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Abstract: Multiple Autonomous Underwater Vehicles (AUVs) are a potential alternative to con-
ventional large manned vessels for mine countermeasure (MCM) operations. Online mission plan-
ning for cooperative multi-AUV network often relies or predefined contingency on reactive meth-
ods and do not deliver an optimal end-goal performance. Markov Decision Process (MDP) is a
decision-making framework that allows an optimal solution, taking into account future decision
estimates, rather than having a myopic view. However, most real-world problems are too complex
to be represented by this framework. We deal with the complexity problem by abstracting the
MCM scenario with a reduced state and action space, yet retaining the information that defines the
goal and constraints coming from the application. Another critical part of the model is the ability of
the vehicles to communicate and enable a cooperative mission. We use the Rendezvous Point (RP)
method. The RP schedules meeting points for the vehicles throughput the mission. Our model
provides an optimal action selection solution for the multi-AUV MCM problem. The computation
of the mission plan is performed in the order of minutes. This quick execution demonstrates the
model is feasible for real-time applications.

1. Introduction and Background

Mine Countermeasures (MCM) is the problem of finding and disposing of naval mines. Mine
hunting is a common method used for MCM. It relies on detecting and classifying a target on the
sea bottom, using a sonar sensor, followed by an appropriate disposal procedure. Often a manned
surface vessel is employed in the mine hunting task. There are disadvantages of this traditional
method. For instance, the personnel are at risk, the platforms require complex design and are
expensive, and the procedure is time consuming and inflexible, as the sensor is coupled to the
platform.

Recent advances in AUVs have made them a viable option for a safe, and potentially cost-
effective and time-efficient alternative to conventional mine-hunting platforms. Many AUV de-
signs have reached maturity, which allows a considerable amount of research to focus on robotic
networks underwater [1], [2], [3], [4]. A distributed system allows for the nodes to be dynami-
cally tasked with different functions during the mission. It brings robustness in the case of a node
malfunctioning, and could improve time and area-coverage performance. Utilising multiple robots
has applications in science, industry and defence, such as adaptive sampling, surveying deep wa-
ters for oil and gas deposits, and surveillance. This study focuses on the MCM problem and the
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remainder of the paper will consider the implications of using an AUV network for mine hunting.
However, the methods and solutions are transferable and can be utilised in other applications in the
underwater domain.

One common problem experienced in AUV applications is communications. The physical wave
propagation limits in water exclude the electromagnetic spectrum from most common shallow wa-
ter applications. Even though light can propagate for larger distances in deep waters, in shallow
waters, transferring data is possible for up to a few metres, where blue-green laser is a promising
technique [5]. If a connection requires larger distance, acoustic modems are the common choice
with which to equip an AUV. However, there are hard limitations imposed by the physics of the
sound wave propagation and the ability to transfer data underwater is very different from terres-
trial capabilities. The major difficulties arise from the slow sound speed in water, attenuation with
increasing the distance and frequency, and variability of the channel quality. This brings lim-
ited bandwidth, low data-rate, and loss of connectivity [6]. A considerable amount of research
has focused on the underwater communication problem and many new solutions are pushing the
boundaries of acomms [7]. However, the underwater channel is so adverse, that often networks
are considered impractical. Even for a single vehicle operation, the unstable and unreliable chan-
nel means a constant risk of losing the platform when operating in autonomous mode. Ability to
communicate is vital for collaboration, since this is the major advantage a network brings.

The data exchange problem is solved by bringing the nodes together. This approach has been
investigated before for the application of multi-vehicle MCM [8], [9]. The Rendezvous Point
(RP) method relies on adaptively scheduling meeting points for the AUVs performing an MCM
mission. The disadvantage is that the vehicles need to travel to the RPs and hence some resource
is lost. The advantage is that by bringing the nodes together, a reliable connection is available
and the agents can adapt their next meeting point to the emerging workload, as well as reallocate
their tasks. In [9], a numerical simulation evaluates the loss and the benefits of applying the RP
method. It concludes that by enabling adaptive reallocation, the vehicles can be utilised at constant
rate, which makes the meeting loss acceptable. However, the RP method described above relies on
heuristics rules which only allow for myopic decision making. In order to move from an adaptive
to intelligent planning, the Markov Decision Process (MDP) framework is used in this work.

