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Abstract:  

 

Free water exit of an initially fully-submerged buoyant spheroid in an axisymmetric flow, which is 

driven by the difference between vertical fluid force and gravity, is investigated. The fluid is 

assumed to be incompressible and inviscid, and the flow to be irrotational. The velocity potential 

theory is adopted together with the fully nonlinear boundary conditions on the free surface. 

Surface tension has been neglected and the pressure is taken as constant on the free surface. The 

acceleration of the body at each time step is obtained as the part of the solution. Its nonlinear 

mutual dependence with the fluid force is decoupled through the auxiliary function method. The 

free-surface breakup by the body penetration and the water detachment from the body are treated 

through numerical conditions. Slender body theory based on the zero potential assumption on the 

undisturbed flat free surface is adopted, through which a condition for full water exit of a spheroid 

is obtained. Comparison is made between the results from the slender body theory and from the 

fully nonlinear theory through the boundary-element method, and good agreement is found when 

the spheroid is slender. Extensive case studies are undertaken to investigate the effects of the body 

density, dimensions and the initial submergence. 
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1. Introduction 
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Water entry and exit have been the topics of extensive interests in hydrodynamics because of their 

wide range of applications in naval architecture, ocean engineering and costal engineering, etc. 

There has been a large body of the work on water entry (Scolan & Korobkin (2001), Baarholm & 

Faltinsen (2004), Moore et al. (2012) and Wu & Sun (2014)). Relative to water entry, there has 

been far less work on water exit. Part of the reason is that instead of the increase of fluid loads, or 

forces, during water entry, they decrease usually during water exit, during which the wetted 

surface decreases with time and the liquid and body may detach from each other eventually. The 

fluid loading in many cases is not as excessive as that in water entry problems. Another reason is 

that it is difficult to use the Wagner theory, which uses a linear free surface boundary condition 

with a correction for the waterline and is commonly used in the water entry, in the water exit 

problem. In other words, it is not easy to reverse the process of water entry to water exit directly in 

the mathematical method. However, water exit is also an important engineering problem. In fact, 

for a ship in rough seas, its bow will repeatedly emerge from water and then hit water surface, 

which forms a continuous water exit/entry process. In the sport, measurement has been made for 

the pressure/acceleration change during water exit of the head of a breaststroke swimmer (Pansiot 

et al., 2010).  

 

There are two major difficulties in water exit problem, related to free-surface breakup and water 

detachment from the body (Ni et al., 2015). Early work on water exit was usually based on the 

assumption of the flat free surface. Therefore when the lowest point of the body was above the 

undisturbed water level, the body was thought to be fully exited. Moran (1963) developed a 

second-order theory for a slender body of resolution by expanding the boundary condition based 

on the ratio of the transverse and longitudinal dimensions of the body. He then considered an 

image solution for a constant-strength point source moving towards a free boundary (Moran 1964) 

and further gave a review on the problem (Moran 1965). Recently Tassin et al. (2013) studied the 

water exit problem of a body with time-varying shape, which entered water initially and then 

reversed its vertical speed at later stage. The free surface was elevated based on the Wagner theory 

used during water entry stage. Korobkin (2013) studied the water exit of two dimensional (2D) 
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and axisymmetric bodies, which were initially partially submerged and suddenly started to move 

upwards at a constant acceleration. Boundary conditions on the liquid surface were linearized and 

imposed on its undisturbed position. The wetted surface of the body was simplified by using the 

so-called ‘equivalent flat-plate approximation’. This was extended by Korobkin et al. (2014) for a 

prescribed and varying acceleration, and extended by Khabakhpasheva et al. (2015) for the 

problem similar to that considered by Tassin et al. (2013).  

 

For the problem with the deforming free surface caused by the body motion, Greenhow & Moyo 

(1997) considered a 2D circular cylinder by using the boundary-element method (BEM) based on 

complex velocity potential. The free-surface shape was tracked through the fully nonlinear 

boundary condition. They simulated the fluid flow during the rise of the cylinder at a given 

vertical velocity. The results at initial stage were compared with those from small-time expansion 

solution by Tyvand & Miloh (1995) and simulation was terminated before the breakup of the free 

surface or body piercing. Liju et al. (2001) considered water exit of an axisymmetric body at 

different Froude number using BEM. Numerical result was compared with their experimental data 

from a model test in small scale. The simulation was also terminated before body piercing. 

