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Abstract

Clinical trials are typically conducted over a population within a defined

time period in order to illuminate certain characteristics of a health issue or

disease process. Cross-sectional studies provide a snapshot of these disease

processes over a large number of people but do not allow us to model the

temporal nature of disease, which is essential for modelling detailed prognos-

tic predictions. Longitudinal studies on the other hand, are used to explore

how these processes develop over time in a number of people but can be ex-

pensive and time-consuming, and many studies only cover a relatively small

window within the disease process. This paper explores the application of

intelligent data analysis techniques for building reliable models of disease

progression from both cross-sectional and longitudinal studies. The aim is

to learn disease ‘trajectories’ from cross-sectional data by building realistic

trajectories from healthy patients to those with advanced disease. We focus

on exploring whether we can ‘calibrate’ models learnt from these trajecto-

ries with real longitudinal data using Baum-Welch re-estimation so that the
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dynamic parameters reflect the true underlying processes more closely. We

use Kullbaeck Liebler distance and Wilcoxon Rank metrics to assess how

calibration improves the models to better reflect the underlying dynamics.
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1. Introduction

Degenerative diseases such as cancer, Parkinson’s disease, and glaucoma

are characterised by a continuing deterioration to organs or tissues over time.

This monotonic increase in severity of symptoms is not always straightfor-

ward however. The rate can vary in a single patient during the course of their

disease so that sometimes rapid deterioration is observed and other times the

symptoms of the sufferer may stabilise (or even improve - for example when

medication is used). Interventions such as medication or surgery can make

a huge difference to quality of life and slow the process of disease progres-

sion but they rarely change the long term prognosis. The characteristics

of many degenerative diseases is therefore a general transition from healthy

to early onset to advanced stages. Longitudinal studies [1] measure clinical

variables from a number of people over time. Often, the results of multiple

tests are recorded, generating Multivariate Time-Series (MTS) data. This

is common for patients who have high risk indicators of disease where they

are monitored regularly prior to diagnosis. For example, patients with high

intra-ocular pressure are brought in to the clinic for visual field tests every

six months as they are at high risk of developing glaucoma. The advantages

of longitudinal data is that the temporal details of the disease progression
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can be determined. However, the data is often limited in terms of the co-

hort size, due to the expensive nature of the studies. Cross-sectional studies

record attributes (such as clinical test results and demographics) across a

sample of the population, thus providing a snapshot of a particular process

but without any measurement of progression of the process over time [2].

An advantage of cross sectional studies is that they capture the diversity

of a sample of the population and therefore the degree of variation in the

symptoms. The main disadvantage of such studies is that the progression of

disease are inherently temporal in nature and the time dimension is not cap-

tured. For longitudinal analysis, the patients are usually already identified

as being at risk and therefore, controls are usually not available and the early

stages of the disease may have been missed. While many data integration

techniques address representation heterogeneity where similar data is stored

in many different forms, as is common in bioinformatics data [26], they do

not attempt to combine variables from cross-section and longitudinal studies,

which is what is the focus of this paper. A related area of research, known as

panel analysis [21], involves trying to build models along both the temporal

dimension and the population dimension from panel studies. Another line of

research known as pooling has explored combining cross-sectional data with

time-series data [22]. Fitting trends through data [23] is a common approach

and is related in some ways to the idea of identifying a trajectory. Another

related area of research is sequence reconstruction. This involves trying to

find the best order for a particular set of data. Methods include the traveling-

salesman-problem approach that aims to minimize the distance between each

datum [24], and more recently, the use of PQ trees has been explored to en-
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code partial orderings in order to account for uncertainty in the data due to

elements such as noise [25]. Statistical process control [29, 28] has also been

explored for modelling clinical data including data with unknown temporal

ordering. Additionally, a resampling approach known as the Temporal Boot-

Strap (TBS) [5] has been developed that aims to build multiple trajectories

through cross sectional data in order to approximate genuine longitudinal

data. These ‘Pseudo Time-Series’ (PTS) can then be used to build approx-

imate temporal models for prediction. This approach has been extended in

order to cluster important stages in disease progression using Hidden Markov

Models (HMMs) [6]. However, the use of cross-sectional data alone will mean

that no genuine timestamps have been used to infer the models and so they

only capture an ordering without real temporal information.