Section 2 explains the MDP framework, gives the theoretical formulation and notation, and
provides some recent advancements in applying the method. It also points out the contributions of
the paper by applying MDP to the multi-vehicle MCM problem. Section 3 deals with modelling the
multi-vehicle MCM scenario and confining it to the MDP framework. It explains the assumptions
and limitations of the approach. Section 4 focuses on the solution method for our MDP, value
iteration, and provides the simulation results and analysis. Finally, Section 5 concludes with a
summary and further possibilities for expansion and application of the method.

2. Mission Planning for MCM Problem Formulation

In this section we explain the typical stages of a mine hunting operation, using AUVs for MCM, the
rendezvous point method, and the scenario used for the simulations. We also provide the theoretical
formulation of the MDP framework. Combining the application and the method, we managed to
model an intelligent planning scheme for MCM using multiple AUVs. The main contributions are
stated at the end of this section.
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2.1. Application Specifications and Constraints - MCM scenario

The five phases in mine hunting are [10]:

• Search - Scan an area for mine-like objects using a sonar sensor.

• Detection - A contact is acknowledged based on the sensory data and its location recorded.

• Classification - Put the detected contact into one of two categories: mine-like object (MLO)
or non-mine like object.

• Identification (ID) - Determine the type of the MLO

• Neutralisation - Depending on the location of the MLO and the purpose of the mission, a
target is considered neutralised if it can be successfully localised and avoided, destroyed or
disabled.

Since this work is concerned with the planning problem, some important MCM parameters and
capabilities are treated as a black box and assumptions are made about their performance. The
constraints we take into account from the MCM problem are:

• Search: 1) vehicles move in a typical lawnmower pattern to secure complete area coverage
and 2) the sensor defines the swath width, and hence the distance between the lawnmower
legs, and the speed of the vehicle, in order to collect undistorted data. The limitations coming
from currents and navigation error are ignored. Research on optimal coverage, navigation
and sonar imagery signal processing is ongoing but these problems are not addressed in the
current work.

• Detection: The probability of detection is an important performance measure in MCM, how-
ever for this work we assume deterministic detection output passed to the MDP planner.

• Classification, Identification and Neutralisation: The classification and identification steps
require collecting further information of the detected target. Depending on the available sen-
sor, or restrictions based on established doctrines, this includes relocation of the target and
collecting additional imagery. While we are not concerned with the processing of the sen-
sory data, or the accuracy of target positioning and the collected data quality, we assume
all recorded targets during the detection phase need to be relocated to allow additional data
collection. This procedure defines another path planning specification for our scenario. The
Neutralisation phase is not considered in this work, as usually a Remotely Operated Vehicle
(ROV) is used..

The MCM scenario we are studying uses 3 AUVs. For the limited battery time they have, their
goal is to maximise the area they can search with the constraint that every detection has to be
revisited. Two tasks are defined: search and ID (relocating targets and collecting additional data
to help classify and identify the object). Following the RP method idea, the vehicles meet so they
can exchange target locations, decide how to allocate tasks and appoint time and location for their
next meeting point. The RP schedule and the MCM application goal constraints define the input
functions for the MDP framework.
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Fig. 1. Reinforcement learning: agent-environment interaction [14].

2.2. Method Basics and Advancements: Markov Decision Process and Rendezvous
Point

MDP is a common framework used to model intelligent decision making. The two problems it
solves are reinforcement learning (RL) and planning. The recent success story of DeepMind’s
Alpha Go agent applying RL to the game of Go [11], and the rapid advancement of deep learning
methods [12] that allow processing of large state spaces, has proven the ability of modelling com-
plex problems relying on the classical MDP framework variations. The difficulty of RL in real life
is that agents need to develop an understanding of the environment based on multiple sensor inputs
and use it to transfer current skills to new situations. On the other hand, planning assumes the
environment representations are already derived and the agent can proceed to finding the optimal
action policy. In both instances, modelling the agent-environment interaction often creates huge
state and action spaces which leads to unmanageable computation load. This is especially true for
problems that require real-time processing or have limited resources [13]. Figure 1 gives the basic
elements of a RL agent. This structure is used for modelling the multi-AUV MCM problem and
the notation used further is extracted from [14].

