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Abstract 

Measuring with units requires underlying conceptual competences as well as practical 

and numerical abilities. The social context, notably in relation to language, undoubtedly 

plays its part in their acquisition. Existing research had investigated conceptual, 

practical, numerical and social aspects of the acquisition of measurement, but rarely 

together, or by the same group of children. The present research united both in a 

conceptually coherent structure, enabling a picture to be presented that was both broad 

and detailed. There was a specific focus on conceptual difficulties children may face 

that are identified in the psychological and educational literature. 

Eighty-three five- to eight-year-old children were interviewed about their knowledge of 

measurement and participated in a comprehensive set of tasks designed to test their 

understanding of its language and concepts, their accuracy in making visual estimates, 

and their ability to measure length. 

Results showed the children to have a lively appreciation of the importance of 

measurement, good understanding of its everyday language and concepts, and good 

ability to estimate length. Yet they were poor measurers. This unevenness in their 

accomplishments indicated underlying conceptual insecurity that was manifested in 

ineffective deployment of measurement instruments, but went beyond it. There was 

some evidence that ability in language and estimation were associated for the younger 

children, while estimation and measurement ability were associated for the older. An 

agenda for further investigation of the disjunctions identified by this research was 

outlined. 
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Chapter 1 

General introduction and review of the literature 

1.1 Introduction 

Measurement is inseparable from activities that between them support the bulk of 

human achievement. Agriculture, industry and trade, as well as pure and applied 

science, from molecular biology to astronomy, and from medicine to engineering all 

incorporate measurement. Across cultures, education systems recognize the central 

importance of measurement by prescribing it to be taught at an early stage of school 

mathematics curricula. However, learning to measure is not straightforward. The 

present research investigates the experience of measurement, the understanding of its 

language and concepts, and the estimation and measuring ability of primary-school-

aged children. 

Among measurement domains, length has a prototypical role. On scaled measuring 

instruments, for example, measurement is embodied as length irrespective of domain. 

Brown, Blondel, Simon & Black (1995: 145) argue that "length has a pre-eminent 

position among measures" because it matches the linearity of the number system itself 

This prototypical character of length measurement recommended it as the central focus 

in the present research. 

While length (including height and width) was the central focus, other measurement 

domains, such as weight and capacity, received a minor focus for the following reasons. 

Firstly, fundamental underpinning concepts are common to all measurement domains, 

and it was useful to test the generality of children's understanding of these concepts. 

Secondly, everyday experience of measurement spans various domains, and 

understanding of the breadth of children's knowledge was sought. Lastly, it was 

important to know whether children distinguished attributes specific to length from 

those appropriate to other measurement domains. 

Numerical and non-numerical measurement 

In the mathematics literature, measurement has not always been considered exclusively 

or even primarily numerical. Nagel (1930) cites pre-Cartesian geometry and arts such as 

cookery as domains in which "disciplined judgments" (Nagel, 1930: 313) may be made 

about quantities without the use of number. He conceptualises measurement very 

broadly, ranging from classification (because it requires evaluative comparisons 
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between objects) to the scaling of extensive properties of matter. Here, "The raison 

d'être of numbers in measurement is the elimination of ambiguity in classification, and 

the achievement of uniformity in practice" (Nagel, 1930: 314). In contrast, Bergmann & 

Spence (1944) construe measurement more narrowly in terms of the "basic observations 

and measurements of the scientist". In their view, "physical measurement consists of the 

assignment of numbers to the objects or events of a physical dimension in accordance 

with certain rules" (1944: 1-2). Here, measurement is seen as a specifically numerical 

way of recording observed facts. This recalls the treatment of measurement in 

educational surveys: "an understanding of ... the use of numbers and measures to 

describe and compare mathematical and real-world objects" (IES National Centre for 

Statistics: National Assessment of Educational Progress, 2003) and in curricula such as 

the National Numeracy Strategy (Department for Education and Employment, 1999). 

In the developmental literature, both aspects of measurement find their place. In 

Piaget's seminal account, for example, numerical and non-numerical measurement 

share underlying principles that are acquired before the ability to calculate numbers of 

standard units. (Piaget, Inhelder & Szeminska, 1960). Non-numerical as well as 

numerical measurement is therefore investigated in the present research. 

Among aspects of length considered in the present research, units of length are the 

conceptual centre. The standard unit is the conventional expression of the conjunction 

of the numerical with the logical in measurement. "With a stable idea that a given length 

can be generated through unit iteration, an object being measured and the measuring 

device need not even look alike, but need only share a common internal unit" (Youniss, 

1975: 235). While such a statement conveys the logical simplicity of the idea of the 

standard unit, the present research explores what psychological difficulties there might 

be in establishing this "stable idea". 

Socio-cultural influences on the development of measurement concepts (Resnick & 

Singer, 1993) are also a strong theme in the research, in which children's experiences of 

measurement at home and at school, as well as characteristics of the everyday language 

of measurement, are examined. 

Survey evidence of children's difficulties with measurement 

National and international surveys of mathematics achievement, using samples of up to 

10,000 or more, suggest that measurement skills, knowledge and understanding of up to 

one-third of seven to 16-year-old students are limited (Hart, 2004; Thompson & 

Preston, 2004; Brown et al., 1995; Kouba, Brown, Carpenter, Lindquist, Silver & 
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Swafford, 1988; Hiebert, 1981). In particular, a surprisingly large proportion seem to 

lack fundamental measurement concepts that developmental research suggests are 

established, in some contexts, well in advance of secondary school age, such as 

conservation of length, transitivity, and measurement as iteration of a unit. 

For example, asked which was the longer of two parallel lines whose ends were offset 

in the Piagetian paradigm and presented on squared paper, the responses of over ten 

percent of a large sample of students did not reflect the number of squares covered by 

each line, and suggested that they did not conserve length in this task (Hart, 2004). 

Similarly (in a smaller-scale study) a quarter of 11 to 15-year-olds failed to mark the 

start point of a clockwork toy when measuring the distance it travelled (Department of 

Education and Science, 1981). In a version of Piaget's 'towers' task one-third even of 

10-to-13-year-olds failed to show understanding of transitivity (Brown et al., 1995); and 

a minority in this small study did not iterate a 30-cm ruler when asked to measure a 

length in excess of 30 cm. Failure to apply the principle of the inverse relation between 

size and number of units occurred in some tasks (Brown et al., 1995; Kouba, 1988). In 

another survey (Hiebert, 1981), difficulties in understanding that units can be 

subdivided were suggested by tasks where students apparently ignored the fact that one 

item, such as a 'stick' person, stood for several, or that one division stood for two 

degrees on a thermometer scale, and where part squares were counted as wholes, or 

ignored, in calculations of area. Difficulty in interpreting numbers in relation to quantity 

was exemplified by children who counted lines or spaces on a ruler rather than using the 

numbers (Brown et al., 1995). There are many examples of poor estimation and 

inaccuracy of measurement (Hart, 2004; Hiebert, 1981). 

While limited knowledge of standard units and their relationships, and limited ability to 

use measurement instruments (found in most surveys) seem readily remediable in 

school, failure to conserve length, to use an intermediate measure (showing 

understanding of transitivity) or to know that the smaller the unit used, the more of them 

are needed to measure a given quantity must, if interpretations of the results are valid, 

be a real cause for concern. 

Such surveys are not without their critics (Silver & Kenney, 1993; Kamii & Lewis, 

1991), and it is likely that some of the tests employed were not the best instruments for 

assessing mathematical understanding. Nevertheless, survey results in conjunction with 

the developmental literature can usefully indicate underlying conceptual difficulties in 

measurement, and can suggest useful smaller-scale in-depth investigations, of which the 
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present research is an example. For instance, in addressing Research Question 6: How 

well do children measure? (see page 77) the present work investigated children's ability 

to conserve length when measuring, and it sought also to assess their understanding of 

transitivity as applied to measurement by observing their deployment of measuring 

instruments. 

Measurement in the Primary Mathematics Framework 

Mathematics in the UK National Curriculum for the first years of primary education 

has, for each year-group, expected learning outcomes for measurement. These are 

indicated in the Primary Mathematics Framework (PMF) (Department of Education, 

2010; Department for Children, Schools and Families, 2006), are framed as the 

outcomes of problem-solving 'enquiries', and are typically integrated with other 

mathematics. As with the earlier National Numeracy Strategy (Department of Education 

and Skills, 1999), the objectives to which measurement activities contribute sometimes 

fail to acknowledge specific understanding required for the measurement component. 

Taking as examples the three school years from which children are drawn for the 

present research: one PMF objective for Year 1 is to "count reliably at least 20 objects, 

recognising that when rearranged the number of objects stays the same; estimate a 

number of objects that can be checked by counting". One corresponding learning 

outcome is: I can find out how long a room is by counting the paces I take to cross it. 

Here the specific understanding and potential for error involved in iterating a unit are 

unacknowledged; measurement is presented as a counting activity, perhaps preceded by 

estimation (Department for Children, Schools and Families, 2006: Year 1 Block D. 

Assessment focus: Ma3, Measures). The present research pursued the potential 

difficulty, overlooked here, of mapping number on to length, asking, in Research 

Question 5, How well do children understand that a number may express length? 

In Year 2 an objective that specifically concerns measurement instruments runs: "Read 

the numbered divisions on a scale and interpret the divisions between them (e.g. on a 

scale from 0 to 25 with intervals of 1 shown but only the divisions 0, 5, 10, 15 and 20 

numbered); use a ruler to draw and measure lines to the nearest centimetre". The 

corresponding "children's learning outcomes" are: I can use a ruler or metre stick to 

measure how long something is. I can read numbers on a scale and work out the 

numbers between them. (Year 2 Block C. Assessment focus: Ma 3, Measures). 

Conceptual understanding involved in reading and interpreting a scale in measurement 

is, if not taken for granted, at least unacknowledged here. To investigate this 
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understanding, the present research asked, in Research Question 9b), Do children 

understand that larger units may 'contain' smaller ones? and in Research Question 10, 

How well do children cope with fractional units? 

Choice of appropriate units and relationships between units are the main themes for 

Year 3: the latter was a major stumbling-block in at least one survey (Hart, 2004). The 

documents associated with the forthcoming new National Curriculum do not suggest 

there will be major changes (Department of Education, 2011). In asking: Do children 

understand that there is an inverse relation between size and number of units? 

(Research Question 9a) the present research identified perhaps the most fundamental 

relationship between units. 

The concerns arising from the surveys suggest that the kinds of curricular objectives 

outlined above will not be achieved by children without conceptual understanding. The 

project Supporting Students' Development of Measuring Conceptions: Analysing 

Students' Learning in Social Context, undertaken by the National Council of Teachers 

of Mathematics (Gravemeijer, Bowers & Stephan, 2003) provides a research paradigm 

in this respect. The project had a solid base in developmental and semiotic theory. Like 

the PMF, it took classroom 'enquiry' as the pedagogic paradigm, and it systematically 

designed and tested a process by which children began to construct a principled 

understanding of units, using versions of the ruler as both instrument and concept. 

While psychological studies specifically of measurement are few, concepts underlying 

measurement are powerful, apply well beyond the measurement domain, and have been 

thoroughly investigated in the developmental literature. The range of literature of 

relevance to measurement is therefore very broad. Selected for review are a number of 

substantial studies representing themes that are central to measurement and that 

suggested the investigations that follow. These themes are summarised at the end of the 

literature review, and are followed by twelve research questions to whose formulation 

they contributed. The research questions are set out on page 76. Throughout Chapter 1, 

the research questions are indicated (as they are above) wherever surveys, mathematical 

curricula, or research literature demonstrate the need to address them. 

1.2 Review of the literature 

This research investigates measurement-related skills, knowledge and understanding of 

children in the three years of English primary school that follow the reception year. The 
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literature reviewed begins with the pioneering work of Piaget, and then focuses on the 

developmental and mathematics education literature that followed it. 

First, the Piagetian framework in relation to measurement is described. Conceptual 

components of Piaget's framework, the methodology used to investigate their 

development, and the overall developmental structure to which they belong are 

evaluated. This framework provided the source of two lines of enquiry distinguishable 

in later work and pursued in the present research. 

The first concerns non-numerical aspects of measurement, including underlying logical 

components such as transitivity. Non-numerical aspects of Piaget's work on 

measurement that retained value for researchers are discussed, and some theoretical 

developments from these. Developments that oppose the Piagetian account are also 

considered. 

The second line of enquiry concerns numerical measurement, that is, measurement 

involving units. Studies of the development of numerical measurement are next 

considered, including research on children's ratio reasoning, since ratio reasoning is 

essential to understanding units. 

Finally, the rationale for the present research is set out. 

1.2.1 The Piagetian framework: fundamental conceptual components of 

measurement 

Still the most substantial and important treatment of the development of measurement 

concepts, Piaget's account (Piaget, 1970; Piaget et al., 1960; Piaget & Inhelder, 1954; 

1956) provides an underpinning spatial and logical framework set in a context of broad 

intellectual development. His view of the essential components of measurement has 

continued to be used in the education literature, in the assessment of measurement 

competence (Hart, 2004; Brown et al., 1995), to guide the teaching of measurement 

(Kamii & Clark, 1997; Steffe, 1971) and as underpinning for measurement (as well as 

other topics) in mathematics curricula (Department for Education and Employment, 

1999; Williams & Shuard, 1982). The Piagetian framework is therefore reviewed in 

some detail. 

In The Child's Conception of Geometry Piaget defines measurement as follows: 

To measure is to take out of a whole one element, taken as a unit, and to 
transpose this unit on the remainder of a whole: measurement is therefore a 
synthesis of subdivision and change of position. (Piaget et al., 1960: 3) 
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While iteration of a unit is common to all numerical measurement, the "change of 

position" involved here defines measurement of length. The key logical prerequisite is a 

co-ordinated system of reference points in space and, for Piaget, mental representation 

of such a system is the key developmental prerequisite, so that "subdivision and change 

of position" can be successfully deployed. 

This Euclidean conception of space presupposes a number of spatial and logico-

mathematical concepts that are theoretically separable, although they sometimes overlap 

when operationalised in Piaget's studies. The spatial concepts are: object concept; a 

group considered here under the label 'uniformity of space'; and conservation of length. 

The logico-mathematical concepts (more specific to measurement) are: continuity and 

subdivision; ordination; transitivity; and subdivision and change of position. Together 

with the associated studies, these concepts are now outlined, broadly in order (according 

to Piaget) of logical complexity and of development. They are then evaluated in the 

light of later research. Finally Piaget's overall theoretical and methodological 

contribution to the study of measurement is summarised. The development of transitive 

inference is considered through Piaget's 'towers' study; fuller treatment of transitivity, 

which underpins the role of units in measurement, is reserved for later in the chapter. 

1.2.1.1 Development of Euclidean spatial concepts 

A conception of space that is stable because unified by co-ordinates affording fixed 

locations - a Euclidean conception of space - is identified by Piaget as the overarching 

precondition for measurement, which requires that objects are moved (whether set side 

by side for direct comparison, or compared indirectly using a third object as a 

measuring instrument). Objects cannot be measured if their size may change when they 

move; a Euclidean framework guarantees constancy of size. Piaget identified 

components of measurement logically implied by a Euclidean conception of space and 

argued that until seven or eight years of age, children cannot measure because their 

mental representations of space are not Euclidean but conform to the categories of 

topology. 

Object concept 

Euclidean space is independent of the perceptual frame of the individual. Objects seem 

to disappear when out of our line of vision, and to understand that they do not, we must 

conceive of space as independent of our own body (Piaget, 1954). This conception must 

be sustained despite the fact that we always perceive objects as relative to our own 

body, because always viewed from its standpoint. 
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Piaget noted (1954) that until about 9 months old, if a desired object was removed from 

an infant's visual field, there was no attempt to bring it into view. Older infants who 

searched successfully in the place where an object had been hidden still made the 'A not 

B error': if they first saw an object hidden in place A and subsequently in place B, they 

would persistently search at A. Piaget argued from such phenomena that until about 

eighteen months old, infants do not conceive of objects as moveable, independent 

entities in space. Even when this conception is achieved, objects are not entirely 

detached from their location, but continue to be associated with the position in which 

they were first placed, as a single entity. 

...without being truly conceived as having several copies, the object may 
manifest itself to the child as assuming a limited number of distinct forms of 
a nature intermediate between unity and plurality. (Piaget, 1954: 63). 

Without a notion of space as governed by fixed co-ordinates, it is argued, the infant 

cannot draw on such ideas as an object being behind a screen or underneath a pillow; 

hence when an object is occluded by another, it ceases to exist. 

Subsequent research focused on infants tracking moving objects (e.g. Bower & 

Paterson, 1973; Bower, Broughton & Moore, 1971). Bower (1974) concluded that at 

issue was not object permanence, but object identity. Infants up to about five months 

old appeared to conceive an object occupying the same place, or continuing a path in the 

same direction, as the same object, despite several changes in appearance. Some 

transformations in appearance made in these experiments were transformations of size, 

substantiating Piaget's contention that for young children, objects may indeed change 

size when they move. However he did not consider perception of object boundaries, 

which also play a role (Spelke, 1990; de Schoenen and Bower, 1978; Neilson, 1977). 

Investigation of the object concept continues apace: (Hespos & Baillargeon, 2001; 

Houde, 2000; Aguiar & Baillargeon, 1999; Behr Moore & Meltzoff, 1999; Meltzoff & 

Moore, 1998; Wynn & Chiang, 1998; Munakata, McClelland, Johnson & Siegler, 

1997). Piaget's overarching claim is actually substantiated by much of this later work: 

that is, the conception of space governed by fixed co-ordinates, required for 

measurement, is absent in infancy. His claim that this conception is not established till 

middle childhood, examined next, is not, however, similarly substantiated. 

Conceptual development of uniformity of space 

We need, if we are to measure, a mental representation of space as uniform, as a 

"common medium" (Piaget et al., 1960: 70). We experience space, however, as 

24 



differentiated — either as occupied by objects or merely as 'distance'. 

Exploring children's conception of space, Piaget et al. (1960) placed two model trees or 

people about 50 cm apart on a table and asked whether they were close together or far 

apart. Until about seven years old, children changed their initial judgement of the 

distance between the two objects A and B when a screen or block was interposed 

between them, generally saying they were closer together. Distance between them was 

thought to be greater when the 'people' were of different heights, or on different levels. 

Distance was generally conserved, ignoring changes, at about seven years old. 

Piaget had two interrelated explanations of these phenomena (Piaget et al., 1960). First, 

space occupied by an object and 'unoccupied' space (distance) were different in kind 

for young children; hence following the interposition of a third object, the width of that 

object must be subtracted from the distance between the first two. The second 

concerned inability to represent linear order mentally as " a series of nesting intervals" 

(Piaget et al. 1960: 86) 

He reasons about AB if there is nothing between them, but if S is 
interposed, he thinks only on the new intervals AS and SB, while 
completely losing sight of the overall interval AB. (Piaget et al., 1960:86) 

By about seven years old, children are able to compare the length of an object with that 

of another, such as the edge of a table on which it lies (Piaget et al., 1960). Now objects 

are conceived as contained by space and independent of it: whether 'filled' or 'empty', 

space is conceived as a homogeneous 'container' (Piaget & Inhelder, 1956). 

If space is not apprehended as homogeneous by young children, who instead make a 

fundamental distinction between 'filled' and 'empty' space, then measurement of length 

as such will be impossible for them. A plausible alternative framework, however, that 

could account for findings such as Piaget's is provided by Gibson's (1979) theory of 

affordances. Gibson argued that perceptual information is processed functionally in 

terms of situational needs, and not in terms of separable, classifiable properties. 

If a terrestrial surface is nearly horizontal...nearly flat... sufficiently 
extended...and rigid...then the surface affords support for quadrupeds and 
bipeds....Note that the four properties listed - horizontal, flat, extended and 
rigid - would be physical properties of a surface if they were measured with 
the scales and standard units used in physics. As an affordance of support 
for a species of animal, however, they have to be measured relative to the 
animal. (Gibson, 1979: 127. Italics in the original.) 

Such judgements of affordance can account, Gibson argued, for the posing and solving 

of measurement problems such as 'Will this stick fit across here?' without the use of 
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number. Objects and the spaces available for occupation by them are perceived as a 

functional whole when a spatial judgement is demanded as a practical decision. 

Perceived changes in the affordances of a situation could underlie the type of response 

to interposed objects noted by Piaget and Inhelder. Gibson and Piaget agree, however, 

that early spatial judgements are perceptually bound, and made within an 'egocentric' 

framework 

Topological spatial concepts 

Until a fully Euclidean conception of space is established at about eight years old, 

Piaget argued, children's mental representations of objects in space conform to the 

categories of topology, a type of geometry that makes no use of size, distance and fixed 

position, but instead features relations of proximity, separation, enclosure and 

continuity, applied only to individual objects or shapes and their immediate 

relationships to each other. The claim is not that perceptions are topological in character 

(children easily navigate their spatial world as if Euclidean) but that their mental 

representations are. No a priori arguments are offered for this proposed difference. 

To test the 'topological' thesis, Piaget and Inhelder (1956: 17-42) asked children to feel 

items behind a screen and then match them to real or pictured items they could see. 

They reasoned that to identify visually an item known only by touch, a match with some 

mental representation of the item must be made. (Thus, contradicting the rationale for 

the study, haptic perception of 'topological' shapes was taken as evidence of 

topological mental representation). Progressive differentiation of shapes with age was 

found, 'everyday' shapes being matched first, then 'topological' shapes, and lastly 

regular shapes. It is not clear, however, that specifically topological characteristics 

accounted for these differences, and there was no adult control group. Tasks closely 

resembling those of Piaget (e.g. Laurendeau & Pinard, 1970), claimed evidence of a 

similar progression, but investigations using different tasks have not found evidence 

that topological concepts consistently develop earlier (Kato, 1984; Martin, 1976b). 

Horizontal and vertical axes; perspective-taking; constructing a straight line 

A number of well-known studies were also offered as evidence of the late development 

of Euclidean spatial concepts. Investigating children's understanding of horizontal and 

vertical axes, Piaget and Inhelder (1956) asked children to describe or draw the level of 

the water in bottles tilted at various angles. Before about eight years old, children 

indicated various 'impossible' angles of the surface of the liquid to the container, in 

contrast to the plane surface they must often have observed. They drew objects or 
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people on a hillside at right angles to the slope of the hill. Piaget and Inhelder argued 

that these children did not yet mentally represent a spatial frame of reference structured 

by horizontal and vertical axes, and their drawings reflected this. However, children's 

spontaneous drawings may not be good evidence for their mental representations. They 

may not intend their drawings to be fully representational (Freeman, 1980) and some 

young autistic children show early, skilful use of perspective in drawing (Wales, 1990). 

In perspective-taking experiments (Piaget & Inhelder, 1956), children were shown a 

model village with a doll placed somewhere in it, then a duplicate village, rotated at 

some angle to the original. They were asked to place the doll correctly in the rotated 

model. Until seven or eight years old, children placed the doll more or less in 

accordance with their own perspective on the original model, showing, it was argued, 

inability to detach themselves from a spatial framework centred on the position of their 

own bodies and line of vision. Children's success on perspective-taking tasks, however, 

has been shown to depend on the type of task, with three to four-year-olds being 

successful with some (Spencer, Blades & Morsley, 1989). 

Ability to construct a straight line (essential to Euclidean space with its fixed co-

ordinates) is the final example considered. Consistently with his previous reasoning, 

Piaget distinguished between early ability to recognize a line as straight, and mental 

representation of a straight line. The task was to link "distant points by the interpolation 

of a series of points along a straight path" (Piaget & Inhelder, 1956: 155). Children were 

required to insert telegraph poles (matchsticks) along a straight highway with one pole 

already placed at each end. They also had to straighten curved or zigzag lines of 'poles'. 

Children under four years old were unable to construct the straight line requested, or to 

straighten a line. Between about four and seven years, they succeeded by making the 

line parallel to the straight edge of a table (showing physical capability of the task), but 

where this was not available, matchsticks were interpolated as close together as 

possible, the lines undulating. Finally, from about 7 years old, the children put 

themselves in a straight path with the two sticks, 'sighted' along the path and correctly 

interpolated the rest. 

Laurendeau and Pinard (1970) replicated this task with children 2 to 10 years old. They 

found that even pre-schoolers could construct a straight row of objects parallel with a 

visible straight edge, but (like Piaget) not otherwise. 

Piaget referred several times to children appearing not to know what the word 'straight' 

meant, but appeared to interpret this as symptomatic of their logical stage, rather than an 
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independent factor in their performance. In many studies, in fact, Piaget left possible 

linguistic explanations of conceptual difficulties unexplored. The present research 

addressed this gap, investigating understanding of the language of length in some detail, 

asking, in Research Question 2, Does the everyday language of length present any 

difficulties to children? There was a special focus on language associated with the 

dimension of height, particularly in relation to the human figure. This was suggested by 

Piaget's study of distance disrupted by interposed blocks, described above. 

Overall, the phenomena reviewed in the section above are not convincing as evidence of 

children's mental representation of space. 

Development of geographical understanding 

The literature on children's understanding and representation of their physical 

environment does not support Piaget's view of rather late development of the ability to 

use a Euclidean spatial framework, nor does it suggest a single frame of reference for all 

mature spatial reasoning. Rather, individuals' mental representations of spatial 

relationships seem to depend on their experience of spaces and on situational demands 

(Pick & Lockman, 1981). Hart (1981) found that pre-schoolers were able to make 

simple maps, with Euclidean characteristics, of the immediate environment of their 

homes and beyond. The character of these maps seemed to vary with the amount of 

experience children had had in moving around their locality. Darvizeh & Spencer, 

(1984) found that in route-learning studies using landmarks, three-year-olds were able 

to represent positions of objects in relation to each other along a route they had 

travelled, using symbols for buildings, trees and vehicles and connecting them with 

strips symbolising roads. Recent research shows four-year-olds spontaneously using 

angle and distance information from simple maps to locate real objects in three-

dimensional space (Shusterman, Lee & Spelke 2008). Overall, evidence does not 

suggest late development of the conception of three-dimensional space, and this was not 

pursued in the present research. More specific pre-requisites for measurement are now 

considered. 

1.2.1.2 Development of logical and mathematical concepts 

Conservation of length 

In the context of measurement of length, conservation of length within a Euclidean 

spatial framework is clearly essential, since "we cannot measure the length of one object 

without moving another, the length of which we know will not be altered by its 
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movement." (Piaget et al., 1960: 69). If we conserve length we also understand distance 

as reversible: the distance AB is equal to the distance BA, even though we may 

experience a given distance as 'longer' in one direction, for example because it is uphill 

(Piaget, 1970). 

The principle tested in all Piaget's conservation studies is that quantities that are in fact 

equal retain their equality when appearances seem to challenge it. The studies were 

designed to investigate the extent to which children are able to ignore irrelevant aspects 

of the appearance of materials when judging quantity, or to take simultaneously into 

account more than one relevant perceptual aspect so as to arrive at a correct judgement. 

Piaget et al., (1960) investigated conservation of length when lengths of two items are 

not equal, but, misleadingly, end points coincide; and conversely, when length is equal, 

but end points do not coincide. In the first case, the children were shown a straight stick, 

and a curving plasticine 'snake' of greater length, but whose ends were made to coincide 

with those of the stick. In the second, ends of two parallel sticks of equal length at first 

coincided; then children saw one stick moved so that ends were offset. In both cases 

children younger than about seven judged lengths to be equal when end-points 

coincided. Even though they agreed that the straightened snake was longer than the 

stick, when the snake resumed its curves and its end points again coincided with those 

of the stick, younger children judged the lengths to be equal: the curves were not taken 

into account. When the endpoints of two parallel sticks were offset, the children judged 

a stick whose end protruded to be longer: the compensating retraction of the other 

endpoint was overlooked. 

A further study implicated subdivision as a factor in conservation. Two equally long 

strips of paper were aligned with their endpoints coinciding, the children agreeing that 

they were equal in length. One strip was then cut into segments arranged in a line 

containing curves or angles. Children younger than about seven and a half said that the 

'distance an ant would have to travel' had now changed. As before, younger children 

mentioned positions of the extremities of the lines as justification for non-conserving 

judgments. If there were curves or angles in the line, younger children pronounced the 

line longer than the straight version when the question was about 'distance to go', but 

not when the question was simply about length. Some counted the cut segments of the 

line, pronouncing some lines equal in length if they consisted of the same number of 

segments, although the size of the segments differed between the two lines. If one 

segment in a given line was markedly longer than all other segments, then that line was 
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said to be longer overall than any line whose segments were closer in length. Older 

children made correct judgments of equality of length irrespective of the 

transformations and explained that what was essential had not changed. 

Explanation of errors in these tasks due to deformation of lengths (zigzagging a strip) 

should be the familiar one of failure to compensate across positions of all endpoints, but 

deformation is confounded here with unequal segmentation, and in the attempt to 

explain errors due to both features, the account became rather obscure. Piaget stated that 

children failed to "[integrate] notions of intervals (parts of objects) with those relating to 

order and change of position" (Piaget et al., 1960: 110). Two notions of length were 

used here: a) a series of nested parts, each containing all preceding parts and being 

contained in the next part in the succession (synonymous with 'subdivision': 116); and 

b) "a set of intervals between ordered points" (111). These two aspects must be 

integrated, he argued, for length to be conserved. Thus younger children are influenced 

by the ordinal aspects of the series of segments, and ignore inequalities of subdivision, 

or they are influenced by salient aspects of subdivision (such as an extra-long segment) 

because they do not fully understand subdivision as a synthesis of "order and change of 

position" (111). Although the explanation is rather obscure, difficulties regarding 

subdivision, as well as conservation, are clearly revealed by these tasks. 

Piaget's tasks provided the basis of all later investigations of conservation; and because 

conservation of length is a logical pre-requisite of measurement, conservation tasks 

have been carried out alongside measurement tasks (Hart 2004; Petitto 1990; Boulton-

Lewis 1987; Carpenter & Lewis 1976). In general, however, specific ways in which 

conservation ability may be bound up with measurement ability have not been 

examined. In the present study, conservation tasks were embedded in investigation of 

children's understanding of the language of length. Thus Research Questions 3a) and 

3b) ask: In the context of everyday length comparisons, do children conserve length? 

and If not, does this make any difference to their measurement ability? 

Piaget's focus on ordination is further considered below. 

Continuity and subdivision 

Piaget identified the paradox of continuity and subdivision - that a length or surface 

conserves its length or area, when subdivided — as a key conceptual element in the 

construction of Euclidean space. Here, understanding of continuity is defined as the 

ability to conceive a line or surface as composed of extensionless points (Piaget & 
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Inhelder, 1956). While reconciling continuity with subdivision mathematically, this idea 

is unhelpful as an account of how children may reconcile them. 

A more persuasive account is given in the context specifically of measurement (Piaget 

et al., 1960: 62). "Qualitative measuring" is distinguished from "a true metrical system" 

because in the former one entire object is compared with another, while in true 

measuring one subdivision of an object is abstracted as a unit and applied to the length 

of the object (creating further subdivisions). In the construction of number, Piaget 

argued, both cardination and ordination deal with discrete units, so the necessary 

synthesis is more easily achieved. In measurement like is not being synthesised with 

like in this way, and greater psychological difficulty can be expected. 

... in the realm of measurement ...there is no automatic synthesis [of 
subdivision and change of position]. This is because length is continuous 
and not composed of discrete units. It can indeed be subdivided as we have 
seen... but the portions arrived at are immobile because they are connected 
so that it is difficult to compare them. The realisation that successive 
segments of a straight line are congruent therefore demands a greater degree 
of abstraction than the establishment of congruence between two separate 
moveable objects. 

(Piaget et al., 1960: 60-61) 

In addressing Research Question 6: How well do children measure? the 
present research tested the claim that children would find "qualitative 
measuring" (where the lengths of two whole entities are compared) (Piaget 
et al., 1960: 62) more difficult than using "a true metrical system" embodied 
in scaled measuring instruments. 

Ordination 

Piaget noted that ordination is logically presupposed in any comparison of quantities 

and hence in any form of measurement. 

If A, B and C are known to be successive points on a straight line, then, 
without measuring, we may deduce that the distance AB is shorter than the 
distance AC. This deduction follows from a knowledge of the order of 
points ABC and an understanding of the distances AB and AC which, being 
intervals, are symmetrical relations, but which correspond to the order of 
points, an asymmetrical relation. (Piaget et al., 1960: 70) 

Even with purely qualitative judgements of the form x is bigger than/longer than/deeper 

than... y, it must be understood a) that each item in a series differs in amount from 

earlier and later items, b) that judgements made in ordering them are relative: any item 

in a series (except the first and last) is simultaneously (for example) longer than the 

previous item and shorter than the succeeding one; and c) reversing a move in either 
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direction in the series results in a return to the original position. Considerable 

intellectual demands on the child are, therefore, involved (although Piaget found 

children ordering items qualitatively, to correspond to those in an ordered display, by 5-

6 years old.) (Piaget & Inhelder, 1956). Spatial and number concepts each contribute to 

concepts of measurement, and ordination was considered in Piaget's study both of space 

(Piaget & Inhelder, 1956; Piaget et al., 1960) and of number (Piaget 1965). 

In The Child's Conception of Number (Piaget 1965) the development of ordination and 

of cardination were dealt with together. Here, the focus was not on the spatial, but on 

the numeric properties of a series. Piaget considered that ordination and cardination 

(though logically interdependent) developed independently as they jointly apply to 

series. In one study, children were first shown (Piaget 1965: 97) a number of dolls and 

sticks that varied in length and asked to find the stick that belonged to each doll. To 

achieve this, the dolls had to be put in order of length and the sticks matched to them for 

length (or vice versa); or dolls and sticks ordered separately, the two lines afterwards 

being put in one-to-one correspondence. Only at about seven years old did children 

achieve complete success, carefully looking for the 'next largest/smallest' before laying 

an item and checking the whole length of each series for correctness with each addition. 

In one version of the task, there was a consistent error of particular interest. The order of 

one of the rows was reversed, a doll was indicated and the child was asked which stick 

belonged to it. Children would identify a stick just before the one that correctly 

corresponded with the indicated doll. Piaget argued that they could not co-ordinate their 

knowledge that each item must have a unique ordinal position with their knowledge that 

the set of all items that preceded it in the series plus the focus item had a cardinal value. 

Hence they would count the set of items that preceded the focus item, and then number 

its ordinal position as a conceptually distinct operation, resulting in a difference of one. 

By about 7 years old, children counted the item whose position they were finding 

together with those before (or after) it in the series. For Piaget, this uniting of the 

cardinal and the ordinal represented a major step in the development of number 

operations including the ability to measure. 