Rajavaheinthan & Greenhow (2015) studied water exit of 2D bodies at constant acceleration using 

BEM with the fully nonlinear free-surface boundary condition. The body was initially floating on 

the free surface and therefore it was already beyond the free-surface breakup stage. They 

calculated the free-surface deformation and terminated the simulation before fully water exit. A 

very recent work by Ni et al (2015) considered the entire process of the water exit of an 

axisymmetric body. The body was initially fully submerged and was given a vertical constant 

speed. The deformation of the free surface was followed based on the fully nonlinear theory. As 

the body continued to move up, it would first pierce the free surface and would fully exit water 

later. The whole process was simulated through the axisymmetric BEM with time stepping 

technique (Longuet-Higgins & Cokelet 1976).    

 

In all these cases above, the body speed is prescribed, whether it is constant or varying with time. 

In the present work, we shall solve the complete problem of water exit of an initially fully 
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submerged buoyant body including determination of the free motion. When the body is lighter 

than liquid, it will move up and pierce the free surface. When the density is sufficiently small, the 

body is expected to move further up and exit water fully. This phenomenon is also known as ‘pop 

up’ or ‘pop off’, which was studied based on experiments by Bourrier et al. (1984) and by 

Truscott et al. (2016). During the simulation of this process, the difficulty associated with the 

mutual dependence of the body acceleration and the fluid force will be decoupled by the auxiliary 

function method (Wu & Eatock Taylor, 2003). The free-surface breakup and liquid/body 

detachment will be solved based on the method described in Ni et al. (2015). A condition for the 

density below which the body will exit water fully will be derived based on the slender body 

theory. Extensive case studies based on spheroids will be undertaken for the effects of body 

density, dimensions and submergence.  

 

2. Mathematical model and numerical procedure 

2.1 Mathematical model  

 

Fig. 1. Sketch of the problem with initial position and velocity of the buoyant body as well as the 

Cartesian coordinate system O xyz  

 

We consider the vertical water exit of a buoyant body. Without loss of generality, the body is a 

prolate ellipsoid, oriented with its axis coinciding with the vertical z-axis of coordinates, and it 

has two semi-axes, b and a, where 0 a b  , as shown in Fig 1. Initially the water surface is 

calm and the spheroid is fully-submerged with the depth of submergence as h. A Cartesian 
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coordinate system O xyz  as well as a cylindrical coordinate system O r z  are defined, in 

which the origin O  is located on the undisturbed free surface and z  points vertically upwards 

and passes through the major axis of the body. When the body motion is along the z  axis, the 

flow is then axisymmetric. The fluid is assumed to be incompressible and inviscid, and the flow to 

be irrotational. Thus the fluid flow can be described in terms of velocity potential  , which 

satisfies the Laplace’s equation:  

2 0   ,                                    (1) 

in the fluid domain. The impermeable boundary condition on the wetted part of the rigid body 

surface 
b

s  is given by  

 ( ) ( ) z= W t W t n
n


  


k n ,                           (2) 

where ( )W t  is the vertical velocity of the body, which is a function of time and needs to be 

found at each time step, k is the unit vector along z axis, ( , )r zn nn
 
is the normal vector of the 

body surface pointing out of the fluid domain and 
zn  is its z component. On the free surface 

f
s , 

the fully nonlinear kinematic and dynamic boundary conditions can be written below in the 

Lagrangian framework: 

, ,
Dr Dz

Dt r Dt z

 
 
 

                           (3) 

21
| |

2

D
gz

Dt


   ,                            (4) 

where /D Dt  is the substantial derivative following a fluid particle,
 

g  is the acceleration due to 

gravity. Bernoulli equation and constant pressure on the free surface have been used in Eq.(4). The 

boundary condition at infinity s  is based on the assumption that the fluid there is undisturbed. 

We have  

2 2

2 2

1
( ).O r z
r z

   
                      

  (5) 

As both the body and the water surface are initially stationary, the initial conditions can be given 

as (0) = 0W  for the body and = 0  on the flat free surface. Eq. (1) can then be solved together 
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with the boundary conditions Eqs.(2)-(5) and initial conditions as an initial-boundary-value 

problem (IBVP). 

 

2.2 Boundary-element method 

 

By using the Green’s third identity with the Green function G , Laplace’s equation can be 

converted into the following boundary integral equation:  

( )
( ) ( ) ( , ) ( ) ( , )

q qs

G G ds
n n


  

   
   


q

p p p q q p q ,             

 

(6) 

where s  is the domain boundary including 
b

s , 
f

s  and s . In the equation p  is the field 

point, q  is the integral (or the source) point on the boundary and ( ) p  is the solid angle when 

observing the flow field at point p . The Green function in the three-dimensional domain is 

( , ) 1/G  p q R r , where 
2( , , )R Z R and 

1( , , )r z r  are the position vectors of p  and q  

respectively.  