Reducing the complexity of an MDP model and creating a manageable state and action space
is a well known problem and has been described in [16]. There are different methods proposed
in literature on how to handle MDP complexity. Using domain knowledge to take advantage of
a problem’s special features has been recognised and used in [17], [14]. A complex problem
of multiple elevators’ scheduling was simplified by carefully defining the performance measures,
while retaining the application’s goals. This is also the concept used for this paper - using the do-
main knowledge of the application allowed to confine the problem into a manageable MDP model.
Most recent methods aim to reduce MDP complexity using approximation techniques that do not
go through exhaustive state/action space search as the solution used in this paper. The choice of
states to be processed can be based on predefined weights or constraints due to time [18]. One
issue with such approximate techniques is that the solution is near optimal and can lead to a local
maximum solution, instead of a global one. Sometimes, a heuristic approach might allow for a
greater control over the model by defining how deep the search space need to be explored in order
to make the solution reliable for the application’s needs. One such example was studied in [19].
Another method proposes a tradeoff of reducing dependence on state space size but on the expense
of increasing the horizon space dependence [15]. A summary of multiple methods dealing with
reducing MDP complexity can be found in [20]. While a classic optimal solution, value iteration,
was chosen for this work as a proof of concept, all of the methods described in this section or in
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[20] might bring a significant improvement to reducing the complexity and processing time of the
MDP model. Recent advancements in the field are reached by using learning instead of provid-
ing a transfer and reward functions (described in sections 3.2 and 3.3), as well as using Partially
Observable Markov Decision Process (POMDP) [21], where the state space is non-deterministic,
making the modelling more realistic by taking into account noisy sensors.

The MDP model in this work is defined using the Rendezvous Point (RP) method idea from
[9]. The classic Rendezvous problem is trying to find what strategy multiple agents should choose
in order to maximise the probability of meeting each other. The RP method uses some of the
basic principles from the original Rendezvous problem, such as no active communication between
agents, sensing region restrictions, collective behaviours, meeting at an unspecified location [22].
The difference is that the RP goal is not for the nodes to ”discover” the rendezvous, but to ”agree”
on it. Where and when to meet is unknown at the beginning of the mission, but the agents decide
dynamically how and when to schedule this. Thus, the RP method differs from previous work and
techniques suggested for the original Rendezvous problem.

The method we propose in this paper, MDP using RP, is relevant to applications and approaches
in collaborative robotics, cooperative exploration, search and rescue, swarms, sensor networks.
Often, rule based or reactive solutions are used for changing behaviours or tasks of the vehicles.
This paper suggests simulation results and modelling for optimal multi-vehicle task allocation.

2.3. Contributions

The main contribution of this paper is the representation of a multi-AUV MCM planning problem
with a very small state space MDP. This allowes using an optimal solution method in low com-
putation time. As a result, this MDP model has a potential to be applied to an underwater robotic
network and provide a real-time output for the agents. Some key points of the model are:

• State space mapped from physical space to time to reduce dimensionality

• Action space is defined in a way that brings the problem from multi-agent to a single agent
by explicit task allocation for all vehicles.

• The interval between the elements of t is not always the same, as in most MDP formulations,
however, the problem is still discrete and the framework applicable.

Some heavy assumptions in this model are made: 1) assuming the environment dynamics are
known; 2) using a uniform distribution to represent the number and position of the expected targets;
3) approximate expected shortest path calculation; 4) sensor is treated as black box with consistent
specifications.