The present research, too, Research Question 4 asked How well do children make 

ordinal comparisons of length? but confined itself to eliciting qualitative judgements of 

shorter, longer and the same. This was because these particular kinds of ordinal 

judgements logically underpin numerical measurement, the central focus of the 

research. 
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Transitive inference: the 'towers' study 

In measurement, transitivity is the fundamental logical principle underlying the use of 

the standard unit (Piaget, 1970). It is regarded by logicians as an axiom of measurement 

(Nagel 1930). If A and C are two objects whose length, say, is to be compared, 

transitive reasoning produces a deductive inference such as: If A > B and B > C, then 

A > C, where comparing B with C is logically equivalent to comparing A with C 

directly. B is the common or middle term through which the comparison is made. The 

required understanding is that B can represent the length of A for comparison with the 

length of C, removing the need for direct comparison between A and C. The role of B 

is what makes the inference transitive. 

The 'towers' task (Piaget et al., 1960) provides Piaget's most complete description of the 

psychological construction of measurement, shown as the construction of transitivity. 

Here the focus of interest is not direct comparison of the lengths of objects, but the 

middle term employed to compare lengths. The most familiar example of such a middle 

term is the ruler with its inscribed units, but in this study Piaget avoided conventional 

associations with measurement, using an unmarked stick and excluding, in the initial 

instructions, the word 'measure' itself, so as to investigate spontaneous measuring 

behaviour. The transitivity investigated was concrete and not formal (Smedslund, 

1963): children's spontaneous behaviour and utterances were observed for evidence that 

implicit transitive inferences were being made. 

The child was shown a tower of blocks of assorted sizes standing on a table, and was 

asked to build a second tower of the same height on a table two metres away and 90 cm 

lower than the first table. The assorted blocks he was given differed from those used in 

the first tower, so as to prevent equality being achieved through one-to-one matching of 

sizes. The child was given a supply of sticks and strips of paper which could serve as 

measuring devices, but was not told their purpose. 

Piaget argued that subdivision and change of position (defining features of length 

measurement) were present at some level in every attempt to compare the heights of the 

two towers. For example, in visual comparison, actually looking from one tower to the 

other constitutes a virtual bringing together of the two towers (change of position), 

while the observation that one tower appears to be taller than the other is followed by 

visually referencing the shorter against the taller, decomposing the taller into the part 

estimated to be equal in height to the shorter and the remaining portion, so as to 

estimate by how much it is taller (subdivision). 
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Until the age of about 4 1/2, children relied exclusively on visual comparison of the 

towers and showed no awareness of its fallibility, or of the possibility of using any other 

method of comparing their heights. Judgements were typically justified by saying 

simply 'I can see that it is so'. Visual comparison continued to be used thereafter, even 

as a check on later-developing strategies, but with some awareness of its limitations. 

The observation that a strategy is not discarded when a more sophisticated one is 

acquired is common in developmental studies (e.g. Siegler, 1996), and seemed also to 

apply to later strategies reported in the 'towers' study. In measurement, however, Piaget 

argued that strategies are not simply retained side by side, but that there is a retroactive 

effect. The child's gradual development of a co-ordinate system causes the perceptions 

and physical movements which gave rise to it to become better co-ordinated and more 

accurate; children become more aware of accuracy, and of the limitations and proneness 

to error of visual comparison. Thus older children are satisfied with visual comparison 

until they are asked to verify their judgment, when they notice that the bases of the 

towers are not in the same plane. This line of argument arises from Piaget's view that 

mature spatial concepts develop from a complex interplay between perception and 

movement; however the finding is also consistent with the view that children already 

possess the necessary understanding, but do not spontaneously recognize when they 

need to apply it (Bryant & Kopytinska 1976). 

Piaget also gives a higher-level explanation in terms of childhood egocentrism, in 

relation to spatial concepts: 

They are supremely confident because they are supremely unaware of the 
empty space which separates the two objects. It is the subject who, by the 
mere act of seeing, furnishes the only link between the objects so that one is 
directly assimilated to the other. He therefore dispenses with the use of an 
objective measuring rule and with the structuration of space. (Piaget et 
al.,1960: 40. Italics added.) 

In the study, if the use of the stick was suggested to the children, they might point it at 

their structure, or lay it across the top of a tower, but they did not attempt to use it as a 

measure. These children judged the comparative height of the two towers by reference 

to their tops only, and did not take into account the differing positions of their bases, 

exactly as the children in the studies of conservation of horizontal length took into 

account only the protrusion of the end of one stick in a pair, ignoring the compensating 

retraction of its other extremity. Children next attempted 'manual transfer' when they 

became aware that the bases of the towers were in different planes, and that visual 

comparison was untrustworthy. Now the children tried to move one tower across to 
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stand by the other, to place the towers physically in the same plane, interpreted as a 

further stage in understanding space as a unity with fixed co-ordinates. 

A child's use of his hands, leg or trunk to mark the height of one tower and then 'carry' it 

across to the other for comparison was seen as a further development. This 'body 

transfer', in Piaget's view well on the way to constituting a middle term by which the 

heights are compared, does not achieve this status because its function is still to 

preserve the height of the first tower, not yet understood as embodied in an independent 

measure. The cause of transition to true measuring is the child's dissatisfaction with the 

accuracy of his use of body transfer. Piaget argues that the effortful gestures involved 

require constant monitoring and adjustment so that, for example, the hands remain in 

the same plane while the height is 'carried' to the second tower. This increases 

awareness of horizontality and verticality and continues the work of the mental 

construction of Euclidean space. (Piaget et al., 1960: 55). 

What happens next, according to Piaget, is that the gesture of body transfer is mentally 

represented as "interiorised imitation" (Piaget et al., 1960: 50). This representation is 

then projected on to a symbolic object, which finally becomes the independent 

intermediate term or measuring instrument. (Before this, children may accept a strip of 

paper or a stick as a measure, but may merely place it against the first tower and ask 

what to do next, or place it only against the second tower and say, 'Yes, that's right'. 

There is no concept of its function as a middle term). When the term is accepted as 

intermediate, there are at first limitations on its perceived usefulness: only if it proves to 

be exactly equal in height to that of the first tower do children accept it as a measure. 

Children's judgements are still "semi-perceptual" (Piaget et al., 1960: 54). This 

phenomenon also reflects the absence of fully-developed ordination: the children are 

unable to understand length as a succession of intervals between points in an ordered 

series; their attention remains confined to the end-points of the whole length. Later, 

children are able to use the stick or strip of paper as a measure if it is longer than the 

first tower, marking off the height of the tower on the measure, but not if the measure is 

shorter than the tower. Later still they do accept the use of a shorter measure, but try to 

make up the full length required in makeshift fashion with another object. In both cases 

transitive inferences are being made in the form of "transitive congruence" (Piaget et 

al., 1960: 60) It does not occur to the children to use a short length repeatedly as an 

iterated unit, or to mark equal divisions on their measure for the purpose of adding extra 

such units. Hence their understanding, Piaget says, is still qualitative. 
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In the present research, children were invited to say what they understood by 

`measuring' and their descriptions of specific measuring experiences were elicited. By 

these means it was possible to look for evidence of the staged understanding pictured 

here by Piaget, and this was one objective of Research Question la): What do children 

learn about measurement in their everyday social context, and lb) How might this affect 

their conceptual understanding of measurement? 

Why should the final transition to quantitative measuring, as illustrated in the 'towers' 

study, and involving the iteration of a unit, prove so difficult, since the prerequisites of 

cardination and ordination are established? Piaget's view is that they are established for 

discrete units, not continuous quantities, and that continuous length is experienced by 

children as a different kind of thing from the units they are used to counting and 

ordering and hence not susceptible to the same treatment (Piaget et al., 1960: 61). The 

present research investigated this claim by asking in Research Question 8: Is there 

evidence that children conceptualise in different ways, units that are physically separate 

and units that form a scale? 

Finally, children do grasp and confidently iterate a unit such as one of the small bricks 

they have used to build their tower, to compare its height with that of the first tower, as 

a fully-developed middle term. Piaget is silent about the mechanism for this transition. 

As an account of the way transitivity might typically develop, this is highly plausible. It 

incorporates at its explanatory best the Piagetian paradigm of physical activity working 

to expand childhood egocentrism. Change of position, and later subdivision, as key 

features of measurement, are strikingly present. However, as with other processes 

reviewed above, no psychological mechanism is offered for the decisive conceptual 

changes with which the account culminates, and the notion of mental representation 

involved, that of the schema, is left vague. 

Bryant & Kopytinska (1976) tested the hypothesis that in the 'towers' study children 

failed to measure not because they did not understand that the height of the two towers 

could be compared through a middle term, but because they were satisfied with visual 

comparison. They predicted that children would measure (and hence show an 

understanding of transitivity) if the possibility of visual comparison were removed. 

Sixty five-year-olds and sixty six-year-olds who had all failed to measure in the 

`towers' task were asked to determine the comparative depth of holes bored in wooden 

blocks. A stick of suitable length that would fit into the holes was provided. Most 

children used the stick as a measure without prompting, and most were correct in their 
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judgments. However in another condition using transparent blocks, so that the depth of 

the holes could be seen, most children still measured. These blocks were, though, placed 

on different tables to discourage visual comparison, so it could still be argued that it is 

dissatisfaction with the quality of specific visual comparisons that leads to an increase 

in measurement. The perceived affordances of the situation (and the intrinsic interest of 

inserting sticks into holes) provides an equally plausible explanation. What this study 

does illustrate is that whether or not children will use an intervening measure varies 

with context and type of task. In the present work, contextual information was sought 

through Research Question 1 a): What do children learn about measurement in their 

everyday social context? The effect of varying the type of task was examined by the 

combination of differing measuring devices and lengths of line used in answering 

Research Question 6: How well do children measure? 

Subdivision and change of position 

Piaget had formulated his definition of measuring in terms of subdivision and change of 

position (Piaget et al., 1960), and in the 'towers' study, each developmental step 

embodied these ideas. In the studies of length conservation, various ways of subdividing 

length are shown to mislead children as to actual length. The idea of subdivision is thus 

central to Piaget's treatment of measurement, both as fundamental concept and as 

stumbling-block. It is indeed clear that inability to deal with subdivision must 

compromise a child's ability to compare lengths or to deploy units, but the nature of the 

psychological difficulties is not explored by Piaget. The present research explored 

important aspects of the subdivision of units by means of Research Questions 9b): Do 

children understand that larger units may 'contain' smaller ones? and 10: How well do 

they cope with fractional units? Research on subdivision of units is further considered 

later in this review. 

1.2.1.3 Order of acquisition of components of measurement 

An invariant order of acquisition of concepts underpinning measurement was proposed 

by Piaget governed by what he viewed as their increasing logical complexity. This order 

was repeatedly challenged (e.g. by Petitto, 1990; Boulton- Lewis, 1987; Braine, 1959) 

on the grounds that performance of a task at any level may reflect the state of other 

cognitive capacities that develop with age but are non-logical, such as working memory. 

Boulton-Lewis (1987) tested length-measuring knowledge in 3-7 year-old children 

using three possible developmental sequences. The first was a purely logico-

mathematical sequence based on Nagel's (1930) axioms of quantity. The second, an 
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age-related sequence drawn from the literature on the development of logical reasoning 

that largely followed Piaget. The third classified the concepts in the Nagel sequence 

according to the information-processing and central processing requirements (M-space) 

of the types of task involved (Halford 1982; Halford & Wilson, 1980). 

Children from 4 to 8 years old were tested individually on M-space and short-term 

memory measures and on tasks producing measures of all the variables in the identified 

sequences. Using a scalogram analysis, the results were put into a developmental 

sequence of length and number knowledge for the 80 participants, afterwards 

statistically tested to confirm sequence or co-occurrence of variables. 

Four sets of associated variables emerged by age. The first set included ability to copy a 

horizontal line constructed with counters; recognition of equality or inequality of 

lengths of lines and ability to use the associated language; seriation by length (all from 

the literature sequence); subitising, and naming numbers 1 to 5. The second set 

consisted of recognition of length invariance, conservation of length, recognition of 

transitivity (from the literature sequence), simple number operations to 10 and knowing 

numbers greater than 10, and construction of a diagonal line. The third set to emerge 

included, surprisingly, recognition of one-to-one correspondence. This basic schema for 

counting thus emerged much later than was proposed in the logico-mathematical 

sequence. Using a ruler to compare the length of two pieces of ribbon also emerged at 

this point. Transitive reasoning occurred last, with no co-occurring variables. 

The developmental sequence that emerged from this study bore little relationship to the 

Piagetian sequence, or to that derived from Nagel. It most resembled that predicted by 

the information-processing demands of the tasks. The study posed therefore a 

significant challenge to Piaget's account of the construction of measurement, which 

presupposed a straightforward relationship between logical simplicity or complexity and 

psychological ease or difficulty. 

1.2.1.4 The Piagetian framework: summary 

Because the components of measurement are logically mutually entailed, full co-

ordination of these as a mental schema for measurement was seen by Piaget as both a 

necessary and sufficient condition for fully-developed understanding; there was no 

account of additional psychological factors. Development was conceived as a process of 

internalising physical actions: almost all the Piagetian studies reviewed above described 

understanding as arrived at in this way. When a schema was complete, it was said to be 
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`operational'. This term retained the notion of activity on the mental level; knowledge 

was not merely passive, but available for use in many contexts. 

Piagetian methodology typically involved close observation and questioning of eight to 

ten individual children engaged in the tasks set. These were designed to help the 

experimenter to infer a child's thinking in respect of some component, or co-ordination 

of components, of measurement. Piaget would first give a theoretical interpretation of 

the meaning of children's typical actions (and sometimes justifications) in a given task. 

Illustrative details of specific actions of individual children within a given age-range 

were then reported, together with verbatim excerpts from the researcher's questioning 

about their actions, and of the children's responses and sometimes justifications for 

them. Finally the theoretical account was reiterated, and the detailed findings located 

precisely within it. This methodology resulted in uniquely detailed and rounded 

descriptions of aspects of the development of measurement, but their coherence 

depended on acceptance of the entire Piagetian logical framework. Outside this 

framework, later research used much larger samples, had more regard for issues of 

validity and reliability, but investigated narrower aspects of measurement. The 

framework indeed did not survive later empirical tests. Neither the general thesis that 

the construction of Euclidean space is a late accomplishment, nor the development of 

many of its component concepts, turned out to be as Piaget described. Nevertheless, the 

work continues, obliquely, to suggest fruitful lines of enquiry, as the following two 

examples show. 

First, as underpinning for understanding continuous length, the concept of a line as a 

series of extensionless points (Piaget et al., 1960) was surely unnecessary; nevertheless, 

this formulation drew attention to the paradox of continuity in the face of subdivision, 

and this represents a persistent difficulty for children learning to measure (Lamon 1996; 

Brown et al., 1995). Second, errors children made when establishing a series (Piaget 

1965) were ascribed to their incomplete integration of ordinal with cardinal number. 

Over-elaborate for its immediate purpose, this explanation nevertheless suggested a 

broad area of potential difficulty: understanding how a numbered sequence of units 

marks amount on a measuring device. 

The opposing poles of Piaget's theory were perception and mental representation, but 

their roles in explanation lacked consistency. In conservation studies, perceptual 

features of displays were held responsible for obstructing the conception of invariance. 

In developing conceptions of space, children were said to perceive space three- 
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dimensionally, but represent it mentally as topological. In the development of 

transitivity, children abandoned exclusive reliance on perceptual methods of length 

comparison, to conceive length as invested in the middle term in transitive inference. 

Piaget offered no mechanism for transition to mental representations, or account of how 

these differed from perceptions. Moreover conscious awareness of mental 

representations varied in importance in his account. The development of transitive 

inference was described as spontaneous and unselfconscious. In other research, where 

children were asked to justify their judgements, not only conscious awareness but the 

ability to articulate it were considered a necessary part of understanding. 

It has long been recognised that notions of perception and mental representation cannot 

in fact be separated and that unprocessed sensation is a myth (Russell, 1987). 

Conversely, some types of inference, long conceived as a characteristically mental 

activity, have been shown to be part and parcel of perception (Resnick, 1992; Spelke, 

1990; Gibson, 1979; Bryant 1974). The notion of inference has been extended to the 

perceptual-mental activities of infants (Feigenson, Dehaene & Spelke, 2004). 

Meanwhile, research in the Piagetian developmental tradition has taken up the challenge 

of giving a theoretical account of mental representation including the role of conscious 

awareness. The work of Karmiloff-Smith (1992) is particularly relevant to the present 

research for the prominence it gives to procedural knowledge. 

1.2.1.5 Later development of the notion of mental representation: Representational 

Redescription 

Karmiloff-Smith's theory of representational redescription (RR) addressed the same 

phenomena as Piaget: the increasing breadth and general applicability of children's 

logical resources, of which the development of measurement is a paradigm, but focused 

on the mechanism for the changes in mental representation involved. It sought to 

"account for the way in which children's representations become progressively more 

manipulable and flexible [and] for the emergence of conscious access to knowledge" 

(1992: 17). In the model, procedural competence, conscious awareness of knowledge, 

and its accessibility to verbal report are all accounted for in the developmental process. 

A four-phase cycle is proposed that recurs within domains during adulthood as well as 

childhood. In the first phase, data from the external environment are stored additively, 

with little processing (Implicit level), and drawn on to execute simple behavioural 

procedures, guided by immediate environmental feedback. By trial and error, for 

example, four-year-olds successfully balanced, on a fulcrum, blocks containing weights 
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in different locations. (Karmiloff-Smith, 1984). In the second phase some implicit, 

procedural knowledge is mentally 're-described' independently of further environmental 

input. Some details are lost and the rest become permeable by similar features of other 

such stored knowledge to form the beginnings of cross-domain concepts at Explicit-1 

level (E-1). In the third phase, E-2 level, 're-described' knowledge is available to 

conscious awareness but not to verbal formulation as a principle. Evidence for an E-2 

level comes from the 'U-shaped curve', characteristic of knowledge acquisition in many 

domains, where the bottom of the curve reflects failures in a task previously correctly 

performed. Here, environmental feedback temporarily loses its influence during mental 

simplification and generalisation of previously-stored data. The resulting 'theory' (for 

example 'a block always balances at its geometrical centre') is then consciously applied 

and dominates behaviour, so that no adjustment is made to procedures that produce 

errors. 

At phase four (E-3 level) types of encoding become capable of inter-relating, providing 

a basis that is sufficiently rich to allow linguistic expression. Now specific procedures 

may be verbally justified by reference to a principle. Increased conceptual flexibility 

permits new data from the external environment to be used to amend a theory. 

Two departures from the Piagetian account are of particular note. Firstly, mental 

representations characteristic of any phase may co-exist and be cognitively available 

within their limits. Thus cognitive development is shorn of the rigidity of Piagetian 

structuralism. Secondly, at level E-2, children may be aware of a principle that they 

cannot yet explain; the status given by Piaget to correct justification is thereby removed 

as a hallmark of understanding. The RR theory has been extended, notably by Pine & 

Messer (2003; 1993) who confirmed Karmiloff-Smith's levels and identified additional, 

transitional levels, noting a complex role for language. As confirmation that complex 

representations may be present at different times in different domains, they also found 

five-year-olds to be capable of taking account of both weight and distance in the balance 

beam task. The role of language in conceptual advance on that task was also established, 

within the RR framework, by Philips & Tolmie (2007), who explored parents' verbal 

contributions to children's success. For Karmiloff-Smith, mastery of the relevant 

procedures is a pre-condition for initiation of level E-1 in any domain. This retains the 

Piagetian idea that physical activity is at the root of cognitive development 
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1.2.1.6 Piagetian individual constructivism and the socio-cultural perspective 

Children construct their conceptual understanding of measurement within a specific 

socio-cultural environment that must influence the process, perhaps profoundly. 

Authors considered later in this review have attached considerable weight to socio-

cultural influences (Miller, 1989; Resnick, 1992; Nunes, Light & Mason, 1993). For 

example, Resnick (1992: 107-108, italics in the original) characterises mathematical 

development as "both situation-specific and situation-inclusive": what is learned is 

attuned to the social demands of a specific situation, and to all its demands, not merely 

the mathematical aspects. For the educator who values the learning done by children in 

everyday life, the problem then becomes one of identifying reliable theoretical 

continuities between that learning and more formal mathematics instruction. 

Aspects of the children's socio-cultural environment in relation to measurement, 

including the classroom environment, were investigated in the present research by 

means of Research Questions la): What do children learn about measurement in their 

everyday social context, and lb) How might this affect their conceptual understanding 

of measurement? The expectation was that "a constitutive role in learning for...emergent 

processes which cannot be reduced to generalised structures" (Lave & Wenger 1991: 

16) might well be revealed. However, the more thoroughgoing theoretical stance of 

these authors (Lave & Wenger 1991:17 Foreword) was resisted: 

In a classical structural analysis...understanding is seen to arise out of the 
mental operations of a subject on objective structures. Lave and Wenger 
reject this view of understanding insofar as they locate learning not in the 
acquisition of structure, but in the increased access of learners to 
participating roles in expert performances. 

This perspective does not exclude unassisted individual learning, where required by the 

social (for example, the classroom) context, but apprenticeship is the favoured model. 

The present writer's perspective remains, however, in the individual constructivist 

tradition, and retains structuralist features. This is because where mathematical 

understanding is concerned, "participating roles in expert performances" do not seem 

equal to the task of overcoming the conceptual difficulties often involved; and also 

because the understanding of fundamental principles is to be contrasted with the 

mastery of procedures, however acquired, and however expertly performed. The 

perspective of Lave & Wenger does not seem to give adequate weight to these 

considerations. 
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1.2.2 Non-numerical components of measurement 

Measuring using standard units is numerical, producing absolute judgements of length. 

Underlying numerical measurement, however, are perceptual judgements of amount, 

and fundamental, non-numerical kinds of reasoning about amounts. Theory and 

research relevant to these aspects are now reviewed. They include infants' responses to 

ratio characteristics of displayed amounts, relative judgements of size in visual 

estimation, and protoquantitative reasoning (Resnick, 1992). Because measuring 

instruments embody the principle of transitive inference, its extensive literature is also 

explored in this section. Finally Miller's (1989; 1984) hypothesis that measurement 

procedures may influence conceptions of amount is considered. 

1.2.2.1 Ratio discrimination in infancy 

A wealth of research has used habituation and looking time paradigms to explore 

infants' abilities to discriminate quantities (Feigenson, Dehaene & Spelke, 2004), 

including ratio characteristics of numerosities. With strict controls on non-numerical 

features of displays, six-months-olds discriminate between large collections of dots in 

the ratio 1:2. Thus they discriminate 8 versus 16, and 16 versus 32 dots, but not 8 versus 

12 nor 16 versus 24. Ten-months-olds do discriminate between the latter collections, 

which are in the ratio of 2:3. Similar discriminability applies to sounds, and this 

similarity suggests representation of these ratios as such. An 'accumulator' analogue-

magnitude model (Meek & Church, 1983) is proposed to account for such 

representation (Feigenson, Carey & Spelke, 2002). When an infant sees an array of 

items, each item allows a burst of energy into an accumulator. A 'gate' comes down 

after each item. After the last item in the set, the accumulated magnitude is stored in 

memory. This magnitude represents the number of items in the set, but is a continuous 

magnitude; that it represents them is shown by its ratio character. 

Discrimination of small numerosities (1-3) is not made according to ratios. The findings 

suggest that different developmental factors may be involved in approximate 

representations of relative amounts (as ratios), from those involved in precise 

representations of small differences in numerosity. Findings also suggest (non-human 

primates appear to make similar representations) innate specification of some aspects of 

quantity (Feigenson et al., 2004). The infancy studies provide developmental 

underpinning for findings regarding early relative judgements (Bryant, 1974), and some 

basis (if there are different developmental routes) for difficulties encountered in the 

integration of number with amount, considered later, in the section dealing with units. 
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1.2.2.2 Relative versus absolute judgements of size 

Piaget considered that relational reasoning, including relative judgements, develops 

from the co-ordination of separate cognitive competences previously acquired. Bryant 

(1974) proposed instead that the ability to make relative judgements develops before the 

ability to make absolute judgements, and that this sequence is the key to the 

development of concepts of size and number. Thus it is the size of objects in relation to 

their frame of reference that is 'given' in perception (cf. Gibson, 1979) and judgements 

of absolute size that are more difficult and develop later. 

Bryant hypothesised that in early experiments to compare sizes of two stimuli (Kohler, 

1918; Spence, 1937) participants were actually making two size comparisons: first of 

the size of each stimulus relative to its immediate background; and second of the 

relative sizes of stimuli to each other through their relationship to this common 

background. 

Lawrenson & Bryant (1972) tested this hypothesis by comparing children's 'relative' and 

'absolute' responses. Independent groups of four to six-year-olds undertook 'relative' and 

'absolute' tasks. In the 'relative' task, squares of white card in a succession of pairs of 

different within-pair sizes were presented. Children in the 'relative' group were trained 

to respond sometimes to the larger, and sometimes to the smaller square in each pair. In 

the tests that followed, the children had to select either the larger or smaller square from 

each pair. The relative sizes of the two squares within each pair remained the same for 

each pair (one square being twice the area of the other) but the larger card in each pair 

was always the same absolute size as the smaller card in the succeeding pair. 

The 'absolute' group was trained to select always the square that was the same absolute 

size as one of the squares in a preceding pair, but within a pair the correct choice was 

sometimes the larger and sometimes the smaller. Lawrenson and Bryant reported more 

errors overall on the 'absolute' than on the 'relative' task, irrespective of age, and took 

the results of the study as strong evidence for primary use of a relative code by young 

children. 

Bryant argued on such evidence that young children recognize relationships such as 

'larger than' and 'smaller than' before they recognize absolute size. This important claim, 

subsequently widely accepted (e.g. Resnick 1992; Resnick & Singer 1993; Nunes & 

Bryant 1996) and substantiated in relation to infants (Feigenson et al., 2004) was 

rigorously tested in the present research in relation to measuring, where the tasks 

required separate relative and absolute judgements to be made. Research Question 6: 

44 



How well do children measure? examined both types of judgment. In estimation tasks 

(as well as language tasks), purely relative judgements were required and were 

examined by Research Question 4: How well do children make ordinal comparisons of 

length? Associations between success in relative and absolute judgements were then 

statistically tested. (Research question 11: Are there associations among understanding 

the everyday language of length, ability to make ordinal comparisons of length, and the 

ability to measure?) 

Bryant discussed implicit perceptual comparisons, not inferences following reflection, 

whereas the Piagetian notion of co-ordination involved a degree of reasoning: in 

conservation tasks, for example, children's justification of their judgements informed 

the researchers' assessment of their understanding. Nevertheless Bryant's work gave to 

perception a fundamental role in developing understanding of amount, in contrast to the 

Piagetian view of perceptual salience as the source of errors. 

1.2.2.3 Transitive inference 

Standard units and measuring instruments on which they appear are physical 

embodiments of transitive inference, the notion that a specific length (for example lcm) 

may be abstracted from any given instantiation of it and used to compare the lengths of 

two or more objects without the need to bring them together for direct comparison. 

Transitivity, an axiom of measurement (Nagel, 1930), is the logical foundation of all 

ordinal continua such as number, size and weight (Pears & Bryant, 1990) and hence 

must be grasped if the notion of a scale is to be understood (Markovits, Dumas & 

Malfait, 1995). Ability to make transitive inferences has been thoroughly investigated. 

In typical transitivity studies involving length, a series of sticks A, B, C of increasing 

length is employed such that A>B>C. The sticks are typically colour-coded to make 

them individually memorable. Children are shown neighbouring sticks from the series 

in pairs, and are asked to judge which stick is longer or shorter. This is the 'training' 

phase and ensures that correct comparative judgements are being made. In the test 

phase, children are shown some stick from the series. This is removed and another is 

shown that was not its neighbour in the series; thus the child has never directly 

compared these two sticks. For example A, then C may be shown. The child is asked 

which is longer. To respond correctly, the child must make an inference based on the 

length of the missing middle stick B. Correct responses over a number of trials are taken 

as indicating that transitive inferences are being made. 
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Early studies 

An early critic of Piaget's studies of transitivity, Braine (1959) identified many possible 

influences on task outcome that the studies did not control for, such as differing 

demands on perceptual discrimination by stimulus materials, level of vocabulary 

development, and memory demands of an extended series of comparisons. His own 

studies sought to eliminate some of these factors. For example, to control for memory of 

absolute length of sticks (which would make inference redundant) differences in length 

were made small and visual distractors were used. Children were trained to mastery 

with pairs of sticks in the first phase. For reliability, a minimum of forty trials was used 

in the test phase. 

While Piaget believed that transitive inference and the ability to measure emerged 

together at about 7 or 8 years, Braine concluded that transitive inference appeared about 

two years earlier, and that ability to measure was achieved later. He also identified 

children's ability to manipulate measuring instruments and interest in doing so as 

important factors. 

Smedslund (1963) identified several possible non-transitive explanations of Braine's 

results in the transitivity tasks and claimed to have found support for Piaget as to the 

age of acquisition of transitivity, but doubts were raised about whether his own studies 

showed genuine transitive inference (Braine, 1964). Later investigators (Murray & 

Youniss, 1968; Brainerd, 1973) used simpler protocols while similarly seeking to 

control for confounding factors. 

The middle term 

In the studies of Murray & Youniss (1968; Youniss & Murray, 1970) interest centred on 

the 'middle term' and its independence of the absolute length of the first term in 

children's judgments. In apparently inferring that A is longer than C, perhaps children 

merely ignored stick B and remembered that A was the longest in the series. Murray 

and Youniss dealt with this by adopting several versions of the relationship with the 

middle term: A>B>C, A>B=C and A=B>C. Only younger children were affected by 

version. Bryant & Trabasso (1971) noted that for a truly transitive inference to be made, 

the 'middle term' had to be understood as essentially relative: B is both longer than C 

and shorter than A. However, after making the initial comparisons A, B and B, C (prior 

to the inferential comparison) children could remember within each pair (the researchers 

argued) which term was shorter and which was longer; a response in accordance with 

this remembered judgement was thus indistinguishable from a correct inferential 
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response. They proposed a longer sequence, A>B>C>D>E as an unambiguous test. 

Here, an inference was available that did not involve any anchoring to the absolute 

length of the end terms A and E: that is the inference B>C and C>D, so B>D. 

Memory demands 

A longer sequence, however, puts greater demands on children's memory for the terms 

in the series and their relations, so Bryant & Trabasso (1971) incorporated a thorough 

training period for memory of the four direct comparisons. Their results showed that in 

these circumstances 4, 5, and 6-year-olds performed well on all the inferences involved, 

including the crucial B, D comparison. Youniss & Furth (1973) pointed out, however, 

that memory had been confounded with other factors such as learning and attention. 

Riley & Trabasso (1974) confirmed with children of a similar age the importance of 

memory for the premises in transitivity, but Russell (1981) found that this was not a 

sufficient condition: in one study, one-third of participants justified incorrect inferences 

by reference to the correct premises, showing that these were both stored and retrieved 

from memory. Riley & Trabasso (1974) also found that inferential responses were at a 

higher level when questioning forced children to make a reversible judgment: for 

example that not only was A>B, but at the same time B<A. The importance of memory 

for the premises as a general factor in performance on reasoning tasks (Johnson-Laird, 

1983) was investigated for transitive inference by Trabasso, Riley and Wilson (1975), 

who pointed out that transitive inference is a form of syllogistic reasoning. For them as 

for Johnson-Laird in his studies of adult reasoning, the key factor affecting success is 

the manner of representation of the premises of the inference in memory. The key 

question was: by what process does comparison of individual pairs of items lead to 

transitive inference? Riley & Trabasso (1974), using six sticks, suggested that items at 

each end of the series are again key. 

Representation in memory 

One possibility is that comparisons (premises) AB, BC and so on are represented 

separately in memory as ordered pairs, and so must be retrieved separately and then 

compared in distinct operations. The other possibility is that they are represented as a 

linear order and retrieved as such. The 'inferential' comparison is then made by reading 

it off from this series, and is not, therefore, actually inferential. Trabasso et al., (1975) 

proposed the latter. They proposed that information about the longest and shortest pairs 

of sticks (AB and EF) is encoded first, and then pairs are encoded working inwards 

(BC, ED and finally CD). As evidence for this they found a serial position effect, 
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whereby the greatest number of errors occurred in the pairs furthest from the ends of the 

series. Consistent with spatial encoding of the pairs as a series, they found better recall 

for pair 2,5 (two inferential steps) than for 2,4 or 3,5 (one inferential step). This held for 

younger and older children and for adults, and so, contrary to Piaget, did not appear to 

be developmental. Breslow (1981) suggested that although inference need not be 

involved if responses are 'read off from a serial representation, inference may be 

essential in the construction of this representation in the training phase of studies. To 

verify correct placing of a stick in a series, (as in Piaget's studies) one would have to 

infer that all sticks to one side of the focus stick were shorter than it, and all those to the 

other were longer. This could not be done by repeatedly comparing adjacent sticks: 

transitive inference is involved. 

The questions whether young children's responses to transitivity tasks indicate that they 

learn the absolute length of individual sticks rather than comparative length, whether 

each comparison they learn is stored independently or as part of a series, and whether 

representation of such a series itself entails that transitive inferences have been made, 

were not resolved (Thayer & Collyer, 1978; Miller, 1976; Harris & Bassett, 1975; De 

Boysson-Bardies & O'Reagan, 1973). Moreover the typically very large number of trials 

may have produced a training effect that casts doubt on the developmental 

interpretations made of the results. Pears and Bryant (1990) ingeniously bypassed the 

need to train memory for the premises in a transitivity task that investigated judgments 

about spatial position rather than length. The premises consisted of stacks of two blocks, 

A above B, B above C, C above D, D above E and E above F, in which the elements 

were represented by colours, for example A=yellow, B=blue. The child's task was to 

construct a stack of six blocks (sometimes fewer) in which the spatial relationships 

between the colours in the two-block stacks was preserved. All the block stacks were on 

view at once, removing the need for memory training, because absolute spatial positions 

were not preserved in the final tower and so direct comparisons would not help. The 

number of 4-5-year-old children apparently making correct inferences was well above 

chance. 

Transitive inference as analogical reasoning 

Halford (1992) construed transitive inference as a form of analogical reasoning, that is, 

mapping from a known source structure to an unknown target structure (Gentner, 1983). 

Here, the source structure is the left-to-right or top-to-bottom series familiar in everyday 

life; Halford cited evidence that constructing such a series often precedes transitive 
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inferences. His example gave top above middle above bottom as a source structure and 

John is fairer than Peter is fairer than Tom as a target structure. Once the mapping has 

been made, John is fairer than Tom can simply be read off Children have difficulty 

with transitive inferences, he suggested, because of the processing load involved in 

mapping. However, while mapping is a plausible model for a short, three-term series, 

more may be involved than increased processing load for a longer series where 

(Breslow, 1981) transitive inference may be involved in the initial construction of the 

series (however familiar). More fundamentally, if children are 'reading off' the 

inference (Trabasso et al., 1975) they could in principle do this as easily from the target 

structure as from the source structure. 