 

The boundary-element method is adopted to solve Eq.(6). The detailed procedure was provided in 

Ni et al. (2015) and only a brief description is provided here as follows. The integration of 

ds rd dl  can be split into those with respect to   and r respectively, where dl is an element of 

infinitesimal arclength of a meridian line drawn on the body. Because of the axisymmetry of the 

problem, the former can be performed explicitly. The remaining integral will be with respect to r 

along a closed line b fl l l l   . This is then divided into many straight line elements and the 

linear shape function is used within each element (Ni et al. 2013). The integration over l  can be 

replaced by that over a control surface 
cl  

at a large distance from the body, where / 0n  
 
is 

imposed.  

 

Nondimensionalisation is adopted to make the problem general. Different from that in Ni et al. 

(2015), the initial velocity of the body is zero and therefore it is not suitable to be used as one of 
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the base parameters. Instead, nondimensionalisation is applied based on the semi major axis b, the 

acceleration g  due to gravity, and the density of the fluid  . Thus we use /b g  for time, 

gb  for the velocity, 
3gb  for the velocity potential and gb  for pressure respectively. The 

nondimensionalized parameters will then be denoted by a bar. The boundary conditions on the 

body surface and the free surface can be rewritten as: 

zW n
n


 


,                                (7) 

, ,
Dr Dz

Dt r Dt z

 
 
 

                          (8) 

21
| |

2

D
z

Dt


   ,                            (9) 

where /W W gb  is the dimensionless velocity of the body which varies with time. In 

addition, we define /h b   as the initial submergence parameter. 

 

Time stepping method will be adopted to solve this boundary-initial-value problem. Without loss 

of generality, the initial conditions can be set as (0) 0W 
 
for an initially static body and 0   

on the initially calm free surface. As a result, the buoyant body will rise just relying on the fluid 

force. As in Ni et al. (2015), the Euler method for differential equations is adopted in 

time-stepping to update both the body velocity/position and the shape of and the velocity potential 

on the free surface. The choice of the time step is based on the velocity and acceleration of fluid 

particle, or: 

 1 min / | |t C l    ,

                        

(10a) 

2

2

1
/ max | |

2
t D z

 
    

 
,                       (10b) 

 1 2
min ,t t t    ,                        

     

(10c) 

where l  and   are respectively the length of a local element and the corresponding fluid 

particle velocity at the element, and C and D are constants. Through Eqs.(10), the changes of both 



8 
 

the position of a fluid particle and the velocity potential are confined to ensure stability and 

accuracy. Based on the discussion in Ni et al.(2015), we adopt C=1/120 and D=1/2400 in this 

paper.  

 

During water exit, the body will break up the free surface when its front emerges from water, and 

detach from the free surface when its back departs from water. The breakup and detachment of the 

free surface must be carefully treated in numerical modelling. Following the procedure described 

in Ni et al. (2015), it is assumed that the free surface will break up when the thickness of the water 

layer right above the top of the body is smaller than a critical distance cl . Before the back of the 

body detaches from the water, a water column is usually seen to be attached to the body surface. It 

is assumed when the radius of the water column is smaller than cl , body/liquid detachment will 

occur in the numerical simulation at the next time step. Ni et al. (2015) have undertaken extensive 

numerical investigations and found that the results of interest are not sensitive to the choice of 

cl  
when it is sufficiently small. It is taken as 10% of the element size on the body in the present 

work.  

 

2.3 Decoupling of the motion of the body and fluid flow 

 

For a buoyant submerged body driven into motion by the difference between the fluid force and 

the weight, ( )W t  in Eq.(2) is unknown and needs to be found from integrating the acceleration 

dW/dt  with respect to time. However dW/dt
 
is directly related to fluid force which further 

depends on the body motion. One way to decouple the nonlinear mutual dependence is to use the 

auxiliary function method (Wu & Eatock Taylor, 2003), which can be summarised below. 

 

By using Newton’s second Law, the body motion equation is  

e

dW
m F F

dt
  ,                               (11) 

in which the mass of the body
 

24 / 3B B Bm V a     with constant body density 
B , e

F  is 
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the external force exerted on the body, which is 
e

F m   when only the gravity is considered. 

F  is the fluid force and can be obtained by integrating the fluid pressure obtained from the 

Bernoulli equation over the wetted body surface:  

21
( )

2
b b

z z z

s s

F F P n ds z n ds
t


        

  .               (12) 

The term / t   on the right hand side of Eq.(12) is problematic in direct numerical calculation 

through time-difference method . We follow the method proposed by Wu & Eatock Taylor (2003). 