3. Modelling Multiple vehicle MCM planning with MDP

There are four components to define an MDP - state, action, transition probability and reward.
Each of them is defined as an input function for the MDP and is further explained in this section.
The RP scheduling fits into the framework as the agents interact with the environment at a discrete
sequence of steps: t = 0, 1..T . Every t-step is an RP.
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Action Number N search veh RP duration ID time
0 0 id/3 id
1 1 id/2 id
2 2 id id
3 3 RPmax 0
4 2 RPmax RPmax

5 1 RPmax 2 ∗RPmax

6 0 RPmax 3 ∗RPmax

Table 1 Action space

3.1. State and Action Space Model

A state s characterises where the agents are in the environment. The set of all possible states is
defined by st ∈ S. In order to represent the multi-vehicle MCM problem with a manageable state
space, we have created a mapping from physical space (the updated location of the vehicles and the
detected targets) to time. The information retained in the state to fully define the agent’s current
relationship with the environment, is kept in a 2D state space structure.

The first dimension represents the workload. It is defined by how much time a vehicle requires
to revisit all detections, so that additional data is collected, and enable classification and identifi-
cation. The state is updated on every RP interval. For convenience, for the rest of the paper, this
state will be referred to as ’ID time’ and the process of reallocating a target ’identified’. Once a
detection is revisited, it is removed from the list of workload. The ID time is additive in a way that
the workload can accumulate over time, if the agents decide to postpone identifying detections.
An upper limitation of 300 minutes is given to maintain a reduced state space, id ∈ [0, 300). Using
time instead of space to represent the workload means that the location of targets no longer needs to
be tracked in the state space. This enables us to reduce the problem from 2D space representation
to 1D time representation.

The second dimension contains the mission time limit information. It is given by the battery of
the AUVs, and for our scenario this limit is 10 hours of operation with a state space from 0 to 600
minutes battery state ∈ [0, 600). Thus, the full state space is defined by a tuple s = (id, battery).
The battery time state abstraction means that the location of the vehicles in physical space does not
need to be retained in the model’s state space. Their location is defined by the time they spend on
search, as the pattern of their movement is known (lawnmower in a confined area), as well of their
speed (a constant speed of 2 m/s is assumed and all environmental disruptions are ignored). This
way, the vehicles’ position is retained in 1D time vector, instead of 2D x-y coordinates. The depth
information is ignored for this model.

The states in an MDP can be terminal and non-terminal. A terminal state triggers termination
of the episode, or the mission. In our simulation, terminal states are all states that have reached the
battery state limit: s(:, 599).

Action is the way the agent interacts with the environment. The set of all actions is a function
of the state: at ∈ A(st). The scenario problem we are looking into includes three agents, or three
collaborating AUVs. In order to simplify the model, instead of considering multi-agent system, the
action space explores all combinations of dividing the search and ID tasks between the 3 agents,
as well as varying the RP time. They are defined as in Table 1 and example of the AUV paths are
shown in 2.

6

Page 6 of 18

IET Review Copy Only

IET Radar, Sonar & Navigation
This article has been accepted for publication in a future issue of this journal, but has not been fully edited.

Content may change prior to final publication in an issue of the journal. To cite the paper please use the doi provided on the Digital Library page.



Fig. 2. AUV path examples illustrating Actions 0,1,2 and 3 from Table 1. Actions 4,5 and 6 are
similar to Actions 2,1 and 0, respectively, but the RP duration is based on the ID time, not the
predefined value.

There are 7 actions in our model and a sequence number for each is given in the first column
of Table 1. The second column is the number of vehicles allocated for the search task during the
RP interval. The third column is the RP duration. There are two options for this parameter. It can
be a predefined interval: in the model, a 1 h interval is chosen - this is assumed as an interval at
which an operator would like to get a confirmation of the status of the mission, if there is a surface
node to assist the mission. However, the RP duration can be based on the requirements of the ID
process. This is done by adapting the RP duration so that that all known targets up to date can be
identified. It also varies depending on the number of vehicles that are tasked with the ID job. The
RP interval choice is a tradeoff between distributing the resource more efficiently (length based on
ID time, or actions 0, 1 or 2), or following strict procedure of regular meeting intervals (RPmax, or
actions 3, 4, 5 or 6). The final column in the table is the ID time that is spent on the ID task.

Some limitations were imposed on the actions in order to comply with the index limits of the
state space. The first one is due to how our expected target model is tied to the search space, as
explained later in Figure 3. This creates a problem for Action 2, where the RP limit is 299minutes,
and 2 vehicles are sent to perform search task. This brings too many targets for the next time
interval and the state is out of bounds. Hence a limit of 200 minutes was set only for Actions 0,
1 and 2 (although only Action 2 was usually affected by it), and the excess of ID was handled as
credit for the next time period. This is a limitation due to the ID dimension of the state space.