Using the mapping paradigm Goswami (1995) tested whether three- and four-year-olds 

could make transitive inferences involving two relations of relative size. From an array 

of three objects of their own, children identified an object that was 'the same' (according 

to type of object, spatial position of objects within the array, or absolute or relative size) 

as an object indicated in the experimenter's array of three. Transitive inference was 

required for success where the spatial position of objects was selected, because the 

children had to order the objects mentally before judging. 

There was a very high success rate for both age groups. The lowest scores occurred 

where the objects in the child's array differed both in absolute size and in spatial 

position from those of the experimenter, but even here success was at around seventy 

per cent. This was additional evidence, therefore, that pre-school children can 

apparently make transitive inferences in some situations. 

Sternberg used the case of transitive inference to consider how logical competence may 

be constructed psychologically. Making use of the mental models paradigm (Sternberg, 

1980a), he attempted to explain use of the 'middle term' as use of a 'pivot element' 

consisting of the mental superimposition of term A on to term B for comparison with C. 

Appraisal of the literature on transitive inference 

A paradox emerges from the literature reviewed. While Piaget is silent as to how 

transitivity, as a decisive advance in logical development, is mentally represented, many 

who pursued this question tended to conclude that true inference was absent. Yet an 

individual who can explain how units on a measuring instrument represent the same 

quantity wherever that quantity is located has surely grasped a principle of considerable 

importance. 
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Research on transitive inference represents one attempt to give an account of deductive 

reasoning in terms of psychological process. Breslow (1981) argued that accounts 

reviewed above are reductionist and fail to do justice to the central position given by 

Piaget to the notion of logical competence. Youniss and Furth (1973: 315) made a 

similar point when they described correct 'transitive inferences' made after extensive 

memory training as purely perceptual and "sub-logical". 

Two separate issues underlie this debate. The first concerns competence and 

performance. Cognitive factors such as attention and memory influence children's 

ability to make transitive inferences; so do features of an investigation, such as whether 

tasks 'make sense' to a child and whether the researcher's language is understood in the 

way intended (Donaldson, 1978). Some of these factors were addressed by the 

researchers reviewed above, with the aim of investigating purely logical competence. 

On a wider front, such efforts have resulted in claims of implicit logical ability quite 

early in childhood (e.g. Donaldson, 1978; Gelman & Gallistel, 1978). 

The second issue is more fundamental: the problem of how more powerful logical 

structures can possibly arise from any combination of logically weaker components, and 

it applies to the whole Piagetian framework underpinning measurement. It remains 

intensely debated in domains such as linguistics, where the problem of the 'poverty of 

the stimulus' (Chomsky, 1980) remains unresolved, but perhaps its intractability is 

correctly viewed simply as the product of a category-mistake (Ryle, 1949); in this case, 

an epistemological question is illegitimately posed as a question about psychological 

processes. 

The literature on transitive inference did not investigate children's understanding of 

transitivity in a measurement context, and indeed to do this specifically would be 

difficult. However in the present research, Research Question 6: How well do children 

measure? provided opportunities to observe children's handling of different measuring 

devices and consider how well they appeared to grasp the nature of the standard unit as 

embodying the length of the measured object. 

1.2.2.4 Protoquantities 

Resnick and Singer (1993) proposed a developmental sequence that encompasses 

children's competence in making qualitative judgements of amount, and their later 

application of number to quantities in measurement. These competencies find their 

place within four stages in the development of mathematical reasoning, which the 

authors summarise as follows: 
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...early abilities to reason non-numerically about the relations among 
amounts of physical material provide the child with a set of relational 
schemas that eventually apply to numerically quantified material and later to 
numbers as mathematical objects (Resnick & Singer 1993:109)... 
Eventually...mental entities [will] allow [students] to treat operators (e.g. 
addition...) not just as actions to be carried out on numbers, but as 
mathematical objects with properties of their own (110). 

`Measurement' is the second of the stages, intermediate between non-numerical 

reasoning about quantities and purely formal reasoning with numbers (Resnick 1992), 

but this term does not distinguish between countable objects and continuous quantities; 

thus units of measurement are not specifically dealt with. It is rather the first, 

protoquantitative, stage that is of importance for the present research, including the 

discussion of direct and inverse `proto-ratio reasoning'. 

Resnick's stages of mathematical reasoning in relation to measurement 

Protoquantities are the forerunners of units of any kind. They are amounts of material 

considered in qualitative terms. Protoquantitative reasoning is considered to develop 

spontaneously from everyday experience of quantities and the language used about 

them: to say that there are more boys than girls in the class, or that your house is smaller 

than mine are protoquantitative judgements. Such reasoning is employed, too, by expert 

adults such as engineers (Resnick & Singer, 1993). Both relative and absolute notions 

are included: for example, bigger as well as big. However, the mathematical operations 

associated with protoquantities - increase, decrease, combine, separate, compare, order 

- are all relative in character; the simplest form is described as direct perceptual 

comparison of different sizes of objects or sets. Protoquantitative reasoning can be 

inferential, (if some marbles have been removed from a bag, there are fewer marbles in 

the bag) and hypothetical (if some marbles were removed, there would be fewer) 

(Resnick & Singer, 1993; Resnick, 1992). Like Bryant and unlike Piaget, therefore, 

Resnick considers that logical inference develops early. The combining and separating 

operations in protoquantitative reasoning also permit part/whole reasoning such as 

knowing that if subsets are subdivided, there is no change in the whole set. 

In the second stage, children apply counting principles (Gelman & Gallistel, 1978; 

Steffe, von Glaserfeld, Richards & Cobb, 1983), developed earlier and independently, 

to enumerate objects. Here, numbers describe objects (seven apples) or quantities of 

material (ten centimetres of ribbon) and are inseparable from them. 

In the third stage, numbers are considered in themselves, rather than as attributes of 

physical objects or material. Their 'properties' take the form of relations with other 
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numbers, and are dissociated from quantities of material. In the ultimate stage, 

operations on numbers (such as addition) themselves become objects of thought. 

Protoquantitative ratio reasoning 

Two types of non-numerical reasoning are described as possible forerunners of 

numerical ratio reasoning (involved in units): fittingness and covariation. The first is 

considered an external ratio after Vergnaud (1988) because different "measure spaces" 

(Resnick & Singer, 1993:112) are involved, such as beds and bears in the three bears 

story. Only the comparisons 'greater', 'less' and 'the same' are available to 

protoquantitative external ratio reasoning, and are judgements of affordance (beds are 

too small, too big or just right for a particular size of bear). Resnick & Singer also cite 

evidence of "implicit ratio reasoning" (112), where an object may be judged, say, big 

(for an egg) or small (for a cereal box). Here, ostensibly absolute judgements are 

actually relative. 

An internal ratio is the proportion of a part to the whole in the same "measure space" 

and is involved in the understanding of units in measurement. Internal ratios are not 

easy for children to understand (Nunes, 2008; Piaget et al., 1960), although Resnick and 

Singer did not comment on this. The inverse relation between size and number of units, 

an example of proportional reasoning that is central to measurement, causes particular 

difficulty. In the present research, children were invited to comment on a variety of 

everyday measuring devices whose scales displayed different units side by side, so that 

their understanding of the inverse relation could be assessed (Research question 9a): Do 

children understand the inverse relation between size and number of units?) 

The protoquantitative covariation schema is applied to the correspondence of entities 

across two series, also familiar from everyday experience, such as 'the larger the child, 

the larger their clothes'. Inverse co-variation is also possible but somewhat more 

difficult (cf. Piaget, 1965). 

Protoquantitative judgements are not necessarily relational (they include subitisation of 

small numerosities) and when relational, are not necessarily directly perceptual. Five-

year-olds can correctly judge at better-than-chance the more numerous of two displays 

of dots and the longer of two strips of paper, where the two displays are not seen 

simultaneously (Cowan, 1982). 
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Implications for measurement of the notion of protoquantities 

The work of Resnick (1992) as well as Bryant (1974) suggests, against Piaget, that there 

are many contexts in which 'co-ordinations' precede, rather than follow, absolute 

judgements, and that a variety of types of inference of relevance to measurement may 

be made by children in advance of the involvement of number in such judgements. One 

important co-ordination, however, is a later rather than earlier accomplishment, and that 

is the integration of early number competence with protoquantitative reasoning in 

measurement. There is evidence to suggest that this may not be an easy step (Nunes, 

Light & Mason, 1993; Petitto, 1990). While Resnick & Singer did not discuss potential 

difficulties with this integration, the present research explicitly investigated it. Research 

question 5: How well do children understand that a number may express length? was 

pursued in measurement tasks by partnering questions about the absolute lengths of 

lines (expressed as a number of units), with questions about comparative length of lines 

(relative, protoquantitative judgements). This required children to convert their 

protoquantitative judgements to numerical judgements. 

1.2.2.5 How measurement procedures as 'tools of thought' may affect judgements 

of quantity: Miller's (1989) study 

In his work on measurement with 3 to 10-year-olds, Miller (1989) considered the 

relationship between the use of certain measurement procedures and ability to conserve 

quantity. He hypothesised that such procedures may be 'tools for thought', in the sense 

that they may function as "schemes, organizing the domain over which they operate" 

(p589). Miller hypothesised that children's reasoning about amounts and their 

permissible transformations may be structured in terms of the measurement procedures 

they use, and in terms of the attributes those procedures measure. His definition of 

measurement as systematic use of some rule for comparing quantities (Stevens, 1975; 

1946) permitted him to include counting among measurement procedures. 

Miller's principal focus (1984, 1989) was Piaget's claim that a child must assemble all 

qualitative logical prerequisites of measurement before successful quantitative 

measurement can develop. Miller's counter-claim was that the learning of measurement 

procedures can be the basis for later understanding of measurement principles. 

He used invariance of a given amount of material as the focus of a series of 

conservation studies in which the result of a measuring procedure appears to children 
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either to contradict, or not, invariance of the given amount. His predictions were that 

where the experimenter transforms a fixed amount of material such that, when children 

use an appropriate measuring procedure, they obtain a result that disagrees with their 

pre-transformation judgement, children will tend to judge that the amount has changed. 

Where the transformation does not produce a new result following the application of the 

measuring procedure, children will tend to judge, correctly, that the amount has not 

changed. 

Substantiation of these differential predictions would provide evidence that it is the 

measurement procedure that determines the way amount of material is represented in 

thought, and hence the logic that children apply to the task. Procedures determine 

principles, and not vice versa. 

Number: children count a set of items. Two kinds of transformation are then made: a) 

An item is cut in half. The number of items has thus increased, but amount of material 

has not. The appropriate procedure (counting) suggests an increase in amount, so a child 

is predicted to say (incorrectly) that amount has increased. b) Some items are squashed, 

so that area has increased, but amount of material has not. The counting procedure 

suggests no change, so the child's (correct) verdict would be no increase in amount. 

Length: when the relevant procedure is the measurement of length, if changing length 

also changes amount (e.g. adding extra material to make a strip of plasticine longer) 

then children will make the correct judgement that amount has increased. If changing 

length does not change amount (e.g. drawing out an existing strip of plasticine) then 

children are predicted to say incorrectly that amount has increased. 

Area: When the relevant procedure is the measurement of area, if both area and amount 

are changed (adding material and also spreading out) then children will say amount has 

changed. If changing area does not change amount (spreading or squashing without 

adding material) then children will judge incorrectly that amount has increased. 

The studies involved two toy turtles who had to be given an equal amount to eat. Their 

food was clay pieces representing sweets (to involve counting) spaghetti (to involve 

judging length) or fudge slabs (to involve judging area). Children were asked to make 

judgements in each of the three domains of measurement before and after 

transformation of the material in the different ways exemplified above. 

Miller's predictions that there would be a higher proportion of non-conserving responses 

where information from a relevant measurement procedure conflicted with actual 
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amount were broadly borne out in all age-groups. 

This work provided evidence that young children have considerable ability to reason 

about measurement, but that they frequently do not know how to interpret the outcome 

of measurements they make. The 'tool' metaphor is elaborated in a socio-cultural 

framework: if measurement is a 'tool of thought', it will have developed in response to 

particular types of problems and thus exhibit 'functional fixedness' (Maier, 1931), that 

is, the applicability of its principles in other settings may not be appreciated. Thus, 

while some procedures may be available to children at an early age, such as judging 

how far a stick will go into a hole, the extent to which children can make use of the 

results of such a procedure will vary with the context. Miller's ingenious experiments 

provided theoretical support for the idea that instruments and procedures involved in 

measurement play a role in the development of underlying concepts. Equally interesting 

is the suggestion that the role they play may mislead children. The present research 

investigated whether differing measuring devices affected success in measuring length. 

(Research Question 7: Do differences among measuring 'tools' affect ability to 

measure?) 

Miller's finding that counting may be a false cue to amount is particularly important in 

understanding units of length. In the present research, Research Questions 5: How well 

do children understand that a number may express length? and 9a): Do children 

understand the inverse relation between size and number of units? followed up Miller's 

finding. 

1.2.2.6 Classroom development of 'tools of thought': an example 

The idea of a 'tool of thought', where a practice and its characteristic tool enter into the 

conceptual development of their users was worked out in detail in a project to develop 

five-to-six-year-old pupils' understanding of measurement run by the National Council 

for Teachers of Mathematics (NCTM) (Gravemeijer et al., 2003). The ruler or 

numberline constituted the overarching tool; during a series of sessions, it underwent 

various transformations or 'inscriptions', including footprint-units and other variously-

sized and numbered units, according to the outcomes of pupil discussions. The 

conceptual insight of most interest arose from the notion of "measuring as an act of 

structuring space" (Gravemeijer et al., 2003: 58) and that "the results of iterating [a 

unit] signify an accumulation of distances". Here the Piagetian order is reversed: 

measurement does not await a developed conception of space; rather it produces it. The 

subdivisions on the ruler, as the embodiment of the iterated unit, now reflect 
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accumulated changes of position; physically constructed in the classroom, they may no 

longer represent a paradox. Difficulties commonly associated with them are, however, 

considered next. 

1.2.3 Numerical components of measurement: units 

In this section, studies of children's understanding of standard and non-standard units 

are reviewed. Piaget noted the difficulty children may face in the idea that a given 

length can be both one and many: that it can be subdivided yet retain its continuity 

(Piaget & Inhelder, 1956). Others have suggested that re-organisation of a whole 

conceptual field is required here. Subdivisions of a length in relation to the whole 

constitute ratios, expressed as a fractional number, and difficulties with units in 

measurement have been seen as one example of a general difficulty in moving from 

whole numbers to fractions (Brown et al., 1995). 

While the concept of ratio can remain implicit when using non-standard 
units or reading off labeled units on scales, in order to operate with many 
subdivisions on scales, ...an explicit grasp of ratio... [is] required. (Brown et 
al., 1995: 158-9) 

The inverse relation between size and number of units in measurement both of extensive 

and intensive quantities is a case of special importance (Howe, Nunes, Bryant, Bell, & 

Desli, 2010). An idea that makes a strong showing in the literature on rational number is 

that opportunities for children to access what would be seen by adults as a single 

principle differ sharply according to context; teaching of principles needs to be carefully 

tailored in the light of this research, of which a selection is now reviewed. 

1.2.3.1 Partitioning and unitising 

Lamon's (1996; 1994) concept of 'unitising' suggests one way in which the transition 

from whole to rational numbers may be facilitated for children. Partitioning and 

`unitising' (the use or creation of units) are inverse operations underlying rational 

number. Both are part of everyday experience: partitioning is about sharing amounts; 

unitising is about unifying them. 

`Unitising' as a general strategy for the cognitive handling of quantities provides 

evidence of competent proportional reasoning in everyday life. Typically, reasoners 

choose their own units, which may be suggested by the social setting. Lamon's example 

is of canned drinks, where a single can, a six-pack or a whole case may be the unit 

selected. 
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`Unitising' empowers the reasoner to consider simultaneously a single aggregate and the 

items that make it up - for example a six-pack and the six cans of drink it contains. It 

provides a cognitive solution to the difficulty identified by Piaget of preserving the idea 

of continuity, while understanding that this can be represented as a series of discrete 

units. In Lamon's study, 9 to 12-year-olds partitioned food into fair shares. Some tasks 

presented countable items in composite units, like packs of drinks cartons, or chocolate 

bars marked in sections, while others presented whole units, such as pizzas, where 

children would be asked, for example, to share four pizzas between three people. 

Lamon identified three unitising strategies: the preserved pieces strategy, the mark all 

strategy and the distribution strategy. In the preserved pieces strategy, three pizzas were 

left intact (three pizza-units) for distribution to the three recipients, while the last pizza 

was divided into three equal pieces (three one-third-pizza units) for distribution. In the 

mark all strategy, each pizza was marked into one-third-pizza units, but only one would 

be cut for distribution, the others being distributed as marked whole pizzas. In the 

distribution strategy, each pizza was both marked and cut in pieces for distribution. 

Economy of division varied: for sharing among three people, a pizza might be divided 

into six pieces; or it might be marked into six and then cut only into three. Lamon found 

an increase in economy according to age-group. However in the case of cans, or of a 

pack of chewing gum, all the items were drawn inside the pack. Lamon suggests that 

these were not yet conceptually single composite items seen as one unit. 

Firm interpretation of such findings can be difficult, as shown by Goswami's (1995) 

study of 3 and 4-year-olds. Here children had three sizes of cup and the experimenter 

had corresponding pictured proportions of a whole object: of a pizza, shown in the pizza 

tin, of proportions of a drink, shown in the glass, and of different numbers of 

chocolates, shown in a box with spaces for eight. The children had to match the 

appropriate pictured food or drink proportion, to the cup of the same relative size in 

their own array. Almost all the 4-year-olds and over half the 3-year-olds told correctly 

which pictured proportion corresponded to which size cup, and so were apparently able 

to order the different pictured proportions of food or drink mentally. Goswami suggests, 

however, that children may have ignored, or not noticed, the fact that each proportion 

was part of a visible whole and considered the pictured proportions as 'honorary 

wholes'. 

Lamon's studies suggest that children find it easy to decompose quantities into units, but 

only gradually learn to compose smaller units into larger ones. There is also a gradual 
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progression from an emphasis on number and counting (mark all and distributive 

strategies) to conceptualisation of a continuous quantity that is also made up of units 

(preserved pieces strategy). The difference between the mark all and distributive 

strategies is particularly interesting. It suggests that children may need the reassurance 

of visual subdivision, but that they also understand, in a situation where an item really 

needs to be split and distributed, that visual subdivisions can be grouped into larger 

units. 

The notion of 'unitising' is illuminating, and constitutes a novel approach to the 

paradox of 'continuity and subdivision' identified by Piaget & Inhelder (1956). It does 

not dissolve the paradox, however. In the present work, several research questions 

pursued this paradox and its instantiations. These are, Research Question 8: Is there 

evidence that children conceptualise in different ways, units that are physically separate 

and units that form a scale? Research Questions 9a): Do children understand the 

inverse relation between size and number of units? and 9b): Do children understand 

that larger units may 'contain' smaller ones? and Research Question 10: How well do 

children cope with fractional units? 

Petitto's investigation of children's understanding of the way in which numbers 

represent length on a ruler, and of the equal interval principle, are considered next. 

1.2.3.2 Petitto's numberline estimation study 

Petitto (1990) investigated the relationship, in six to eight-year-olds, between counting, 

use of a ruler, and spatial concepts. She noted that while young children count 

proficiently on a numberline, they do not appear to understand the proportional 

properties that guarantee equality of its units, or that units represent lengths. Two 

studies explored development in understanding of a numberline during the first three 

years in school, and involved counting and arithmetic, length conservation, and 

understanding of equal intervals. 

In the first study, children were scored as conservers or nonconservers of length on a 

standard Piagetian task, then proceeded to a numberline estimation task. Six lines were 

marked only at their endpoints, three being marked 0 and 10, and three 0 and 100. An 

arrow indicated an (unmarked) point at a different position on each line. Told that the 

numberline was like a ruler with marks omitted, the children had to supply the number 

to which the arrow would point if all the lines were marked in. 
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Petitto hypothesised a sequence to proportion shift in understanding a ruler: that 

numbers would be seen first as a sequence of points, and later as representing equal 

distances (construed as understanding proportionality). Her second and third hypotheses 

offered opposing mechanisms for any such shift. The component skills hypothesis 

proposed that acquisition of relevant counting and arithmetic skills contributes directly 

to use of the types of strategy that facilitate proportional understanding. If appearance of 

such strategies closely followed the teaching of counting and arithmetic skills, the 

component skills hypothesis would be supported. A conceptual differentiation 

hypothesis proposed that only after length conservation had been achieved would 

children use relevant numerical strategies learned in school. To conserve length is to 

differentiate length from position, Petitto argued, so conservers would be more likely to 

see numbers on a numberline as indicating a series of lengths than a sequence of 

positions. 

Petitto used children's accuracy in estimating target values on the numberline as a 

measure of their use of a specific type of strategy. If children were using purely 

sequential strategies, their estimates should deviate progressively more from the target 

as its distance from an endpoint increased, and deviation should be greatest near the 

midpoint of the line. If the sole endpoint used by a child is 0, then deviations from the 

target should be greatest near the upper end of the line. The component skills hypothesis 

would be supported, Petitto argued, if younger children, being more familiar with 

smaller than larger numbers, showed higher levels of deviation from a target score in 

the higher ranges, because this would be evidence that their counting and arithmetical 

skills with small numbers affected their accuracy. She argued that the conceptual 

change hypothesis would be supported by a sudden rather than gradual change in 

accuracy that did not differ between large and small values, and was positively 

correlated with conservation of length. 

In the first study, experimental groups reflected major relevant topic changes in the 

school curriculum as well as age differences relevant to cognitive developmental 

changes. Among the skills taught during the three years of the study were counting by 

ls, 10s and 5s, estimation prior to counting and measuring, and construction and use of 

rulers by iterating a unit. All three were considered relevant to strategies the children 

might use during the tasks in the study. 

Overall, there was wider variation in accuracy when the target was near the mid-point 

(compared with variation near end-points) for the two younger than for the two older 
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groups; this was claimed as evidence of a sequence-to-proportion shift. In the 0-100 

numberlines, this shift was also supported by the fact that levels of deviation for the 

midrange and highest targets were lowest for the oldest group. However, over- or under-

estimation in the scores with the 0-10 numberline, did not support any of the study's 

hypotheses. There was no evidence of an effect of conservation on scores, and hence 

none for the conceptual differentiation hypothesis. 

Abrupt change in the deviation scores had been proposed as evidence for the conceptual 

differentiation hypothesis. All significant differences in scores were, however, between 

groups with at least 12 months schooling separating them. Although strategy use did 

improve with age, and although children did progress from sequential to proportional 

reasoning, Petitto concluded that the findings were best accounted for by the component 

skills hypothesis, and that there is a 'gradualist' picture in which change follows school 

instruction, particularly in the application of arithmetic and counting skills. 

In these ambitious experiments, Petitto rigorously pursued the relationship between 

counting and the development of proportional reasoning in relation to length, required 

for successful measurement with a ruler. However, the variables she included made her 

specific hypotheses rather difficult to test. The present research asked more simply: 

How well do children understand that a number may express length? (Research 

question 5) and tested this in measurement tasks by comparing qualitative judgements 

of the length of lines with judgements of the same lines expressed as numbers of units. 

1.2.3.3 Equality of standard units: testing understanding of equal intervals 

To function as a measuring instrument, a ruler must be divided into equal intervals. 

Petitto argued that this may be recognised as a convention, or may instead reflect 

principled understanding. She hypothesised, as before, that aspects of school instruction 

may indirectly affect principled understanding of units. For example, early school 

experience of measuring by iteration of a unit may encourage a view of measuring as a 

series of 'steps', and may fail to give children a sense of measuring a whole length as a 

single entity, while later work on fractions, with the notion of wholes divided into equal 

parts, may support them in understanding the role of subdivision in measurement. As 

before, she hypothesised that length conservation was a pre-requisite for any 

instructional effects on understanding of units. 

The second study provided two tests of conventional aspects of equal intervals: the 

ability to recognize an equal interval ruler among rulers of unequal intervals, and 

recognition of the former as appropriate for a measuring task. It also provided a test of 
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principled understanding by presenting a task where it would be convenient to abandon 

the equal interval ruler, to see whether there was resistance to doing this. The children 

were presented with two sets of five rulers (half with a range of 0-10 units; half with a 

range of 0-20) that were of equal intervals; of increasing or decreasing intervals; of 

alternating intervals (where each was half or double the width of its predecessor); and of 

irregular intervals. Each interval was numbered. Children were asked to identify from a 

simple description of the interval configuration, which ruler the researcher had in mind, 

and then to choose which ruler would be best for measuring. All either chose the equal 

interval ruler or said that any would be equally good. 

There was no significant effect of age-group or of conservation status on choices of the 

equal interval ruler as best. A child was credited with understanding the equal interval 

principle if the equal interval ruler was preferred consistently. All children who satisfied 

this criterion were conservers. The author concluded that awareness that conventional 

rulers have equal intervals, and conservation of length are both necessary conditions for 

understanding the equal interval principle. However, since over half the children in her 

sample with these two accomplishments did not use the equal interval ruler consistently, 

they were not sufficient conditions. These studies suggest there may be a complex 

interaction between various school activities in mathematics and conceptual change in 

learning to measure, but they also illustrate the difficulty of tracking any influence such 

activities may have. 

Nunes and Bryant (1996) tested whether 5 and 6-year-olds knew that standard units 

must be equal. A pictured ruler was marked similarly to those the children had in their 

classroom, but without numbers. The children were asked to write in the numbers. The 

experimenters observed whether children a) left equal spaces between their numbers; b) 

consistently left blank spaces between numbers (showing that they understood 

subdivision); and c) either started with 0, or left a blank space before 1 (showing that 

they understood that the spaces on the ruler were the units). 

Of ninety-two children without task-related motor problems, 40% did not write their 

numbers in one-to-one correspondence with units. Half the children labelled only the 

cm marks, thereby acknowledging subdivision. The others labelled both cm and half cm 

marks (incidentally demonstrating that the children were not simply relying on their 

memory of rulers in the classroom, on which half-cms were not numbered.) Eighty-nine 

per cent wrote their 1 opposite the first line on the ruler and did not allow for 0, 

indicating that they did not, after all, understand how the ruler represented units. Of a 
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sample of children interviewed about why they had placed their numbers where they 

did, only one had allowed for 0. He had done this by writing numbers in the centimetre 

gaps as he explained. The other children did not appear to understand the question, 

making responses such as because that's where the numbers go or simply checking that 

their number sequence was correct. The latter response seemed to indicate that children 

understood the task as just another way of implementing a counting procedure. 

In a second task, children were asked whether rulers drawn in various ways were 

correctly drawn. Two rulers did not have equal intervals. Roughly the same number of 

children recognised these rulers as incorrect as had written their numbers at equal 

intervals on the pictured ruler in the first task. Four equal interval rulers were shown, 

two with imperial and two with metric markings. One 'metric' and one 'imperial' ruler 

started from 1, and the others from 0. About three-quarters of the children identified the 

metric rulers as correctly drawn, whereas less than half thought the rulers showing 

inches were correct, indicating a judgement on the basis of classroom familiarity with 

centimetre rulers rather than on the principled basis of equality of intervals. Children's 

understanding of the relationship between the size and number of units in general, of the 

way units are represented on rulers, and of the equality of units within a single scale 

were all investigated here. 

The difficulties revealed, and those revealed in Petitto's second study, concerned 

understanding the intervals marked on a ruler. These were examined in a different, and 

in a sense, more direct manner in the present research. Here, children's measuring 

behaviour was observed for indications of strategies they may have been adopting 

(Research question: 6. How well do children measure?) and they were questioned about 

scales they were shown on everyday measuring devices. (Research Question 9a): Do 

children understand the inverse relation between size and number of units? and 

Research Question 10: How well do they cope with fractional units?) 

1.2.3.4 Conversion of units 

Nunes and Bryant (1996) went on to investigate children's understanding of 

relationships between units of different sizes. They noted particular difficulty in 

converting one unit value to another. This required understanding that smaller units may 

be 'contained' within larger ones and was the principle Lamon (1996) considered might 

be established by 'unitising'. They described a study (Davydov, 1982) in which 

children, shown two sizes of glass, were told that two small glasses held the same 

amount as one large one. Asked how many large glassfuls of liquid there would be in a 
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collection of large and small glasses, the children responded with the total number of 

glasses. Nunes and Bryant noted that no numerical operations were required here: if a 

child understood units and was presented with two pieces of ribbon each 8 units long, 

but one measured in larger units than the other, they should judge that the ribbon 

measured in larger units is the longer ribbon even if unable to quantify the relationship 

between the units. This would be a relative and protoquantitative judgement. (The more 

difficult absolute judgement would involve finding a numerical value for the difference 

in length of the two ribbons, and this would necessitate expressing one of the units used 

in terms of the other). The hypothesis that children would know which was the longer of 

such a pair of ribbons without being able to quantify the difference was tested with five 

to seven-year-olds. Pairs of ribbons of similar colour but different lengths were assigned 

one ribbon to the experimenter, and the other to the child. Children were first 

familiarised with centimetres on a ruler. In the first block of trials children were given 

information about each pair of ribbons (the experimenter's and their own) entirely in 

centimetres. The information was sometimes of an absolute character (for example I 

measured my ribbon and it was 6 cm long. Yours was 4 cm long) and sometimes a 

mixture of absolute and relative information (My ribbon is 6 cm long and yours is 

longer than 7 cm.), as children might later need both. 

In the second block, the experimenter's ribbons were measured in cm and the child's in 

inches. The children were first familiarised with the difference between cm and inches 

and with the fact that 5 cm was equal to about 2 inches. All information given was now 

absolute, but relative judgements would be made if children attempted to compare 

different units. In both blocks the children were asked: Are the ribbons the same length, 

or is one longer than the other? Feedback was provided by measuring the ribbons 

against each other after the test. 

In the test where only cm were used, there was no difference in performance between 

the absolute and the absolute + relative conditions. Mean correct responses increased 

with age and quickly reached a ceiling. There were more mistakes in both age-groups 

where both cm and inches were used, but even the 5-year-olds performed better than 

chance, indicating, Nunes and Bryant argued, some sensitivity to size of units. A 

comparison was made between trials where the number of units was the same but the 

size was different, and trials where both number and size were different. In the first case 

children had only to reason that the larger units indicated the longer ribbon, but in the 

second units had to be somehow converted for a judgement to be made. Performance 
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improved with age for both conditions, but for 5-year-olds was above chance only when 

the same units were used, and in the condition with different units, even 7-year-olds did 

not get maximum correct responses. 

Nunes and Bryant concluded that children can manage simple relational reasoning (the 

larger the unit, the greater the length) when the number of units is the same, but find 

difficulty in converting units, even when this had been demonstrated, and visual 

reminders given. They concluded that despite children's familiarity with rulers, the way 

in which these represented units was not understood; that when, for example, children 

read a ruler and said five centimetres they were merely applying a procedure whose 

underlying logic they did not understand. 

The present research pursued the question of conversion of units in an everyday context. 

Children saw common measuring devices on which, side by side, scales showed 

different units, and were asked to comment on the relationship between them. It also 

tested generality of understanding by including devices that measured weight and 

capacity as well as length. (Research Question 5: How well do children understand that 

a number may express length? and Research Question 9b): Do children understand that 

larger units may 'contain' smaller ones?) 

Nunes, Light & Mason (1993), considered next, investigated the influence of familiar 

versus unfamiliar measuring instruments and techniques on understanding of units. 

1.2.3.5 Conventional versus non-conventional measuring instruments 

Nunes et al. (1993) argued that children's measuring performance is influenced both by 

their understanding of the principles of measurement and (like Miller, 1989) by the type 

of representation of quantity embodied in measuring tools. They predicted age-related 

developmental differences, and also differences between children according to different 

measuring instruments used. 

Paired six to eight-year-olds in three groups were asked to compare the lengths of two 

lines. One group was given a conventional ruler marked with centimetres and fractions 

of centimetres; the second group, a broken ruler that began at the 4 cm mark, and the 

third, a length of string. The objective was to determine whether use of the conventional 

`tool' would result in better performance than that achieved with the string. The 

measurement principle of iteration of units is 'ready-made' in a ruler, while the string 

had to be used in makeshift fashion as an iterated unit and was intended to assess 

understanding of the principle. The purpose of the broken ruler was to test 
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understanding that the numbers on the ruler indeed signified iterated units: if this was 

so, then the number four would not be taken as representing four units. 

Results showed no significant age effects. Children using the ruler did significantly 

better than those using the string; there were no significant differences between either of 

these conditions and the broken ruler condition. All the children in the ruler condition 

gave numerical responses, 84% of them correct. Sixty-three percent of the responses in 

the broken ruler condition were correct, despite the greater rigour required in achieving 

success. In the string condition, only 28% of the responses exemplified rigorous 

procedures, either of iteration (the string being moved along when shorter than the line) 

or folding (when longer). The results were claimed as clear evidence that use of a 

conventional measuring tool aids measurement. 

Eight and ten-year-olds participated in a similar study comparing two irregular areas of 

wall. Here the conventional measuring 'tool' was not a physical instrument, but the 

length x width algorithm. Conventional rulers and glued strips of ten 1 cm bricks were 

provided to help. The make-shift element consisted of a collection of single bricks, 

abundant for one group; for the other, less than needed to cover the area to be measured. 

There were no overall differences in the proportion of correct responses in relation to 

age or condition, but older children made better use of 'intellectual' strategies, that is, 

versions of the width x height algorithm using the bricks. Children frequently shifted to 

use of bricks from initial unsuccessful use of the ruler; many used bricks straight away 

in the second trial. 

Overall, results showed that the tool that directly measured amount of surface (the 

bricks) was favoured over the more conventional but more complicated tool (the 

algorithm) and its aids. Some children who used bricks did incorporate aspects of the 

multiplicative algorithm, such as counting rows rather than single bricks. Some with 

insufficient bricks, however, still 'counted', using a mixture of real and imaginary 

bricks. The study shows that the influence of cultural familiarity is complex and not 

always facilitative, and that its explanatory power may be limited. Nunes & Bryant 

suggested, more simply, that having a practical solution to hand may discourage 

intellectual performance. 

The present research required children to use both conventional and non-conventional 

devices for estimation and measurement, to see whether success varied according to 

these features. (Research Question 7: Do differences among measuring 'tools' affect 

ability to measure?). 
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1.2.3.6 Cultural tools 

Underlying the work of Petitto and explicit in that of Nunes and colleagues is the notion 

that conceptual knowledge is embodied in 'cultural tools' such as the ruler, and that 

familiarity with such tools and their conventional uses can support acquisition of that 

conceptual knowledge: mastering the procedure helps construct the principle. Their 

work demonstrates, however, the limitations of this affordance. Success depends not 

just on familiarity with the conventional tool, but on the practical skill required for its 

deployment relative to less familiar but easier methods (Nunes et al., 1993). Miller 

(1989) argued that the very specificity of the context that facilitates success with such 

tools may hinder generalisation of any principles learned. 

To understand the relationships that exist between units in measurement, understanding 

of ratio is required. The topic of ratio reasoning is next considered. 