In this paper, we explore how to minimise the expensive process of longi-

tudinal data collection by taking models that are learnt from cross-sectional

studies using pseudo temporal methods and ‘calibrating’ with limited lon-

gitudinal data. We do this calibration by using the Baum-Welch algorithm

to update stochastic models learnt from pseudo time-series so that the dy-

namic parameters better reflect the underlying process. Essentially, we are

integrating cross-sectional and longitudinal data to increase the temporal in-

formation and the diversity of data from a large population. Many data inte-

gration techniques address representation heterogeneity where similar data is

stored in many different forms, as is common in bioinformatics data [7]. Meta

Analysis, a popular approach [9], works by supplying a statistical framework

for identifying significant results over a number of independent published

studies, and calculating the significance of all of the studies when they are
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brought together. However, it can be prone to publication bias where positive

results are more likely to be published and therefore skew the statistics.

In the next section we formally describe the construction of pseudo time-

series using the temporal bootstrap, the experimental set up for assessing

the calibration of models with longitudinal data, and the clinical data from

glaucoma patients that is used. In the results section, the added value of

calibrating pseudo time-series models is demonstrated on simulated data and

real clinical data. Finally a case study is explored using the longitudinal

glaucoma data and a cross-sectional glaucoma study before conclusions are

made.

2. Methods

2.1. Generating pseudo time-series

Let a dataset D be defined as a real valued matrix where m (rows) is

the number of samples - here patients - and n (columns) is the number of

variables - clinical test data. We define D(i) as the ith row of matrix D. The

vector C = [c1, c2, . . . , cm] represents defined classes, where each ci ∈ {0, 1}

corresponds to the sample i, ci = 0 represents that sample i is a healthy case,

and ci = 1 represents that sample i is a diseased case. These classifications

are based upon the diagnoses made by experts. We define a time-series as a

real valued T (row) by n (column) matrix where each row corresponds to an

observation measured over T time points. We say that if T (i) was observed

before T (j) then i < j.

We define a set of pseudo time-series indices as P = {p1, p2, ...pk} where

each pi is a T length vector where T > 0. We define pij as the jth element
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of pi and each pij ∈ {1, ..., m}. We define the function F (pi) = [pi1, . . . , piT ]

as creating a T by n matrix where each row of F (pi) = D(pij). A pseudo

time-series can be constructed from each pi using this operator. For example,

if a pseudo time-series index vector p1 = [3, 7, 2] then F (p1) is a matrix where

the first row is D(3), the second row is D(7) and the third row is D(2). The

corresponding class vector of each pseudo time-series generated by F (pi) is

given by G(pi) = [C(pi1), . . . , C(piT )].

To demonstrate this notation consider the following example:

Let the data matrix D be defined as:

D =
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Let the corresponding class vector be C = [c1, c2, c3, c4]. If P = p1, p2

where p1 = [1, 3, 1] and p2 = [2, 3, 1] then:
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, G(p2) = [c2, c3, c1].

Building pseudo time-series involves plotting trajectories through cross-

sectional data based upon distances between each point using prior knowledge
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of healthy and disease states. These trajectories can then be used to build

temporal models such as Dynamic Bayesian Networks (DBNs) [10] and Hid-

den Markov Models (HMMs) to make forecasts [11]. The temporal bootstrap

involves resampling data from a cross-sectional study and repeatedly build-

ing trajectories through the samples in order to build more robust time-series

models. Each trajectory begins at a randomly selected datum from a healthy

individual and ends at a random datum classified as diseased. The trajectory

is determined by the shortest path of Euclidean distances between these two

points. The data is first standardised to a mean µ of zero and a standard

deviation σ of one as we found that this led to better HMM models. We use

the Floyd-Warshall algorithm [12], a well established algorithm used to find

the shortest path in a minimum spanning tree from the weighted graph. A

full description of the algorithm to generate pseudo time-series is shown in

Algorithm 1 below and appears in [5]. An example of pseudo time-series that

have been generated from cross-sectional data are shown in Figure 1 below.

Again, this was plotted on the first two components that were generated us-

ing multidimensional scaling.