The battery state space dimension also requires an exception and this is our second action
limitation. To guarantee that all actions lead to the termination state, s[:,−1], all actions adopt the
behaviour of Action 0, once the sum of the current battery state with the expected RP duration
exceeds the termination state index. For example, if we are in battery state s(:, 580), then the
maximum RP duration can be 599− 580 = 19minutes, and all vehicles are set to do an ID task.

The imposed action limitations are consistent and no loss is introduced to the model. Everything
that is trimmed at the current action is transferred to the next, and penalty is applied, following the
reward model. If the agent constantly chooses an action that carries over workload to the next time
period, at the end of the mission this results in a penalty and hence this is an undesirable behaviour.
Further details on such tradeoffs are explained in the reward subsection.
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Fig. 3. Expected average number of targets
as a function of time spent on search task.
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Fig. 4. Sample from the transition probabil-
ity model using binomial distribution.

3.2. World Model Approximation

The world model is the agent’s representation of the environment’s dynamics. Equation 1 shows
how any state and action define the probability of the possible future state s′.

Pa
ss′ = Pr{st+1 = s ′|st = s , at = a} (1)

We assume this transition dynamics is available for our scenario. The next state, s′, is defined
by ID and battery time at the next RP. To be able to predict it based on current action and state,
we have developed a function to link search time, number of detections and shortest path to revisit
them.

We assume the search time is proportional to the number of detections that will be found. The
time is transferred to search area by multiplying it to the vehicle’s speed and sensor swath. We
define an expectation of average number of targets (10) per unit area (1 km2), as well as uniform
distribution of the targets in x,y plane. Then the area defined by the search time is multiplied by
the number of targets per unit area. This model is unrealistic but since modelling of the mine
field is not the purpose of the project, and details of such distributions are rarely disclosed in open
literature, such model is considered acceptable. The MDP and the planning algorithm will still be
valid, if an updated environment model is applied at a later stage.

We assume a stochastic state transition function which has 10 different possible future states,
s′. We represent it by a binomial distribution defined by mean = n ∗ p = (2 ∗ µ) ∗ 0.5. µ is
given by the expectation of targets per search area. Figure 3 shows the linear relationship chosen
for time spent on search (x axis) and the expected average number of target detections (y axis).
A sample derived from the transition probability function can be seen on Figure 4, where the x
axis shows expected number of targets and the y axis gives the expected probabilities. A total of 7
such transition dynamics are produced for each state s, depending on the action, a, for which the
function is being calculated.

From the described model, a prediction of the number of targets for the next RP interval is ob-
tained. Then, this needs to be translated into future state space, s′. To do this, uniformly distributed
points in a 2D plane need to be visited in a shortest path - this is the ID task, from where the time
is extracted to define s′. This problem is an instance of the travelling salesman problem (TSP). It is
an NP hard problem, however some approximations are available. The approximation chosen for
this model is the formula presented by Beardwood in [23]:
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Fig. 5. Average expected shortest path in km (axis Z) as a function of number of targets (axis X),
uniformly distributed within a search area in km2 (axis Y). Calculations follow Equation 2.

A = K ∗
√
n ∗ area (2)

where A is average path length, K is an empirical coefficient (K = 0.765), n is the number of
targets, given from the predictive model presented before, and area is the search area for s′. The
last step is to transfer the average path length from distance to time by dividing it by the speed of
the vehicles. Constant speed of 2 m/s is assumed. The shortest path in km (z axis) as a function
of expected number of targets (x axis) and search area in km2 (y axis) is presented in Figure 5,
following Equation 2. This distance is then divided by the speed of the vehicle to get the time for
s′.

One limitation of this approach is that each of the 10 results for s′ per action a need to be
multiplied by a normal distribution in order to account for the unlimited options the approximation
from Beardwood [23] gives. This aspect is ignored at this stage. What is lost in this omission is
precision in the expectation of shortest path time. However, since the model dynamics is not based
on a realistic model, this precision is already lost. In case a real target distribution is applied, then
accurate boundaries of the shortest path expectation should be studied further and this will add
value to the solution.