1.2.3.7 Ratio 

The ratio relationships that exist between units in measurement, among other topics 

involving the shift from whole to rational numbers, can create considerable difficulties 

for school students in the middle years (Behr, Harel, Post & Lesh, 1992). The inverse 

relation between size and number of units is a special case of the ratio reasoning 

involved. Reasoning about intensive quantities is another (Howe, Nunes, Bryant, Bell, 

& Desli, 2010). Recent research has investigated contexts in which children of five 

years upwards can employ ratio reasoning in advance of teaching about fractions, and 

conditions for their success (Nunes & Bryant, 2009). One finding is that social 'sharing' 

situations provide an early, reliable model for certain kinds of fractions: although 

dividing a smaller by a larger number in general presents difficulties, young children 

readily understand that one or more cakes can be fairly shared between a larger number 

of children (Nunes, 2008). Another finding is that an external ratio, which holds 

between different 'measure spaces' (Resnick & Singer, 1993) seems easier to represent 

mentally than an internal ratio. Dividing one cake fairly between several children is 

understood because children can use correspondences between the parts of two wholes 

(the cake and the group of children). Partitioning e.g. subdividing a unit of length (same 

`measure space') is more difficult, seemingly because only one whole is involved 

(Nunes, 2008). Understanding the iteration of a unit as "accumulation of distances" 

(Gravemeijer et al., 2003: 58) is thus only one side of the coin; the paradox of units as a 

series of nested intervals (Piaget et al., 1960) remains difficult to grasp. 
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In the present research, Research Question 9a): Do children understand that larger units 

may 'contain' smaller ones? and Research Question 10: How well do children cope with 

fractional units? pursued the issue of partitioning. 

The inverse relation in the concept of division 

Correa, Nunes & Bryant (1998) explored the understanding of five to seven-year-olds of 

the principle that the more parts into which a whole is divided, the greater the number of 

parts. The tasks did not require the manipulation of numbers. 

The first experiment involved partitive division. The two divisors were sets of blue and 

pink toy rabbits. Dividends were sets of 12 or 24 plastic 'sweets'. A same-divisor 

condition presented equal sets of blue and pink rabbits, while in a different-divisor 

condition the sets were unequal. Children knew that within each set of rabbits, sweets 

were distributed equally; however the total allocated to each rabbit was hidden. The 

experimenter then pointed to a pink rabbit and asked whether it had more, less, or as 

many sweets as one of the blue rabbits, and asked children to justify their answers. In 

the different-divisor condition, two types of error were possible: that a rabbit received 

the same number of sweets irrespective of group; or that a rabbit in the larger group 

received more sweets. One-third of 5-year-olds, half the 6-year-olds and 90% of 7-year-

olds justified responses by appeal to the inverse relation ('more rabbits, so fewer sweets 

each'). The minority 'more is more' justification ('more rabbits, so more sweets each') 

did not decrease over the age-span, indicating for these children a persistent bias 

towards addition. 

The second experiment involved quotative division. Here the number of rabbits in each 

group was unknown, but was determined by the number of equal allocations of sweets 

that could be made from a fixed collection: if each rabbit is to have four sweets, and 

there are 12 sweets in all, only three rabbits can have sweets. Again there were 'same 

divisor' and 'different divisor' conditions; the 'different divisor' condition proved harder, 

and there was improvement with age. In the 'different divisor' trials, less than one-fifth 

of responses from 5-year-olds were justified in terms of the inverse relation (between 

the number of sweets each rabbit could receive and the number receiving sweets), while 

now nearly one-third were justified using the incorrect 'more is more' principle (the 

larger the number of sweets each rabbit receives, the more rabbits can have sweets). 
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Limits of children's ratio reasoning 

These studies showed, as the authors commented, a remarkable ability in a sizeable 

proportion of a sample of young children to understand the inverse relation between 

divisor and quotient independently of computation. The fact that others were probably 

applying (incorrectly), also independently of computation, the 'more is more' principle 

of addition, is also of interest. Correa and colleagues (1998) pointed out that the 

procedure of 'sharing', familiar to children from a number of contexts, probably 

facilitated understanding of partitive division. In the present research, Research 

Question 9a): Do children understand the inverse relation between size and number of 

units? investigated the inverse relation specifically in relation to scaled measuring 

devices. 

Kornilaki & Nunes (2005), however, pursuing the theme of the proposed facilitative 

role for procedures, investigated partitive and quotative division of discrete versus 

continuous quantities (fishes vs. portions of fish-cake for cats). There were differences 

in correctness of reasoning according to age and type of division required, but not 

according to discrete vs. continuous quantities. Since the 'sharing' procedure is known 

to be more difficult for continuous quantities (e.g. Lamon, 1996), this was evidence that 

principled understanding may be independent of procedures. Further evidence came 

from the work of Howe, Nunes and Bryant (2010). In this study of reasoning about 

intensive quantities, children's success increased with age, and was predicted by the 

intellectual demands of a problem. In the study, the children were increasingly able to 

take into account variables that were not especially salient in everyday experience and 

language usage. 

In an early study, Carpenter & Lewis (1976) argued, too, that measurement principles 

may come to be understood not through measurement activities, but as a by-product of 

general conceptual development. If so, they reasoned, there should be children who 

understood that there was an inverse relation between unit size and number of units (this 

being a compensatory relationship characteristic of all conservation), but failed to 

understand that quantities could not be directly compared if measured in different units. 

In tasks with six and seven-year-olds, a majority indeed said that more small boxes than 

large would be needed to equal the lengths of lines. A similar finding with liquid 

quantities enabled Carpenter and Lewis to claim a general developmental influence. 

However, when discussing lines previously agreed to be of equal length, but each 

measured with boxes of a different size, the same sample was confused about their 
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length, only 10% successfully compared lengths, and few mentioned both size and 

number of units in their justifications. Hart's (2004) findings were very similar for 

between one-third and two-thirds (decreasing with age) of 11 to 16-year-olds asked, in a 

large national survey, about two paths measured respectively with paperclips and 

walking sticks. 

Overall, these studies give evidence of the ability of young children to apply 

mathematical principles independently of their embodiment in number operations, and 

hence of their ability to understand formal properties of specific tasks. They are 

evidence, in fact, of the power and sophistication of protoquantitative reasoning. 

However, despite some commonalities (Squire & Bryant, 2003), this ability seems 

confined to specific types of task. Furthermore, while some argue that procedural 

knowledge plays an important developmental role (Resnick & Singer, 1993; Karmiloff-

Smith, 1992) others argue for an independent conceptual route to understanding. Thus, 

while children clearly have some insights to help them understand rational numbers 

(Nunes, Bryant, Hurry & Pretzlik, 2006; Nunes, Bryant, Pretzlik, Bell, Evans & Wade, 

2004) few broad generalisations can as yet be made. The present research contributed to 

this knowledge specifically in relation to measurement. It did so by assessing children's 

success in measuring tasks where it was necessary to take account of fractional units. 

(Research Question 10: How well do children cope with fractional units?) 

1.2.4 Procedural and conceptual knowledge 

In the research reviewed above, the part played by routines and procedures in the 

acquisition of conceptual knowledge is a persistent theme. Miller (1989) makes perhaps 

the strongest claim for the priority of procedures: that they may determine mental 

representation of quantity. Using child-generated procedures, Gravemeijer and 

colleagues (2003) applied this idea in the classroom with some success. Procedures 

enter Karmiloff-Smith's developmental model at Level 1, as the basis of all subsequent 

conceptual change. The theoretical relationship between procedural and conceptual 

knowledge in these authors is clearly-defined, and enables them to predict what 

difficulties children are likely to encounter in developing conceptual understanding. In 

other writers the relationship is less clearly-defined. Petitto (1990) concluded, on only 

indirect evidence, that classroom practice in counting and arithmetical procedures was 
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the likely major contributor to improved conceptual understanding of proportion in 

numberlines. Resnick & Singer (1993) considered that protoquantitative reasoning, 

embedded in everyday language and routines for comparing quantities, was the basis for 

increasingly abstract mathematical understanding, but did not discuss the nature and 

possible difficulty of developments from the routines to the abstractions. Evidence that 

everyday routines of sharing contribute to the understanding of units (Lamon, 1996) and 

of the inverse relation in the concept of division (Correa et al., 1998) was naturally 

available only for the highly specific contexts in which this was tested. There is also 

evidence of conceptual development taking place independently of procedures 

(Kornilaki & Nunes, 2005; Carpenter & Lewis, 1976). 

With regard to conceptual competences, Rittle-Johnson & Siegler (1998) considered 

two opposed accounts of those which appear early. The 'privileged domains' hypothesis 

(Geary, 1995) proposed an evolutionary source for basic arithmetical concepts that 

precede relevant social experience. The contrasting 'frequency of exposure' hypothesis 

(Briars & Siegler, 1984) argued a procedural source in the early opportunities infants 

have for observing and imitating procedures such as counting, and suggested that they 

extract mathematical principles from such experience (although causal mechanisms are 

not considered). More advanced mathematical competences are culturally specific and 

must be explicitly, often laboriously, learned from instruction. 

Some competencies relevant to measurement may usefully be considered in the light of 

these hypotheses. For example, infants' early discrimination of ratio characteristics of 

magnitudes (Feigenson et al., 2004) may facilitate ordinal comparison of length in early 

childhood. Observation of, or participation in, measurement procedures in the home 

may support the 'frequency of exposure' hypothesis, depending on the frequency of 

such exposure and what is extracted from it. The framing of the present research 

provided for consideration of these possible influences (Research Question 1 a): What do 

children learn about measurement in their everyday social context, and lb): How might 

this affect their conceptual understanding of measurement?). 

Allied to procedures, and sometimes merging with them, is the proposed role of 'tools' 

in the construction of knowledge and understanding of measurement (Gravemeijer et 

al., 2003; Nunes et al., 1993; Miller 1989), because to learn the correct use of a tool is 
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to learn a procedure. The role of 'tools' in conceptual understanding is, however, a 

narrower question than that of the role of procedures, and the distinction between 

conceptual and procedural knowledge did not seem sufficiently clear-cut, despite its 

prevalence in the literature, to structure the present research. In the context of 

mathematical development, Rittle-Johnson & Siegler (1998:77) define conceptual 

knowledge as "understanding the principles that govern a domain and of the 

interrelations between pieces of knowledge in a domain" (whether or not that 

knowledge is explicit). They define procedural knowledge as "action sequences for 

solving problems". In the present research, measuring itself is clearly an action 

sequence, but it cannot be undertaken without some conceptual understanding of how 

units work in measurement. In one underpinning competence investigated 

(understanding the everyday language of length) conceptual and socio-cognitive 

understanding are intertwined. In another, (ordinal comparison of length) perceptual 

skills are salient, and these are not well-described as an action sequence. The current 

research therefore made use of the conceptual/procedural contrast only when this 

seemed enlightening. 

1.2.5 The present research 

1.2.5.1 Key themes that provide the rationale 

The developmental and educational literature reviewed was written from a variety of 

perspectives, and the associated research undertaken for a variety of purposes. Persistent 

themes can nevertheless be identified across this range of material that each suggest 

some aspect of measurement or its conceptual underpinnings that are potential sources 

of difficulty for children. These are described below and frame the present research. 

Overall, evidence from the studies reviewed demonstrated the overriding influence on 

research outcomes of the type of task employed. Increasing rigour and sensitivity of 

design provided insights that were valuable, but increasingly various. Moreover 

different insights were contributed by different samples of children. 

The present research attempted to investigate children's understanding of measurement 

in, so to say, a more unified way. It did this, firstly, by restricting itself to testing of 

children's abilities in basic competencies underpinning measurement and in measuring 

itself, using simple and robust tasks. Secondly, a single sample of children participated, 

enabling some insight into how these competencies might be associated. (Research 
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Question 11: Are there associations among understanding the everyday language of 

length, ability to make ordinal comparisons of length, and the ability to measure?) 

Thirdly, the design, in which the same tasks were used with three school year-groups, 

enabled year-group and age comparisons. (Research Question 12: Do age and length of 

time in school make a difference to any of these abilities?) To help understand how 

these competencies were acquired, the research also investigated the children's own 

accounts of the home and school contexts in which they experienced measurement. 

As Piaget saw, the competencies are interrelated. However, the first three aspects below 

may be considered relatively independent themes, whereas those in later sections are 

harder to separate. 

Conservation of length 

Logically, measurement presupposes the principle of conservation: the lengths of 

objects cannot be compared, or measured with an instrument, if length may change 

when position changes. In the literature, the criterion of understanding this principle has 

generally been success in traditional Piagetian tasks, where children saw material 

transformed before being asked to renew a previous judgement of length (see also 

Petitto, 1990; Miller, 1989; Boulton-Lewis, 1987; Piaget, 1970; Piaget et al., 1960; 

Braine, 1959). The term 'conservation' has also been applied more broadly in the 

literature, where the context required judgement of invariance of length, whether or not 

a transformation had been witnessed (e.g. Hart, 2004; Department of Education and 

Science, 1981). Surveys appear to show that children even of secondary school age lack 

some aspects of the ability to conserve length in this broader sense. For Petitto 

(1990:58) success in a traditional Piagetian task constituted grounds for expecting "the 

ability to conceptualise the distinction between position and length" (and hence how 

units of length are represented) on a numberline. So the term 'conservation' has been 

liberally interpreted, credited with a key role in the development of measurement, but 

rarely (since Piaget) given a central focus. In the present research, children's ability to 

conserve attributes of length across various transformations was thoroughly tested, and 

was then compared with their measurement ability. 

Absolute versus relative judgements 

Ordinal comparisons of length are the logical foundation for measurement with units. 

Except for judgements of 'same length', ordinal comparisons are relative judgements 

and measurement with units absolute. The mathematical operations that Resnick (1992) 

proposed as early-developing categories of protoquantitative reasoning are all relative in 
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character, and indeed there is evidence of discrimination of relative magnitudes in the 

form of ratios in very early infancy (Feigenson et al., 2004). Bryant (1974) showed that 

in some contexts young children did find relative judgements of size easier to make than 

absolute judgements; for example they made more correct judgements of 'larger' or 

`smaller' in respect of two items than correct judgements of 'same size'. If the ability to 

make relative judgements is acquired early, it is important to identify any relationship 

between this and the ability to make absolute judgements, because children as young as 

5 years are expected to be taught to estimate in absolute terms (Primary Mathematics 

Framework, Department for Children, Schools and Families, 2006: Year 1 Block D. 

Assessment focus: Ma3, Measures) and because older children perform poorly in some 

tasks that require absolute judgements involving units. Examples are numerical 

estimation tasks using Duplo blocks (Brown et al., 1995) or mm (Department of 

Education & Science, 1981) as units. What is needed is comparison of children's ability 

to make ordinal comparisons of the length of objects (relative judgements) with their 

ability to measure the same objects (absolute judgements). This was done in the present 

research, where visual estimations and measurements of the length of the same lines 

were made. Children also made relative judgements in tests of their understanding of 

the everyday language and concepts of length. 

The paradox of continuity and subdivision 

Piaget and Inhelder (1956) suggested that the idea that a given length can be both 

continuous and at the same time subdivided will cause conceptual difficulties for 

children if they experience continuous length as different in kind from discrete units. 

Gravemeijer et al., (2003) showed that encouraging children to assemble their own units 

into a continuous length could overcome this difficulty. Petitto (1990) and Nunes & 

Bryant (1996) provided evidence that children understood subdivisions on rulers in 

some contexts. Lamon (1996) considered this 'one-or-many?' paradox as broader, and 

that, developmentally, children may solve it by 'unitising', enabling them to 

contemplate simultaneously a single unit and the sub-units that make it up. 

Piaget also suggested, more concretely, (Piaget et al., 1960) that the nature of 

measurement itself, i.e. physical iteration of a unit, is more evident when a single unit 

can be physically moved along an object than when a continuous scale embodying the 

same unit is used to measure the object; hence the use of a scaled instrument may prove 

more difficult than the use of discrete units such as blocks. In contrast, Petitto (1990) 
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suggested that if children are taught at first to measure length by iteration of a unit, they 

may cease to consider that they are measuring a single entity. 

Here, an area of difficulty is identified without much convergence as to its nature. To 

pursue the enquiry, the present research asked children, over a large number of trials, to 

measure a continuous length with a ruler and tape measure (instruments embodying 

continuous scales) and to measure the same length with wooden cubes (discrete units). 

If different devices produced differences in performance, their character would be 

described and possible causes considered. 

Ratio and proportion 

Nunes and Bryant (1996) identified the notion that larger units may contain smaller 

ones as difficult for children. The surveys reviewed and the Primary Mathematics 

Framework testify to educational concern that children should be able to convert from 

one standard unit of measure to another. In the literature there is consensus that these 

ideas require an understanding of ratio and proportion. 

Despite evidence of receptivity to ratio information in infancy (Feigenson et al., 2004) 

and of both early (Resnick & Singer, 1993) and later (Correa et al., 1998) ratio 

reasoning in limited contexts, the ability to handle ratio and proportion in school 

mathematics is generally considered a major hurdle of middle childhood (Behr et al., 

1992) of which surveys give evidence (Hiebert, 1981). Reluctance to convert units, and 

other difficulties involving the idea that larger units contain smaller ones, as well as the 

tendency to count numbered points on a ruler rather than spaces (Petitto, 1990), 

probably reflect the failures in proportional reasoning that also underlie difficulties with 

fractions (Brown et al., 1995) and intensive quantities (Howe, Nunes, Bryant, Bell, & 

Desli, 2010). 

The inverse relation between size and number of units is a special case of proportional 

reasoning that underlies all measuring with units and is of fundamental importance, but 

there are persistent reports of difficulties (Howe, Nunes, Bryant, Bell, & Desli, 2010); 

Nunes and Bryant, 1996; Carpenter and Lewis, 1976). In the National Assessment of 

Educational Progress Fourth Assessment (1988), no less than 50% of the 12-year-olds 

surveyed had difficulties in one task. In the present research, understanding of this 

inverse relation was explored in a realistic context as children commented on the scales 

shown on various measuring instruments. 
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Mapping number on to quantity 

Quantitative measurement involves the application of number to amount. As abilities to 

be "assess[ed] for learning" in measurement, the Primary Mathematics Framework has a 

mixture of counting skills and qualitative comparisons, with no suggestion that the two 

processes may not be entirely congruent for children. I can use counting to solve 

problems involving measures as a "children's learning outcome" encapsulates this 

apparent lack of awareness. (Department for Children, Schools and Families, 2006: 

Year 1, Block D, Ma3, Measures). While some authors (Resnick and Singer, 1993; 

Petitto, 1990) expected development from qualitative comparisons of amount to the use 

of units of measure through application of counting skills, others have disputed this 

account. Lamon (1996) found a gradual development from over-dependence on number 

and counting to conceptualisation of a continuous quantity (that is, development in the 

opposite direction) while Miller (1989) showed that when number is not a valid cue to 

amount, children's early facility with number and counting will simply lead them 

astray. Nunes and Bryant (1996) found that children's labelling of a pictured 

unnumbered ruler did not necessarily show understanding of units, but often resembled 

a counting procedure. Carpenter and Lewis (1976) and Hart (2004) found children 

judging greater quantity on the basis of greater number, rather than greater size of units. 

The present research followed up these somewhat disparate findings with an 

investigation of children's abilities to integrate qualitative and quantitative judgements 

of amount. Number was introduced (see Chapter 5) into a study of visual estimation by 

asking children to make comparisons of ordinal length with a given number of visible 

units. Later (and conversely), after measuring in units (see Chapter 6) they were asked 

to compare their numerical measurement with a given length in ordinal terms (i.e. 

shorter, longer, or same). 

A different type of problem in numerical measurement is to do with its approximate 

nature, and with fractional units. In the present research, children were presented with a 

number of lines to measure that included fractional units, so as to see how they dealt 

with this situation. 

Tools, procedures and principles 

A diverse literature variously argues the degree and type of influence of procedural 

competence on conceptual understanding (Kornilaki & Nunes, 2005; Rittle-Johnson & 

Siegler, 1998; Karmiloff-Smith, 1992; Resnick, 1992). Allied to procedures, and 

sometimes merging with them, is the proposed role of 'tools' in the construction of 
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knowledge and understanding of measurement (Gravemeijer et al., 2003; Nunes et al., 

1993; Miller, 1989). The cultural specificity of tools is also an important theme. In the 

present study, children were asked to comment on and to use a range of everyday 

measuring devices as a means of exploring their measurement skill, knowledge and 

understanding. The complicated way in which these tools represented units was left 

intact, to see how children dealt with these culturally specific features. 

Influence of social context 

While the literature reviewed frequently asserts the socially situated nature of children's 

measurement ability, it rarely offers any social contextualisation for the research 

reported. Without some knowledge of the social context, however, it is very difficult to 

tell what factors might influence development of measurement. The present research 

sought that understanding by using information from the children themselves about their 

measurement experiences at home and in school as context for the research and to 

inform interpretation of the results. 

1.2.5.2 Overview of the research 

The themes discussed above were incorporated into four investigations with primary 

school participants. First, their experience and general knowledge of measurement were 

explored through interviews. Second, their understanding of the language and concepts 

of comparative length was investigated, then their ability to make visual comparisons of 

ordinal length, and finally their measurement ability. Associations among performance 

in language, visual comparison, and measurement tasks were then explored. 

In the interviews, the children's language use was unrestricted. It was, however, highly 

constrained in the rest of the research by the design of the tasks, and specifically the 

form of the experimenter's questions and the verbal responses they invited. The 

advantages of a more expansive design were considered, (particularly Piaget's 

exploratory style of questioning and his invitation to justify responses) but it was 

decided that these were outweighed by the increased difficulty of interpreting data 

obtained in this way. The similarity across tasks of the language used, and invited, also 

facilitated comparison of the outcomes. 

1.2.5.3 Research questions 

The research questions were introduced in the literature review, where they addressed 

issues (brought together in the key themes above) that required further investigation. 

They are as follows: 
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In relation to the sample studied: 

1. a) What do children learn about measurement in their everyday social context, 

and b) how might this affect their conceptual understanding of measurement? 

2. Does the everyday language of length present any difficulties to children? 

3. a) In the context of everyday length comparisons, do children conserve length? 
b) If not, does this make any difference to their measurement ability? 

4. How well do children make ordinal comparisons of length? 

5. How well do children understand that a number may express length? 

6. How well do they measure? 

7. Do differences among measuring 'tools' affect ability to measure? 

8. Is there evidence that children conceptualise in different ways, units that are 

physically separate and units that form a scale? 

9. a) Do children understand the inverse relation between size and number of units? 

b) Do they understand that larger units may 'contain' smaller ones? 

10. How well do they cope with fractional units? 

11. Are there associations among understanding the everyday language of length, 

ability to make ordinal comparisons of length, and the ability to measure? 

12. Do age and length of time in school make a difference to any of these abilities? 
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Chapter 2 

General method 

For convenience, general aspects of the method are set out here. Aspects relating to 

specific phases of the research are described in the relevant chapters. 

2.1 Sampling rationale 

Five to eight-year-olds in three successive primary school years were selected for the 

research. This age-span had a Piagetian basis as the period during which concepts 

underlying measurement could be expected to mature (Piaget et al., 1960). Concurrently 

children received instruction about measurement in accordance with the National 

Curriculum, so that on both counts age-related improvements in measurement might be 

expected. The research was based on successive waves of data collection from the same 

sample of children. This had the advantage of enabling examination of the relationship 

between different aspects of their performance. 

2.2 Design 

The research consisted of two interviews and three sets of tasks. All children were seen 

individually and all experienced each interview and task. 

2.3 Participants 

The participants were eighty-three children attending a non-denominational London 

state primary school. Families were mainly of British White and African-Caribbean 

heritage and of mainly low socio-economic status as indicated by the eligibility for free 

school meals, which was 65% of the total on roll. The participants consisted of three 

complete school classes in successive year-groups as follows. 

Table 2.01 Age and gender of the participants 

Year 1 Year 2 Year 31  

Mean (SD) age (years) at first 
interview 

5.66 (0.31) 7.22 (0.25) 8.37 (0.33) 

Range 5.18 to 6.19 6.80 to 7.59 7.96 to 9.09 

Boys 14 8 15 

Girls 15 17 14 

N 29 25 29 

Note 1. Please refer to Pattern and organization of sessions below 
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As Table 2.01 shows, there were more than twice as many girls as boys among Year 2 

children. This imbalance in Year 2 had the potential to create a confound between age 

and gender where there turned out to be gender differences, and made it especially 

important to check these. Gender differences were tested throughout the research, and 

results reported in the appropriate Results sections. 

There were fewer participants in some aspects of the research than others, because 

children had left the school during the period of the research or were otherwise 

unavailable. No newcomers were added to the sample. The number of participants in 

each part of the research is set out in Table 2.02 

Table 2.02 Phases of the research with number of children participating in each phase, 

according to year-group and gender 

Phases (1 - 5) Year 1 Year 2 Year 3 
Boys Girls N Boys Girls N Boys Girls N 

1. 1st interview 12 12 24 8 17 25 14 12 26 
2. Language tasks 12 12 24 6 15 21 14 13 27 
3. Estimation tasks 12 13 25 7 16 23 15 13 28 
4. Measurement tasks 12 13 25 7 16 23 15 13 28 
4. 2nd interview 12 14 26 6 15 21 14 12 26 

2.4 Materials 

Interviews 

The first interview, which sought information about children's general knowledge and 

experience of measurement, employed an audio-recorder. The second interview, also 

audio-recorded, was structured around six scaled measuring devices in everyday use 

which children were shown and allowed to handle as they commented on various 

aspects of the devices. In the text, transcribed verbatim utterances are usually italicised. 

Tasks 

Tasks that investigated children's understanding of the language and concepts of 

measurement employed small plastic or metal toys and various items depicted on A4 

cards. Tasks that examined their visual estimation and measurement abilities used A4 

cards showing lines of various lengths. Various conventional and informal measuring 

devices were also used. 
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Full details of all materials are located in the sections that report the interviews and 

tasks. Appendix 1 shows examples of the materials. 

2.5 Procedure 

Setting 

Children were seen individually in the school library, a quiet room relatively free of 

interruptions. For all sessions, the child and researcher sat facing each other about 90 

cm apart at a circular table. Table and chairs were child-height. 

Pattern and organization of sessions 

The order of the two interviews and the three series of tasks was the same for each 

child. The first interview introduced children to the topic of measurement. Next came 

the series of tasks that investigated their understanding of everyday language and 

concepts of measurement. These could be accomplished fairly rapidly, and involved 

equipment that the children could be expected to find entertaining. The estimation and 

measurement tasks were generally more demanding. They required more time, care, and 

accurate physical manipulation of equipment by the children, and were scheduled next. 

It was considered that by this time, the topic of measurement would be engrossing the 

children and would support their persistence in these tasks. The second interview came 

last. It probed children's understanding of measurement more closely than the first, and 

specifically of measuring instruments and the units they showed, continuing but 

broadening the focus on instruments and their scales begun in the measurement tasks. In 

concluding the research, the second interview had the added benefit of re-affirming to 

the children the importance of their own knowledge and opinion. 

The research took place during the Summer term of one school academic year, and the 

Autumn and Spring terms of the next. Since it was not possible to arrange for the 

Summer holiday to occur at the same point in the research schedule for all three classes, 

careful thought was given as to how this break could best be managed. Since the break 

was likely to have less effect on the older children, the following schedule was 

implemented. Year 3 children participated in the first interview and carried out the tasks 

on the language of measurement in the Summer term of one academic year. They 

undertook the estimation and measurement tasks and participated in the second 

interview in the Autumn term of the succeeding year, when, it should be noted, they 

entered Year 4. They are referred to as 'Year 3 children' throughout for the sake of 
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simplicity. Year 2 children accomplished the entire sequence of work in the Summer 

term. Year 1 children completed the entire sequence in the Autumn and Spring terms. 

Table 2.03 Phases of the research, number of responses required, number of sessions, 

and allocated time per session. All year-groups were similar. 

Phases 
(1 - 5) 

1. 
First 

interview 

2. 
Language 

tasks 

3. 
Estimation 

tasks 

4. 
Measurement 

tasks 

5. 
Second 

interview 
Responses 
required 

7 
questions 

75 
responses 

105 
estimates 

27 
measurements 

8 
questions 

Allocated sessions 
and time 
(minutes) 

1 session 
(35 min) 

1 session 
(15 min) 

1 session 
(30 min) 

1 to 2 sessions 
(40 min) 

1 session 
(35 min) 

General characteristics of the tasks and interviews 

Table 2.03 presents an overview of the type and amount of work, and of the time taken, 

by the programme of research. It shows the five phases of the research, the number of 

sessions associated with each phase, and the time allocated to each session. 'Phase' 

refers to distinct aspects of the research, each phase consisting either of a series of tasks, 

or an interview. The results for each phase are reported in separate chapters of the 

thesis, except for the two interviews, which are reported in a single chapter. (This is 

because although the subject-matter of each interview was distinct, both interviews were 

about 'general knowledge and experience of measurement' and both contributed to the 

overall picture.) The sequence of phases (1-5) was invariant for each child. 

`Session' has its usual meaning of a block of time spent on an activity with a single 

child, and 'time allocated' refers to typical session lengths as planned by the researcher. 

These turned out to be reasonably accurate in piloting. However, no aspect of the 

research was actually time limited: each child was allowed to spend as long as they 

needed to complete the tasks or interviews. There was thus no systematic variation in 

time allocated to children in different year-groups. 

One session could be organized to be consecutive with another from the next phase of 

the research. Thus the first interview was generally followed up on the same day with 

the language tasks; and the estimation tasks with the measurement tasks. There were 

occasions where a session was interrupted at a suitable point by the researcher when she 
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judged that a child was becoming tired. When this happened, the session was resumed 

as soon as feasible. 

In the language tasks, the children reported in qualitative terms the comparative length, 

width or height of various items presented in displays. Altogether children made 75 

comparisons, but as these were purely visual comparisons, this phase of the work was 

fairly rapidly accomplished, as Table 2.03 indicates. The 105 visual estimates were also 

accomplished more quickly than their number might suggest, again because they were 

perceptual judgements and required little manipulation of materials by the children. The 

measurement tasks (27 measurements) required the most effort and were the most time-

consuming. 

The researcher collected children individually from their classrooms; sessions were 

planned to fit in with class and individual work schedules. 

2.6 Conduct of the researcher 

The researcher had enjoyed twenty-two years' primary teaching experience, and this 

enabled good rapport with children and school staff as well as knowledge of classroom 

and school procedures, in which she participated when appropriate, so that her presence 

became accepted as routine. Her experience also informed her decisions concerning 

organization and management of the research, including minor adjustments in response 

to judgements of children's mood and level of engagement. 

2.7 Ethical considerations 

The support of the school head and relevant staff were obtained, and the consent of 

parents and carers of participants was sought by letter. No parent or carer withheld 

consent. The children were asked at the first session whether they were happy to 

participate. After initial shyness on the part of some, all agreed, and most thereafter 

came to sessions with enthusiasm. When during a long series of tasks there were signs 

of fatigue, a session was terminated and the child was told that the series would be 

finished another time, and was taken back to class. Occasional boredom and lapses of 

concentration, on the other hand, were countered with encouragement and persuasion to 

continue. The researcher relied on her knowledge of individual children to make 

suitable judgements. 
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2.8 Piloting 

Interviews and tasks were piloted with a sample of children covering the same age-

range in another school of similar intake, and minor adjustments made. 

2.9 Analysis of data 

All statistical tests were performed on a count of the number of correct responses made 

by children in their performance of tasks. Since the number of observations differed 

among tasks, descriptive statistics are generally reported as percentages correct, so as to 

facilitate comparisons. 

Counts were compared using general linear models with repeated measures. Mauchly's 

test of sphericity was applied. If the test statistic was non-significant, sphericity 

assumed degrees of freedom were used. If the test statistic was significant, and 

Greenhouse-Geisser epsilon value .75, then Greenhouse-Geisser degrees of freedom 

were used. Where Greenhouse-Geisser epsilon value > .75, Huyn-Feldt degrees of 

freedom were used. All t tests were 2-tailed unless otherwise stated. All post hoc tests 

were made using the Bonferroni adjustment. 
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Chapter 3 

General knowledge and experience of measurement 

3.1 Introduction 

Essential features of measurement (for example dimensions and units) that children call 

spontaneously to mind can provide a broad indication of the current state of their 

conceptual elaboration of the domain. What they take to be the purposes of 

measurement and the kinds of measuring activities that they readily recall can help us 

understand the contexts and circumstances in which they acquire knowledge of it. 

Information about these contexts and circumstances may in turn suggest the kinds of 

influences that shape children's developing understanding of measurement and its 

underlying principles. The first phase of the research therefore explored the general 

knowledge of measurement of the children in the sample. This was done in two semi-

structured interviews. 

The first interview, in which the researcher engaged each child at their first meeting, 

focused on children's basic conceptualisation of measurement and the contexts in which 

this had developed. It elicited what children called to mind when they heard the term 

measure and cognate terms, and what experiences of measurement they recalled having 

at home and at school. The second interview focused, more narrowly, on children's 

knowledge about specific measuring devices, the dimensions of measurement with 

which the children associated them, and the units they measured. It also explored 

children's understanding of the general principle of the inverse relation between size 

and number of units in the context of specific measuring devices. Children were 

interviewed individually, each of the two interviews lasting about thirty-five minutes. 

3.2 The first interview 

The first interview explored the experiences the children reported having, or activities 

they reported witnessing, that were considered by them to be measuring activities. It 

sought information about the kinds of things children had measured or seen measured, 

about what objects they considered to be measuring devices and how they thought these 

measured. Dimensions of measurement that children spontaneously mentioned, such as 

length, weight and capacity/volume were noted, and also terms they mentioned that 

denoted aspects of these dimensions, such as tall, wide, heavy and how much inside. 
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Names of units of measurement employed by the children, and the dimensions they 

applied them to, were also noted. 

The first interview also checked children's ability to make direct comparisons of length, 

in preparation for a later part of the research, where they were asked to make an 

extended series of such comparisons. In the interview, children were asked how they 

would compare two pencils of different lengths, and to demonstrate this. They were also 

asked how they would check the comparative heights of themselves and the 

experimenter. 

The opportunity was also taken in this interview to bring to children's attention the 

distinction between the terms taller and higher in preparation for a later part of the 

research where they would compare vertical length of items. These were to be presented 

at different spatial levels to test conceptual understanding of intrinsic height of items 

(tallness) vs. height above ground. It was considered that while actually distinguishing 

between the concepts 'taller' and 'higher', some children might use one term - for 

example taller - for both. This is further discussed in Chapter 4. To offer children the 

opportunity to consider the distinction between the two terms, the difference in meaning 

was explained and illustrated in the first interview after they had been asked to compare 

their own height with that of the interviewer. 