2.2. The Experiments

We explore three sets of experiments that try to identify whether adding

a small number of longitudinal data samples to models learnt from cross-

sectional data (via the PTS approach outlined in Algorithm 1) improves

them: i) One on simulated cross-sectional data whereby models are inferred

using pseudo time-series and are compared to the original underlying time-

series model. ii) Another on real data from Visual field tests where patients
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Algorithm 1 PSEUDO TIME-SERIES ALGORITHM

Input: Cross section data D; class labels C, sample size T ; number of
pseudo time-series k
Standardise dataset D to µ = 0 and σ = 1
for i = 1 to k do

Uniformly randomly sample (with replacement) T row indices from D

to create di such that there is at least one healthy and one diseased class
(in C) corresponding to any of the indices in di

Uniformly randomly select a row index from di, start, from where 1 ≤
start ≤ T and an endpoint, end, where 1 ≤ end ≤ T where C(di, start)
represents a healthy class and C(di, end) represents a diseased class

Construct a TxT matrix, Wi, of Euclidean distances between each
D(dia) and D(dib) for all combinations of indices in di

Calculate the minimum spanning tree over the matrix MSTi

Order di to create d∗i based upon the shortest path between
D(di, start) and D(di, end) given the tree MSTi using the FloydWarshall
algorithm [21]

Add the ordered d∗i to the set of pseudo time-series P
end for

return A set P of k pseudo time-series

Algorithm 2 CALIBRATING PSEUDO TIME-SERIES MODELS WITH
LONGITUDINAL DATA
Input: Cross section data D; class labels C, Longitudinal Data E; sample
size T ; number of pseudo time-series k
Apply Algorithm 1 to generate a set P of k pseudo time-series
Run the Baum Welch algorithm until convergence to infer an Auto-
Regressive Hidden Markov Model, H , from P

Update H using the Baum Welch algorithm with E for j iterations
return A calibrated Autoregressive HMM
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Figure 1: Example PTS generated from TBS on Simulated Data

who are at high-risk of developing glaucoma undertake a psychophysical test

to identify damage to sectors of their vision. Here no true original model

is known but a comparison can be made between single sampled-points of

the time-series (to simulate a cross-section), and models learnt from the full

time-series. iii) Finally, we explore integrating real cross-sectional clinical

data with real longitudinal clinical data as a case study.

i) Simulated Data

Firstly, we explore the effect of updating models of cross-sectional data, built

using PTS, with relatively small numbers of real time-series to see if the

resulting models are improved. This involves the use of the Baum-Welch re-

estimation algorithm applied to a prior HMM. This is outlined in Algorithm
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2. Essentially we want to see if the limitations of pseudo time-series can be

overcome (due to there being no time-element) by calibrating them with real

time-series.

In detail, we generate time-series of length 30 from an AutoRegressive

HMM (ARHMM) to mimic typical biomedical longitudinal data (MTS in

Figure 2). We then randomly sample a single point from these series (CS

DATA) to mimic the cross-sectional sampling of a population. We reserve

50 ARHMM time-series for the calibration (Reserved MTS). We start with

500 cross-sectional samples as this was found to be a suitably large size to

generate good pseudo time-series and models in [5] and increment by 100 up

to 1500 (the size of some increasingly large biomedical cross-sectional stud-

ies). We use the Kulbaeck-Leibler distance [13] to explore how close a model

learnt from the cross-sectional data using the Temporal BootStrap (TBS) is

to the original generating model. Finally, we use a number of the reserved

time-series generated by the same ARHMM to update the pseudo time-series

models (using Algorithm 2) and explore how close new calibrated models are

to the original. Increments of 10 time-series were used as increments of this

size seemed to involve significant changes in the KL distances. We also in-

clude how good the model is when learnt solely from the time-series used to

calibrate the models.

ii) Clinical Test Data

We then apply a similar set of experiments with real clinical longitudinal data

of visual fields from 91 patient time-series (91 MTS VF DATA in Figure 4).
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Figure 2: Simulated Data Experimental Framework

The longitudinal data is from a study of 23 ocular hypertensive patients

(who eventually develop reproducible glaucomatous VF loss) from a longitu-

dinal study at Moorfields Eye Hospital. A total of 255 patients with ocular

hypertension (raised intraocular pressure, a major risk factor for glaucoma)

volunteered to take part in a randomized placebo-controlled trial of treat-

ment to prevent the onset of glaucoma [15]. Of these, a number developed

reproducible VFs loss, as judged by the same classification algorithm, over

a median period of six years. Subjects had several repeated clinical visits

(approximately every six months). Each VF point maps to one of six Nerve

Fibre Bundles (NFBs) where information from the retina leaves the eye and

travels to the visual cortex [17] (see Figure 4). We average each VF points

over their associated nerve fibre bundle to give 6 variables representing each

spatial region. As a result, the data contains six NFB variables and one class

variable.
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Figure 3: Spatial Distribution of the 6 Nerve Fibre Bundles over the Visual Field. X’s
Denote the Blindspot