3.3. Reward Function Model

The reward is the second element that models the environment dynamics, together with the tran-
sition probability function. It represents the agent’s preference. We introduce the MCM mission
goal to the agents by rewarding them for the behaviour we want to encourage and penalising them
for deviations or unwanted mission results. The equation that defines the expected reward an agent
will receive in the next time step, rt+1, given the current state s, the choice of action at and the
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Name Unit Function
Area 1 min time on search y = x

RP penalty 1 min deviation from RP y = x
RPmax

100

Credit 1 min ID time carried over if x > 0, y = 0.01x2, if x < 0, y = 0.1x2

Table 2 Reward function

next state s′ it is expected to reach, is:

Ra
ss′ = E{rt+1 |st = s , at = a, st+1 = s ′} (3)

Optimal actions are selected by calculating the expected reward for the whole duration of the
mission, rather than a myopic single state transition. The discounting factor γ is introduced in the
MDP model to account for the uncertainty that comes from calculating expected reward [14]. γ
can take values in the interval [0, 1]. When γ = 0, the future reward is not taken into account and
the agents take myopic decisions. When γ = 1, all future rewards have the same weights as the
most recent ones. Since our wold model is stochastic, we select γ = 0.9, which means that we
discount the future rewards, but it still adds weight to the current decision. Equation 4 shows the
expected reward for the whole mission duration.

Rt =
T∑

k=0

γkrt+k+1 (4)

Rt is the expected reward at time t, k is the number of future time interval, k ∈ [0, T ]. For out
MDP model, k is each RP. rt+k+1 is the reward for each future time interval k we evaluate, starting
from the current moment t.

The reward function has to account for the desired tradeoffs dictated from the MCM applica-
tion and the RP method. We have come up with an equation to represent the reward, based on
the desire to bring certain behaviour into the agents. This model can be further improved when
concrete specifications are available. For our simulations, the used elements and their weights are
in Equation 5 and Table 2:

R = area − penalty − credit (5)

where R is the reward, which increases when we gain more search area (area in the equation),
penalty is for deviating from the preferred RP interval defined in the action section, RPmax, and
credit is the id work that was left unfinished from previous search area.

Figures 6 and 7 show a sensitivity analysis of the reward model. Both the area and RP penalty
depend on the RP interval, which is varied on the x axis of Figure 6. The credit penalty depends on
the reminder of time credit from one RP to the next. On Figure 7, the credit penalty is tenfold for
negative credit as this means vehicles are being idle. This happens when agents are given a longer
time window for ID task, while there is lower amount of ID workload. When the credit is positive,
this means the agents are accumulating ID time that was not finished at the current RP.
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4. Value Iteration Results and Discussion

We solve the MDP using value iteration algorithm, shown in Algorithm 1. It is a backpropagation
algorithm starting from the goal state. The value function, V (s), evaluates each state so that the
agent can estimate how good it is to be in a particular state. Value Iteration uses the Bellman
Optimality Equation as an update rule:

V ∗(s) = max
a

∑
s′

Pa
ss′ [R

a
ss′ + γV ∗(s ′)] (6)

V ∗(s) is the optimal value function for all states. It evaluates all the possible actions, a, at
each state s, and estimates the expected reward for all future iterations, P a

ss′ [R
a
ss′ + γV ∗(s′)]. The

maximum sum over the actions is selected and the value assigned to the new V(s). This update
rule is repeated, until Algorithm 1 converges. The policy, π, is the optimal action the agent can
select from its current state s. The equation to extract the policy is the same as the value function,
but the assignment uses the argument, rather than the value. This classical dynamic programming
(DP) algorithm has a proof of optimality, which can be found in [24].

Algorithm 1 Value Iteration

1. Initialise V (s) = 0, for all s ∈ S+

2. Repeat until converged:

(a) For each s ∈ S:

i. v ← V (s)

ii. V (s)← maxa
∑

s′ P
a
ss′ [R

a
ss′ + γV (s′)]

3. Output: policy π

4. π(s) = argmaxa
∑

s′ P
a
ss′ [R

a
ss′ + γV (s′)]
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Fig. 9. Optimal policy solution of the multi-
AUV MCM problem.