Finally, possible gender differences were considered in what was communicated by 

children about their knowledge and experience of measurement. The first interview was 

selected for this purpose because here, children were invited to talk about measurement 

in the broadest terms. Gender differences were considered, overall and for each year-

group, by examining differences between boys and girls in their responses to the 

question Can you tell me what 'measure' means? and the questions that followed it 

about measurement at home and at school, that is, questions a) b) and c) in the schedule 

below. What was compared for boys and girls was a count for each child of the number 

of types of response classified in the manner shown in Tables 3.02; 3.04; and 3.07. 

3.2.1 Method 

Participants 

The sample for the first interview consisted of seventy-five children, after exclusion of 

six children, on the advice of their class teacher, at an early stage of English acquisition 

(three each in Years 1 and 3); and two children (in Year 1) for whom there was a 
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substantial amount of missing data due to a fault in the recording of the interview. There 

were twenty-four in Year 1; twenty-five in Year 2; and twenty-six in Year 3. 

Materials and procedure 

At the first interview, the investigator introduced herself as a researcher interested in 

measurement and in children's knowledge of it, and then invited the child to talk about 

their experiences of measurement. The interview schedule, set out below, started with a 

general question whose purpose was simply to introduce the term measure and see what 

ideas children spontaneously associated with it. Children were next invited to recall 

their experiences of measurement at home. The interview then moved on to ask about 

their experiences at school. Finally, children were invited to make a direct comparison 

of length and then asked about a specific height comparison. 

The participants were allowed to be as expansive (or as reserved) as they wished, and 

were not interrupted, as information about measurement itself was sometimes embedded 

in a wider narrative that could give important insights into the social context in which 

measurement activities took place. If there was no immediate response to a question, 

five seconds were allowed to elapse before moving to the next (Black, Harrison, Lee, 

Marshall & Wiliam, 2002). Children were not prompted to elaborate their response 

except where this had been tautological, 'giving back' the words of the question (e.g. 

measurement is when you measure something). A neutral prompt such as Could you say 

something more about that? was then used. Prompts were not offered in other 

circumstances in the first interview, because it became clear at an early stage that 

children who were reluctant to respond became more so if the question was pursued at 

once. In these circumstances it was felt that persistence risked eliciting a response to the 

researcher's surmised expectations rather than to the question asked. However, 

questions were returned to as appropriate later in the interview. All interviews were tape 

recorded and transcribed. 

Schedule 

a) I'm interested in what children of your age know about measuring. We do it in school 

and we sometimes need to do it at home. Can you tell me what `measure' means? What 

do we mean by 'measure'? If the child seemed unable to answer this question the 

following explanation was given before proceeding to the remaining questions. What I 

mean by measuring is when you find out how big or small, or heavy something is, or 

how much of it there is. 
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b) Have you ever seen someone measuring something at home? Tell me about it. Here 

children reported activities in which they had participated as well as those they had 

observed. 

c) Have you done any measuring at school? Tell me what you did. Children interpreted 

`you' in its collective sense, and described measuring they had seen classmates do as 

well as measuring they had done themselves. 

d) Two pencils, lying side-by-side on the table, and differing in length by approximately 

1 cm, are indicated. Can you tell me just by looking, which of these two pencils is 

longer? ... Can you think of a way we could check which is longer? Can you show me? 

e) Who is taller, you or me? How do you know? If the child affirmed that the 

interviewer must be taller because she was an adult, the probe Are adults always taller 

than children? was used. 

f) How could we check? If the child affirmed that no check was necessary, as the answer 

was obvious, the following was added If you had a friend and you wanted to check who 

is taller, how would you do that? 

g) If you stood on the table, would that make you taller than me? If the child replied that 

they would be taller than the experimenter if they stood on the table, she responded: 

Actually you wouldn't be taller. You would be higher i fyou stood on the table, but you 

wouldn't really be taller, because you didn't suddenly grow, did you? As explained 

above, this part of the interview was intended as a 'seeding' experience in preparation 

for a subsequent part of the research; no check was made immediately afterwards on 

understanding of the distinction between taller and higher. 

Classification of responses 

Transcripts were carefully read, and patterns were sought within the children's 

responses. Separable, broad features of measurement discerned in them provided the 

basis for classification. In allocating children's utterances to categories, the overall 

meaning of an utterance was considered, and specific terms children used were 

subordinated to this. For example, as shown in Table 3.01, two specific responses to the 

question Can you tell me what 'measure' means? were What size something is and 

Making sure a building is the right size for people. While both mention size, in the first 

response the term was used as an attribute and described a generic dimension or aspect 

(c.f. 'What height something is' or 'how high something is'). In the second, size was 
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used to express a relation, and the response was best classified with those that spoke of 

measurement as determining 'fit'. 

A second reader was employed to validate categories, and to check reliability of 

allocation to them. There was complete agreement on categories. The reliability check 

was on a 25% sample for each question. The average inter-rater agreement on allocation 

of utterances to categories across all questions, and across both interviews, was 97%. 

Where raters did not agree on allocation of an utterance to a category, the utterance was 

discussed until agreement was reached. The same inter-rater procedure was adopted 

with all other questions. 

Table 3.01 Categories of response to the question: Can you tell me what 'measure' 

means? 

Response mentions or describes 	 Example response 

A specific dimension (length, weight or 
capacity/volume) and/or one or more 
aspect of a dimension (e.g. tall, long; 
heavy; how much inside) 

Non-specific dimensions (e.g. size) or 
aspects (e.g. big) only 

Measurement as determining 'fit' 

Measuring device - specific or generic 
(e.g. thing with numbers) 

Specific unit 

Entity that may be measured 

Activity involving measuring 

Specific measuring activities 

Provision of a straight edge 

A tautology, not elaborated 

No response, Don't know, or 
irrelevant response 

Measurement tells you how tall or 
wide something is 

What size something is 

Making sure a building is the right 
size for people 

You use a measure thing, the numbers 
tell you where it goes up to 

It's centimetres, millimetres, metres 

We can measure tables, chairs, people 

If you want to make a drink for the 
baby 

In maths, if you measure something 
`cos you don't know how long it is. 

It's when you underline your work 

It's when you measure something 

We write the letters down (irrelevant 
response)  
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3.2.2 Results 

Can you tell me what 'measure' means? 

The purpose of this first question was to ascertain what, if any, ideas immediately came 

to mind for children when they heard the word measure, and what was looked for was 

any mention of measurement dimensions or aspects of dimensions; of measuring 

devices; of units of measurement; of entities that can be measured; or of activities 

involving measurement. Responses were classified according to these broad categories, 

which were not exclusive. For example, the response When you're measuring a [toy] 

car you use a ruler. You need to write millimetres, centimetres or kilograms was 

classified as having mentioned a measuring activity, a measuring device, and units. 

Children's responses to the first question were typically brief. Ideas mentioned were 

occasionally mutually incongruent (for example, units mentioned were sometimes 

inappropriate to a dimension also mentioned). Classification of responses to this first 

question ignored such incongruence. So in the above example, the incongruity of 

kilograms was ignored. 

Eight children (32%) in Year 3, three (12%) in Year 2 and six (26%) in Year 1 did not 

give an answer to this initial question, and were offered the explanation What I mean by 

measuring is when you find out how big or small, or heavy something is, or how much 

of it there is. In Year 1, the explanation generally followed silence on the part of a child 

(the usual wait of five seconds being allowed). In Years 2 and 3, the explanation was 

generally given when a child asked What do you mean? Table 3.02 shows the number 

of children mentioning the aspects of measurement listed. 

A child who mentioned more than one instance included in a category was counted only 

once. In Table 3.02, the category 'a tautology, not elaborated' is amalgamated with 'no 

response, don't know, or irrelevant response'. Table 3.02 shows little apparent 

awareness about measurement on the part of Year 1 children, nearly half of whom failed 

to respond, or gave uninformative answers to this question. At most, a quarter of 

children in this year-group responded in accordance with any category in Table 3.02. 

There was a shift in Year 2 to a higher overall level of awareness, but this was restricted 

to a narrow range of categories. While approximately the same pattern of responses 

characterised Year 3, overall they had rather less to say than children in Year 2. Less 

than half the children in these two year-groups mentioned a specific dimension or 

aspect; rather fewer mentioned something that could be measured. Nearly half those in 
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Year 2 mentioned a measuring device, but in Year 3, nearly as many children mentioned 

using a ruler for drawing straight lines as mentioned a measuring device. 

Across the whole sample, almost the only devices mentioned were rulers, metre sticks 

and tape measures, and almost the only dimension mentioned was length and its 

associated aspects of height, length and width. 

Table 3.02 Can you tell me what 'measure' means? In each year-group, the number of 
children responding according to the categories in Table 3.01 

Mentions at least one of the following 
features of measurement Year 1 Year 2 Year 3 

Specific dimension (or aspect of dimension) 
Length (height, length, width) 5 10 12 
Weight 0 2 1 
Capacity 0 2 0 
Non-specific dimension or aspect only 5 2 1 
No dimension mentioned 14 12 13 

Measurement as determining 'fit' 0 1 2 

Measuring device 
Ruler 0 8 4 
Metre stick 0 3 2 
Tape measure 1 3 1 
Measuring jug 0 3 0 
Height scale used in clinics 1 0 0 
No device mentioned 22 14 21 

Units 
Specific unit mentioned 0 7 4 
No units mentioned 24 18 22 

Entity that may be measured 
Specific entity mentioned 6 10 9 
No entities mentioned 18 15 17 

Activity involving measuring 1 4 5 

Specific measuring activity 3 1 1 
No activities mentioned 20 20 20 

Uninformative or irrelevant responses 
Mentions drawing a straight edge 0 0 4 
Tautology, no response, Don't know, 
or irrelevant response 10 6 

 
3 

Total uninformative/irrelevant responses 10 3 10 

N 24 25 26 
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As a broad criterion of children's elaboration of the notion of measurement, five 

features from Table 3.02 that were considered fundamental to measurement were 

selected, and for each child a count was made of how many of these five features they 

mentioned in response to the question Can you tell me what 'measure' means? Four of 

the features chosen were: specific dimension or aspect; measuring device; unit of 

measurement; and entity that may be measured. Mention either of an activity involving 

measurement or of a specific measuring activity counted as the fifth feature. (No child 

mentioned both.) Occurrence of any of the five features was counted only once for a 

child, even if the child mentioned more than one instance of that feature. 

Table 3.03 sets out the number of children in each year-group who mentioned the 

number of features given. 

Table 3.03 Number of children in each year-group mentioning a given number of 
features (0-5) 

1 
Year 

2 3 

Features 
0 13 4 5 
1 7 7 13 
2 2 6 4 
3 2 6 2 
4 0 2 1 
5 0 0 1 

Mean' 0.2 0.4 0.5 
(SD) (0.4) (0.5) (0.5) 

N 24 25 26 
Note 1. = mean number of features mentioned per child. 

Over half the children in Year 1 mentioned none of the five features of measurement 

selected, as Table 3.03 shows. The majority of children in Years 2 and 3 mentioned at 

least one feature, although in Year 3, only a few children mentioned more than one. 

Children in Year 2 were more evenly divided, with over 70% of children mentioning 

one, two, or three features in roughly equal numbers. Differences between the year-

groups as to number of features mentioned were, however, non-significant. 
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Measurement at home 

Have you ever seen someone measuring something at home? Tell me about it. 

Those children who recalled measuring activities out of school usually needed little 

prompting to give a full account of their experience. Some Year 1 children whose 

accounts were hard to follow received neutral probes such as I didn't quite understand 

that to encourage them to elucidate their responses. 

Twelve children (50%) in Year 1, eighteen (72%) in Year 2 and twenty-four (92%) in 

Year 3 said they had seen measuring at home, and gave relevant responses. The 

accounts of these fifty-four children (68%) were typically full and circumstantial. Table 

3.04 summarises the content of responses under the general headings of 'measurement 

activity', 'measuring devices', 'dimensions' and 'units', with a number of sub-

categories. Table 3.05 sets out for each child the number of activities, items measured, 

and measuring devices mentioned by each child. Table 3.06 furnishes examples of 

children's descriptions. Tables 3.04 and 3.06 give a quite striking impression of the 

wealth of situations in out-of-school environments in which the children encountered 

measurement. 

Table 3.04 indicates a wide range of measuring activities, with as many as thirteen out 

of twenty-four Year 3 children recalling measuring up at home for floor or wall 

coverings. Congruent with responses to Question 1, it was measurement of length that 

featured in most activities; most devices that were mentioned measured length (the tape 

measure being by far the most familiar to children) and most aspects mentioned were 

those of length. Few children referred to units, but of those who did, most referred to 

correct units for the dimension. Where children mentioned a measuring device, some 

also gave a recognisable account of how it was deployed. Twelve children in Year 3, ten 

in Year 2, and six in Year 1 did so. 

Table 3.05 shows that, of those children in Years 2 and 3 who recalled measuring at 

home, and who described at least one type of measuring activity that took place there, 

most described only one. Only six Year 1 children mentioned measurement activities, 

but of these, four mentioned more than one type of activity. Year 2 children mentioned 

slightly more types of activity, on average, than those in Year 3. However, these 

differences were not significant. 

Most children in Years 2 and 3 recalled one or two types of item being measured at 

home, with progressively fewer children mentioning more. In Year 1, most children 
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recalled only one type of item. There was no significant difference between year-

groups. Of those mentioning measuring devices, only two children mentioned more 

than two. There was, again, no significant difference between year-groups. 

Table 3.04 Have you ever seen someone measuring at home? The number in each 
year-group mentioning the listed type of activity, device, dimension, and unit. 

1 
Year 

2 3 
Type of activity 

Fitting floor or wall covering or curtains 1 3 13 
Fitting/buying clothes 2 3 4 
Measuring space for furniture, people or animals1  4 7 5 
Food or drink preparation 4 4 4 
Determining height (person, plant, object) 6 2 2 
Instructional activity 0 3 1 
Other activity 3 7 8 
No activity stated 4 1 1 

Appropriate measurement device and use 
Tape 10 7 1 9 
Ruler or metre stick 3 3 3 
Scales 3 4 4 
Measuring jug 4 3 2 
Visual comparison 0 0 1 
Direct comparison 0 1 1 

Other device or use of device 
Spirit level 0 0 3 
Ruler (as straight edge) 2 1 0 
No device mentioned 3 6 2 

Mention of aspects appropriate for the 
dimensions of 

Length 5 7 9 
Weight 2 3 2 
No specific aspect mentioned 9 13 10 

Units (correct for dimension) 
m, cm, mm, foot, inch, step 2 4 7 
kg, ton, stone, oz 1 4 3 
1, ml 0 0 1 

Units (incorrect for dimension) 
m, cm, mm, 
kg, g 

0 
0 

1 
0 

1 
1 

1, ml 0 0 1 
No units mentioned 10 13 14 

N 12 18 24 
Note 1. or conversely, measuring furniture, people or animals for the available space. 
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Table 3.05 	Measurement at home: the number of children in each year-group 
mentioning activities, items, and devices, according to the number of types mentioned 

1 
Year 

2 3 

Activities 
0 0 0 3 

1 2 9 10 

2 1 2 0 

3 2 1 3 

4 1 1 0 

Mean (SD) 2  2.3 (1.2) 1.5 (1) 1.2 (1.0) 

N 6 13 16 

Items' 

0 0 0 0 

1 7 8 8 

2 1 6 8 

3 1 3 3 

4 1 1 1 

5 1 0 1 

6 0 0 1 

Mean (SD) 2  1.9 (1.5) 1.8 (0.9) 2.2 (1.4) 

N 11 18 22 

Devices 

0 0 0 2 

1 5 8 10 

2 4 3 6 

3 1 0 1 

Mean (SD) 2  1.6 (0.7) 1.3 (0.5) 1.3 (0.8) 

N 10 11 19 
Note 1. e.g. person, article of furniture, cooking ingredient. Several items of the same 
type mentioned by one child are counted as one item. 2. Mean activities, items or 
devices mentioned per child. 

The quotations in Table 3.06 give a vivid picture of the children's personal interest in 

the measurement experiences in the home setting that they reported, and their 

specificity. For Year 1 children there was a sense that the personal nature of the 

experience was closely bound up with their relationship with the adult doing the 

measuring — being allowed on the roller coaster, for example, or holding the screws for 

the model ship. In Years 2 and 3 the focus was more on the technical details of the 

measurement procedure. Here there is a sense of the importance of units, though often 

little sense of the accuracy that is the reason for their use. 
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Table 3.06 Examples of measuring activity at home as described by the children 

Year My mum measured me to see if I could go on the roller coaster. You've got to 
1 	be about 5 foot and I was more than 5 foot. I was 6 foot, and so I could go on 

there. 
We've got a jug with numbers to see how much water to put in the sand 
pit...because you can make better sand castles. 
My Dad uses it [tape]. And my mum can sew a skirt or trousers. And my dad 
can do what my mum can do. They share it [tape]. 
My granddad can use it [tape] for making something. He made a...model ship. 
It's in my bedroom. I gave him the screws. 
The doctor pulled it down on our head. It told...how tall I am. She put my feet 
on it. And it told how tall my feet were. 
My dad measured my bunk bed ...to find out the size. The size is 21, 3. [Did he 
see that on the tape?] He thought it was 88, 9. 

Year 
2 My sister's weight. You step on these toilet scales. 

I helped my mum with cooking. We measured flour and sugar...with scales. 

Mum measured the photo so she could get the right size frame, with that thing 
that you pull out. 
My dad was measuring a window...cos someone smashed one... [with] this 
little thing that's round and goes up. He looked at the number and it was about 
ten hundred kg. 
My mum measured peas in the garden with a tape. She wanted to know how 
long they were. 
My nan done it all the way to the other end of the room to see if there was 
enough space for the dog she was going to buy. [Was it a big dog?] [Indicates 
about 1 m with hands]. About 30 m long. It was heavier than me. 

That tape thing...my mum held it up to her head and I counted from the bottom 
and I knew how small she was...she was 186 m. Nearly as tall as you. 

Mum's always measuring. She puts this liquid [oil] in a box, and then there's a 
wood across and then another box, and she puts a block in it. She sees what's 
heavier. 

You get this jug if you want to make milk and you put it in and you put the 
water in and see if it's past the 1, and then you pour it into the baby's bottle. 

If you have a baby...you measure the cot and measure the room to see if it will 
fit. 

Year In the shop...I have to stand like a scarecrow. My mum puts the dress at the 
3 	back of me to measure how long it is. 

He was trying to put a wooden floor, but if you put all of them down, and 
you've got a long piece and a little gap, you have to measure it, and measure 
the hole... and then cut it off. 
My brother was trying to make a map of the underground and he knew how big 
the underground was, but the paper was only small, so he had to measure how 
long the paper would be. He had to add more paper. 
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We didn't measure the flour and sugar with the jug, we measured it with 
spoonfuls. Cos each spoon would be 5 ml. so we put 5 of those. 

I want my wall to be painted different colours, pink, red, purple, green. So my 
dad has to measure about 5 or 6 cm of it, and then he just puts a little bit of 
paint. 

When my dad makes pancakes he always...measures them in weight..,and when 
he sees which one's heavier, he always thinks it's worse I don't know why...he 
throws it away.  

Measurement at school 

Have you done any measuring at school? Tell me what you did 

Children who recalled measuring activities in school typically began by listing 

classroom objects and fittings that they had measured, moving on to give details about 

the deployment of the device used. There was little circumstantial detail. Eight children 

(32%) in Year 1, twenty-two (88%) in Year 2 and twenty-four (92%) in Year 3 recalled 

measuring experiences at school, and gave relevant responses to this question. While 

rather fewer children in Year 1, and rather more in Year 2 recalled measuring at school 

than at home, the number of children who recalled measuring in each setting (fifty-four) 

was the same overall. However the range of activities recalled and of types of item 

measured was much narrower at school than at home, as Tables 3.07 and 3.08 indicate. 

It was useful to think about school activities that children reported as having two types 

of purpose, which were a) measurement for its own sake and b) measurement as part of 

a broader classroom project. The former included measuring the length of arms or legs, 

of items of classroom furniture, or of a line previously drawn. As part of a project, 

children recalled measuring water to mix with substances such as sand or clay, 

apparently to study porosity, measuring equal amounts of water to give to plants, and 

measuring distances travelled by toy cars down an inclined plane. Two children also 

mentioned measuring for the specific purpose of practising for Key Stage 2 Standard 

Attainment Tests. These latter responses were categorised as 'measurement for its own 

sake'. Responses were also classified according to mention of items measured, 

measuring devices used, terms used that were appropriate to given aspects of 

dimensions mentioned (such as 'tall or 'long' for length; 'light or 'heavy' for weight) or 

were inappropriate; and units that were appropriate or inappropriate to the dimensions 

they were applied to. Table 3.07 sets out this information. 
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Table 3.07 Have you done any measuring at school? The number in each 
year-group mentioning the listed purposes, items measured, device, dimensions, and 
units 

1 
Year 

2 3 
Purpose of measurement 

For its own sake 8 22 24 
As part of a broader classroom project 0 3 7 
No purpose mentioned 0 0 0 

Item measured 
Playground or classroom space (including floor 
or walls) 

2 4 5 

School furniture/fittings/equipment 5 16 18 
Items for classroom project 0 3 7 
Person or body part 2 6 8 
Fluid 0 4 10 
Drawn lines or shapes 0 5 2 
No items mentioned 0 0 1 

Measuring device 
Iterated body part 5 0 4 
Discrete units (cubes; 'short rulers') 0 3 1 
Ruler or m stick 4 17 2 1 
Measuring jug 0 4 15 
Visual comparison 0 1 0 
Direct comparison 0 1 0 

Other use 
Ruler (as straight edge) 0 2 2 
No device mentioned 1 1 0 

Terms appropriate to 
Length 1 5 5 
Weight 0 0 3 
Inappropriate 0 0 4 
Non-specific 1 3 1 
No terms mentioned 6 13 12 

Units (correct for dimension) 
m, cm, mm, foot, inch, step 4 10 16 
kg, ton, stone, oz 0 0 0 
1, ml 0 0 0 

Units (incorrect for dimension) 
m, cm, mm 0 1 4 
kg, g 0 1 2 
1, ml 0 0 0 
No units mentioned 2 7 5 

N 24 25 26 
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Table 3.07 indicates that measurement at school was typically recalled as undertaken for 

its own sake and rarely as part of a wider classroom project. Most items children 

remembered measuring at school consisted of classroom furniture or equipment, 

classmates' height or the length of their arms, legs, hands or feet. In each year-group, at 

least twice as many children mentioned units as had done so when recalling the home 

context. As then, few mentioned incorrect units for the dimension. Most activities, as in 

the home context, involved measurement of length, but the most commonly mentioned 

devices used at school were the ruler and metre stick and (as recalled by Year 3 

children) measuring jugs. In mentioning devices used at school, eight children in Year 

3, thirteen in Year 2, and two in Year 1 gave a fair account of how they were deployed. 

Table 3.08 shows the number of children who mentioned different types of item 

measured and different measuring devices, according to the number of types mentioned. 

(Inappropriate devices and units, and terms appropriate to various dimensions, listed in 

Table 3.07, are excluded from this summary because few children mentioned any. Many 

children mentioned appropriate units, but all were units of length, so this category was 

likewise excluded.) 

Table 3.08 shows that few children recalled measurement done at school for a purpose 

beyond the measuring exercise itself. Year-groups did not differ significantly in this. 

While rather fewer children recalled items measured in the home setting than at school, 

the range of items measured was narrower at school (compare Tables 3.07 and 3.08). 

There was again no significant difference between year-groups. However, many more 

children in Years 2 and 3 mentioned one or more types of measuring device they used at 

school than mentioned any devices used in the home setting. Year 3 children recalled 

significantly more types of device used at school than did Year 2 children (t (42) = -

3.64; p = .0007); probably reflecting, by that stage, accumulated practice. The use at 

school of iterated body parts (such as hand-breadths) and separated units was recalled 

by a few children; neither figured among devices used at home. Three children in Year 

3 and six in Year 2 also mentioned iterating rulers or metre sticks; of these, one child in 

Year 2 and three in Year 3 mentioned adding the number of units produced. 
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Table 3.08 Measurement at school. Number of children in each year-group recalling the 
listed number of purposes', types of item, and types of device. 

Purpose 1 
Year 

2 3 

l a  8 19 17 
2b  0 3 7 

Mean (SD)1  1 (0) 1.1 (0.4) 1.3 (0.5) 

Items 
1 7 14 3 
2 1 7 13 
3 0 0 8 
4 0 1 0 

Mean (SD) 1  1.1 (0.4) 1.5 (0.7) 2.2 (0.7) 

Devices 
0 1 1 0 
1 5 16 9 
2 1 5 15 
3 1 0 0 

Mean (SD)2  1.3 (0.9) 1.2 (0.5) 1.6 (0.5) 

N 8 22 24 
Note 1. = maximum two: measurement for its own sake; measurement as part of a classroom project. 
a  = one purpose mentioned; b  = both purposes mentioned. 2.= Mean number of purposes, items or devices 
mentioned per child. 

Table 3.09 gives examples of children's descriptions of measuring activities in school. 

It illustrates that recall was of a much narrower range of measurement activities 

performed in school than at home, but it also illustrates (in Years 2 and 3) greater 

awareness of the techniques of using measuring devices, which are sometimes described 

with considerable precision. Where numbers or units were mentioned, these represented 

plausible quantities for the entities measured. 
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Table 3.09 Examples of measuring activity at school as described by the children 

We measured [pictured]dinosaurs and trees with cubes 

...the classroom with our feet 

...the table with our hands and who had the longest hair 

...the floor with paper cut-outs of our feet 

...people, when I was in the nursery 

Year 	...pencils or lines 

2 	...how long our finger could go on a line 
contd. 

...windows, chairs, doors, books. When it kept going up we had to put our 
fingers on the numbers. 
...the wall. We had a big ruler and we kept moving it up. 
...the door. It was quite long. We used our normal rulers. We had to bring it up 
one by one. 
...our teacher. We had to use a ruler that was longer than we normally use. 
...jugs, we got some water, fill it to the top, look, write on the board how much 
there was inside. 

...a table, a door...if it was longer than a little ruler we had to do it again...and 
write...how long it was, how many times we had used the ruler. 

...capacity...[teacher] wrote how much we put in the jug and the most was 11. 
How much capacity will fit in cups and jugs. 

In a practice SATS test there was measuring lines and we had to make one that 
was a bit longer. 
...a skipping rope...with a long ruler. You can only measure skipping ropes, 
people and big boxes. 

There was all sorts of jugs and water. [Teacher] had a little tin cup. She poured 
it into a jug, and then ... into another jug, and we knew that the bigger jug took 
more water. 

...the board, how long. We used a couple of rulers...I was the only one who 
knew how to add the numbers. 

...the table. We used a ruler. It was 30. Then we put it down. 30 again. So 60. 
Then we put the ruler down again. 90. 

...a car...we used a 100 cm ruler. You push [the car], let it go, and see the 
number, how far it went. My one went to 47 cm. 

We all got a piece of paper and drew loads of shapes and measured the 
size...some people used rulers, some...tape measures...some used a computer 

[teacher] asked us to measure this line and it was 6 cm. But [teacher] measured 
it and said it was 4cm. So I measured it and it was 4. 

Year 
1 

Year 
3 
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...the table. You put your finger where the 30 is, pick it up, put the ruler there, 
count how much it is, if you've got another 17, it'll be 47. 

...my teacher. I got this measuring stick and she stood up and I put the stick 
above her...and I didn't know what number she was cos she was taller than the 
stick. 

...We got different kinds of soil...and we put the same amount of water in every 
jug to see how much it soaked in...see it's like what you get on rulers. It's like 
that on the jug. 

contd. 

...we put little things like these [toys] on the gram thing. It would go higher if it 
was lighter and lower if it was heavier  

Comparison of responses according to gender 

As already stated, gender differences were examined by considering differences in 

responses between boys and girls in the first interview (overall and for each year-group) 

to the question Can you tell me what 'measure' means? and the questions that followed 

it about measurement at home and at school. What was compared for boys and girls 

was a count for each child of the total number of types of response they made, as 

labelled in Tables 3.02; 3.04; and 3.07. 

There was no significant effect of gender. Between 2 and 19 types of response per child 

were elicited by the three questions. The mean number of types of response for boys 

(M= 7.6, SD = 4.88), and the mean number for girls (M= 8.6, SD = 5.66) were not 

significantly different (t73  = -0.84, p = .39). The three year-groups were also tested 

separately and again did not differ significantly. For Year 1, Mboys  = 4.4, SD = 3.87; 

Mgiris  = 3.4, SD = 4.58; p = .51. For Year 2, Mboys  = 8.1, SD = 4.49; M —girls 10.2, 

SD = 4.97; p = .31. For Year 3, Mboys = 10.2, SD = 4.54; M —girls — 11.3, SD = 4.33; 

p = .57. 

Comparing length and height 

The first question was: How could we check which pencil is longer ? Can you show me? 

Children a) demonstrated direct comparison of the pencils, (either carefully aligning one 

set of pencil ends, or omitting to do so) or b) stated that they would simply look, or 

would use a ruler. To the question How do you know I am taller than you? the responses 

could be classified as tautological (because you are) or as appealing to visual 

comparison (I can see you are) or to a status criterion (age, occupation). Responses to 
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How could we check ? mentioned either direct comparisons of respective height, the use 

of a measuring device, or both. As well as eliciting yes/no responses, the question 

Would you be taller than me if you stood on the table? elicited qualified 'yes' responses, 

in which some recognition was given to the fact that the judgement was not 

straightforward. Table 3.10 sets out the numbers of children responding in these 

various categories. 

To the question Can you tell me just by looking, which of these two pencils is longer? 

Each child answered in the affirmative, and indicated one of the pencils. When asked 

how they would check this, a large majority of children in each year-group stated that 

they would place the pencils together to determine which was the longest and did so 

with endpoints correctly aligned, as Table 3.10 shows. All correctly identified the 

longer pencil. A few stood the pencils on end, an alternative way of ensuring end-points 

coincided. A few in each age-group failed to align endpoints of the pencils correctly; 

two were satisfied with a visual comparison that did not involve bringing the two 

pencils together. Four children said they would measure the pencils with a ruler, but did 

not give a clear account or demonstration of how they would determine which pencil 

was longer, having measured them. 

In response to the next question, all the children correctly affirmed that the experimenter 

was taller than themselves. To the question How do you know? A majority in Years 1 

and 2 responded that they knew because the experimenter was an adult, a teacher, a 

lady, went to college and the like. Somewhat fewer used this status criterion in Year 3, 

and only in Year 3 did many children qualify their response when prompted by the 

researcher (Are adults always taller than children?) by giving examples of exceptions 

to this generalisation. (Five children in Year 2 and one child in Year 1 also did so). One 

child affirmed that you could tell by the colour of an adult's hair whether they would be 

shorter than a child, and explained that elderly people became shorter again, and that 

when one was elderly, one's hair was grey. 

When asked how they would check their height compared with that of the experimenter 

(or a friend), about half in each year-group (more in Year 2) said both parties should 

stand up and a direct comparison be made, while more than one-third (less in Year 2) 

either said they would measure each with a ruler or tape, or mentioned this method as an 

alternative to direct comparison. Mention of use of the ruler or tape was therefore more 

frequent for measuring people's height than it had been for comparing the length of 

pencils. 
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Table 3.10 Comparing lengths of pencils and heights of participant and experimenter. 
Number of children responding as indicated. 

1 
Year 

2 3 
How could we check which pencil is longer? Can you 
show me? 

`You can see just by looking' 0 2 0 
Children compared pencils directly, ends aligned 20 17 22 
Children compared pencils directly, ends not aligned 4 3 3 
`Measure them with a ruler' 1 2 1 
Child demonstrated iteration of a unit 0 1 0 
No response/ don't know 0 0 0 

How do you know I am taller than you? 
`Because you are' 6 2 3 
`I can see you are' 0 4 2 
`You are older/adult/teacher' (unqualified) 13 14 8 
`You are older/adult/teacher' (qualified in response to 1 5 10 

Are adults always older than children?) 
Other 2 0 1 
No response/ don't know 2 0 2 

How could we check ? 
Direct comparison (` Stand up together and look — or 

place hand on head - to check') 
12 16 14 

`Use tape/ruler' 7 3 7 
Both direct comparison and measure 2 0 2 
No need/don't know 3 6 3 

N 24 25 26 

Would you be taller than me if you stood on the table? 

`Yes' 14 6 12 
`No' 8 1 10 
Qualified Yes 0 4 2 
Don't know/confused response 1 1 3 

N 24 13' 26 
Note 1. Due to time-tabling constraints that affected Year 2, a large number of children were not asked 
this last question. 

Of the children who were asked whether standing on a table would make them taller 

than the experimenter, about half said that it would. The rest (except in Year 1, where 

the proportion was one third) said that standing on a table would not make them taller, 

or said that it would make them taller, but qualified this statement by adding but I would 

be cheating, or only because your feet were still on the floor or other comments 

indicating that this was not a straightforward case of being taller. As already stated, all 

children were debriefed by being told Well you would be higher, but you wouldn't really 
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be taller, because you wouldn't suddenly have grown, would you? or Quite right: you 

would be higher, but you wouldn't really be taller. 

3.2.3 Discussion 

In the context of this first interview, while few children elaborated the notion of 

measurement beyond a very mundane level, many gave vivid and detailed accounts of 

measurement activities they had experienced at home, and older children recalled with 

some precision the more constrained process of measuring at school. The interview 

suggested striking differences between home and school environments as far as 

measurement was concerned. There was evidence of some confusion when children 

were asked specifically about direct comparisons of height. 

When asked what the word measure meant, more than half the children in Year 1 did 

not respond, said they did not know, gave an irrelevant response, or said that it was 

`when you measure something', and did not elaborate. Among the rest of Year 1, rather 

less than half mentioned dimensions or aspects, and fifty per cent of these used non-

specific terms such as 'big, and 'size'. About half mentioned items that could be 

measured; none mentioned units of any kind. (Table 3.02). Only four children 

mentioned more than one feature of measurement according to the classification used 

(Table 3.03). Children failing to respond positively were told that measurement was 

when you find out how big or small, or heavy something is, or how much of it there is 

before the remaining questions were put. Following this information, over half the 

children in Year 1 said that they had seen measuring at home, and just under one third 

recalled measuring in the classroom. 

Given the much higher proportion of positive responses overall in Years 2 and 3, it is 

fair to say that Year 1 children, as a group, probably had little background knowledge of 

measurement at that stage in their lives. However, as Table 3.04 indicates, the range of 

measuring activities, measuring devices, and dimensions and aspects of measurement 

encountered in the home mentioned by those Year 1 children who did respond was 

much the same as it was for Years 2 and 3. This was less true of the school setting (see 

Table 3.06). Here, for Year 1, there was a narrower range in all categories, except units. 

(Units of length were the only ones recalled in the school setting in any year-group.) 