We sample one VF test from each patient’s time-series to generate a cross-

sectional sample and generate pseudo time-series for learning a time-series

model (PTS). We then compare this model as well as ones learnt from a com-

bination of pseudo time-series and real time-series (Random 10/20 MTS) to

see how quickly we can learn models that are close to the original. This is

achieved by comparing these KL distances to the mean KL distance between

200 different ARHMMs learnt from the same original time-series (MEAN

VARIANCE in Figure 4). In other words, if we can learn models from the

sampled CS data that have similar KL distances to the general variation in

learning a model from the full time-series, then we assume that the models

are as close to one learnt from a full time-series.

iii) Clinical Data Integration

Finally, as a case study, we integrate the longitudinal data from the last ex-

periment with real cross-sectional data in order to explore how the population-
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Figure 4: VF Data Experimental Framework

distribution information (from the cross-sectional data) and the dynamics of

progression (from the longitudinal data) can be integrated successfully. The

cross-sectional study consists of VF tests for 162 people, representing an ex-

panded dataset that was used to evaluate the classification accuracy of an

optic nerve head imaging device [18]. In brief, there were 84 healthy subjects

and 78 patients with early glaucomatous VF loss. A full medical history was

taken and a detailed ocular examination performed. Subjects underwent

Humphrey VF testing with the 24-2 program [16]. The VF data for each

subject are classified into one of two classes: healthy or glaucomatous based

upon an established classification algorithm for the field test [16]. Again, the

VF data is averaged into 6 NFBs as with the longitudinal study.
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3. Results

3.1. Simulated Data Results

Figure 5 shows the results for learning PTS from cross-sectional samples

of varying sizes and either not calibrating, or calibrating with 20 time-series,

along with 95% confidence intervals.

Figure 5: KL distance for varying cross-sectional study sample sizes with no calibration
and with 20 longitudinal data samples for calibration.

The first obvious characteristic of these graphs is that calibrating does

indeed improve the quality of the models with KL distances that are closer

to the original generating ARHMM. This is not surprising seeing that there

is no genuine ‘time’ in the PTS generated from the cross-sectional data.

What is surprising, is that only a relatively small number of time-series are

needed to improve these models, especially when there are lots of samples

used from the cross-sectional data. This supports the results from previous
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studies that the PTS does find good-but-not-perfect models (limited by the

lack of real time-series) and that a small number of genuine time-series can

calibrate these models. This offers hope that expensive longitudinal studies

can be relatively small in size if combined with larger cross-sectional studies

that capture the general trajectories and the variability of disease progres-

sion within a population. With calibration from 10 time-series, there is a

steady decrease in KL distance as cross-sectional sample size increases where

more and more reliable PTS are constructed. When the sample size is 1500

we see a KL distance mean of 1.70 ± 0.16. Note that when 10 time-series

alone are used to learn the model we get a mean KL distance of 2.08 ± 0.26.

This shows that the PTS generated from the cross-sectional data improves

on models learnt from the time-series only by incorporating the variabil-

ity within a larger population captured in the cross-sectional data. With

calibration from 20 time-series we see a similar story, where increasing the

cross-sectional sample size, build better PTS and results in models that are

closer to the original. For 1500 in the cross-sectional sample we see a KL

distance of 1.48 ± 0.12. Note that when 20 time-series alone are used to

learn the model we get a mean KL distance of 1.78 ± 0.15. Again, it can be

seen that the PTS improves on time-series alone but that the integration of

both seems to generate the models that best reflect the underlying model.

We now explore the statistical significance of the differences between these

KL distances using the Wilcoxon Rank Comparison [19]. Figure 6 shows the

Wilcoxon Rank statistic comparing the KL distance between different mod-

els learnt using the different approaches.
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Figure 6: Wilcoxon rank comparison between KL distances to original (significant p values
are marked with an asterisk p<0.01)

An asterisk is used to denote significant p values (i.e. the models are

significantly different). First of all notice that there are many significant

values - implying that the difference between models learnt using the different

approaches are significant. The most important statistics are those that show

the models learnt with no calibration and only 500 cross-sectional data points

are significantly different to most other models (row 1), but when 1500 cross-

sectional data points are used the resulting model is much closer, only being

significantly different to the model learnt from 50 full time-series (row 4).

