denotes the RAUs whose harvesting rate is less than
the transmit power (i.e., grid-discharging) and {PA} is the set
for the RAUs whose harvesting rate is equal to the transmit
power (i.e., grid-passive), we rearrange (28) as

N∑
i=1

Ei −
∑
i∈G

Ei︸ ︷︷ ︸∑
i∈L

Ei+
∑
i∈PA

Ei

+η2
∑
i∈G

Ei

≥ Npmax −
∑
i∈G

pmax︸ ︷︷ ︸∑
i∈L

pmax+
∑
i∈PA

pmax

+η2
∑
i∈G

pmax. (29)

Since
∑
i∈PA

Ei =
∑
i∈PA

pi =
∑
i∈PA

pmax, we have

η2
∑
i∈G

(Ei − pmax) ≥
∑
i∈L

(pmax − Ei), (30)

∑
i∈G

η (Ei − pmax) ≥
∑
i∈L

(pmax − Ei)
η

. (31)
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Note that grid-charging imposes that Ci = Ei−pi with i ∈ G.
Similarly, grid-discharging imposes that Di = pi − Ei with
i ∈ L. Therefore, (31) becomes∑

i∈G

ηCi ≥
∑
i∈L

Di
η
. (32)

From Lemma 2, it is known that the optimal power allocation
policy for each RAU never enables grid charging and dis-
charging simultaneously. Thus, we have Ci = 0, i ∈ {L,PA}
and Di = 0, i ∈ {G,PA}. Now (32) becomes∑

i∈N

ηCi ≥
∑
i∈N

Di
η
, (33)

N∑
i=1

(
ηCi −

Di
η

)
≥ 0, (34)

N∑
i=1

Si ≥ 0. (35)

Now, the proof is replaced by that when pi = pmax , ∀i, if∑N
i=1 Si ≥ 0, p∗i = pmax is the optimal power strategy.
We prove this by reductio ad absurdum. Assume that when

pi = pmax , ∀i, if
∑N

i=1 Si ≥ 0 and the optimal power strategy
is not p∗i = pmax , ∀i ∈ 1, . . . ,N , that is to say, not all the
RAUs transmit with the maximum power (at least one RAU
transmits with the power that is lower than the maximum).
Let us now say that ∃j ∈ A, where A denotes the set of the
RAUs whose transmission power is lower than the maximum
power and is a non-empty set, i.e., pj < pmax .
As when pi = pmax , ∀i ∈ 1, . . . ,N ,

∑N
i=1 Si ≥ 0. From

this, we know that when the optimal power allocation ∃j ∈ A
which enables p∗j < pmax , the sum of the current trade state
will be greater than zero (

∑N
i=1 Si > 0). From Theorem 1, we

obtain that when the grid is profitable, the optimal strategy
is that all the RAUs transmit with the maximum power pmax ,
which conflicts with the hypothetical proposition.

This lemma indicates that the first step to find the optimal
strategy is to test if the sum of the harvested energy

∑N
i=1 Ei is

greater than or equal to Npmax+
(
1− η2

)∑
i∈G (Ei − pmax).

If yes, the optimal power allocation is settled. Otherwise, the
sum of the trade states will be less than zero,

∑N
i=1 Si < 0

with pi = pmax , which conflicts with the slackness condi-
tions (20c). Thus, we need to decrease the power of some
RAUs to enable

∑N
i=1 Si = 0, which is solved in the next

section.

V. OPTIMAL DESIGN OF POWER ALLOCATION FOR
SCENARIO II: SMART GRID NEUTRAL
Based on the last section, we move towards our final policy.
With

∑N
i=1 Si = 0, the KKT optimality conditions are found

by taking the derivatives of (19) with respect to Ck andDk for
k = {1, . . .N } as

∂L
∂Ck
= −

γk
∑N

i=1
√
piγi

√
pk

− λk + νk + θk + µη, (36)

∂L
∂Dk
=
γk
∑N

i=1
√
piγi

√
pk

+ λk − νk + ξk −
µ

η
. (37)

By setting ∂L/∂Ck = ∂L/∂Dk = 0, we obtain
√
pk
γk
=

∑N
i=1
√
piγi

µη − λk + νk + θk
, (38a)

=

∑N
i=1
√
piγi

µ
η
− λk + νk − ξk

. (38b)

Similarly, the optimal allocation pk of the k-th RAU can be
divided into three mutually exclusive cases according to the
additional complimentary slackness conditions (20a):

(
p∗k , λ

∗
k , ν
∗
k , µ

∗
)
=


(
0, λ∗k , 0, µ

∗
)
,(

p∗k , 0, 0, µ
∗
) ∣∣0 < p∗k < pmax,(

pmax, 0, ν∗k , µ
∗
)
.