/ t   can be seen as a harmonic function, which satisfies Laplace’s equation, 

2 0
t


 


,                                (13) 

 

The boundary condition for / t   on the free surface is  

21

2
z

t


   


.                             (14) 

 

A relation valid on the body surface can be written as (Wu, 1998): 

( / ) ( / )
z

t dW z
n W

n dt n

     
 

 
.                      (15) 

 

Here we introduce two auxiliary functions 
1( , , , )x y z t

 
and 

2 ( , , , )x y z t  (Wu et al., 2004) 

and let  

1 2

dW
W

t dt z
 

 
  

 
.                         (16) 

 

1  
and 

2  both satisfy the Laplace’s equation in the fluid domain and the following boundary 

conditions, 
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1

1

1

0

0

z b

f

c

n on s
n

on s

on s
n














 

 

 
 and    

2

2

2

2

0

1

2

0

b

f

c

on s
n

z W on s
z

on s
n








 




    







.  (17) 

 

The problems for 
1  

and 
2  can be easily solved by a similar procedure used for the velocity 

potential  . Subsequently the body motion equation can be found by substituting Eqs.(16) and 

(12) into Eq.(11). We have  

2

1 2

1
( )

2
b

z e

s

dW dW
m W z n ds F

dt dt z
 


       

 ,           (18)
 

which can also be written as 

2

2

1
( ) ( )

2
b

a z e

s

dW
m m W z n ds F

dt z



       

 ,            (19) 

where 

1

b

a z

s

m n ds  ,                             (20) 

which is an added mass (Wu & Eatcok Taylor 2003). After 
1  

and 
2  solved, /dW dt  can 

be easily obtained by solving Eq. (19). As a result, the fluid force on the body is:  

e

dW
F m F

dt
  .

                          
  (21) 

 

2.4 Slender body theory 

 

For a small value of the slenderness a/b such that 0 / 1a b  , we may adopt the slender body 

theory. The force F  in Eq.(11) can be decomposed into the hydrodynamic one dF
 and the 

hydrostatic one sF : 

d s

dW
m F F m

dt
   . 

                           
(22) 
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When the body is slender, the free surface can be assumed to be undisturbed, and 0   on 

0z  , Within this framework the hydrodynamic force can be written as (Wu 1998)  

1

2

a

d a

dm dW
F W m

dt dt
   ,                           (23) 

where the added mass 

b b

a z

s s

m ds n ds
n


 


 
  , 

                         
(24)

 

with /W   . Here 
am  is slightly different from that in Eq.(20), as   here satisfies 0   

on 0z   while 
1  in Eq.(20) satisfies 

1 0   on z  . The hydrostatic force can be written 

as 

b

s z d

s

F zn ds V   , 
                            

(25) 

where dV  is the volume of the body below the flat free surface, which varies with time when the 

body has pierced the free surface.  

 

Substituting Eqs.(23) and (25) into (22), we have  

1
( ) ( )

2

a

a s

dmdW
m m W F m

dt dt
    .                     (26) 

 

For a prolate ellipsoid, one has  

3

1 1

/ 1 3 1
1 1

2 4 4

c

d B

c c c

z

V V
z z z

 


 
    



,

                    

(27) 

where 
cz  is the vertical coordinate of the centre of the body and 

B
V  is the volume of the full 

prolate ellipsoid defined after Eq.(11).  

 

Based on the slender body theory (Mackie, 1962, Newman, 1977),   in Eq.(24) can be written 

as  

1

2 2 1/21

1 ( )
( , )

4 [( ) ]

c

c

z

z

S d
z r

z r

 


 

 




 

  ,

                    
 

(28) 
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where ( )S   is the cross-sectional area of the body at z   and ( )S   is its derivative. For the 

case of a prolate ellipsoid,  

2 2

2 2

[1 ( ) ] ( 1 0)
( )

[1 ( ) ] (0 1 )

c c

c c

a z z
S

a z z

  


  

     
 

    

.  

and hence  

2

2

2 ( ) ( 1 0)
( )

2 ( ) (0 1 )

c c

c c

a z z
S

a z z

  


  

    
  

    

.  

Substituting ( )S   into Eq.(28), after integration we can obtain: 

2 2 2
2 2

2 2

2 2

2 2

2 2

( , ) { ( 1 ) ( ) ln
2 1 ( 1 )

1 (1 )
(1 ) ( ) ln }

c c

c c

c c

c c

a z z r
z r z z r z z

z z z z r

z z z z r
z z r z z

z z r


  

      
     

     
     

  

,

      

(29) 

where 
21 ( )cr a z z    when the potential is considered on the body surface. 

 

For the axisymmetric problem Eq.(24) can be converted into 

0

1 2
2 2

1c

b

z
a z

z
l z

n r
m n rdl dz

n


  


 


  ,

                      

(30) 

where 
2 2

( )

1 ( 1)( )

c

z

c

a z z
n

a z z




  
. By substituting Eq.(29) into Eq.(30), one can obtain the added 

mass. Through Eq. (26) one has the acceleration of the body  

21 1
( ) / ( ) ( ) / ( )

2 2

a a

s a s a

c

dm dmdW
F m W m m F m W m m

dt dt dz
        .