However, by calibrating these models we see improvement for 500 CS data

points. For 1500 datapoints all models are not significantly different from

the full 50 time-series, indicating that the PTS algorithm can find models

that are not significantly different from a model inferred from full time-series

data when sample size is high (though the uncalibrated model is significantly

different at the 10% level - p=0.064). The model calibrated with 20 time-

series (cs1500calib20) shows better improvement with a clearly insignificant

difference between the models learnt from the full time-series (p=0.728).
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3.2. Visual Field Data Results

We now explore the effect of calibrating PTS using the real Visual Field

time-series data described earlier. As we have no knowledge of the true un-

derlying model, we firstly compare the KL distance between models that are

repeatedly learnt from the original 91 patient time-series in order to get an

idea of general variance between models and to use this as a base-line. If

we can generate models using PTS approaches with a KL distance that is

not significantly greater than the general variance between different builds

of the model on the full data, then it suggests that the PTS models are of

a suitably similar quality to those learnt from the full time-series (note that

variance in repeated model builds on full data could be due to small sam-

ples). We then calculate the KL distance between a model learnt from the

sampled cross-section using the PTS approach and models learnt from the

original 91 time-series. We then incrementally add a number of randomly

selected real time-series to calibrate the PTS model to see if this improves

the KL distance. We do this in two ways: simply concatenating the data

(Concat), and also using the PTS as a prior which is updated with real time-

series using the BW algorithm in Algorithm 2 (BW calibrated). Finally we

calculate the KL distance between learning models using only the calibrat-

ing time-series to confirm that the PTS are indeed improving the resulting

models. The experiments are repeated 100 times to derive confidence inter-

vals on the KL distances. Figure 7 shows the results of these experiments.

Notice firstly that the KL distance between models that have been learnt

on the full 91 time-series are in the region of 80-90 with a small confidence

interval denoting a relatively small variance from one model learning to the
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Figure 7: KL results for VF data with 95% confidence intervals.

Figure 8: Wilcoxon rank siginificance (significant p values are marked with an asterisk
p<0.01)

next. The models that are learnt from the sampled cross-section using the

PTS approach are impressively close to the time-series models but distinctly

higher in KL distance (likely to be because we are lacking real temporal in-

formation). When 10 and 20 real time-series are used to calibrate the model,

however, we see further improvement in the KL distance resulting in models

that are demonstrably closer to the models learnt from all 91 time-series. The

updated models that go beyond simply concatenating data appear to per-
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form the best with the lowest KL scores. Finally, models that are learnt from

using the relatively small number of calibrating time-series only are clearly

worse with much higher distance and large confidence intervals. Looking at

the Wilcoxon Rank for significance as before, the important thing to notice in

Figure 9 is that nearly all of the models are indeed significantly worse than

the variation between models learnt on the full longitudinal dataset (sig-

nificant differences are marked with an asterisk) except for the PTS model

calibrated using the updating approach or concatenating with 20 real time-

series. This shows that we can learn models that are as good as the natural

variation between model building on the full longitudinal dataset by building

PTS and calibrating with only 10 real longitudinal samples if we correctly

balance the weighting of the cross-sectional PTS and real time-series. We

can also see that many of the inferior models are similar in terms of their

distances except for the very worst models (learnt from only 10 time-series)

which are different from the superior models which are both PTS models

that have been calibrated. To summarise, whilst the PTS approach alone

does indeed learn very good models, by updating these models with a small

number of real time-series we get models that are considerably closer to the

models learnt using all the time-series data that is available. What is more,

the Baum-Welch approach to updating improves upon a simply concatena-

tion of data. Note that almost all models are significantly different from the

general variance form learning the model from the full 91 time-series. The

only models that are not significantly different at the 1% level are the PTS

models updated with data using the Baum-Welch approach and the PTS

model that is updated with 20 time-series by concatenation.
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3.3. Case study: Integrating Visual Field Cross-section with Longitudinal

Data

We now explore the use of a real cross-sectional dataset for building a

PTS and calibrating with real longitudinal data. We apply the same pro-

cess as outlined in Figure 4 but using the cross-sectional study discussed in

methods, rather than sampling a cross-section from the longitudinal data.

Calculating the KL distance to the full longitudinal data model is not appli-

cable here as the cross-sectional study contains valuable information about

healthy individuals and the early stages of disease that are not found in the

longitudinal study. Therefore, a new gold-standard is required. For this we

use the model learnt from the full cross-sectional data (using the pseudo

time-series approach) but calibrated by the full longitudinal study. We then

explore how few patient time-series are required to get close this standard.

See Figure 9 for the results where it is clear that only a relatively small num-

ber of real MTS are required to get close to the gold-standard (≥30).