(39)

First, we determine the properties of the optimal solution in
the following three lemmas for the three cases.
Lemma 4: For any k and j, if the optimal power of the k-th

grid-charging RAU is pmax , then the power for the j-th grid-
charging RAU having better signal-to-noise ratio (SNR) than
the k-th RAU is determined as pmax . If the optimal power of
the k-th grid-discharging RAU is pmax , the power for the j-th
RAU having better SNR than the k-th RAU is determined as
pmax regardless of the current trade state of the j-th RAU.

Proof: When p∗k = pmax and p∗k < Ek (Ck > 0),
combining the slackness conditions (20a) and (20b) gives

√
pk
γk
=

∑N
i=1
√
piγi

µη + νk
. (40)

As p∗j < Ej, we obtain

√pj
γj
=

∑N
i=1
√
piγi

µη − λj + νj
. (41)

• If pj = 0, we know νj = 0 from (20a), leading to
√pj
γj
=

∑N
i=1
√
piγi

µη − λj
>

√
pk
γk

. (42)

Since γj > γk , pj should be greater than pk (pj > pk =
pmax) to ensure the above relationship, which conflicts
the original assumption pj = 0. As a result, the power
allocation policy pj = 0 cannot be optimal.

• If 0 < pj < pmax , λj = νj = 0, leading to
√pj
γj
=

∑N
i=1
√
piγi

µη
>

√
pk
γk

. (43)

As γj > γk , pj should be greater than pk (pj > pk =
pmax) to ensure the above relationship, which conflicts
the original assumption 0 < pj < pmax . Hence, again,
this policy 0 < pj < pmax cannot be optimal.

In summary, the optimal policy for the j-th grid-charging
RAU is p∗j = pmax . For the grid-discharging RAUs, the
proof is similar to the grid-charging case. No matter what the
current trade state between the j-th RAU and the smart grid
is, if pj 6= pmax ,

√pj
γj

is always greater than γj > γk , and thus
pj should be greater than pk (pj > pk = pmax), which conflict
the assumption pj 6= pmax and completes the proof.
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Importantly, the RAU allocated with the maximum power
is for the better channel gain because the energy loss in trade
with the smart grid encourages spending the harvested energy
directly at the current RAU to ‘‘trade for’’ the data rate and
energy transfer performance to avoid energy ‘‘devaluation’’.
Lemma 5: For any k and j, if the optimal power of the k-th

RAU is zero, the power for the j-th RAU having worse SNR
than the k-th RAU is determined as 0.

Proof: When p∗k = 0, we know that this RAU must be a
grid-charging RAU (Ck > 0) as the harvesting rate of the k-th
RAU is certainly greater than zero. Combining the slackness
conditions (20a) and (20b), we have

√
pk
γk
=

∑N
i=1
√
piγi

µη − λk
, (44)

where νk = θk = 0. If pj < Ej (Cj > 0), we know θj = 0
from (20b), leading to the following results.
• If pj = pmax , we know λj = 0 from (20a) and have

√pj
γj
=

∑N
i=1
√
piγi

µη + νj
<

√
pk
γk

. (45)

As γj < γk , pj should be less than pk (pj < pk = 0)
to ensure the above relationship, which conflicts the
original assumption pj = pmax . In other words, this
power allocation policy pj = pmax cannot be optimal.

• If 0 < pj < pmax , λj = νj = 0 from (20a) and

√pj
γj
=

∑N
i=1
√
piγi

µη
<

√
pk
γk

. (46)

As γj < γk , pj should be less than pk (pj < pk = 0)
to ensure the above relationship, which conflicts the
original assumption 0 < pj < pmax . Hence, this policy
0 < pj < pmax cannot be optimal.