       
(31) 

  

Defining 2W  and noticing  

21

2c c

dW dW dW
W

dt dz dz
  ,                            (32) 

we obtain a linear ordinary differential equation for  ,  

/
2a c s

a a

dm dz F md

dz m m m m


   

 
.                         (33) 
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This can be solved through the standard procedure, from which with the initial condition 

(0) 0W  , we have       

2 ( ) ( )
cz

s
c

a B s

F m dz f z
W

m m k







   

 


,                   (34) 

where 4 21 3 3
( ) (1 2 ) (2 2 )

8 4 8
c c c B c Bf z z z z          with /h b   as defined in section 

2.2, and /s a Bk m V  is the added mass coefficient. 

 

Substituting Eq.(34) into Eq.(31), we have 

2 2

( )
( )

2

( ) ( )

cz
a s cd

s B

s c cB

a a B s B s

dm dk f zV
F m dz

F m dz dzVdW

dt m m m m k k




 


 


   

   


.         (35) 

 

In order to be sure that the body rises wholly out of the water (above the initial still water level), 

we must have 0W   when 1cz  . This gives us a condition to find the critical density 
,B c  of 

the body, below which the body will exit water fully. By substituting 0W   and 1cz   into 

Eq.(34), one can calculate from (1) 0f   to obtain 

,
1

B c








.   

                            
(36) 

 

Under this condition Eq.(35) gives / 1dW dt   . This in fact means that the acceleration equals 

to that due to gravity, which is expected as there is no fluid force at this moment. As 1   for an 

initially fully-submerged body, we have 
,1/ 2 1B c  . When 

,B B c  , the body will exit water 

fully. When 
, 1B c B   , the body will exit water partially before it falls down. For the latter 

case, one can calculate the largest vertical coordinate
 cz  from ( ) 0cf z  .  
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3. Numerical Results and Discussions 

3.1 Convergence study and comparison study  

3.1.1 Convergence study  

 

We first undertake the convergence study of a buoyant body with different meshes. The body has a 

small density 0.2
B

   relative to the fluid, a dimensionless minor axis =1/4a  and submergence 

parameter 1.1  , which will burst out of the water totally based on the slender body theory in 

Eq.(36). The initial total number of elements on the body surface in the meridian plane is taken as 

40bN 
 
and 60bN   respectively. Elements of equal size 

bl  are used on the body surface 

and on the free surface within a prescribed radius from the axis of symmetry. Beyond the 

prescribed radius, element size increases gradually until it reaches a maximum. The prescribed 

radius on the free surface is taken as 5a  and the control surface is truncated at 50a  as a 

cylinder in this paper. As described in section 2.1, the critical distance cl  for the free-surface 

breakup and the flow detachment
 
is taken as 10% of 

bl . This will become smaller when 
bl  

decreases and therefore the sensitivity of the effect of cl  is embedded in the convergence study 

with element size.  

 

  

(a) (b) 

Fig.2 Convergence study with element size, the time history of (a) velocity W and (b) acceleration dW/dt of 
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the body 

 

Fig.2 gives the time histories of the velocity and acceleration of the body with two different 

meshes, until the moment of the flow detachment. The figure shows good mesh convergence. At a 

smaller cl  
the time of detachment is slightly delayed. This is understandable based on the 

present methodology, as the body will move a bit further up and the wetted surface at the bottom 

of the body will become a bit smaller before the liquid detachment in the numerical simulation. It 

is interesting to see that during this period of delayed detachment the nondimensionlized 

acceleration of the body is almost 1 . This indicates that the body is virtually in the free fall 

motion and the hydrodynamic force from the very small wetted surface is negligible. Thus a small 

delay of the liquid detachment does not affect the real physics of interest.    

 

3.1.2 Comparison study 

 

  

Fig. 3. Acceleration of the body as a function of cz  Fig. 4. Velocity of the body as a function of cz    

 

We then compare the numerical results of BEM with those from the slender body theory (SBT). 

The initial total number of elements on the body surface in the meridian plane is 40bN  , and 

value of other parameters are taken as the same as those in section 3.1.1. Fig.3 presents the 

variation of acceleration of the body as a function of cz , by using SBT and BEM respectively. It 

can be seen the results from these two methods agree well, especially in the middle part of the 
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curve which corresponds to post breakup of the free surface. In SBT, the calculation terminates at 

1cz   when the body departs from the flat free surface. BEM simulation continues because of 

the rise of the free surface. This is the principal reason why these two curves have a bigger 

difference at the final stage of water exit. It can be seen that / 1dW dt    when the body 

detaches from the water, as the fluid force becomes zero and the external force is gravity only. 