4.1. Results

Figures 8 and 9 give the value function and optimal policy of the MDP. The x and y axis for both
show the state space, s[0] and s[1], respectively. The z axis on Figure 8 is the expected reward, and
on Figure 9 is the optimal action the agents can take, given their state.

4.2. Results Discussion

In order to see the MDP solution in more detail, Figure 10 gives 2D slices of the 3D policy graph.
Each 2D graph corresponds to one of the 7 available actions. For each of them, the x axis is
the state representing the remaining battery time and the y axis is the state representing the ID
workload. The white colour means an action number was selected for this state space. Table 1 is
useful to consult for the following action selection analysis.

In the top left corner is Action 0 graph, where all vehicles do an ID task and the RP is adapted
to the time it will require to cover all detections. Following our mission goal, that all detections
are revisited by the end of the mission, Action 0 is selected at the end of the mission, where the
x axis is approaching 600. The action is also selected earlier in the mission when we have more
workload to handle, or when the y axis increases and reaches high values. Another region where
Action 0 is represented is in the beginning of the mission (x = 0 to 300), where again the y axis
shows large number of detections to ID. This section was not preferred in the first iteration of the
algorithm, or the myopic case, but later, when the workload was not handled, the agents deal with
detections early on in the mission.

Action 1 is when the RP duration is tied to the ID time, but we have 1 vehicle doing search
and 2 ID. The agents gain reward by covering new search area, but are still far from the end of the
mission to spend all resource on ID.

Action 3 sends 3 vehicles to search and 0 to ID, RP duration is kept at 60 minutes, the predefined
optimal value in the specifications of the mission. This action dominates for the majority of the
mission when the ID is low. At the end, an action with ID resource allocation is chosen, such as
Action 0, 1 or 2, so that the RP interval is adapted to the remaining battery state.

Action 4 sends 2 vehicles to search and 1 to ID, when the RP duration is kept at 60. It is
selected mainly at and around y = 60. This follows the reward function penalising deviation from
the preference to keep RP=60, so this action is considered optimal by the agents.

Action 6 keeps the RP duration at 60 and all vehicles to ID. This is when the agents put all the
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Fig. 10. 2D slices for each action from 3D policy solution. Axis x and y are the battery and ID
state spaces.
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system resource into clearing the accumulated ID credit. The action is selected at y = 180, which
also follows the reduced penalty of not exceeding the RP.

4.3. Complexity and Convergence

MDP is considered unrealistic for most real world problem as its state and action space often are
continuous or infinite. A lot of research is done in designing approximate techniques to deal with
this computation load, as shown in Section 2. Dynamic programming provides an optimal solution
at the cost of doing a full sweep through all the states. For our problem, we manage to use the DP
algorithm, value iteration, by representing the problem with very small state and action space. The
complexity of Value iteration is quadratic in regards of states and linear in regards of actions (per
iteration):

O(|A||S |2 ) (7)

Our state space is s[0] ∗ s[1] = 300 ∗ 600 = 180000 and the action space is 7. This MDP rep-
resentation allows a DP solution. The computation time for iteration on an Intel Core i7 Processor
takes 4 minutes. However, the computations were done on a single core and the code can be further
optimised to reduce the time for a real time application.

In order to evaluate the solution’s performance we analysed the convergence criterion. To reach
optimal policy, the value iteration algorithm does not need to compute the final value function.
Therefore, a small value is selected for a threshold and V(s) of each iteration is compared to
the previous one. The maximum value is compared to the threshold, and once this difference
is satisfactory, the algorithm terminates. In Figure 11 we have analysed the variation of value
function, on axis x and change of policy, axis y for our MDP model. Each subsequent iteration
for V (s) and argmaxV (s) is subtracted from the previous one. The dots on the graph represent
these differences. The first iteration after the myopic case (k = 0) has a difference of the value
function calculation of around 250, which corresponds to nearly 35% change in the policy between
the two iterations. The graph shows a reduction for the first four iterations and after that, almost no
change is observed. We can assume the convergence threshold is reached. The computation time
of 4 iterations of the algorithm is around 16 minutes. This is not suitable for real time mission,
however optimisation of the code will allow reduction of this time.