Hence, the optimal policy for the j-th grid-charging RAU
is p∗j = 0. For the grid-discharging RAUs, we can draw
the same conclusion. These indicate that pj = 0 as long
as γj < γk .
When the updated channel gain is worse, the SWIPT per-

formance achieved using the harvesting energy at the current
RAU is lower than the one achieved by trading the energy
with the other RAUs. This is similar to the traditional water-
filling algorithm, where water finds its level when filled in a
vessel with multiple openings until dripping the last drop of
water, showing that the power is always allocated to the one
with better channel gain to earn more worth.
Lemma 6: For any k and j, if the optimal power of the k-th

grid-charging (p∗k < Ek ) RAU is greater than zero but
less than pmax , the power for the j-th grid-charging RAU
having worse SNR than the k-th RAU is determined as p∗j =
γ 2j

γ 2k
p∗k , and all the grid-charging RAUs have the same ratio

between the power allocation and the updated channel gain,

which can be shown as κG =
√
pk
γk
=

√pj
γj
=

N∑
i=1

√
piγi

µη
.

The grid-discharging RAUs have the same property, but at a

lower ratio given by κL =
√
pk
γk
=

√pj
γj
=

N∑
i=1

√
piγi

µ/η
= η2κG.

Proof: For 0 < p∗k < pmax , we obtain λk = νk = 0.
When the grid is charging, it is clear that θk = 0. From (38a),
we then have

√
pk
γk
=

N∑
i=1

√
piγi

µη
. (47)

When pj < Ej, we get

√pj
γj
=

N∑
i=1

√
piγi

µη − λj + νj
. (48)

If pj 6= 0, then λj = 0 and

√pj
γj
=

N∑
i=1

√
piγi

µη + νj
≤

√
pk
γk

(49)

for γj < γk , so pj < pk < pmax and νj = 0. Then we have

κG =

√
pk
γk
=

√pj
γj
=

N∑
i=1

√
piγi

µη
. (50)

From
√
pk/γk =

√pj/γj, we obtain p∗j =
γ 2j

γ 2k
p∗k . Similarly for

the case pk > Ek , pj > Ek , we can obtain

κL =

√
pk
γk
=

N∑
i=1

√
piγi(

µ
η

) . (51)

For η < 1, thus κL = η2κG < κG.
Due to Jensen’s inequality, we also have(

N∑
k=1

√
pkγk`k

)2

≤

N∑
k=1

`k
(√

pkγk
)2
, (52)

where
∑N

k=1 `k = 1 and equality holds if and only
√
p1γ1 =

√
p2γ2 = · · · =

√
pNγN . In other words, the optimal

energy strategy without constraints is equal to
√
pkγk power

allocation. Note that this policy is modified by the constraints
and the electric power transmission efficiency, which leads to
double thresholds κG and κL .

We also note that when 0 < pk < pmax , from the equality
in (38a), we have

√
pk/γk ≤ κG since θk ≥ 0. Similarly, from

the equality in (38b), we have
√
pk/γk ≥ κL since ξk ≥ 0.

Therefore, for 0 < pk < pmax , we have

γ 2
k κ

2
L ≤ pk ≤ γ

2
k κ

2
G. (53)

We observe from Lemma 2 that we have either Ci > 0 and
Di = 0, or Ci = 0 and Di > 0, or Ci = 0 and Di = 0.
When Ci = Di = 0, from (8), we have pi = Ei which
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must satisfy (53). These show that there is a double-threshold
policy on pi. Specifically, when the grid is being charged, the
transmit power equals the charging threshold κG; and when
the grid is being discharged, the transmit power equals the
discharging threshold κL . If the grid is neither being charged
nor discharged, i.e., passive grid, pi = Ei, or the transmitter
uses up all the harvested energy at the current RAU.
Theorem 2: The power policy solving (12) has the follow-

ing double-threshold structure:
• If the grid is charging, i.e., Ek > γ 2

k κ
2
G, pk = γ

2
k κ

2
G.

• If the grid is discharging, i.e., Ek < γ 2
k κ

2
L , pk = γ

2
k κ

2
L .

• If the grid is passive, i.e., γ 2
k κ

2
L ≤ Ek ≤ γ

2
k κ

2
G, pk = Ek .

In summary, Theorem 2 shows that the optimal policy for
the case p∗k

∣∣∣0<p∗k<pmax can be calculated by

p∗k =


γ 2
k (κ
∗
G)

2, if Ek > γ 2
k (κ
∗
G)

2,

γ 2
k (κ
∗
L )

2, if Ek < γ 2
k (κ
∗
L )

2,

Ek , otherwise.