This probably reflected the lesser experience of measurement activities that Year 1 

children had had in school. 
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There were few differences overall between Years 2 and 3; those tested were non-

significant at p < .05. Most could give some account of the notion of measurement when 

asked the meaning of the term, although six children in Year 3 and three in Year 2 failed 

to do so. The most frequently mentioned features were dimension and aspects —

overwhelmingly in the dimension of length — and items that could be measured. Less 

than half the children in Year 2, and less than one fifth in Year 3 mentioned measuring 

devices, and of the latter as many mentioned using the ruler to draw a straight line as to 

measure. (Several Year 3 children mentioned being asked to draw a straight line, and 

then measure it, as familiar classroom work, so perhaps the two activities were jointly 

conceived of as measurement). Units were mentioned by few. 

Rather fewer Year 2 children (72%) recalled measurement activities at home than at 

school (88%); for Year 3 children the proportion was 92% in relation to both settings. 

Year 3 children had been more involved than Year 2 in measuring up for carpets, tiling, 

wallpaper or curtains in the home. For all year-groups the retractable tape was by far the 

most familiar measuring device in the home setting. Units of length and weight were 

mentioned by a few children in Years 2 and 3. Few children mentioned more than one 

or two features of measurement in any of the categories identified (see Tables 3.05 and 

3.08). 

Which features of measurement children mentioned were of course strongly influenced 

by the specific activities they had experienced and were reporting. For example, as 

Table 3.04 shows, activities associated with redecorating the home, acquiring new 

furniture, the fitting of new clothes or determining height predominated in the home 

setting, and this probably accounts for the fact that measurement was thought of 

predominantly in terms of length. Features of measurement (as categorised here) that 

children readily called to mind were in fact modest in number. Units, even units of 

length, were rarely mentioned. However, the children's reported experience of 

measurement taken as a whole was a rich one, and presented two important contrasts 

between home and school. Firstly, in the home, reported measurement activities 

generally took place in the context of important family events such as moving house, 

buying new furniture or equipment and painting and decorating, or were associated with 

events that were special, or were pleasurable to the individual concerned. At school, 

measurement was typically recalled as carried out for its own sake, on a narrow range of 

classroom objects or of classroom or playground dimensions. Here, recording the result 

of measuring was frequently seen as the most important part of the exercise. In one 
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response - 'we measure with a piece of paper' - the recording of measurement stood in 

for the whole process: investigation revealed that this statement described writing down 

the measurement, not using the piece of paper as a measuring device. 

Secondly, most activities in the home were described in terms of affordances — of the fit 

of an item (or person or animal) to available space. The use of the tape was prominently 

involved in achieving this fit, but was not the focus of the activity. At school, by 

contrast, the ruler or metre stick and the units marked on it were the focus of the 

activity; what was measured (except on the seemingly rather rare occasions when 

measurement formed part of a wider project) was of limited consequence. The use of 

iterated or discrete units (Table 3.07) was occasionally recalled as happening at school, 

but never in the home context. Moreover the category 'ruler or m stick' in that table 

sometimes included cases where the child mentioned iterating a ruler or metre stick as a 

unit and counting the iterations or, in some cases, adding together the units shown on 

the device that were produced in successive iterations (examples can be found in Table 

3.09). Furthermore the limitations of iterating informal units such as body parts - the 

problems of different-sized feet, the difficulty of ensuring there were no gaps — were 

sometimes hinted at, if not fully explained. It seemed, then, that while the school setting 

achieved a focus on units that was not apparent at home, children had a firmly-rooted 

sense of important purposes for which measurement was undertaken in 'real life' that 

was not reflected in school. What they said about measurement at home also reflected 

an appreciation of the difficulties this enterprise presented at times — the difficulties of 

achieving a good fit where this really mattered. Some of the comments in Table 3.06, 

particularly of Year 3, illustrate this. 

Table 3.06 gives examples of real-life problems that require measurement for their 

solution. Many of these problems are at once everyday and novel in character. 

Cognitive effort is required to achieve the desired outcome, which supplies the problem-

solving impetus. If measurement in the classroom is typically devoid of any purpose 

beyond itself, then attempts to teach it are unlikely to sustain children's active mental 

engagement. As already suggested they may, for example, fail to persist with the 

precision in carrying out measurement procedures that is essential for accuracy. 

The two checks of understanding of direct comparison of length (pencils, and height of 

child/experimenter) showed the great majority of children to be familiar with a 

reasonably accurate method of direct comparison. However, asked to estimate whether 

they themselves or the experimenter were taller, and asked to justify their response, 

106 



most children did so by appeal to the adult's age or grown-up status rather than by 

reference to actual height. Although fewer children gave this justification in Year 3 

than in other age-groups, and although nearly half the children in that year-group 

showed greater understanding by qualifying their response, the overall finding did 

suggest that where the human figure was concerned, some confusion was to be expected 

about how height is described. 

Finally, the check on understanding of the term taller (when the child was asked 

whether standing on the table would make them taller), showed that a majority of 

children in each year-group failed to make the distinction between intrinsic height and 

height above ground when the term taller was used — again, in this particular example, 

in the context of the human figure. The children were briefly trained in the correct uses 

of taller and higher, and this conceptual and linguistic distinction was further examined 

in a later part of the research. 

3.3 The second interview 

The purpose of the second interview was to obtain a picture of the children's knowledge 

about scaled measuring devices in common use and the ways in which these measured. 

Particular interest centred on the nature of children's understanding of the numbered 

units shown on the devices. Children were shown a ruler, a tape measure, a measuring 

jug, and a non-digital clock, wall thermometer and kitchen weighing machine. On each 

device (except for the clock) two separated scales were shown whose units were 

labelled, numbered and subdivided, and the scales themselves differed in general 

appearance. The information displayed on the devices was therefore complex. A 

decision was taken not to simplify this information, as the degree of complication was 

considered typical of everyday measuring instruments, and it was of interest to see how 

well children coped with it. 1. 

The interview also afforded an opportunity to explore children's understanding of the 

inverse relation between unit size and number of units (Nunes & Bryant 1996; 

Carpenter & Lewis 1976). It was to this end that the devices selected (except for the 

clock) each displayed two separate numbered scales, usually side by side, whose major 

units differed in size. On the ruler, for example, 30 marked and numbered cm were 

shown on one edge, while 300 mm (marked and numbered in tens) were shown on the 

other edge. On the weighing machine, 8 oz were marked on a scale on the left of the 

rectangular display panel, and 240 g were marked on a separate scale on the right. In 

this way, a) units of different sizes, and b) different numbers of units (clearly numbered) 
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were fully visible and could easily be compared. (On the tape measure, cm and inch 

scales were on reverse faces of the device). The inverse relation was explored for the 

ruler, tape measure, measuring jug and weighing machine, but was omitted for the clock 

and thermometer, the former because minute and hour scales do not appear separately 

on clocks, and the latter because it was apparent in piloting that the children were 

generally unfamiliar with units of temperature. 

Finally, because all types of quantity measured by visible scales are represented as 

length, it was thought possible that these visible scales might confuse children as to 

what was actually measured. Devices were therefore selected that measured weight, 

volume, time and temperature, as well as length; it was of interest to see whether 

children would associate length with devices other than the ruler and tape measure. 

Questioning focused on whether children could name a device, considered it to be a 

measuring device, and could name the units shown on it and the dimensions to which 

they applied. Children were also asked to describe how four of the devices were used. 

This was not done for the ruler and tape measure, as children would be asked to 

demonstrate their use in a later phase of the research. As each device was introduced, 

children were encouraged to handle it and to comment on its markings and uses as they 

wished. 

1A fluid oz scale on the measuring jug was masked as it was felt the units named would 
be confused with oz units of weight on the weighing machine. A litre scale and a pint 
scale remained visible on the jug. 
2  Cm and inch scales were not displayed side by side on the tape measure, but were on 
reverse faces. 

3.3.1 Method 

Participants 

The sample comprised seventy-three children, twenty-six in Year 1, twenty-one in Year 

2, and 26 in Year 3. 

Materials and procedure 

a) General questions about the devices and the units they showed 

In the second interview, the first four questions sought the same kind of information 

about each measuring device as had been asked in the first interview about 

measurement in general. After children had handled and commented on each device, 

they were asked to name it. They were then asked whether they thought it could be used 
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for measuring, and if so, how it was used, and what could be measured with it. The next 

question, What do the numbers tell us? was designed to elicit knowledge of the 

dimension measured by the instrument; and the next, Do you know what these letters 

stand for? (the experimenter indicating abbreviated unit labels that appeared on the 

instruments) invited children to name the units measured. 

b) Questions investigating understanding of the inverse relation The children were 

carefully prepared for the two important questions designed to probe their 

understanding of the inverse relation between size and number of units. These questions 

simply asked which of two visible units of different sizes on each device was the greater 

(or smaller) and how the child knew this. These routine questions happened to have 

produced, during piloting, unexpected responses relevant to children's understanding of 

the inverse relation, and were retained without change. They were asked in relation to 

the ruler, tape, weighing machine and measuring jug. In the case of the ruler (used here 

by way of example) the first question was So which is longer, lcm or 1 mm? and the 

second How do you know? 

Thus, as noted above, the children had been allowed to become thoroughly familiar with 

the ruler throughout the first part of the interview. They were then directed to its cm 

edge, and asked Can you show me how long 1 cm is? If it was not clear from a child's 

gesture that they intended to indicate the space between two marks that were 1 cm apart 

on the ruler, the experimenter moved a pencil-tip across the space indicated by the child, 

from one cm mark to the next, and said Yes, the space from here to here is 1 cm, isn't 

it? If the child indicated a line or number rather than a space, the cm space was carefully 

indicated, with the words Well actually, the cm is the space, not the line/number. 

The child was then invited to identify a second cm - Can you show me another cm? —

and the follow-up explanation given again if necessary. The process was repeated once 

more, so that the children indicated or were shown three separate cm spaces in all. 

The child was then directed to the other edge of the ruler, and asked to indicate the 

length of 1 mm. (Here their indication could be only approximate, and references to the 

closeness of the marks or the tiny space involved were expected.) The procedure that 

followed was the same as it had been for the cm. 

With the ruler still in full view, the experimenter then asked a) So which is longer, 1 cm 

or 1 mm? and b) How do you know? Whether the greater or smaller unit was mentioned 
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first was systematically varied from child to child, and (within-child) between devices. 

The children had just had their attention directed to the physical size of the units named, 

and so, other things being equal, it was natural to expect the correct response to question 

a), and obvious justifications of this response (How do you know?) were that one could 

see which unit was longer, or that one knew which was longer (or shorter) because of 

the greater (or lesser) space it took up. If, however, the numbering or other information 

on the device were to mislead a child or divert them from this key information, errors 

might be expected. 

Questioning about the relative size of units was invariable in form across children and 

devices. In other respects, the second interview was semi-structured: children 

sometimes gave information spontaneously so that certain questions were unnecessary; 

at other times a question initiated an extended conversation that was pursued by the 

experimenter because it afforded additional insight into a child's understanding. An 

excerpt from such a conversation is given at Appendix 2. The children were shown the 

measuring devices one at a time in random order. The interview was tape recorded and 

transcribed. 

The full interview schedule is set out below for the ruler. Under Tape, and headings for 

all the other devices, only variants on the schedule relevant to each device are shown. 

Some information relevant to follow-up questions for all devices, suitably indicated, is 

reported with the schedule for the ruler. 

Ruler 

A 30 cm transparent plastic ruler was used, of the type routinely used in the school 

where the research took place. One edge was marked in cm, half cm and mm, with cm 

marks numbered. Only millimetres were marked on the other edge and were numbered 

in tens. The scale began 0.5 cm from each end of the ruler, whose full dimensions were 

31cm x 3.6 cm. 

Interview schedule and procedure for ruler 

The experimenter showed the child the ruler. 

1. What's this? 

2. Can we measure with it? 

3. What could we measure with it? 
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4. What do the numbers tell us? If a child replied that the numbers told us about cm or 

mm, they were re-directed as follows: Do they tell us how heavy [item] is? How long it 

is? How much room it takes up? The order of last three questions was systematically 

varied between children. Nineteen children in Year 1, fifteen in Year 2, and twenty in 

Year 3 were offered these prompts for one or more devices. Their responses were 

inspected for evidence of primacy or recency effects favouring alternatives offered in 

the first or third positions. There was a high proportion of correct responses irrespective 

of position, and an even distribution of incorrect responses between the three positions. 

This indicated that any recency and primacy effects were unlikely to have influenced 

the data. 

5. Do you know what these letters stand for? [cm, mm] The name of a unit was supplied 

if the child did not do so. 

6. Can you show me how long 1 cm is? The experimenter confirmed/corrected and 

indicated three 1 cm spaces to ensure that the size of the unit was attended to. 

7. Can you show me how long 1 mm is? The experimenter confirmed/corrected and 

indicated three 1 mm spaces. 

8. So which is longer, 1 cm or 1 mm? The order of these options was reversed between 

children. The ruler remained in full view. 

Tape measure 

A white fibreglass dressmaker's tape measure showing inches and cm. One side of the 

tape was marked with cm and mm, with cm numbered. The reverse side of the tape was 

marked in inches and eighths of inches, with inches numbered with particularly large 

numerals. Both scales began at the extreme left-hand end of the tape. The full 

dimensions of the tape were 152.4 cm x 1 cm. The last marked units were 150 cm and 

59 inches. All numbers were correctly oriented for reading when the tape was vertical 

with respect to the reader. 

Interview schedule and procedure for tape measure 

The interview schedule and procedure were as for the ruler, except that inches and cm 

were mentioned instead of cm and mm. 

Kitchen weighing machine 

A white plastic machine 10 cm high, 8.5 cm deep and 6 cm wide, with a pan 11 x 11 x 5 

cm deep, set on a sprung stand on top of the machine. Two separated vertical scales, 
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with a clear space of 7 mm between them, appeared side by side on the front of the 

machine, an oz scale to the left, and a g scale to the right. An indicator moved 

downwards horizontally across both scales when material was added to the pan. Each 

scale was divided and numbered on its right, the g scale being divided into 5g divisions 

and numbered every 20g from 0 to 240g; the oz scale divided into 1/4 oz divisions, and 

every ounce numbered. Numbers therefore ranged from 0 to 8. The marks labelled '0' at 

the top of each scale were level, but the gram scale extended below that of the ounces. 

Interview schedule and procedure for weighing machine 

The first three questions were as for the ruler. After question 5, where children were 

asked to name units printed in abbreviated form on the two scales, the experimenter 

asked the child to show how the machine was used. Small plastic toys and other objects 

suited to the size of the scale pan were available. After they had placed material in the 

pan, children were asked to read the amount indicated on each scale. The horizontal 

indicator on the weighing machine crossed both scales, and the intention here was to 

offer children the opportunity of seeing that the same amount could be expressed in 

units of different sizes (yielding different numbers of units) to prepare the ground for 

question 8, where they had to attend to the difference in size of units. 

Measuring jug 

A translucent, plastic jug of one-litre capacity, showing two scales, one on either side of 

a single central spine. One scale showed 1 litre and the other 2 pints. Half a litre and 1 

litre were marked on the litre scale, which was also divided into 50-m1 divisions and 

numbered every 100 ml. The pint scale was divided into sixteenths of a pint up to the 1 

pint mark, and into quarter-pints from the 1 pint to the 2 pint mark. The whole scale 

was numbered in quarter pints (1/4, '/2, 	11/4, 2). A further fluid oz scale was masked as 

it was felt that the units named would be confused with oz units of weight on the 

weighing machine. 

Interview schedule and procedure for measuring jug 

Questions 1 to 4 were as for the ruler. Question 5 took the form Can you read these 

words? and followed up with: Do you know what they mean? (The words 'litre' and 

`pint' were printed on the jug, and read to the child if necessary.) The experimenter 

then asked how the jug was used for measuring. 

The experimenter's demonstration of the size of a unit (questions 6 and 7) differed for 

the jug from that for the ruler, tape measure and weighing machine. The jug's full 
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capacity was just 1 litre, so children could be shown only one 1-litre unit instead of 

several. However, two pints were marked on the jug, and these were separately 

indicated. 

Clock 

A 'travelling' clock, 5.5 cm x 5.5 cm x 2.8 cm in depth; diameter of the face 4.7 cm. As 

well as hour and minute hands, there were a second hand and alarm indicator. The 

circular dial was divided into hours, subdivided into minutes. Hours were boldly 

numbered in digits 5mm2. Batteries were installed and the second hand moved visibly. 

Interview schedule and procedure for clock 

As for the other devices, children were first asked whether clocks measured anything, 

and if so, what. It was anticipated, however, that many would say that clocks did not 

measure anything, but instead told the time. The idea of time as measurable, and thence 

as involving units, was therefore introduced to all children by question 3: How does a 

clock tell us how much time has passed? This question was intended to lead naturally to 

consideration of the functions of the hour, minute and second hands (and of the alarm 

indicator). The question What do the numbers tell us? (with re-directing questions as 

necessary, set out among the questions for 'ruler') then followed on as before, and then 

How does a clock work? 

No unit names were printed on the clock, and there was only one scale. The subsequent 

questions as set out in relation to the ruler were therefore inapplicable. 

Wall thermometer 

The glass bulb and tube containing a red fluid were mounted in a plastic case. A 

Fahrenheit scale was printed on one side of the glass tube and a Celsius scale on the 

other. The Fahrenheit scale showed 2°  divisions, extended from -40 ° at the bottom of 

the scale to 130 ° at the top, and was numbered from 120 ° to 40 ° every 20 0. The 

Celsius scale showed 1°  divisions, extended from -40 ° at the bottom to 55 ° at the top, 

and was numbered from -40 ° to 50 ° every 10 °. Zero degrees were therefore marked 

part of the way up each scale. Degrees below zero were not marked with a minus sign 

on either scale. 

Interview schedule and procedure for thermometer 

It was expected that children would have seen and would understand the function of a 

thermometer and how it worked in general terms, but would be unfamiliar with F and C 
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scales and their relationship. The same first four questions were therefore asked for the 

thermometer as for the ruler, and the children were also asked how a thermometer 

worked. They were not asked about relationships between the units, as piloting had 

shown this to be too difficult for them. 

3.3.2 Results 

Table 3.11 classifies children's responses to the first three questions. Table 3.12 

classifies an important subset of responses to Question 3. Table 3.13 classifies the 

responses to the question How does it work? asked in relation to four of the devices. 

Table 3.14 classifies the responses to Question 4, and Table 3.15 the responses to 

Question 5. 

Can this device measure? What could we measure with it? 

Table 3.11 Can this device measure? What could we measure with it? Number of 
children in each year-group who named the device shown, affirmed that it was a 
measuring device, and identified entities that could be measured with it 

1 

Yea 
r 
2 3 

Ruler 
Device named 26 21 26 
Can it measure? - Yes 25 20 24 
What can it measure? 
Identifies as measurable > 1 countable item 21 18 23 
No information relevant to measurement given 0 0 0 

Tape measure 
Device named 15 14 16 
Can it measure? - Yes 26 21 26 
What can it measure? 

Identifies as measurable > 1 countable item 22 21 19 
No information relevant to measurement given 0 0 0 

Measuring jug 
Device named ('measuring jug' 2) 2 4 3 
Can it measure? - Yes 16 18 23 
What can it measure? 
Identifies as measurable > 1 liquid or uncountable 

solid 
14 11 16 

Identifies as measurable > 1 inappropriate entity3  3 5 6 
No information relevant to measurement given 0 0 0 

Kitchen weighing machine 
Device named ('weighing machine' or 'scales') 

	
16 	21 	26 

Can it measure? - Yes 
	

15 	16 	26 
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What can it measure? 
Identifies as measurable > 1 weighable solid or 

collection 
Identifies as measurable > 1 inappropriate entity 5  
No information relevant to measurement given 

0 

0 
0 

161  

21  
0 

20 

0 
0 

Clock 
Device named 26 21 26 
Can it measure? What can it measure? 

Yes: it measures time 
0 1 3 

Yes: it measures length 1 0 0 
No: it tells the time (at a given moment) 15 18 21 
No information relevant to measurement given 10 3 2 

Thermometer 
Device named 0 4 4 
Can it measure? What can it measure? 
Yes: it measures heat/cold/temperature 0 6 4 

Yes: it measures length 4 0 0 
No: it tells how hot or cold it is 1 16 12 
No: it tells that you are ill/has to do with blood 4 2 9 
Other associations 5 0 0 
No information relevant to measurement given 7 2 3 

N 26 21 26 
Notes 1. Totals to > 16 because two children who said the machine could not measure went on to give 
examples of how it did; 2. 'measuring jar', 'measuring pot' and 'measuring cup' were also accepted; 3. for 
example, large countable items such as pieces of fruit; 4.`weighter' and 'thing for weighing' were also 
accepted; 5. for example, a person. 

Table 3.11 shows that all children named the ruler, clock, and (in Years 2 and 3) the 

weighing machine. Just over half in each year-group named the tape measure. Very few 

named the measuring jug or thermometer. Eight children in each year-group called the 

former simply a 'jug', `pot' jar' or 'cup', labels which gave no indication of a 

measurement function. Seven children in Year 3, four in Year 2 and two children in 

Year 1 mentioned the word 'temperature' when asked what the thermometer was. 

Children who did not know or could not recall the name of a device, however, were 

often able to describe what they took to be its function. This information included a) the 

type of entity children considered could be measured by the device, and b) a description 

of how the device was operated. These two categories of information are presented 

respectively in Table 3.11 under the heading Can it measure? and in Table 3.13 under 

the heading How does it work? 

In general, the appearance of the scales on the weighing machine, the measuring jug, the 

clock and the thermometer did not suggest to children that these devices measured 

length. This was the case only for the clock and thermometer, and only among the 
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youngest children. Two children in Year 1 suggested that one could measure this with 

the clock, and held one of its straight edges against a nearby object (book and tape 

recorder). This could be seen as a sensible answer if the side of the clock was being 

used as a non-standard unit; however, there was no attempt in either case to iterate the 

unit along the object 'measured'. 

Two other children in Year 1 affirmed that the thermometer was for measuring the 

length of the foot (presumably they were reminded of the device used for that purpose 

when children are measured for new shoes) and one described it as a 'blood ruler'. 

References by a number of children to blood, or to the thermometer as indicating illness 

— for example It's a blood thing. It tells you you're ill and You put your blood through it 

to see if it's all right or The line goes up to show how sick you are - seemed to be 

prompted by the association of the taking of one's temperature with illness and medical 

settings, and by the colour of the fluid in the thermometer shown. Neither the mention 

of measuring feet nor the association with illness suggests that the scales on the 

thermometer were actually thought to measure length; rather it was the general 

appearance of the device that seemed to prompt these associations. One Year 1 child, 

for example, obviously reminded of a metronome, said that she had 'one of those' on 

her piano, and it ticked. 

Some associations seemed more complex. It goes red for fire, probably prompted by the 

colour of the fluid, seemed to unite the ideas of heat, of red for danger, and of the 

thermometer as an indicator or scale. Two other respondents, having correctly said that 

the red fluid showed you how hot it was, added that if you wanted to know how cold it 

was, you needed a thermometer with blue fluid, probably associating these colours with 

the coding used on water taps. One of these two also turned the thermometer so that the 

bulb was at the top and said that it was like a try-your-strength machine in a fun fair. 

Sometimes two distinct functions would be mentioned: for example, one of the children 

who associated a thermometer with measuring one's feet also said that you put it in your 

mouth when you were sick. Three children had apparently seen a thermometer explode 

in a television cartoon and, having described its function broadly correctly, went on to 

state that when the line of fluid reached the top of the device, it exploded. Several others 

mentioned explosions in relation to thermometers in more general terms. 

By contrast, the five children in Years 2 and 3 who did not associate the thermometer 

with the measurement of heat or indication of illness, said simply that they did not know 

what it was for. 
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It should be noted that the response 'anything' to the question What can [this device] 

measure? was not credited as acceptable, and children who responded in this way are 

not enumerated in Table 3.11. 

One type of response to the question What can [this device] measure? in relation to the 

30 cm ruler and occasionally to the tape, was of particular interest. This was the usually 

firmly uttered assertion that only small things - that is, only things no longer than the 

device - could be measured with it. This response was frequent only in Year 3, where it 

was made by half the children. Two interpretations of such a response suggest 

themselves. Piaget remarks in the towers study (1960: 60) that when children have 

accepted a stick or strip of paper as a measuring device, they at first do so only if the 

device exceeds the height of the tower to be measured. Later they do accept a measure 

that is shorter than the tower, but try to make up the full length in a makeshift way with 

another object. Piaget argues that although the children are no longer trying to bring the 

two towers together in a direct comparison and do accept an intermediate measure, their 

understanding of units is still not established, because it does not occur to them either to 

iterate a short strip as a unit, or to mark a longer strip in equal units and use that as a 

measure. 

One interpretation of children's comments in the present interview might thus be that by 

a number of children the ruler or tape was not fully understood as the embodiment of 

units that could be indefinitely iterated (the length of the device being merely 

conventional) but rather that measurement was still seen as a direct comparison between 

two objects - the ruler (or tape) and the item measured. A second possible interpretation 

is that the children were taking too literally a common injunction (Department for 

Education and Employment 1999; Department for Children, Schools and Families 

2006) to select the best measuring device for the job in hand: the ruler for small objects, 

and the tape for walls, doors and furniture (which, as they reported in the first interview, 

were invariably measured with a tape at home). If the first interpretation is correct, and 

general developmental factors were at work, one would expect this response to be 

commonest among the youngest children. The fact that it was commonest in Year 3 

makes the second explanation the more plausible, since these children had experienced 

more measurement instruction in school. 

To better understand each such response, the researcher followed it up with the question 

Isn't there any way you could measure something longer i fyou just had this ruler/ tape? 

The three main types of response to this further question are set out in Table 3.12. 
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Table 3.12 Number of children in each year-group affirming the ruler or tape could not 
measure items longer than itself, and responses at follow-up 

1 
Year 

2 3 
Ruler or tape cannot measure items longer than itself 4 4 13 

Q: Isn't there any way it could do so? 
No 2 1 1 
Yes — supplement the device with another item 0 0 5 
Yes — iterate the device and add 
the units 

1 1 6 

Other/unclear 1 2 1 

N 26 21 26 

It will be seen that in Year 3 responses were evenly divided between describing a 

strategy of unit iteration and describing the makeshift strategy noted by Piaget. 

How does it work? 

Table 3.13 How does it work? Number of children in each year-group mentioning the 
given features of the weighing machine, measuring jug, clock and thermometer. 

Year 
Device and features of its use 1 2 3 

Weighing machine 
pan moves downwards 16 15 23 
indicator moves to a number 12 16 21 
read the number 12 17 15 

Number of above features mentioned 
3 7 5 9 
2 5 2 4 
1 1 3 1 
0 6 0 1 

Measuring jug 
pour fluid into jug 17 18 18 
ensure fluid is level with requisite line 12 16 14 
read the number 13 18 14 

Number of above features mentioned 
3 8 13 10 
2 8 5 8 
1 2 3 0 
0 8 0 8 

Clock (How do we know how much time 
has passed?) 

Hand named (or function described) 
hour hand 1 6 12 
minute hand 1 5 12 
second hand 1 5 13 
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relative movement of hands 1 2 13 

Number of above features mentioned 
4 0 2 10 
3 1 3 2 
2 0 0 1 
1 1 1 2 
0 24 15 11 

Thermometer 
either fluid rises when it is hot or fluid 

falls when it is cold 3 3 2 
both occur 0 0 6 
no response 23 18 18 

N 26 21 26 

The sub-categories used in Table 3.13 describe basic actions necessary in using the 

device (weighing machine and jug) and basic knowledge of how the device measures 

(clock and thermometer). These sub-categories were chosen in advance of the children's 

responses. Children were not asked How does it work? about the ruler or tape measure, 

since they would be asked to demonstrate this in the measurement tasks. Table 3.13 

shows that over half the children in each year-group could mention some features of 

how one weighed material on a kitchen weighing machine, or measured liquid in a 

measuring jug, although in Year 1 almost one-third failed to mention any such features, 

and somewhat surprisingly, a similar number of Year 3 children were at a loss as far as 

the measuring jug was concerned. 

In the case of the weighing machine, all were given the opportunity to weigh small 

items and were then asked to report the weight as shown on the two scales. All were 

able to report the numbers where the indicator stopped; no child spontaneously added 

the labels 'grams' and 'ounces'; the researcher supplied these. 

In the case of the clock, it was thought that How does it work? might divert children's 

attention to the mechanism of the device, and so here, How do we know how much time 

has passed? did duty for the former question: the focus was on whether children would 

describe the function of the hands on the clock face. In Year 3, about half the children 

could name and/or describe the function of all three hands on the clock, and their 

relative movements, (although four others in Year 3 were of the view that the function 

of the fast-moving second hand was to haul round the other two hands). Nine children 

in Year 1, three in Year 2 and one in Year 3 spoke almost exclusively about the alarm 

function on the clock, usually for waking them in the morning, but also for reminding 
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them of other important daily events. One suggested that the purpose of the hands on 

the clock was to 'get you to the time when the alarm went off, and although this was 

explicitly stated only once, this order of importance among the clock's hands could be 

inferred from what other children said. More generally, it became apparent that while 

some children were interested in how clocks told the time, were focused on telling what 

they knew of this and the part played by the various hands and markings on the clock, 

and were aware of the relevance of these to the notion of time passing, others did not 

think of the clock as recording the passing of time at all. (One child in Year 3 succinctly 

remarked, It doesn't tell you how much time has passed. It tells you what time it is right 

now.) Rather, they thought of the clock primarily as marking important daily events, 

such as getting up, going to work or school, or having lunch, so that the 'times' at which 

these happened were thought of as, in a sense, absolute. Only two children in Year 3 

and one in Year 2 spoke in this way, but fifteen in Year 1 did so. 

In the case of the thermometer, knowing that a rise or fall of the column of fluid 

indicated a rise or fall in temperature was considered the key information. 

Overall, very few children could supply much detail about how one used either clocks 

or thermometers. 

What do the numbers tell us? 

Table 3.14 What do the numbers tell us?' Number of children in each year-group 
responding according to the categories listed 

Year 

Ruler 
3 

 
1 2 

Mention of 
appropriate dimension (e.g. 'how long') 12 12 18 
non-specific dimension ('how much there is') 2 0 0 
inappropriate or mixed dimensions 3 1 1 

don't know/no response 9 8 7 

Tape measure 
Mention of 

appropriate dimension (e.g. 'how long') 1 	1 12 17 
non-specific dimension ('how much there is') 0 0 1 
inappropriate or mixed dimensions 4 1 2 
don't know/no response 1 	1 8 6 

Measuring jug 
Mention of 

appropriate dimension (e.g. 'how much inside') 	5 	7 	7 
non-specific ('how much there is') 	 4 	4 	7 
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inappropriate dimension: 'how long' 6 2 5 
other inappropriate or mixed dimensions 4 2 4 

don't know/no response 7 6 3 

Thermometer 
Mention that 

either fluid rises when hot or fluid falls when 
cold 

both occur 
no response 

15 11 17 
5 2 2 
0 1 1 
5 2 1 
1 5 5 

0 0 0 

0 0 2 
0 0 8 

26 20 11 

0 3 2 

0 0 6 
23 18 18 

26 21 26 

Kitchen weighing machine 
Mention of 

appropriate dimension (e.g. 'how heavy') 
non-specific ('how much there is') 
inappropriate dimension: 'how long' 
other inappropriate or mixed dimensions 
don't know/no response 

Clock2  
Mention of 

appropriate dimension (e.g. 'how much time has 
passed') 

hours only 
hours and minutes 
don't know/no response 

Note 1. No child gave a positive response to this question in regard to the thermometer, so it is omitted. 
2. No child responded in accordance with the subheadings used for the other devices, so except for the 
first, these are omitted. 

Table 3.14 shows that in the case of the ruler, tape measure and weighing machine, 

nearly half the children in each year-group, and sometimes more than half, named an 

appropriate dimension in connection with the device that measured it, and relatively few 

mentioned inappropriate dimensions, or a mixture of appropriate and inappropriate 

dimensions. 

In the case of the jug, it was necessary to refer to 'the amount inside', 'the amount of 

room it takes up', or 'its capacity' to be credited with an appropriate dimension, and this 

was difficult for most children. The non-specific the numbers tell us how much there is 

was not accepted. Many children — often about one third in a year-group — did not 

respond to this question. 
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What do the letters stand for? 

Table 3.15 shows that centimetres, millimetres and grams were the only units readily 

named by children from their abbreviated forms. Few children in Year 1 were able to 

name any units. 

Table 3.15 What do the letters stand for? Number of children in each year-group 
responding to unit names abbreviated on the measuring devices. 

1 
Year 

2 3 
Ruler 

cm 2 18 24 
mm 3 18 22 
units incorrectly named 2 2 2 
don't know/no response 19 0 0 

Tape measure 
inches 0 7 11 
cm 3 21 25 
units incorrectly named 2 5 5 
don't know/no response 22 2 1 

Measuring jug 
litres/ml 1 12 5 
pints' 0 2 6 
units incorrectly named 0 0 0 
don't know/no response 25 7 15 

Weighing machine 
oz 0 0 1 
g 0 16 16 

N 26 21 26 
Note 1. This was an unfamiliar word to many children, often pronounced to rhyme with 
`mints'. 

Questions 6, 7 and 8. 

Ruler: Can you show me how long 1 cm is? Can you show me how long 1 mm is? So 

which is longer, 1 cm or lmm? 

The preparation for this important series of questions was thorough. It is fully explained 

in the Method section for the second interview and summarised here: After being 

allowed to handle and to comment on any features of the measuring devices they 

wished, each child was asked to indicate the length of 1 cm on the ruler, and then asked 

to identify two more individual cm-lengths. If a child indicated a number or line rather 

than a space, the experimenter corrected the child by indicating a cm space and stating 
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that the space, and not the line or number, was the actual centimetre. The process was 

repeated twice more. The same procedure was adopted in respect of the mm scale, the 

point of a sharp pencil being use to indicate the length of individual mm. The 

experimenter then asked So which is longer, 1 cm or lmm? When the child responded, 

the experimenter asked, How do you know? With changes appropriate to the device and 

the units involved, the same procedure was adopted for the tape measure, the weighing 

machine and the measuring jug. 

For each device, Table 3.16 shows the children's responses and their justifications. 

Table 3.16 Children's judgements about the greater unit on each measuring device and 
their justifications, according to year-group 

Year 
Question Response 1 2 3 

Ruler 
Which is longer? 1 cm 5 13 13 

How do you know? It takes up more space 2 6 7 
The numerals are bigger 0 1 0 
There are no little lines 0 1 I 

Which is longer? 1 mm 16 6 11 

How do you know? The numbers are larger 9 1 6 
The numerals are bigger 1 0 0 
There are more mm I 0 0 
Don't know/No response 4 1 2 
Justification inconsistent 
with response 1  

2 3 0 

Tape measure 
Which is longer? 1 inch 14 8 13 

How do you know? It takes up more space 3 2 12 
The numerals are bigger 3 0 2 
There are more inches 0 1 0 
Justification inconsistent 
with response 

3 0 0 

Which is longer? 1 cm 11 10 12 

How do you know? The numbers are larger 2 2 5 
It takes up more space 2 0 0 
The numerals are bigger 0 1 0 
There are more cm 3 5 0 
Don't know/No response 0 1 1 
Justification inconsistent 
with response 

1 3 5 
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Weighing machine 
Which is heavier? 