Fig.4 provides the variation of velocity of the body with its position. The agreement between 

results from SBT and BEM is even better than that in Fig.3. 

   

To further check the accuracy of BEM results, an equation alternative to Eq.(21) is used to obtain 

the force. We may use (Wu & Ma, 1995):  

2

( ) ( ) ( ) ( )

1
[ ( ) ]

2
b b b

z z z z

s t s t s t c t

d
F n ds n ds zn ds dc

dt z n r

  
        

      ,

    

(37) 

where ( )c t  is the waterline of the body. The last term on the right hand side of Eq.(37) is zero 

before body pierces the free surface. The first term is calculated using the difference method. This 

equation is usually accurate, apart from at the time step when remeshing is applied. In such a case 

the difference due to different meshes at t  and t t 
 
may be amplified by the first term. 

Fig.5 gives the results from the two methods. It can be seen that the forces from Eqs. (21) and (37) 

agree well both before and after the free-surface breakup.    

 

 

Fig. 5. Time history of the fluid force on the body  
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We may also check energy conservation in our results. The total mechanical energy ( )fE t  of the 

flow, including the kinetic and gravitational potential energies, can be written as 

 2 2

( ) ( )

1 1 1 1
( ) ( ) ( )

2 2 2 2
b f b f C

f z z

V t s t s s s s s

E t z dv z n ds ds z n ds
n n

  

 
        

     .

 

(38) 

 

The energy ( )bE t  of the body is  

21
( )

2
b cE t mW mz  .                            (39) 

 

From the energy conservation law, we should have ( ) (0) 0E E t E    , where 

( ) ( ) ( )f bE t E t E t  . 

 

 

Fig. 6. Time histories of mechanical energy variations of the fluid and the body 

 

Fig.6 gives the time histories of energy variations relative to their corresponding initial values of 

the fluid and the body. It can be seen that E  is almost zero, which is in fact 42 10E     in 

our numerical calculation, in the entire simulation and it shows that the energy conservation has 

been maintained well.  
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Fig.7 Free-surface profiles in the 0 0y   plane in the moving coordinate system (1): 0t  , (2):

0.4305t  , (3): 0.7088t  , (4): 0.9142t  , (5): 1.0977t  , (6): 1.2580t  , and (7): 1.4191t  . 

 

After the convergence study and comparison, Fig.7 provides the free surface at 
0 0y   plane in 

the moving coordinate system 0 0 0O x y z  with its origin fixed at the centre of the prolate 

ellipsoid. The initially stationary body accelerates suddenly under the action of its net vertical 

force and pushes the water right above upwards and sideway. When the body is close to the free 

surface, the water layer above the top of the body becomes thinner and thinner. In Fig.7 (2), the 

very thin water layer has just been removed based on the numerical procedure outlined in Section 

2.1 and the body has just pierced the free surface. After that the body continues moving upwards, 

while the waterline, or the intersection of the free surface and the body surface, stays above the 

undisturbed free surface. The water detaches from the body at 1.4191t   in Fig.7 (7). It can be 

seen a water column below the body has formed at the time of detachment and the free surface is 

expected to oscillate afterwards under the gravitation. The disturbance will be propagated away in 

the form of wave radiation. 

 

3.2 Case study 
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We now further undertake three sets of case studies corresponding to the variations of body 

density B
 , minor axis a  and initial submergence parameter  . Elements discretization is the 

same as that in section 3.1.2 with 40bN  .  

 

3.2.1 Body density B
  

 

 

Fig. 8. Velocity of the body as a function of cz  at different body density ( 1 / 4a   and 1.1  , 

simulation terminates at the moment of either 0W   or the body detaching from water)  

 

As can be expected, body density B
  is a dominant parameter in the free water exit of a buoyant 

body. We take 1 / 4a  , 1.1   and change B
  from 0.1 to 0.9 with interval 0.1. Fig. 8 

provides the velocity of the body as a function of cz  at different body density, where the arrow 

indicates the direction of increasing B
 . Based on Eq.(36) of SBT, the critical density for 

complete water exit is ,
11/ 21 0.5238

B c
   . In the BEM, the critical density can be established 

based on the assumption that there will be full water exit if when the body speed 0W  , the 

difference between its acceleration /dW dt  and that due to gravity is less than 1%. This 

condition in fact implies that there is hardly any water attached on the body as there is hardly any 

fluid force. Based on this, our numerical tests have shown that when B
 =0.2, 0.3 or 0.4 the body 

exits water fully, while at B
 =0.5, 0.6 or 0.8 the body will emerge from water but will not detach 
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from the water, or it is a partial water exit. Thus the critical body density 0.4< ,B c
 <0.5, which is 

lower than that from SBT with a flat surface. There are obviously two reasons for this. Firstly in 

the fully nonlinear theory, some of the body energy will be converted into the potential energy of 

the fluid as well as its kinetic energy. Thus, there may be less energy in the body to maintain its 

rise and the body has to be lighter if it is to detach water completely. The second reason is that in 