(54)

Based on Lemmas 4–6 and Theorem 2, we can char-
acterize the optimal policy. To find the entire pol-
icy, let us first consider the case

(
p∗k , λ

∗
k , ν
∗
k , µ

∗
)
=(

p∗k , 0, 0, µ
∗
) ∣∣0 < p∗k < pmax . To obtain the optimal power

allocation of this case, we need to find the thresholds κ∗G
and κ∗L for ∀k ∈ 1, . . . ,N in light of Theorem 2. As the
relationship between κG and κL , κL = η2κG based on
Lemma 5, we only need to find the threshold κG, which
will be realized by a one-dimensional linear search. We can
continuously increase the value of κG until the sum trade
states below reach to zero:
N∑
k=1

Sk =
N∑
k=1

(
η
[
Ek − γ 2

k κ
2
G

]+
−

1
η

[
γ 2
k κ

2
L − Ek

]+)
= 0.

(55)

Here, it should be noted that the power cannot exceed pmax .
Therefore, we should check that if there is any power greater
than and equal to pmax based on the value of κG, then set
them to pmax and remove them from the searching set. From
Lemma 5, we can quickly find out all the RAUs which will
be allocated maximum power, and of course these RAUs will
also be removed from the searching set. Since the power for
the rest of RAUs (denoted as set {Re}) need to be redecided,
we then determine the solutions in a similar way for the rest
of RAUs with the new sum constraint of the trade states∑N

k=1
k 6=j

Sk +
∑

j∈N |pj=pmax
Sj = 0, (56)

where Sj =
(
η
[
Ej − pmax

]+
−
[
pmax − Ej

]+
/η
)
. We repeat

this until there is no power greater than and equal to pmax for
the rest of RAUs. Remarkably, in this process, we can find
out which RAUs will be allocated full power (referred to as
Algorithm 1). Next, it remains to examine whether there is
zero-power RAU or not (Algorithm 2). From Lemma 4, we
know that if the last RAU is not allocated zero power, then
there is no zero-power RAU. Therefore, we only check the

Algorithm 1 Finding The Full-Power RAUs
Input:

SMax , {Re}
Iteration:
1: For all k ∈ {Re};
2: if pRe(k) ≥ pmax then
3: {Re} ← {Re} − {Re(k)};
4: Set pRe(k) = pmax ;
5: SMax ← SMax + ηCRe(k) − DRe(k)/η;
6: if pRe(k) > ERe(k) then
7: For all j < k;
8: if ERe(j) > pmax then
9: {Re} ← {Re} − {Re(j)};
10: Set pRe(j) = pmax ;
11: SMax ← SMax + ηCRe(j) − DRe(j)/η;
12: end if
13: else if pRe(k) < ERe(k) then
14: if ERe(j) 6= pmax then
15: {Re} ← {Re} − {Re(j)};
16: Set pRe(j) = pmax ;
17: SMax ← SMax + ηCRe(j) − DRe(j)/η;
18: end if
19: end if
20: end if
Output:

SMax , {Re}

Algorithm 2 Finding the Zero-Power RAUs
Input:

SMax , {Re}, pRe, NRe
Initialization:

Set Target = 0, p̄Re = pRe, S̄Max = SMax ;
Iteration:
1: Set k = NRe
2: Set p̄Re(k) = 0;
3: S̄Max ← S̄Max + ηERe(k);
4: Begin from RAU j = 1, j ∈ {Re} − {Re(k)}, find the

thresholds κG and κL that enable
∑

k∈{Re} Sk + S̄Max = 0
with the Theorem 2 by a one-dimensional search in [4]
or by dynamic programming [32];

5: while j ≤ NRe do
6: Compute p̄Re(j) using equation (54);
7: j← j+ 1;
8: end while
9: Target is equal to the calculation value of (12a) with

respect to the new p̄Re(j);
Output:

Target , p̄Re, S̄Max

last RAU for each loop by comparing the objective function
of having or not having zero power RAU. After this examina-
tion, the optimal policy is found. Combining with Lemma 3,
we have the overall algorithm summarized in Algorithm 3.
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Algorithm 3 Optimal Double-Threshold DAS With SWIPT
Initialization:

Set k = 1, SMax = 0, {Re} = {1, 2, . . . ,N }, NRe =
length(Re), Targetopt = 0;

Iteration:

1: if
N∑
i=1

Ei ≥ Npmax +
(
1− η2

) [∑
i∈G
(Ei − pmax)

]
then

2: while k ≤ N do
3: p∗k = pmax ;
4: k ← k − 1;
5: end while
6: else
7: Begin from RAU k = 1, k ∈ {Re}, find the thresholds

κG and κL that enable
∑

k∈{Re} Sk +SMax = 0 with the
Theorem 2 by a one-dimensional search in [4] or by
dynamic programming [32];