How do you know? 

Which is heavier? 

How do you know? 

Measuring Jug 
Which has more inside? 

How do you know? 

Which has more inside? 

How do you know? 

1 g 

The numbers are larger 
There are more grams 

1 oz 

It takes up more space 
The numbers are larger 
Don't know/No response 
Justification inconsistent 
with response 

1 litre 

The numbers are larger, 
(or there are more of 
them) 
It takes up more space 
Seen pints & litres before 

1 pint 

The numbers are larger, 
or there are more of them 
Don't know/No response 
Justification inconsistent 
with response 

19 

9 
1 

5 

1 
1 
2 

1 

16 

7 

1 
0 

3 

1 

5 

1 

14 

10 
1 

4 

0 
0 
3 

1 

15 

2 

0 
1 

2 

1 

2 

2 

0  

16 

1 1 
2 

8 

1 

9 

0 

20 

4 

1 
3 

5 

0 

1 

2 

N 	 26 	21 	26  
Note 1. = (for example) 1 cm is shorter than 1 mm because there are more mm; 1 g is heavier than 1 oz 
because there are not so many oz. 

Table 3.16 shows that for every device, a substantial number of children affirmed that 

the larger of the two units that they had just examined was in fact the smaller, and 

frequently justified their response by appealing to the greater number of the smaller 

units. 

The ruler was of 30 cm and, numbered in tens on its other edge, 300 mm. Table 3.16 

shows that half the children in Year 3, rather more than half in Year 2 and about one 

fifth in Year 1 affirmed that 1 cm on the ruler was longer than 1 mm, and about half of 

those in each year-group justified this correct response by saying that 1 cm occupied 

more space than 1 mm. However, a majority of Year 1 children and a large minority in 

Year 3 affirmed that, to the contrary, 1 mm was longer than 1 cm. About half of these 

respondents in Years 1 and 3 justified this incorrect response by reference to the larger 
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number of mm than of cm shown on the ruler. A smaller proportion of Year 2 children, 

but still more than a quarter, affirmed that mm were larger and justified this opinion by 

reference to their larger number. 

The tape measure showed cm on one face and inches on the other. In this case more 

than half the Year 1 children correctly affirmed that 1 inch was longer than 1 cm, but 

only three of these were able to supply a correct justification for their opinion. About 

half the Year 3 children judged relative length of the units correctly and also justified 

their opinion correctly. Rather less than one third of Year 2 children judged correctly, 

and few could justify their response. Nearly half the children in each year-group judged 

that 1 cm was longer than 1 inch. Reasons were similar to those advanced to support 

incorrect opinions in relation to the ruler, or were absent; no type of reason 

predominated. 

In relation to the grams and ounces shown on the weighing machine, there was an even 

higher proportion of erroneous judgments. This was despite the experience children had 

been given of placing items in the pan of the machine and reading off the weight shown 

in both g and oz. (It will be recalled that the indicator crossed both scales so that there 

was a clear visual indication that the same weight could be expressed in units of 

different sizes.) Most incorrect judgments were justified by reference to the larger 

number of grams shown on the scale. The gram scale was longer than the scale showing 

oz, and this may have encouraged the predominance of this justification. Few children 

said that the ounce was the larger unit, and almost none who did offered a justification 

for this view. 

Well over half the children in each year-group correctly said that a litre was more than a 

pint. In this they may have been responding to the absolute size of the litre as 

represented on the jug; it was by far the largest unit on any scale they had been shown. 

Greater familiarity with the litre may also have played its part. (The pint was a 

seemingly unfamiliar unit that was sometimes pronounced to rhyme with 'mine). This 

possibility is revisited in the general discussion. However, of the justifications (which 

were few) the largest number were inconsistent with correct judgements that had been 

made: children said that a litre was more than a pint because more litres than pints were 

shown on the jug. In fact only one litre mark appeared on the jug, since it was of one-

litre capacity. Millilitres, marked in 100s, appeared prominently below the one-litre 

mark, and it is likely that children were judging that there were more ml than pints. 
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3.3.3 Discussion 

The second interview centred on a number of measuring devices. About these, overall, 

the children were knowledgeable. However, there was clear evidence of confusion 

about the relationship between the size and number of units shown on the instruments. 

Although there were many occasions on which children said that they did not know the 

answer to specific questions about the devices they were shown, or chose not to 

respond, there were few examples of individuals being entirely mistaken about the 

function of a device, the type of entity that it could measure, or the dimension it 

measured. Overall, children had good knowledge of the uses of the ruler, tape measure, 

weighing machine and measuring jug, the ways in which they measured, and the 

dimensions they measured, as the commentary on Tables 3.11; 3.13 and 3.14 indicates. 

They knew less about these matters in relation to the clock, and very little in relation to 

the thermometer. There was little evidence that visible scales led children to assimilate 

non-length dimensions to the dimension of length. 

With regard to the clock, only four children considered that clocks measure time, and 

although many of the older children were able to name and talk about the movements of 

the hands (Table 3.13), and some were eager to demonstrate what they knew about 

telling the time, few (Table 3.14) associated the numbers with hours, minutes and 

seconds as units of time. Rather, the numbers associated with the clock were considered 

as markers for the sequence of important daily events. Thus understanding of time as an 

interval scale, stating "time 'at which' " was well on the way, while time as a ratio scale 

(Haylock & Cockburn, 1989: 72) was little understood. The thermometer was the least 

familiar device, and the reach of the ideas it prompted - the association with blood; the 

metronome - suggested the extent to which the overall appearance of a measurement 

device, together with the social contexts with which it is associated, may be recruited to 

explain its function, and the same data suggest that from the appearance of a device and 

the context in which it is encountered it may not be at all obvious to children that the 

device has anything to do with measurement. 

Of greatest interest were indications of fundamental misconceptions with regard to 

units. There was the suggestion by some children that the ability of a device to measure 

the length of an object might be limited in an absolute sense by its own length, 

indicating that the idea, basic to measurement, of iterating a unit or collection of units 

might not be fully understood. 
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More striking, however, was the large number of children across the age-range who 

seemingly ignored the physical size of units they had just been examining, to assert that 

a unit's size accorded with the number of them that was displayed on the device that 

embodied them, and not with the extent of the space they occupied. This was asserted 

across devices, whether length was actually measured, or was used to symbolise the 

dimension measured. This finding suggested that the inverse relation between size and 

number of units was far from understood by many of these children. 

3.4 General discussion 

As intended, the two interviews offered, firstly, useful evidence of the children's 

knowledge of the essential features of measurement and of what they took to be its 

purposes. 

Secondly, the interviews gave evidence of the contexts in which this knowledge was 

acquired. The first interview showed that between the two main contexts of acquisition 

— home and school - there was a sharp contrast in the type of measuring experience that 

children had had, and the type of importance they attached to it. At home, measurement 

seemed to be conceptualised predominantly in terms of affordances, and this was done 

in the service of important events of everyday life. At school the preoccupation was 

with the handling of rulers and metre sticks and measurement was done for the purpose 

of reporting the numbers of units involved. The interview thus showed the contrasting 

sets of conditions under which children constructed their conceptual understanding of 

measurement. 

Thirdly, a more general contrast, a contrast that applied well beyond the measurement 

domain, could be discerned from the interviews. It concerned two types of 

understanding that children are expected to acquire, often from the very same 

experience. These two types of understanding are discussed below under the labels 

`conceptual' and 'social'. Development of measurement concepts may be influenced by 

the degree of children's success in untangling 'conceptual' and 'social' information 

embedded in their experience. 

Finally and more specifically, understanding of a fundamental principle of 

measurement, the inverse relation between the size and number of units was shown to 

be insecure for many of the children. 
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Reflection on the character of the interviews 

It is accepted that the picture of children's general knowledge and understanding given 

in this chapter is likely to be incomplete, and this is discussed before further 

consideration of the findings. 

The first interview sought to establish what children spontaneously called to mind when 

they were asked about measurement, and although they were given ample time to 

respond, and encouraged where appropriate with neutral prompts, they were not pressed 

to be more explicit than they chose. A more direct style of questioning was considered 

but not adopted for this interview, since there were clear signs that the reticence of some 

children would have been increased by this course of action. In these conditions it was 

particularly difficult to know how far responses of individuals might represent the full 

extent of their knowledge about measurement, and a non-response, a don't know, or an 

apparently irrelevant response could not be taken as an indication of absence of 

knowledge. However, it did seem fair to conclude that what a child said was an 

indication of what was most salient for them about the notion of measurement, or, when 

there was no positive response, of the fact that it was not salient at all. It also seemed 

reasonable to assume that differences among year-groups in the degree of elaboration of 

responses could be taken to indicate either a comparatively greater or lesser degree of 

knowledge about measurement, or of availability of language to talk about it. The same 

principles applied to the second interview, although here, fewer children were reticent 

and dialogue with the researcher was on the whole more extensive. This was probably 

because the measuring instruments they were handling provided a specific focus for 

their talk. 

In both interviews some children were far from reticent and did not restrict their 

responses to the specific questions of the researcher, imparting instead a wide range of 

information about measurement in the broader context of their lives. 

In sum, whether children said much or little, the picture of their knowledge and 

experience of measurement given in this chapter is likely to underestimate it. 

Nevertheless this picture succeeded in providing evidence of the range of knowledge 

that these children had about measurement, of the contexts in which it was acquired, 

and also of the kind of job children face in developing good understanding of 

measurement principles that are embedded in home and school experience. 
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General knowledge about features of measurement 

In the first interview, few children mentioned more than one or two features of 

measurement (dimensions, measuring devices, measurable entities, or measuring 

activities). Most talk was of length, and given this predominance, some confusion might 

have been expected as to what was actually measured with respect to other domains 

whose scales represent units as length. In the second interview this was investigated by 

asking children to comment on scaled instruments that measured length, weight, 

volume, time and temperature, all of which represented their units as length. Where 

children recognised instruments as measuring devices, there turned out to be little 

confusion about what they measured, suggesting a store of tacit knowledge accumulated 

from everyday experience and contrasting with the explicit knowledge characteristic of 

the classroom. 

Units of any kind were rarely mentioned in the first interview. Spontaneous mention of 

units was not recorded in the second interview, but when asked What do the letters [on 

the devices shown] stand for? children could usually name only centimetres, 

millimetres and grams from their shortened form. Children in Years 2 and 3 often 

recalled the lengths of specific objects measured in the classroom and expressed these 

as numbers of (generally unnamed) units. Sometimes they even recalled the outcome of 

iterating the ruler or metre stick and adding the numbers of units produced. Alongside 

this evidence of competence, however, about half the children in Year 3 gave some 

evidence of a belief that the length measured by a ruler or tape could not exceed the 

length of the instrument. Pressed on the question, about half of these children stated that 

the instrument could be iterated and the units added; however the rest either suggested 

supplementing the ruler or tape with some other object not marked with units, or had no 

suggestion to make. There was some indication here that understanding of measurement 

as iterating a standard unit, and of the ruler as embodying this iteration, was not secure. 

Furthermore, there was clear evidence of confusion about the relationship between size 

and number of units when these were indicated on the instruments shown in the second 

interview. This is further discussed below. 
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Measurement at home and at school 

The first interview demonstrated that children's experience of measurement outside 

school was a rich one, and was embedded in a wide range of interesting activities. The 

predominant model of measurement of length was that of fitting an item to the space 

available for it; the conception was that of affordance. Two possible consequences of 

extensive experience of measurement activities that take the form of calculating or 

estimating affordances suggest themselves. On the one hand such experiences may have 

a generally beneficial impact on certain kinds of estimation ability: children may 

become adept at visual comparisons of length. Children's visual estimation capabilities 

were tested in a later part of this research. On the other hand, the same experience of 

such direct comparisons of length and their success may encourage a `satisficing' stance 

(Simon 1979), and motivation to be precise in the matter of deploying measuring 

devices and interpreting amount expressed in units may be adversely affected. (It was 

suggested above that motivation to be precise may also be adversely affected by lack of 

interest in typical classroom measurement activities.) 

The language used to describe measurement in the home was direct and vivid; where 

units were named, they seemed to be deployed to embellish the narrative of which they 

were a part, and were frequently inappropriate to the domain to which they were 

applied. Numbers of units given were often wildly in excess of a sensible estimate for 

the entity named; the large numbers seemed to be used to mark the importance of the 

activity in which they figured. 

Descriptions of measurement at school suggested, by contrast, typically rather mundane 

activities, centering on the instrument involved (usually the ruler or metre stick), and on 

the noting and recording of the number of units that was the product of the activity. 

These activities were usually more carefully described than those in the home setting, 

and there were often precise accounts of the handling of the measuring instrument and 

of the outcomes of specific instances of measuring in terms of numbers of units. These 

precise accounts suggested that the classroom experience was more likely than that of 

the home to foster understanding of units, although the narrow range of classroom 

activities and the fact that identical rulers and metre sticks were used throughout the 

school left room for doubt as to how far that understanding would be generalised. 

The conceptual and the social 

In the course of development, specific experiences become represented with some 

degree and form of generality. Both children and adults are expected to abstract general 
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principles from a wealth of specific daily experiences, and in the case of children, the 

development of conceptual understanding - of transitivity and conservation for example 

— that underlies many types of reasoning has been extensively studied. There has been 

much less focus on the development of children's understanding of specific social 

situations and their implications (such as what to do at a birthday party, or how to 

conduct oneself in a particular type of classroom activity) or on how the conceptual and 

the social might interact in specific contexts. The interviews in the present research 

suggest a lack of continuity between the 'conceptual' and the 'social' in relation to 

measurement concepts that may adversely affect their development. 

For example, the way in which, in an out-of-school context, large numbers and the 

names of comparatively large units may be used to embellish a measurement story of 

personal importance to the teller has already been mentioned. In Table 3.06, the dog 

about thirty metres long and the new window that measured about ten hundred 

kilograms are cases in point. We might say that numbers and unit names are here put to 

the 'social' use of marking the importance of the event. Exaggeration is licensed in such 

social contexts; how do children come to recognise this as exaggeration, and adjust to 

the classroom experience, where it is unacceptable inaccuracy? In contrast, Table 3.09 

sees Year 2 and Year 3 children, disciplined by school experience of the measuring 

activity itself, refer to plausible numbers of units (albeit usually unnamed), and how 

these might be arrived at by addition. The contrast these data suggest between home and 

school situations as to the role units play for children, together with the prominence of 

measuring in the home in terms of affordances, indicate that teachers might have an 

uphill struggle in persuading children of the importance of accuracy in measuring. More 

fundamentally, precision may be difficult to establish as essential to the concept of a 

unit in measurement. 

Overall, this contrast suggests that features of measurement knowledge acquired in the 

home and school contexts are not likely to support each other, and that the type of 

measurement done in school may not be seen as relevant beyond that setting. There is a 

broad parallel here with science education, where children's own frameworks for 

explaining physical phenomena, acquired outside the classroom, may obstruct 

understanding of the science account taught in the classroom (Driver, Guesne & 

Tiberghien, 1985). 

Next, consider the responses when children were asked whether they or the 

experimenter was the taller, and how they knew. How do you know? elicited children's 
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social knowledge that those who were older and whom they perceived as of higher 

status would be taller. This is effective use of social knowledge and those who made use 

of it were likely to be right about the relative heights in most circumstances. The next 

question How could you check that? was superficially similar, in that both were requests 

to justify the judgment. However the first question activated social knowledge, while 

the second elicited practical techniques for comparing physical height. This illustrated 

quite well how superficially similar language may signal for children quite different 

areas of knowledge. 

Finally, consider the kinds of observations made by children about the clock and the 

thermometer, the first very familiar to children; the second quite unfamiliar. These two 

devices differed from the others used in the interview in two ways. Both measure 

entities that are invisible and intangible, and both measure 'passively': unlike the other 

devices, neither requires physical manipulation in order to measure. In fact few children 

considered them to be measuring devices. 

Possibly because of this, the social functions of both the clock and the thermometer 

figured prominently in what children had to say about them. A 'time' on the clock was 

seen as labelling an important event in the daily routine (rather than as a measure), and 

the alarm indicator was accordingly prominent in discussion because it was a reminder 

of such events. On the other hand associations prompted by the thermometer, about 

which the children knew little, were more diffuse. Nevertheless, these associations were 

not haphazard. The red colour of the fluid in the thermometer was associated with heat, 

with blood, and with danger. The word 'temperature' was associated with being ill. 

Blood, having a temperature, and hospitals were associated together, while the idea that 

the device would explode when the column of liquid reached the top of the scale, 

apparently initiated by a television cartoon, also contributed to what seemed to be a 

vague association of thermometers with danger. Responses to the thermometer illustrate 

how readily available everyday knowledge, social in origin, may be recruited 

(especially by younger children) to invest what is little-known with meaning. 

Understanding of the inverse relation between size and number of units 

Responses on the relative size of units also illustrated how readily use is made of easily 

available knowledge, in this case the knowledge that larger numbers usually mean 

`more'. 

Many children across the age-range repeatedly, after closely examining the relative size 

of units, asserted that the smaller of the two units they had just examined was in fact the 
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larger, on the grounds that larger numbers were associated with it on the measuring 

device. On the face of it, the way in which these children seemingly ignored the 

evidence of their eyes was extraordinary; it seemed that the impression made on them 

by large numbers completely overwhelmed the meaning of those numbers in relation to 

the units of amount that they signified. 

Miller (1989) contended that the procedure for measuring an amount (here, counting 

units of length) affects children's judgements of amount. Thus if counting does not 

change the amount of material — as happens when smaller units are used (or existing 

units subdivided) —children will not conserve quantity and their judgements will be 

wrong, because counting misleads in this situation. If this is so, then the proposed 

influence must be very strong, considering the emphasis in the interview on comparing 

the actual spaces occupied by the larger and smaller units. 

The possibility that the more familiar unit was nominated as being 'larger' - in 

importance, as it were - (the justification in terms of the number of units being ex post 

facto) was considered but rejected. This suggestion was perhaps plausible where grams 

were said to weigh more than ounces, since grams were by far the better-known unit of 

weight to the children, and Table 3.16 shows that they were identified as being the 

heavier by three times as many children as identified ounces as the heavier. Yet in 

connection with the ruler, the same table shows more children saying that 1 mm was 

longer than 1 cm than said the reverse, when throughout the research, the unit with 

which the children were clearly most familiar was the cm. Furthermore, slightly more 

children, looking at the tape measure, correctly said that an inch was longer than a cm 

than said the reverse, yet the inch was by far the lesser-known unit, and some had never 

heard of it. The litre was clearly more familiar to the children than the pint, and many 

correctly said that a litre was more than a pint, with, however, incorrect justifications in 

terms of there being a larger number of litres. (Since the jug was of one-litre capacity, 

only one litre mark appeared on it). Here, as already argued, the most likely explanation 

was that children were actually attending to the many ml marks rather than to the single 

litre mark; the large number of 100 ml marks was much the most salient feature of this 

scale on the jug. This would support the general thesis that the impression made on the 

children by large numbers, in itself obscured the meaning of those numbers in relation 

to the units they signified. The argument from familiarity of the unit becomes least 

plausible, however, in the light of the substantial number of children who correctly 
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identified the greater (or lesser) unit, irrespective of their relative familiarity, and 

justified this by indicating that they could see which was greater. 

This finding suggested that many of the children did not understand the inverse relation 

between size and number of units. It is possible that this task is made harder by the 

complexity of the display of units found on common measuring devices, and suggests 

firstly that the principle involved in the inverse relation should be explicitly taught, and 

secondly that this might best be done using simplified displays of units. 

The interviews established broad differences in the contexts in which children learned 

about measurement, reflected in general characteristics of the language they used when 

recalling those settings. The research next focused more closely on childrens' 

understanding of specific everyday language and concepts of ordinal length. 
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Chapter 4 

The language and concepts of ordinal length 

4.1 Introduction 

The previous chapter gave evidence that contrasting social contexts influence children's 

developing understanding of measurement and it was the children's use of everyday 

language, particularly in the first interview, that provided this evidence. In the 

Discussion section of that chapter, examples were given of the ways in which the 

children's social uses of the measurement language of several domains may contrast 

unhelpfully with the conceptual focus of the same language in school. Rhetorical 

devices such as exaggeration (applied to units) provided examples. 

Does the everyday language of the domain of length present any specific difficulties to 

children? The research continued by examining children's understanding of everyday 

language and concepts used specifically in length comparisons, a choice made in 

consideration of the tasks to follow, which required visual estimation and measurement 

specifically of length. The expectation was that while the everyday language of length 

provides essential conceptual underpinnings for measurement, the different social 

contexts in which particular terms are used, as well as other subtleties of use, would 

make it difficult for children to extract their conceptual content. Resnick summed this 

up (1992:107-8) by saying that children learned "both less than and more than 

mathematics on each such [social] occasion". 

4.2 Ordinal length comparisons 

How well do children make ordinal comparisons of length? The everyday language and 

concepts investigated and reported in this chapter are those at work in ordinal length 

comparisons such as The green line is longer than the black one. The understanding of 

what it is for one object to be shorter, longer or the same length as another has to be 

secure before units of length can enable us to be more precise about such comparisons, 

because simply knowing that one number is greater than another can be entirely 

misleading when considering how numbers of units represent length (Correa et al., 

1998; Nunes & Bryant 1996; Carpenter & Lewis, 1976). Thus the work reported in the 

current chapter asked children to respond to questions like Which is longer? Which is 

shorter? Which is the same length? The research attempted to distinguish children's 
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linguistic from their conceptual competence in relation to such questions by keeping 

questions constant, while varying the materials about which they were asked. 

Thus the first objective was to investigate children's understanding of the everyday 

language of length. The second was to explore children's conceptual understanding of 

ordinal length comparisons. In the context of everyday length comparisons, do children 

conserve length? Here a lead was taken from Piaget's (1960) formulation of the 

understanding required: that changing an object's position in space does not change its 

length. The position in space of the materials used was systematically varied: the 

question was whether the children's judgements of length would vary accordingly, or 

whether they would remain constant across different spatial arrangements. This was 

therefore a test of conservation in the broader sense described in 1.2.5.1, and because of 

its fundamental importance to measurement, given greater prominence in the present 

research than in the work reviewed there. 

Finally, to assess generality of findings, a wide range of materials was used. Below, a 

balance has been sought between giving full and detailed description of all the 

materials, and an overview sufficient to inform understanding of what was done. 

Examples of materials are included in appendices. 

Except in the final interview, participants were more constrained from this phase of the 

research onward, both by the tasks involved, and by the narrower focus and increased 

directness of the questioning. The constraints, as already stated, were designed to 

facilitate comparison of the outcomes of the tasks, and to limit potential difficulties of 

interpretation of the results. 

4.3 The language of length 

The National Numeracy Strategy (1999) required 5-year-olds in UK schools to be able, 

by the end of their first school year, to use terms like longer, shorter and taller to 

compare the lengths of "two, then three or more" objects (Department for Education and 

Employment, 1999:22). In its successor document, the Primary Mathematics 

Framework (Department for Children, Schools and Families, 2006:Year 1 Block D, 

Ma3, Measures) assessment for Year 1 emphasises problem-solving How did you find 

out which of these two objects was the...shorter? and documents associated with the 

new National Curriculum available to date (Qualifications and Curriculum 

Development Agency, 2010) do not suggest major changes. 
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These formulations do not appear to anticipate any difficulties in the everyday use of 

the language of length and may underestimate them, providing an additional impetus to 

the present investigation, which examined children's understanding of three essential 

attributes of length: height, length and width. 

The language of ordinal comparison 

The research tested children's ability to make five types of ordinal comparison, labelled 

here for brevity 'least', 'less', 'same', 'more' and 'most'. For example, children were 

shown displays of toy figures of different heights and asked to identify who was, from 

head to feet, the shortest (`least'); who was shorter (`less'), the same height (`same'), or 

taller (`more') than another figure; and who was the tallest (`most'). The same five 

types of comparison were tested in relation to length, to width, and to height above 

ground. 

Bias in favour of terms that express greater quantity 

In these types of comparison, one possible general influence is the bias in language 

usage noted by Haylock and Cockburn (1989) in favour of terms that express greater, 

rather than lesser, quantity; an example, perhaps, of the much greater frequency of 

positively-toned than negatively-toned words in a number of languages (Zajonc 1968). 

Thus, children tend to hear and speak of who has more, rather than who has fewer, 

sweets; we are more likely to compare the heights of two people by saying that one is 

taller, rather than that one is shorter. It was possible, therefore, that children would find 

it easier to make comparisons of greater than of lesser length, due to increased exposure 

to the relevant language. A number of more specific ways in which the everyday 

language of height, length and width may be difficult for children to interpret are 

discussed next. 

The language of height, length and width in everyday life 

First, children may find it difficult to determine what is meant by height, by length and 

by width. Height refers to length from top to bottom where these extremities differ in 

appearance (roof to ground level of a building; head to feet of a person). However, even 

when a person is lying down, their height is still the distance from head to feet. Where 

top and bottom do not differ in appearance (a block; a tube), height refers to the longest 

dimension when that dimension is perpendicular to (`standing on') the surface that 

supports the object. When the block or tube is lying at full length on the supporting 

surface, however, the longest dimension is instead referred to as its length. 
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Understanding of the relevant convention with respect to human figures was tested in 

the present research by asking children to compare the heights of figures some of whom 

were standing, and some lying down. 

Width refers to length from side to side. So the length of a pen is from top to bottom, 

and its width is from side to side. The length of a car is from front to back, its width is 

from side to side, and its height is from top to bottom. Children were asked to compare 

the lengths of toy cars whose width and height differed as well as their length, offering 

potential distractors and increasing the demands of the task. They were also asked to 

judge the width of pens and pencils. This was expected to be easier because here, length 

is proportionally much greater than width, making the two attributes relatively easy to 

distinguish. 

Understanding the difference between height from head to feet and height above 

ground 

Second, children may experience special difficulties in relation to height. When 

speaking of the height of something or someone, one may be referring to length from 

top to bottom or to height above the ground. In the latter sense, a short person might, for 

example, be higher than a taller one, or a cottage higher than a lighthouse. Piaget and 

colleagues noted (1960) that in comparing the heights of two towers, children appeared 

to take into account only the tops of the towers, ignoring the differing levels of their 

bases. One view of this behaviour might be that children were interpreting the 

instructions as requiring judgment of height above the ground, rather than comparison 

of the two towers from top to bottom. The English translation (Piaget et al., 1960) 

supports this view, as the instructions to the children seem either ambiguous (first 

instruction) or vague (the phrase that follows): 

...the experimenter uses phrases such as: "You make a tower the same height as 
mine", or simply "the same as mine" &c. (Piaget et al., 1960: 30) 

However, the original is not ambiguous in this way: 

«Tu vas faire une tour de la meme grandeur que la mienne» ou « la meme que la 
mienne &c » (Piaget, Inhelder & Szeminska 1948: 44) 

where the grammar, at least of the first sentence, clearly indicates intrinsic height or 

size. Moreover, while the Concise Oxford English Dictionary (Pearsall, 2001) lists 

height as having two physical meanings: 1. the measurement of someone or something 

from head to foot or from base to top. 2. elevation above ground, Le Petit Larousse 

Dictionnaire (Karoubi, Maire & Ouvrard, 2008) lists the sole physical meaning of 

grandeur as dimension de quelque chose, taille, etendue. Elevation is not a possible 
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implication here. (Le Petit Larousse lists hauteur as having the same physical meaning 

as the first listed above for height by the Concise Oxford Dictionary: dimension de 

quelque chose de sa base a son sommet but lists a different expression - a hauteur de -

as indicating height above ground.) 

It seems, then, that the difficulty encountered by the children in Piaget's study may not 

have been entirely due to the language used (although it is true that the vagueness of la 

meme que la mienne &c does not suggest particular care in this respect on the part of the 

experimenters) but may have involved, as Piaget argued, conceptual factors. This 

suggests that English-speaking children might encounter conceptual as well as linguistic 

difficulties. They may not distinguish height from head to feet from height above 

ground, and may accordingly make global judgements. This might be particularly likely 

before experience has enabled them to elaborate the different ways in which height is 

referred to in English. In the present research, during the first interview, for example, 

children in all three year-groups appeared to judge that standing on a table would make 

them taller. 

To investigate the extent to which global judgments of this type might be made, 

children were asked in the research to compare the heights (tallness) of toy figures some 

of whom were standing on a block. The raised figures were actually the shorter among 

those that children were asked to compare, so that children were tested with a potential 

conflict between height of a figure from top to bottom and its height above the ground. 

It is also possible that, once having distinguished height from top to bottom from height 

above ground, children then switch to answering all questions about height as if they 

referred to height from top to bottom. To test for this, further tasks were devised that 

required children to compare heights of different items above ground. Shorter items 

were raised to a higher level above ground than taller items, thus inducing a potential 

conflict between overall distance above ground and height from top to bottom. If 

children understood both types of question - those about height from top to bottom, and 

those about height above ground — they would make both kinds of comparison 

correctly. 

Finally, the language of length may be used metaphorically, where no physical 

reference is intended, as in the expressions 'the height of bad manners' and 'a tall 

story'. 
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So children may not understand linguistic conventions governing talk about length that 

are taken for granted by speakers, or the extent to which interpretation of terms 

describing length depends on context. 

4.4 Conceptual ability 

The ability to conserve length, ignoring irrelevant features of spatial presentation when 

judging comparative length, is a conceptual ability. Piaget and colleagues (1960) noted 

that until the age of about seven years, children sometimes judged distance between toy 

people to be greater when the people were of different heights, or their level was raised. 

In comparing the heights of two towers, as already mentioned, children ignored the 

differing levels of the bases of the towers. They judged wrongly when end-points of 

parallel lines whose length was to be compared were displaced. If two lines of equal 

length were each segmented into unequal pieces, the line in which an especially long 

segment was included was judged to be the longer line. 

In the present research, children's ability to ignore such irrelevant features of spatial 

presentation was tested with two- and three-dimensional displays in which the relative 

level of items differed, end-points were displaced, or the orientation of items differed. 

4.5 Separation of language and conceptual ability 

The work reported in this chapter sought to separate linguistic from conceptual 

knowledge in children's understanding. It did this by asking them to make height, 

length and width comparisons under two conditions. In the first (simple) condition, the 

perceptual comparisons involved were straightforward. Within each display, items to be 

compared were presented on the same level, and were aligned with a common end point 

and parallel with each other. In the second (complex) condition, items that were similar 

to those used in simple displays were rearranged so that the alignment of their end 

points changed, their orientation varied, or the relative level of items differed. 

In both simple and complex conditions, the experimenter's questions to children were 

exactly the same. Since this was so, it was reasoned that if responses in the simple 

condition were mainly correct, but children made appreciably more errors in the 

complex condition, then their understanding of the language involved was not likely to 

be responsible. In that case, their difficulties must be due to aspects of the displays 

themselves. Because the same materials were used in simple as in complex displays, 

and the relative length of items in each complex display was similar to that in the 
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corresponding simple display, it was the different spatial arrangement of items 

presented that was likely to be the cause of difficulty. 

Finally, evidence (Bryant, 1974) that relative judgments of size are easier than absolute 

judgements would suggest that there would be more correct relative judgements of 

greater or less length, than absolute judgements of equal length 

4.6 Factors investigated 

The three main factors investigated were (1) type of comparison (five types of 

comparison, reflected in the five types of question asked); (2) attribute (three attributes: 

height, length and width, reflected in the spatial relationships among the items 

displayed, as well as in the questions asked about them); (3) complexity of display (two 

levels: 'simple' and 'complex' as described above). 

As an additional factor to test generality of understanding, displays were presented in 

two formats: 3D format (real items) and 2D format (line drawings of similar items). 

4.7 Method 

4.7.1 Sample 

Seventy-two of the children who were involved in all other aspects of the research 

participated, twenty-four children in Year 1; twenty-one in Year 2 and twenty-seven in 

Year 3. 

4.7.2 Summary of materials and procedure 

Table 4.01 presents an overview of the materials used in relation to each attribute of 

length investigated. Table 4.02 sets out the wording of the questions used in relation to 

the same attributes. Table 4.03 shows the number of comparisons children made 

according to attribute and type of display. 

Table 4.01 Summary of materials used to make comparisons of height from head to 
feet, of length, of width, and of height above ground 

Attribute 

Height 
from 	 Height 

head to 	Length 	Width 	above 

feet 	 ground 

2D 
Pictured 	Lines of 	Pictured 	People of 
people of 	various 	writing 	various 
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various 
heights; 
some 
raised on 
a block 

3D 
Toy 
people of 
various 
heights; 
some 
raised on 
a block 

Toy cars 	Writing 	Toy 	A model of 
of 	implements 	people of 	three hillocks 
various 	of various 	various 	of various 
lengths 	widths 	heights 	heights, 

standing 	surmounted 
on steps 	by flag-poles 

of various 
heights  

lengths 
	

implements 
	

heights 
printed 
	

of various 	pictured 
	

Continued... 
on card 
	

widths 	on steps 

Table 4.02 Questions inviting comparisons of height from head to feet, of length, of 
width, and of height above ground, according to type of comparison 

Wording of the questions according to attribute 

Type of 
comparison 

Least 

Less 

Same 

More 

Most 

Height 
(from head 
to feet) 

Who is the 
shortest? 

Who is 
shorter 
than him/ 
her? 

Who is as 
tall as 
him/her? 

Who is 
taller than 
him/her? 

Who is the 
tallest? 

Length 

Which one 
is the 
shortest? 

Which is 
shorter 
than that 
one? 

Which is as 
long as that 
one? 

Which is 
longer than 
that one? 

Which is 
the 
longest? 

Width 

Which one is 
the narrowest 
/thinnest*? 

Which is 
narrower 
/thinner* than 
that one? 

Which is as 
wide as that 
one? 

Which is 
wider than 
that one? 

Which is the 
widest? 

Height (above 
ground) 

Whose head/ 
which flag is 
the lowest? 

Whose 
head/which flag 
is lower than 
that one? 

Whose 
head/which flag 
is at the same 
height as that 
one? 

Whose 
head/which flag 
is higher than 
that one? 

Whose 
head/which flag 
is the 
highest? 

*Thinner and thinnest were offered along with narrower and narrowest as the latter terms were unfamiliar to some 
children. 
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An example of how these questions were deployed is given under the heading 'Details 

of procedure' below. 

4.7.3 Details of materials 

Height from head to feet 

Children were asked to compare the heights of people in line drawings (2D format) and 

of plastic toy people (3D format). In the simple condition (in both formats) 

combinations of figures of different heights standing at the same level were shown, with 

an appropriate figure indicated where the question required it. In the complex condition 

(again in both formats) either the shortest figure was presented standing on a block, or 

the tallest figure was presented lying down. Figures in line drawings ranged from 3.1 

cm to 6.8 cm, and plastic toys from 5.1 cm to 7 cm in height. 