SBT, the body is out of water fully when 1
c

z   or when the lowest point of the body is above the 

flat free surface. In the fully nonlinear BEM, the water surface moves up and the lowest point of 

the body is still in the water at 1
c

z  . From Fig.8, one can see when a body detaches from water, 

1
c

z  .  

 

 

Fig. 9. Acceleration of the body as a function of cz  at different body density ( 1 / 4a   and 

1.1  ) 

 

Fig.9 provides the acceleration as a function of cz . It can be seen the lighter the body is, the 

larger the acceleration is. This is very much due to the larger difference between the buoyancy and 

weight, which acts on a body of smaller mass. Furthermore, the dynamic effect becomes more 

significant for the lighter body, through which the acceleration of the body rises before it falls. For 

the cases of body existing water fully, the acceleration of the body with small density (such as 0.2, 

0.3) falls sharply to 1  just before departing from the water, which means a rapid decline of 

hydrodynamic force. While for the one with density close to the critical density ,B c
  (such as B


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=0.4), the acceleration falls more gently to 1 . In fact there is a relatively long period over which 

the acceleration is close to 1  before the body detaches from water. This is because the velocity 

of the body is close to zero at the final stage when B
  is close to the critical value. A small 

wetted surface will remain for a longer period of time, over which the fluid force is nearly zero.       

 

 

Fig. 10. Fluid force on the body as a function of cz
 at different body density ( 1 / 4a   and 

1.1  ) 

 

Fig.10 gives the fluid force as a function of cz . It is interesting to see that the force on a heavier 

body is actually larger than that of a lighter one in the initial stage, although its acceleration is 

smaller. We may use Eq.(19) at t =0. This gives 

(1 )B B

B B a

VdW

dt V m









.
                              

(40) 

 

For a lighter body of smaller 
B , /dW dt  is obviously larger. However from Eqs. (21) and (40), 

we have at t =0  

 

1

B a

z

a

B B

V m
F

m

V






.
                                

(41) 

 

This shows that zF  is larger for a body of the same shape but bigger 
B , which is reflected in 
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Fig.10. It is also interesting to see that while the acceleration of the body in Eq.(40) can change 

sign, depending on whether the body is heavier or lighter than the liquid, the fluid force in Eq.(41) 

is always upwards. One should note that 
zF  is the total fluid force including both hydrodynamic 

and hydrostatic forces and the latter is always positive.   

 

3.2.2 Minor semi axis a  

 

 

Fig. 11. Velocity of body as a function of cz
 at different a  ( 0.2

B
   and 1.1  ) 

 

Fig.11 provides the velocity of body with 0.2
B

   and 1.1   at different a . Eq.(36) shows 

that the critical density does not depend on a . However, the equation is based on the slender 

body theory. We have therefore undertaken further numerical tests and found that all these bodies 

will exit water fully based on the present numerical condition. The simulations in the figure are 

terminated at the moment of water detachment. It can be seen that a more slender body has a 

bigger rising velocity, and it will exit water fully at a smaller 
cz . On the other hand, the velocity 

curve of the sphere ( 1a  ) has a more distinct peak with larger gradients on both sides, which 

implies that the acceleration changes from positive to negative more rapidly there.  
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Fig. 12. Acceleration of body as a function of cz
 at different a  ( 0.2

B
   and 1.1  ) 

 

Fig.12 provides the acceleration of the body at different a . It shows that the body with a smaller 

a  corresponds to a larger initial acceleration. We notice that the ratio of buoyancy and weight of 

the body is the same for these bodies. The acceleration will obviously very much depend on the 

ratio of added mass to the body mass. One can expect that a slender body has a smaller added 

mass ratio therefore a larger acceleration. In fact from Eq.(40), we have 
1 B

B s

dW

dt k









. Because 

the ratio of the added mass to the body volume 
sk  decreases for a body with a smaller a  

(Lamb, 1932), /dW dt  is larger at smaller a . For the cases of a =1/4 and 1/2, the acceleration 

increases with 
cz  initially and then decreases all the way. For a =1 or the sphere, however, it 

decreases first and then rises. The acceleration rises to a peak near the moment of the body 

detachment from water and then it drops very rapidly to the acceleration of free fall. This suggests 

a rapid variation of the fluid force.   
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Fig. 13. Fluid force on the body as a function of cz
 at different a  ( 0.2