8: while k ≤ NRe do
9: Compute pRe(k) using equation (54);
10: k ← k + 1;
11: end while
12: do Algorithm 1;
13: if NRe = length(Re) then
14: Targetopt is equal to the calculation value of (12a)

with respect to pRe(k);
15: do Algorithm 2;
16: if Target > Targetopt then
17: Targetopt = Target , pRe = p̄Re, SMax = S̄Max
18: Go to Step 15;
19: else
20: p∗ = p;
21: Step out of the iteration;
22: end if
23: else
24: Set NRe = length(Re)
25: Go to Step 7;
26: end if
27: end if
Output:
28: p∗k ,∀k ∈ {1, 2, . . . ,N };

It is emphasized that our proposed algorithm is appli-
cable to DAS regardless of the number of RAUs N and
the number of antennas per RAU M . For illustration, con-
sider a DAS system that has 16 RAUs with 4 antenna
each, for which the electric power transmission efficiency
is η = 0.8 and the per-RAU power constraint is
pmax = 5. The harvested power of each RAU is given
by E = [6, 2, 6, 4, 1, 1, 4, 5, 1, 1, 4, 8, 1, 8, 1, 4] and the
corresponding updated channel gain is in descending order.
We employed Algorithm 3 to determine the optimal power
allocation with results as depicted in Fig. 2. In this chart,
the optimally allocated powers are indicated by stems
while the corresponding threshold levels are shown by bars.
Grid-charging, discharging and passive RAUs are denoted

FIGURE 2. Example illustrating the optimal policy with thresholds κG and
κL, with the number of RAUs N = 16, the number of antennas per RAU
M = 4, and the electric power transmission efficiency η = 0.8.

by the blue, green and yellow bars, respectively. For the
case

(
p∗k , λ

∗
k , ν
∗
k , µ

∗
)
=
(
p∗k , 0, 0, µ

∗
) ∣∣0 < p∗k < pmax (i.e.,

(5-14)-th RAU), we note that the charging RAUs (i.e.,
(11, 12, 14)-th RAU) have the same threshold κG power
roughly equal to 22.7445. RAUs (5, 6, 9, 10) on the other
hand undergo the discharging process, with the same lower
threshold κL roughly equal to 14.5565. The power allocation
of RAUs (7, 8, 13) is shown between charing and discharging
one, which is called grid-passive. We also observe that the
full-power RAUs (i.e., (1-4)-th RAU) and zero-power RAUs
(i.e., (15, 16)-th RAU ) accord with the obtained results in
Lemmas 4 and 5.
Based on the above, now we can obtain the maximumWIT

performance with the value of the splitting power ratio which
is calculated by the minimum WET constraint as

ρ = 1−
Qmin

ξ

((
N∑
i=1

√
p∗i γi

)2

+ σ 2

) . (57)

By substituting this into (7), the whole problem is solved.

VI. NUMERICAL RESULTS
In this section, we present several simulation results to evalu-
ate the performance of the proposed algorithm under different
settings. We considered the optimal value of (12a) as the
SWIPT performance. We assume the channel are Rayleigh
fading and in the simulations, we provide the results by
averaging over 1000 independent randomly generated chan-
nel realizations and 1000 randomly corresponding energy
harvested realizations for each point with fixed α = 2.
We also assume that all the RAUs are randomly and uniformly
deployed in the distance from the user of range (10, 50)
meters. Each RAU has a random energy arrival uniformly
distributed over [1, 8], denoted as U(1, 8).

We start by examining the SWIPT performance as a func-
tion of N for DAS with a different number of antennas
per RAU in Fig. 3. The per-RAU power constraint is set
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FIGURE 3. The WET performance versus the number of RAUs and the
number of antennas per RAU with Ek ∈ U(1,8),∀k .

as pmax = 5 and the electric power transmission efficiency
is assumed as η = 0.8. It is shown that we can achieve higher
SWIPT as N increases and the performance gap becomes
larger with the number of antennas. This is due to the fact
that when the number of RAUs is small, the average distance
between the RAU and the user will be large, and the large-
scale fading will correspondingly be large, thereby inferior
performance from the start. As the the number of RAUs
increases, the average distance becomes shorter and the per-
formance will increase significantly.

FIGURE 4. The WET performance versus the number of RAUs and the
per-RAU power constraint with Ek ∈ U(1,8),∀k .