We also explore the parameters of the different models: PTS, MTS and

Calib. This includes the dynamic parameters for the underlying disease pro-

cess and the static distributions for each nerve fibre bundle given either a

healthy or a diseased diagnosis. These are shown in Figure 10 for the dy-

namic parameters (where we assume the longitudinal-only model as the gold-

standard) and in Figure 11 for the static parameters (where we assume the

larger cross-sectional-data-only model to be the gold-standard). Notice that

the cross-sectional-only model (learnt using the pseudo time-series approach

- PTS) has learnt distributions for the dynamic parameters that are surpris-

ingly close to the gold-standard (MTS) model, but that the probability of

20



Figure 9: KL Distance to the model learnt from the real CS Data and calibrated with
the full real longitudinal data, for differing numbers of calibrating MTS - including 95%
confidence intervals

switching from healthy to glaucomatous is too high. The calibration of this

model with time-series (Calib) improves this distribution considerably with a

closer match to the gold-standard. The static parameters for each NFB show

that the model learnt from the full longitudinal study (MTS) is sometimes

very different from the full cross-sectional model (PTS) which is considered

the gold-standard for distributions over the different NFBs (distributions for

NFBs 1 and 2 in particular are very different with the gold-standard PTS

being biassed to low VF sensitivity, but the MTS biassed to higher VF sen-

sitivities). The calibrated model demonstrates a set of distributions that are

generally closer to the gold-standard. For example, NFBs 3, 4 and 6 are

much closer than the uncalibrated MTS model. NFB 5 shows a slight im-

provement in the distribution when the MTS is calibrated. Looking at the

spatial layout of these NFBs in Figure 3 it seems that the distributions that

are not easily learnt from the MTS data are those in the upper hemisphere

(NFBs 1 and 2). This is interesting in that it is often these where the early
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signs are glaucoma are first detected.

In summary, the calibrated model better represents the gold standard for

the dynamic parameters (learnt from the longitudinal data) and the static

parameters for each NFB (learnt from the cross-sectional data), though some

NFBs show better improvement than others.

Figure 10: Dynamic Parameters for hidden variable where we consider the MTS model
learnt from the longitudinal data as the gold standard

4. Conclusions

In this paper we have explored to what degree pseudo time-series, learnt

from building trajectories through a cross-sectional study, can be ‘calibrated’

by a relatively small number of real time-series data form a clinical longitu-

dinal study. The aim is to gain the advantage of both types of study - the

population diversity of symptoms at all stages of a disease process from cross-

sectional data; and the inherently temporal information of a disease process

from longitudinal data. We have demonstrated that a relatively small num-

ber of disease time-series can dramatically improve the quality of disease

model if the pseudo time-series has been constructed from a large enough

cross-sectional sample. This has been shown to be the case for simulated

data based upon a probabilistic model and real-world clinical data where the

resultant models are not significantly different to models learnt from large
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longitudinal studies. The approach is best suited to large cross-sectional

studies though we have shown that only a small number of longitudinal sam-

ples are necessary to achieve improvement. Data has to be standardised prior

to building the trajectories and the distance metrics used in this paper to

construct them are based upon real valued data. In order to deal with bi-

nary / discrete data which is also common in medical contexts, other metrics

could be explored such as the Jaccard index, kapp, and adjusted rand.

Sometimes it will be important to place constraints on the trajectories

generated by the pseudo time-series. For some datasets, our method could

potentially build impossible trajectories: For example, a trajectory could

be built that contains different patients with different antibodies. As these

should not change in an individual over time, it makes the trajectory unreal-

istic. Different mechanisms to constrain these trajectories will be important.

One way to do this could exploit more detailed clinical evaluation rather

than the simplistic labelling of healthy and post-diagnosis. For example,

sometimes severity of stages in a disease progression are available and these

can be used to guide the trajectory construction.

Pseudo time-series naturally model multiple endpoint analysis which is

an important topic in modelling disease progression [20]. Future work will

explore the explicit understanding of these in terms of identifying subcate-

gories of disease (which they may well represent) and which we have already

started to explore [6]. We are also interested in exploring latent variables in

the context of discovered trajectories in order to identify subclasses similar

to [27] who use them in the context of extended mixed models.
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Figure 11: Static parameters for the 6 NFBs where we consider the PTS model learnt from
the large CS study as the gold standard. These variables take on three discrete states:
Low, Medium, and High sensitivity

28