4.4. Fixed parameters analysis

This subsection discuses some of the fixed parameter choices used in the simulations. It provides
the authors’ expectation how changing them would affect the results of the simulation.

1. State: The ID parameter can take a value in the interval [0:300). Increasing the number of
ID states will increase the state space and hence the complexity. This might be the case
when too many targets are detected (for example false alarms). One mitigation technique
could be to revisit the area in search mode but change the aspect angle. Introducing this
option would require changes to the action model. The Battery parameter has values in the
interval [0:600). If a longer endurance needs to be modelled, the state space will increase, as
well as the complexity. One solution can be to change the resolution of the calculation from
1 min (current simulation) to 2 to 5 minutes. Altering this parameter might bring reduced
computation but the accuracy will decrease.

2. Action: The number of vehicles in the simulation is set to 3 and is directly related to the action
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Fig. 11. Value Iteration termination - convergence condition based on small change in the value
function. Axis x is the value function maximum change between iterations and axis y is the per-
centage of action change between iterations.

space. The change in vehicle number will require a new action model. Additional implication
include things that are ignored in the current simulation but with increased number of vehicles
will not be trivial: division of the ID task between vehicles and loss to reach the RP. Another
set parameter with direct impact on the action space is the RP interval. It is set to 60 in this
simulation. It is a tradeoff between monitoring time and resource loss to travel to the meeting
point [9]. The RP loss depends on the mission and vehicle specifications and can be analysed
and altered. The RP duration is related to the MDP horizon. Reducing the RP interval will
increase the MDP horizon and this will also increase the computation load.

3. Transition Probability: The mine distribution is assumed uniform with a number of 10 per
square km. Using a different statistical model for the mine distribution will change the model
used to calculate the predicted outcome (s’). If the distribution model is not representative,
the prediction error will grow, making the selected action suboptimal. If the quantity of mines
is changed, this will have a direct impact on the ID state space. The choice of TSP calculation,
using the Beardwood formula for this simulation, also affects the estimation of s’.To improve
the model, a better understanding of the upper and lower bounds are important.

4. Reward: The reward function balances searched area, deviation from the desired RP interval
and the credit of ID workload left from previous RP intervals. The simulation values are set
in Table 2. Changing this balance will change the final goal and the weights of the tradeoffs.
They depend on the mission objectives and the user’s preference for the agent’s goal.

5. Conclusion

In this paper, we have developed a decision-making method that balances the tradeoffs of multi-
AUV MCM mission and the RP scheduling. As a result, the agents can select an optimal action
to maximise the desired output of the mission while complying with hard and soft constraints. In
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a of mine hunting scenario, the goal we have set is to maximise a search area until the battery
of the vehicles is exhausted. One constraint is that the detections found during the search phase
need to be revisited. In order to exchange status and contact data, the vehicles meet multiple times
throughout the mission, at a Rendezvous Point. The time and place for this RP also needs to be
decided autonomously. This resource management tradeoff of covering more area while revisiting
contacts and scheduling meeting points is what our MDP is solving. It provides an optimal action
policy for the agents, that takes into account estimates for all possible future states, up until the
end of the mission.

The main contribution of this work is that our model is capable of computing a solution for
the MDP in manageable time, with potential to reach real time execution. We achieved this by
discrediting the action and state spaces without losing vital mission information. The other critical
element is that utilising the RP method made the decision making intervals very few throughout
the mission and we managed to define our MDP with a finite horizon until we reach mission
completion.

This work can be expanded by using an actual model for mine field distribution or making the
agents learn a model by turning the problem from planning to RL. Another aspect for improvement
is using a different solution method, rather than Value Iteration. Novel approximate solutions are
available and can significantly reduce the computation time to reach real-time execution. Finally,
validation of the model, or parts of it, in a real experiment, will bring insights how suitable the
input functions are and what can be updated to make the MDP applicable for a real MCM mission.
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