Fig. 4 illustrates the SWIPT performance with different
per-RAU power constraints. The number of antennas per
RAU is set as M = 4 and the electric power transmission
efficiency is set as η = 0.8. The SWIPT performance of our
algorithm gradually improves and the performance increases
slowly as pmax increases. This is because all the power allo-
cated will be smaller than pmax with high probability, and as
a result, p∗k ’s will not change any more. This is especially the
case when the required SINR is lower.

FIGURE 5. The WET performance versus the number of RAUs and the
electric power transmission efficiency with Ek ∈ U(1,8),∀k .

Fig. 5 shows the SWIPT performance for different electric
power transmission efficiency. The number of antennas per
RAU is set as M = 4 while the per-RAU power constraint is
set as pmax = 5. We see that through our optimal proposed
policy, even if the electric power transmission efficiency is
small, the SWIPT will not decrease much. We also observe
that the SWIPT performance of η = 0.9 will be very close
to the perfect case η = 1. This is because that we choose to
share the energy to achieve more benefit with the modified
Jensen’s inequality policy. When the electric power transmis-
sion efficiency is small, the optimal policy will use the energy
harvested directly instead of sharing it to avoid energy loss.

To provide some comparisons to help understand the per-
formance of our proposed scheme, we consider several sub-
optimal transmission policies as banchmearks in Fig. 5:
• Greedy—The EH device directly fuels the RAU if
energy is sufficient for maximum power transmission
and the excessive energy charges the grid; otherwise
the RAU uses up all the current harvested energy. Then
the grid discharges the charging energy to the RAU
which transmits with power lower than pmax but has
the best update channel gain among the non-maximum
power RAUs. The grid continues to discharge any charg-
ing energy left.

• Water-filling—An adaptive water-filling policy is found
by adapting the power to the undate channel gain γ . The
power allocated to each RAU is calculated by

pk = min

(
pmax,

[
ς −

1
γk

]+)
, (58)

where the cutoff water level ς is calculated as the solu-
tion of the following equation:

N∑
k=1

Sk =
N∑
k=1

(
η [Ek − pk ]+ −

1
η
[pk − Ek ]+

)
= 0.

(59)
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FIGURE 6. Comparison of the SWIPT performance with different policies
versus the number of RAUs, with pmax = 5, M = 4, Ek ∈ U(1,8),∀k .

FIGURE 7. The WIT-WET region versus the PS ratio, with pmax = 5,
η = 0.8, M = 4, Ek ∈ U(1,8),∀k .

Results in Fig. 6 indicate that the proposed optimal policy
outperforms the other two schemes, regardless of the number
of RAUs and the electric power transmission efficiency. Note
that the water-filling algorithm performs worse if the electric
power transmission efficiency is low η = 0.8 because it
does not take η into account which leads to large energy loss
due to sharing. Also, as expected, the greedy policy performs
slightly worse than the optimal one. That is, in the low η

case, there will be fewer energy sharing among the RAUs to
avoid energy loss. The greedy policy itself mainly focuses on
using up the current harvesting energy first. Thus, these two
strategies have similar management and performance.

Finally, we provide the WIT-WET region versus the PS
ratio ρ. It is assumed that ζ = 0.5, σ 2

= 1, and τ 2 = 1.
The PS ratio increases from left to right in the figure with
the range [0, 1]. We observe that with ρ increasing, the WIT
(rate) improves with theWET performance drops. It is shown
that when the number of the RAUs is large, the increasing rate
of the WIT performance is faster than WET’s.

VII. CONCLUSION
This paper investigated the optimal energy cooperation policy
for SWIPT DAS. Optimization was done in the framework of
WIT maximization, subject to minimum WET constraint as
well as energy causality and green smart constraints. From the
WIT and WET formulation, we showed that the optimization
can be solved bymaximizing |

∑N
i=1
√
pigHi wi|

2, first with the
PS ratio ρ fixed and then adjusting it in accordance with the
WET constraint. It was also revealed that the former problem
can be solved by dividing the green smart constraint into the
smart grid profitable, and the smart grid neutral cases. A full-
power transmission strategy was derived in the former case.
As to the latter one, we demonstrated that the optimal policy
takes one of the three power allocation forms: maximum
power allocation, zero power allocation, and a mix between
the two. Each form has its property, especially for the last
one, which has a double-threshold structure. Based on this,
we proposed a double-threshold strategy to solve the entire
problem and provided an algorithm to efficiently find the
solution. Numerical results were presented to validate the the-
oretical analysis and to demonstrate the superior performance
of the optimal proposed policy over other two schemes in the
literature.
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