B
   and 1.1  )  

 

Fig.13 gives the fluid force on the body. It can be seen that a body of larger a  has a larger fluid 

force all the time, although its acceleration in Fig.12 is smaller at the initial stage. From Eq.(41), 

one has 
2 14

( 1)
3

B
z B

B s

F a
k


 




 


 at t =0. 

sk  increases with a  at lower rate than 2a  

(Lamb, 1932) and therefore 
zF  increases with a . We notice that the fluid force on the sphere 

( 1a  ) reaches a maximum and then drops rapidly before the body departs from water. To get 

some insight, we further plot the free-surface profiles for body of 1a   in the 0 0y   plane in 

the moving coordinate system in fig.14. We notice that in contrast to Fig.7, the free surface for the 

sphere, a non-slender body, has a long and thin water layer attached on the body surface after body 

nose exits water, which is in the form of a two dimensional jet in each given azimuth. As the 

sphere continues to move upwards, the jet is sliding along the body surface and its length is 

reducing. However, the curvature at jet root is getting quite large as profiles 4-5 in Fig. 4 shows. 

The large curvature usually corresponds to a large pressure gradient and large pressure itself for 

the reason discussed by Wu & Sun (2014). When the jet root moves towards the bottom of the 

sphere, it makes a large contribution to the vertical direction, and therefore a rise of the vertical 

force in Fig.13 and the acceleration in Fig.12. The force drops to zero and the acceleration 

becomes 1  when the body detaches from water.   
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Fig.14 Free-surface profiles for a sphere in the 0 0y   plane in the moving coordinate system (1):

0t  , 1.1cz   , (2): 0.9621t  , 0.4708cz   , (3): 1.4001t  , 0.2010cz  , (4): 1.7138t  , 

0.8134cz  , (5): 1.8891t  , 1.2212cz  , (6): 2.0619t  , 1.6426cz  , and (7): 2.2222t  , 

2.0100cz   ( 1a  , 0.2
B

   and 1.1  ). 

 

3.2.3 Initial submergence parameter   

 

 

Fig. 15. Velocity of body as a function of cz
 at different initial submergence parameter ( 0.2B   

and 1/ 4a  ) 

 

Fig.15 presents velocity of body of 0.2B   and 1/ 4a   as a function of cz
 at different 

initial submergence parameters,  = 1.1, 1.3 and 1.5. The body exits water fully in all the cases. 
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It can be seen that the velocity increases as   gets larger at a given 
cz . This is understandable 

because the lower point is, from which the light body starts to move, the larger velocity it can 

reach at the same 
cz . Based on Eq.(36), this also makes it easier for the body to exit water fully.  

 

 

Fig. 16. Acceleration of body as a function of cz
 at different initial submergence parameter 

( 0.2B   and 1/ 4a  ) 

 

Fig.16 provides acceleration as a function of cz . All the curves of acceleration have similar trends. 

A large part of these curves are very close to each other. This implies the dominant force may be 

buoyancy of this body. Overall the effect of   on the acceleration is insignificant. The curve for 

zF  is the same as that for /dW dt , because the body mass m  is the same in all these cases.   

 

4. Conclusions 

 

Water exit of a fully-submerged buoyant body in free motion is simulated by using the 

boundary-element method for the velocity potential flow theory with the fully nonlinear boundary 

conditions. Extensive results for spheroids have been obtained, from which the following 

conclusions can be drawn. 
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(1) The body density is a dominant factor during free water exit. There exists a critical value 

which divides full and partial water exit. This value has been found as ,B c

h

h b
 


 for a 

spheroid of initial submergence h and semi major axis b, based on the slender body theory 

with the assumption of zero potential on the flat free surface. This critical value varies with h 

for a given body and is within the range of 
,

1
1

2
B c  , as h>b. A larger initial submergence 

h gives a larger 
,B c , which allows a heavier body to exit water completely.   

(2) During the entire water exit, a lighter body always has a larger acceleration than the heavier 

one. This is because they have the same buoyancy and same added mass. A lighter body gives 

a smaller resistance to the body, and therefore it has a larger net force and a smaller total mass 

term. The fluid force at the initial stage is due to the difference between the buoyancy force 

and the inertial force. As the heavier body has a smaller acceleration while its added mass is 

the same as the lighter body, it has a larger net fluid force. 

(3) At the same density, a more slender body always has a larger velocity during water exit. For a 

blunter body, namely a sphere in the present case, the force and acceleration will have a peak 

right before the body detaches from water. This is caused by the large pressure at the jet root 

associated with a blunter body. As the jet root moves towards the blunter bottom before 

detaching from the body, it makes a larger contribution to the vertical force. 
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