Length 

Children were questioned about lines of differing lengths printed on A4 card (2D 

format) and about toy cars of assorted lengths (3D format). In the simple condition, 

lines were parallel and with left end-points aligned. In the complex condition, lines 

either appeared with endpoints displaced, or were presented at right angles to each 

other. Toy cars that in the simple condition were parallel 'parked', with their rear 

bumpers against a 'wall', were re-arranged in the complex condition in configurations 

similar to the complex line displays. Lines ranged from 6.5 to 9.5 cm; cars from 6.7 to 

10.2 cm in length . 

Width 

Children were questioned about line drawings of pencils and crayons (2D format). Real 

writing implements such as pens, a pencil and board writers were also shown (3D 

format). In the simple condition, the items were presented parallel and in close 

proximity to each other. In the complex condition, items were presented further apart. 

Their endpoints were displaced in some arrays, while in others they were orientated to 

each other at angles between 45° and 135 °. Items in line drawings ranged from 0.6 to 5 

cm in width; real items from 0.6 cm to 1.7 cm. 

Height above ground 

Ability to ignore the length of different components that separately contribute to height 

above the ground, and to judge total height above the ground was tested using three 
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displays. In a pictured (2D) and a toy (3D) format, a set of four people of differing 

heights was presented standing on a flight of steps, with the shorter people standing on 

the higher steps. Children were asked: Whose head is higher? and cognate questions. A 

further (3D) test presented a model of four hillocks, each surmounted by a flag. Each 

hillock and each flagpole was of a different height, with shorter flagpoles standing on 

taller hillocks. Here, children were asked: Which flag is higher? and cognate questions. 

These three displays had no simple condition, since the type of height they were used to 

investigate was by nature complex. Heights of toy people together with the steps on 

which they were raised ranged from 11 cm to 16.1 cm, and of their pictured equivalents 

from 6.7 cm to 9.1 cm; heights of flags ranged from 7.5 to 10 cm. 

Presentation of experimental displays 

For 2D displays, one set of ten cards was used for comparisons of height from head to 

feet, another set of ten for length, and a further set of ten for width. Half the cards in 

each set showed a simple arrangement of items and half showed a complex 

arrangement. There were three items on each card. 

For 3D displays, three items were drawn from a pool of six, among which at least two 

were of equal height (or length, or width) so as to provide appropriate material for 

questions such as Who is the same height as...? 

For 'height above ground' one set of four people on steps (3D), one card showing the 

pictured equivalent (2D), and one model (3D) sufficed for all questions. 

Participants were seated opposite the experimenter, but no orientation was prescribed to 

the viewer, so children were free to view the displays from any angle. For 2D displays 

this could make little practical difference, since the viewpoint was fixed by the 

drawings. 3D displays, however, were liable to be viewed from a wider range of angles. 

A record sheet for each child listed the displays to be shown and was used to record 

their responses. 

Table 4.03 Number of comparisons made by each child in relation to attribute and type 
of display (75 

Number of comparisons 

Simple 
Displays 

Complex 
2D 3D 

Attribute 
2D 3D 

Height from head to feet 5 5 5 5 
Length 5 5 5 5 
Width 5 5 5 5 
Height above ground 5 5, 5 
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4.7.4 Details of procedure 

Comparisons of height from head to feet are used as an example. 

Children were asked to compare the heights of toy people (3D displays), and the 

experimenter selected and arranged three toys from the six available so as to permit the 

required comparison. She then pointed to the appropriate toy in a display and asked, for 

example, Who is shorter than him (her)? noting the response. Displays were then 

rearranged, and toys in successive displays were appropriately indicated. In 2D 

displays, the experimenter indicated an appropriate pictured figure. Questions were 

varied according to type of comparison and according to attribute as shown in Table 

4.02. 

Most children saw all the arrays in one session. (Those who did not, always saw simple 

and complex counterparts in a single session.) For 3D displays, the experimenter made, 

on the record sheet, a 'blind' selection of a specific question to be asked next and then 

selected items for the appropriate display. For 2D presentations, each set of five cards 

(corresponding to the five questions), was shuffled before blind selection of a card. 

Children made the five comparisons for simple displays, followed by the five 

corresponding comparisons for complex displays. 

The experimenter said to each child: I am going to show you some toys, some pens and 

pencils and some pictures, and ask you some questions about them, and then proceeded 

with the questions. Minimum changes were made to the wording of questions to ask, as 

appropriate, about height from head to feet, about length, about width, and about height 

above ground (see Table 4.02). Children's response to each question was noted on their 

record sheet. 

4.7.5 Scoring 

Responses were scored correct or incorrect. 

4.8 Results 

The results from the three displays associated with height above ground had no 'simple' 

version, and so could not be included in the analysis of those from the main series of 

displays. They were analysed separately. 
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Main series of displays: height from head to feet; length; width 

The main series of displays tested comparisons of height from head to feet; length and 

width. In view of the girl/boy imbalance in Year 2 noted in Chapter 2, a preliminary 

analysis examined gender effects across the whole sample. There was no significant 

effect of gender or significant interaction of gender with any other factor, including 

year-group. Gender was therefore excluded from the analysis. Mean correct 

comparisons according to year-group, type of comparison, attribute, format and 

complexity are shown in Table 4.04. Related analysis of variance is shown in Table 

4.05. 

Table 4.04 reports a high proportion of correct comparisons, showing that children had 

good understanding of the language and concepts of length comparison. 

An initial mixed analysis of variance showed significant main effects for year-group 

and for each of the four between-subjects factors shown in Table 4.04 (p < .01). 

There were also a number of significant interactions. Higher-order interactions 

involving either year-group or format, however, were mainly non-significant, and all 

had very small F ratios; so to facilitate analysis of interactions, year-group and format 

were removed from the principal anova and analysed separately. Thus, two analyses of 

variance were performed as follows: 

a) a three-way within-subjects analysis. Factors were i) type of comparison, with five 

levels: least, less, same, more, and most; ii) attribute, with three levels: height from head 

to feet, length, and width; iii) complexity, with two levels: simple and complex. This 

analysis is reported in Table 4.05. 

b) a two-way mixed analysis with year-group as between-subjects variable and format 

as within-subjects variable. This is also reported in Table 4.05. 
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Table 4.04 Mean (SD) percentage of correct comparisons in the main series of displays 
according to year-group, type of comparison, attribute, complexity and format. 

Year 1 Year 2 Year 3 All 

Type of comparison 
Least (shortest/narrowest) 69 (18) 83 (8) 86 (11) 79 (15) 
Less (shorter/narrower) 88 (13) 92 (9) 97 (7) 92 (10) 

Same (the same height/length/width) 73 (21) 82 (21) 81 (19) 79 (20) 
More (taller/longer/wider) 84 (16) 88 (14) 90(12) 88 (14) 

Most (tallest/longest/widest) 71 (17) 83 (8) 86 (11) 80 (14) 

Attribute 
Height 73 (12) 76 (13) 84 (11) 78 (13) 
Length 82 (16) 88 (11) 91 (10) 87 (13) 
Width 77 (21) 93 (10) 90 (16) 87 (18) 

Complexity 
Simple 84 (12) 93 (7) 95 (6) 91 (10) 

Complex 79 (17) 89 (12) 88 (12) 85 (14) 

Format 
2-D 79 (13) 87 (8) 89 (10) 85 (11) 
3D 75 (14) 84 (10) 87 (7) 82 (12) 

All 77 (18) 86 (14) 88 (14) 84 (16) 

N 24 21 27 72 
Note. Each child made 60 comparisons. 

Table 4.05 Analysis of variance for correct comparisons according to a) type of 
comparison, attribute and complexity and b) year-group and format 

Source Error df df 
Error 
Mean 
Square 

F p 

a) Type of 
comparison (T) 

284 a  2.6a  2.45 18.49 <.01 

Attribute (A) 122.1 b  1.713  2.14 12.03 <.01 
Complexity (C) 71 1 10.63 82.92 <.01 

T x A 12.3 5.3a 2.31 25.80 <.01 
T x C 4.3 4 1.08 24.14 <.01 
A x C 14.2 2 7.09 106.12 <.01 

TxAxC 7.9 6.9k  1.17 24.31 <.01 

b) Year-group (Y) 69 2 0.18 9.37 <.01 
Format (F) 69 1 0.03 9.07 <.01 

Y x F 69 2 0.003 0.42 .66 

Note.a  = Greenhouse-Geisser df used; b  =Huynh-Feldt df used. 
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As Tables 4.04 and 4.05 show, children's judgments were significantly and 

substantially more accurate with simple than with complex displays. There were main 

effects for year-group, type of comparison and attribute. Post hoc tests showed that 

overall, children in Year 2 and Year 3 made significantly more correct comparisons than 

those in Year 1; that the length and the width of items were compared significantly 

better than the height; and that there were significantly more successful comparisons 

identifying less (shorter or narrower) and more (taller, longer or wider) than with the 

other three types of comparison (least, most and same). Overall, children performed 

significantly better with displays in 2D format than with 3D displays. Means plots 

were used to investigate the significant three-way interaction between type of 

comparison, attribute and complexity and are shown in Figure 4.01. 

Inspection of the two plots in Figure 4.01 indicates two likely sources for the three-way 

interaction observed. First, height from head to feet behaved entirely differently from 

length or width according to type of comparison. As Figure 4.01(A) shows, there were 

far fewer correct responses to the questions Who is the shortest? and Who is the tallest? 

than to the corresponding questions for length and width. For height, there were also 

more correct responses to Who is as tall as him? than for similar comparisons involving 

equal length or width. Second, 'simple' differs markedly from 'complex' according to 

attribute. Figure 4.01 (B) shows performance in simple and complex conditions to be 

similar for width, to diverge somewhat for length, and to be widely different for height, 

with performance at near maximum in the simple condition, while at a much lower level 

in the complex condition. 
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Figure 4.01 Mean correct responses for (A) attributes of length according to type of 
comparison; (B) level of complexity according to attribute 
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Second series of displays: height above ground 

The second series (three displays) tested comparisons of height above ground. All three 

displays presented conflicting cues about height (and hence all were complex displays). 

It will be recalled that, relative to others in the same display, toy people or flags were 

placed such that their height above ground contrasted with their height from head to feet 

(for flagpoles, from top to bottom). For example, the shortest in a display of four toy 

people stood on a step that raised its head above those of the others. Thus to answer the 

question Whose head is the highest? correctly, it was necessary to ignore height from 

head to feet. 
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Table 4.06 Mean (SD) percentage of correct judgements in the three tests of height 
above ground according to year-group and type of comparison 

Displays of height above 
ground 

Year 1 Year 2 Year 3 All 

Toy people on steps (2-D) 63 (34) 69 (38) 79 (29) 71 (34) 
Toy people on steps (3-D) 69 (31) 67 (42) 83 (31) 74 (35) 

Flags on hillocks (3-D) 80 (22) 88 (20) 96 (13) 88 (20) 

Type of comparison 
Lowest 67 (34) 73 (39) 84 (28) 75 (34) 
Lower 69 (33) 73 (33) 88 (25) 77 (31) 

At the same height 60 (26) 67 (32) 80 (23) 72 (28) 
Higher 81 (24) 79 (31) 89 (21) 83 (25) 
Highest 76 (29) 79 (27) 90 (22) 82 (26) 

Total 71 (21) 74 (29) 86 (21) 77 (24) 

N 24 21 27 72 
Note. Each child made 15 comparisons in the three tests of height above ground. 

A preliminary analysis of variance of the tasks comparing height above ground, again 

undertaken to check any effect of imbalance between the sexes in Year 2, showed no 

significant effect of gender, or significant interaction of gender with any other factor 

including year-group; so the analysis was repeated without gender, as a three-way 

mixed analysis with year-group as between-subjects factor and display (the three 

different displays constituting the three levels) and type of comparison (with five levels 

as shown in Table 4.06) as the two within-subjects factors. This analysis is reported in 

Table 4.07. 

Table 4.07 Analysis of variance of the three tests of comparison of height above ground 

Source Error df 
Error 
mean 
square 

df F P 

Between subjects 

Year-group (Y) 69 0.22 2 3.11 .05 

Within subjects 

Display (D) 126.4b  0.27 1.83b  13.46 <.01 

D x Y 3.66b  0.36 .23 

Type of comparison (T) 245.7b  0.11 3.56b  7.29 <.01 

T x Y 7.12b  0.48 .85 

D x T 389.8a  0.12 3.65a  7.92 <.01 

DxTxY 11.30a  2.02 .03 
Note.a= Greenhouse-Geisser df used; b  =Huynh-Feldt df used. 

150 



100 

70 

60 
0 

50 
0 
0 

40 

--  least 

-6-same 
more 
most 

As Table 4.07 shows, there were significant main effects of display and of type of 

comparison. Post hoc tests showed significantly better performance with the model of 

flags set on hillocks than with either the real or the pictured displays of people on steps 

(p < .05). There were significantly more correct responses to the question Which is 

higher? (a comparison of more) than to Which is lowest? (least) and also significantly 

more to Which is higher? and Which is highest? (most) than to Which is at the same 

height? (same).There were two significant interactions, also shown in Table 4.07. The 

three-way interaction involving display, type of comparison and year-group had a very 

small F ratio; moreover there had been no main effect of year-group. It was therefore 

considered that any interaction effect of year-group was likely to be marginal. 

Accordingly the two-way interaction between display and type of comparison was 

selected for investigation. This was done with the help of the means plot shown in 

Figure 4.02. 

Figure 4.02 Mean correct responses for type of comparison according to display. 

toy people 	pictured people 
	

flags 

Display 

Figure 4.02 shows the likeliest source of the interaction to be a very depressed 

performance (compared with other comparisons) when children judged 'same height' in 

the display that pictured people on steps. 
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The three types of height display compared 

Table 4.08 brings together data for all three types of height display children saw in the 

main and second series, i.e. height from head to feet (simple), height from head to feet 

(complex) and height above ground. It shows that children performed best (in fact at 

near maximum) in simple comparisons of height from head to feet. They performed 

next best comparing height above ground and they performed worst of all in complex 

comparisons of height from head to feet. All differences were significant at p < .05. 

Among complex height displays and among displays of height above ground there were 

no significant differences between year-groups. 

Table 4.08 Mean (SD) percentage of correct judgements in all types of height display, 
according to year-group. 

All types of height display Year 1 Year 2 Year 3 All 

From head to feet (simple) 92 (10) 97 (10) 99 (0) 96 (10) 
From head to feet (complex) 53 (21) 56 (27) 69 (22) 60 (24) 
Height above ground (all 
displays complex) 

71 (21) 74 (29) 86 (21) 77(24) 

N 24 21 27 72 

The differences reported in Table 4.08 were further investigated. 

Complex height comparisons involving human figures 

During the first interview, most children had correctly aligned the ends of pencils before 

comparing their length, showing understanding that the same starting point must be 

used when comparing the length of two objects. When it came to comparing their own 

height with that of the experimenter, however, while most children said that the 

experimenter was taller, they then affirmed that they themselves would be the taller if 

they stood on a table, suggesting that the understanding shown did not generalise to the 

human figure, at least in this context. 

The opportunity was now taken to look at the human figure in a fresh context, and see 

whether complex displays involving human figures presented greater difficulties than 

other complex displays of height. Two of the three displays of height above ground used 

human figures. The third (the display with flags) was separated from them and used as 

the contrast. Correct responses for a) the display with flags were compared with b) 

amalgamated correct responses for the other complex height displays that used human 

figures (Table 4.08). Mean correct responses for the display with flags was 88%, 
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significantly greater than for displays with human figures at 68% (t = 6.96; df = 71; p < 

.01). It should be borne in mind that children made in a) only five comparisons while in 

b) they made twenty comparisons. 

Further investigation of performance with a) complex height displays and 

b) displays of height above ground 

a) In relation to complex displays of height from head to feet, children performed 

substantially and significantly worse when responding to the two questions Who is the 

shortest? (34% correct) and Who is the tallest? (25% correct) (that is, in comparisons of 

least and most) than to the other three questions: Who is shorter? (82%), Who is the 

same height? (83%) and Who is taller? (76%) that is, in comparisons of less, same and 

more (p < .01). 

It was when answering the questions Who is the shortest? and Who is the tallest? that 

children had to judge height from head to feet of figures raised on a block. In these 

displays, the real or pictured block was a prominent feature, making the figure placed on 

it the most salient figure in that display. As already stated, it was the shortest figure in 

the display that was placed on the block, and its head was now the highest of the three 

in the display by a considerable margin. By these arrangements the children's attention 

was deliberately drawn to a cue that conflicted with the height of the figure from head 

to feet. Thus when asked Who is the shortest? children who made a correct response 

might first attend to the figure in the display whose head was the lowest, before 

considering and correctly judging the shortest from head to feet, that is, the figure on the 

block. Conversely, when asked Who is the tallest?, they might attend to, but then 

disregard the joint height of the figure and the block. They would finally consider only 

the height of that figure from head to feet. 

In contrast, the questions Who is shorter? Who is the same height? or Who is taller? 

were asked where a figure was made to lie down and children had to compare its height 

with that of two standing figures. Here too a conflicting cue was provided, in that one 

figure in a display was presented in an atypical posture for judging height, and where 

height might be confused with length. Nevertheless, here, there was a high success rate. 

Children were, on the whole, not misled about height from head to feet when presented 

with a figure that was lying down. Only where they were required to distinguish 
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between the height of a figure from head to feet, and its level when raised on a block 

was there any substantial difficulty. 

b) The three displays of height above ground presented the reverse requirement. That 

requirement was to ignore the distinction between the height of the figure (or flag) and 

the step (or hillock) on which it was raised, attending only to total height. In these three 

displays, as already reported, children did significantly better than in complex height 

displays. 

To examine children's understanding of these aspects of height more closely, responses 

to specific height displays were selected for closer scrutiny. The display with flags was 

omitted, since here there was a high level of success; only the results from displays that 

employed human figures were used, as follows: a) the four displays of figures raised on 

blocks in the complex height condition (height from head to feet), where the height of 

the block had to be ignored; b) the four displays of figures standing on steps (height 

above ground), where the height of a figure had to be considered together with that of 

the step. 

It was suggested in the introduction to this chapter that younger children in particular 

might be likely to judge height in a global manner, and not discriminate, for example, 

between the height of a figure from head to feet, and its height combined with that of 

the block on which it stood. If global judgements of this kind were being made by a 

child, one would expect errors when judging complex displays of height from head to 

feet, combined with correct responses when judging height above ground, where 

aggregating the height of a figure with that of the object on which it was raised was a 

condition of success. This combination is labelled 'Category 1'. 

It was further suggested that when a child had learned to judge a figure's height from 

head to feet separately from that of the object on which it is raised, this knowledge 

might then be applied across the board. Thus, when asked to judge height above ground, 

such a child would ignore the height of the step on which a figure stood, and attend only 

to its height from head to feet. If this type of over-discrimination was occurring, one 

would expect correct judgements in complex displays of height from head to feet, 

combined with errors in judging height above ground. This combination is labelled 

`Category 2' 

Children who had learned to make judgements that were appropriate to each context 

would judge correctly in both situations (Category 3). 

154 



The numbers of children giving correct and incorrect responses, and the pattern of 

correct and incorrect responses they gave, for height from head to feet (figures on 

blocks) and for displays of height above ground (figures on steps), were set out in a 

cross-tabulation matrix. For each child, the number of judgements made in conformity 

with one of the three categories described above was then counted. Each child saw a 

total of eight displays that were relevant to this question, and hence made a total of eight 

judgements, in relation to these two aspects of height, so that seven or more judgements 

in conformity with one category was above chance level (p < .05) for that category. 

Children who met this criterion were allocated to the appropriate category (Table 4.09). 

As Table 4.09 shows, a majority of those meeting the criterion were in Category 1, 

making global judgements on every, or almost every occasion, whether appropriate or 

not. Only three over-discriminated (Category 2). Eleven made judgements appropriate 

to each context, of whom eight were children in Year 3. 

Table 4.09 The number of children in each year-group whose judgements of height 
conformed to categories as stated. 

Year Category 1: errors in 
judging height from 

head to feet, combined 
with correct responses 
in judging height above 

ground 

Category 2: correct 
judgements of height 

from head to feet, 
combined with errors in 

judging height above 
ground 

Category 3: 
judgements 
appropriate 

to each 
context 

Children 
who met 
'greater 

than 
chance' 
criterion 

N 

1 10 1 1 12 24 
2 11 1 2 14 21 
3 11 1 8 20 27 

4.9 Discussion 

Main findings 

The work reported in this chapter showed fundamental prerequisites of measurement to 

be well established among the children investigated. They were good at making 

comparisons of length in a wide range of contexts, successfully ignoring a considerable 

number of distracting cues, and they were good comprehenders of the everyday 

language used to make those comparisons. This finding supports Resnick's description 

of the scope and robust nature of children's protoquantitative reasoning, since all the 

required judgements were protoquantitative (Resnick & Singer, 1993). More broadly, it 
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contributes a further context in which children's accomplishments in making relative 

judgements are demonstrated. 

The children saw each experimental display in a simple condition, where length 

comparisons were expected to be easy, and in a complex condition, which presented 

them with various conflicting cues about length to negotiate. The language used by the 

experimenter to question the children was held constant across simple and complex 

displays. It was considered that if children did well with the simple displays, but 

appreciably worse with the complex displays, the language used could be ruled out as a 

cause of difficulty. Instead, difficulties associated with spatial aspects of the displays 

would be the likely cause. In contrast, a large number of errors in both simple and 

complex conditions would suggest that difficulties associated with the language of 

comparative length were the main cause. High levels of success in both conditions 

would indicate that neither language nor spatial arrangement was a problem for these 

children. 

Children did attain a high level of success in both simple and complex conditions 

overall, giving evidence that neither the language used, nor spatial arrangement 

presented any great problem to them. The subtleties of the everyday language of length 

did not, on the whole, elude them, and there was very little failure to conserve length. In 

their everyday understanding of length there was, therefore, a sound basis for school 

work in estimation and measurement. Even the youngest children did well, with only an 

11% overall mean difference (which was, however, significant) between Year 1 and 

Year 3 in the main series of tasks (Table 4.04). Mean correct responses were higher in 

each successive year, although Year 2 and Year 3 did not differ significantly. 

Performance was slightly but significantly better overall with displays in 2D than in 3D 

format in the main series of displays; that is, children found it easier to compare height, 

length or width of lines or items in line drawings than to compare these attributes of real 

objects. This slight difference was probably due to the greater opportunity for 

misjudgement permitted by children's freedom to view 3D displays from any angle, 

while the viewing angle is fixed by the nature of line drawings. In the second series of 

displays (the three displays of height above ground) on the other hand, there was a 

much higher level of success with the complicated model of flags on hillocks, and a 

slightly higher level of success with 3D displays of people, than with the 2D display in 

that series (Table 4.06). The unexpected success with the model is considered below, 
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while the lesser success with the 2D than the 3D display of people was probably an 

artefact of the line drawing used. 

There was no evidence that comparisons of more were easier for children than 

comparisons of less due to bias in language usage, as suggested by Haylock and 

Cockburn (1989). 

Length and width were compared significantly better than height from head to feet. 

Differences in performance according to type of comparison (least, less, same, more and 

most) and according to attribute (height, length and width), were largely due to poorer 

judgements of height in certain contexts, which were further investigated. 

Poorer performance in relation to aspects of height 

Children comparing the height of figures in simple displays were successful over ninety 

per cent of the time irrespective of year-group. Performance on complex versions of the 

displays was much worse. It will be recalled that these complex formats were designed 

to test children's ability to distinguish whether a figure was taller or shorter than 

another, or merely situated higher or lower than another, and that this investigation was 

suggested by the work of Piaget et al., (1960), where children comparing the heights of 

towers appeared to ignore the fact that the bases of the towers were not at the same 

level. Such phenomena formed part of Piaget's case that children elaborate only slowly 

the conceptual properties of three-dimensional space. He expressed this by saying that 

at first children do not understand that the size of an object does not vary when its 

position changes. An alternative explanation, discussed in the introduction to this 

chapter, concerns the language of height, and suggests that children fail to discriminate 

the various meanings that can attach to questions about height in different contexts. 

Where children were asked to compare the heights of figures from head to feet, level 

was manipulated in complex versions of displays by standing one figure on a block, or 

making it lie down. As already explained, to compare height correctly, a child had to 

ignore these features of presentation, and attend only to the height of the figure from 

head to feet. In the case of the raised figures, it was considered that younger children 

might tend to make global judgements of the total height of the figure and the block, 

due to lack of familiarity with the difference between the height of a figure in the sense 

of its tallness, and its height in the sense of its distance above ground. Displays 

featuring a figure that was lying down tested understanding of the same two senses of 

height. 
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The three displays of height above ground, it will be remembered, were designed to test 

the converse possibility: that children may indeed learn when intrinsic height of items is 

being referred to, irrespective of their level above ground, but then apply this 

knowledge indiscriminately, so that when asked about height above ground (Whose 

head is higher?... Which flag is the lowest?) they judge, for example, height from head 

to feet, or from the bottom of the flagpole to the top of the flag, and fail to take into 

account the height of the base on which the item is raised. 

If children in this research understood both types of question - those about height from 

top to bottom, and those about height above ground — they would make both kinds of 

comparison correctly. 

In fact by far the greatest difficulty for children was in dissociating the height of a 

figure from a block on which it stood. The figures that were lying down in complex 

height displays caused no special problems. The three tests of height above ground were 

significantly better performed overall than complex tests of height from head to feet. 

This was surprising, because there were more conflicting cues in the latter comparisons. 

Here, four figures were seen in the same display on steps of different heights, whereas 

in complex height displays there were only three figures to compare, of which only one 

was raised relative to the others. The model of flags on hillocks had even more potential 

to confuse. Here again there were four items to be viewed simultaneously, and again 

intrinsic height 'contradicted' the height to which the items were raised. But 

additionally, there was no obvious point from which to view this model, and children 

had to determine their own perspective on it. 

It seemed that there was particular difficulty with displays involving raised human 

figures. Children's responses specifically to raised figures (figures on blocks in the main 

series of displays, and figures on steps in the three tests of height above ground) were 

therefore examined by a crosstabulation in which the number of children making each 

possible combination of correct responses to these two types of display was recorded 

(Table 4.09). Over one-third of the children in each year-group had specific difficulty in 

considering separate components of height when this was appropriate (in many cases 

having no success at all) while making successful comparisons when a judgement of 

aggregate height was called for. 

So figures raised on blocks were the sole substantial problem. Taken together, the 

findings for all the height displays suggest a bias towards the global in children's 

judgements. Such a bias would have served them well in the complicated displays of 
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figures on steps and flags on hillocks, where the various ways in which height above 

ground was partitioned had to be ignored, and would account for their greater success 

with these displays. The fact that the height of figures that had been made to lie down 

was well-judged also supports the view that it was the partitioning of height that proved 

the stumbling block: no partitioning was necessary with the recumbent figures, who 

presented the same type of conflicting cue to height as lines or cars placed at right 

angles did to length. In neither height nor length displays did this type of conflict 

present much difficulty. 

Whether the failure to partition overall height was conceptual in character, or whether it 

was due to difficulties with the language involved is difficult to determine, but two 

considerations suggest the latter. Firstly, children who had erroneously identified a 

figure on a block as the tallest would occasionally add because he's on the block. They 

would nevertheless reiterate when asked, that the block really did make him taller. 

Others would occasionally signal uncertainty by saying no-one is the tallest, or he's 

cheating. These occurrences suggest an imperfect understanding of the different ways in 

which the language of height is used in certain circumstances, rather than a genuine 

failure to partition height between the block and the figure. Secondly, performance on 

height above ground was significantly better for the display using flags on hillocks than 

for the two displays using people on steps. A bias towards global height judgements 

should have produced much the same result in both types of display, or even (since the 

display with flags was more complicated) a better performance with the figures on 

steps. It seemed that height in relation to human figures may have involved ambiguities 

for the children not evoked by other objects whose height was judged, and that these 

ambiguities were to do with language usage. Children may know, for example, that 

people sometimes wear high-heeled shoes 'to make them taller'. 

It may seem that questioning children about specific height judgements would have 

been the most direct way of clarifying these issues, and this was a tempting option. But 

to ask for reasons for all judgements would not have made sense (Why do you think that 

car is the longest? inviting the response Because it is!), while to ask only about displays 

that included raised figures risked signalling to children that these specific judgements 

had been unsatisfactory in some way, and might have caused them to change their 

judgements to satisfy the experimenter. The shortcomings of the approach adopted —

that of making inferences about understanding from a pattern of responses - are indeed 
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acknowledged, but it was considered that on the whole, the less intrusive method would 

provide more reliable data. 

In the tests reported in this chapter, children in Years 2 and 3 performed significantly 

better overall than children in Year 1, but no significant differences were found between 

year-groups either for complex height displays or for the three displays of height above 

ground. That is, in the only aspects of the tests that proved difficult, there was no 

significant increase in accuracy in successive year-groups. This could have been due to 

characteristics of the specific sample studied, but for these children at least, neither 

increased time in school nor more general developmental factors made the contribution 

to greater understanding that might have been expected. 

These findings suggest that, as far as height, length and width are concerned, it is height 

that has the greatest potential to confuse, and that it is height that should, of the three 

attributes, receive most attention in primary mathematics teaching. 

The preceding chapter established important general characteristics of children's 

conceptions of measurement, through examination of the children's everyday language 

as they recalled their measurement experiences. Overall, the language resources at their 

disposal proved to be rich, although often deployed with freedom rather than accuracy. 

The current chapter continued the focus on everyday language, looking closely and 

specifically at the understanding of language and concepts associated with ordinal 

length comparisons. The children coped very well with most of the potential pitfalls 

here, so that one basis for successful numerical measurement — understanding of ordinal 

comparison - was shown to be in place. The research now moved to look at children's 

ability to estimate length. Here, some of the language used in the current chapter was 

again employed, (shorter; longer; same) but height and width were not considered; the 

focus was on the attribute of length. The estimation procedure had some numerical 

features, and measuring devices were introduced. 
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Chapter 5 

Visual Estimation of Ordinal Length 

5.1 Introduction 

The ability to make comparisons of ordinal length must be secure if children are to go 

on to understand how lengths of items can be compared using standard units. The 

previous chapter investigated children's understanding of everyday language and 

concepts of ordinal length, because it was possible that such everyday language and the 

social contexts in which it was used might obstruct access to the conceptual content. 

Chapter 4 reported little evidence of difficulty. Overall, the children coped remarkably 

well in making ordinal comparisons in which they estimated the relative height, length 

and width of various figures and objects. 

The question How well do children make ordinal comparisons of length? was asked 

again in relation to the work reported in the current chapter, but now the focus was on 

their visual estimation ability as opposed to their understanding of the language and 

concepts involved. The judgements were again relative. Here, children made more 

judgements, and only of length; and they were made in a narrower range of contexts. 

This further investigation of ordinal ability, as logical underpinning for measurement, 

was also important because of the prominence of estimation in classroom activities. 

Estimating and measuring 

Estimating and measuring are often found as a pair among classroom activities in 

British primary schools, with estimation either preceding or following measurement. 

One rationale given to children for pairing estimation with measurement is that the 

greater accuracy of measurement serves as a corrective to the inexactness of estimation. 

Another, where estimation is encouraged as a check on measurement, is that 

approximate agreement between the outcomes of the two procedures can indicate that 

measuring was appropriately executed. 

Whatever the rationale for estimation, it may be assumed by educators that estimation is 

a more intuitive and thus a less demanding procedure than measurement. This may not 

be the case, especially when children are expected to retrieve mental representations of 

familiar objects, distances or units (Department of Education and Employment, 1999) to 

compare them with the length of an entity that they can see. 
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The type of estimation reported in the current chapter did not give children the task of 

retrieving such mental representations. This was because information about the 

children's ability to make the ordinal comparisons that underlie measurement could be 

provided just as well by a less demanding type of estimation, in which two entities to be 

compared are both physically present. This type of estimation was used here. 

There was good reason to expect that children would be successful at estimation of this 

kind. Developmental literature indicated that young children may be adept at making 

approximate judgements where no direct numerical comparisons are required. Resnick's 

(1992) notion of protoquantities and Bryant's (1974) earlier argument that relative 

judgments of size (involving qualitative comparison) are successfully made earlier than 

absolute judgements, both suggest that we might expect children to be good qualitative 

estimators of length; and research with infants suggests that ability to make certain 

types of qualitative ratio judgement emerges very early indeed. (Feigenson et al., 2004; 

Feigenson et aL, 2002). In Chapter 3 it was reported that children's experiences of 

measuring at home seem frequently to take the form of judging affordances - the degree 

of 'fit' of one object to another (Gibson, 1979); Chapter 4 reported their high level of 

success in making qualitative comparisons of height, length and width. Together, these 

sources suggested that qualitative estimation may develop early, and that one basis for 

measurement with units might thus be secure. 

Some of the varied materials used in the estimation and measurement tasks in the 

present research were common to both sets of tasks. Employed in the estimation tasks, 

the variety among these materials provided a range of conditions under which children 

estimated, to test the robustness of their estimation ability. 

In the measurement tasks, the varying of the materials had a more specific purpose. The 

various features instantiated potential difficulties embedded in measurement concepts. 

These potential difficulties concerned a) the ways in which number maps on to quantity, 

b) notions of separation and continuity and c) subdivision of units and were suggested 

by the developmental literature (Resnick, 1992; Miller, 1989; Piaget et al., 1960). These 

features are described below. For convenience, their rationale in the measurement tasks 

is also described. 

Outline and rationale 

Twenty-one lines of varying lengths were displayed at a fixed distance from the child, 

who was asked to estimate whether each line was shorter, longer or the same length as 

five different types of item, referred to hereafter as the comparators. Thus the materials 
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consisted on the one hand of a collection of lines, and on the other of a group of five 

comparators. The collection of lines was large and varied so as to provide a thorough 

test of estimation ability. 

The five comparators were i) the whole length of one unmarked strip of card; ii) a 

number of 1 cm wooden cubes; iii) a number of units on a second strip of card that was 

marked and numbered in divisions of 1 cm (but not labelled `cm'); and finally a number 

of cm indicated iv) on a ruler and v) on a tape measure. It was these five comparators 

that featured the range of conditions under which children estimated, and provided the 

grounds for potential conceptual difficulties when they measured. How the comparators 

incorporated these features is now explained. 

The features of the comparators 

In her characterisation of mathematical development, Resnick (1992) had identified a 

transition between qualitative judgements of quantity (protoquantities), and numerical 

quantification of amount. The present estimation study was designed with this transition 

in mind, to begin investigation (continued in the measurement study) of the question 

How well do children understand that a number may express an amount? This was 

done in the following way. While the comparisons that children were asked to make 

continued to be qualitative (being ordinal comparisons of shorter/longer/same), they 

were now asked to make most of these estimates in relation to a given number of cubes, 

a given number of unnamed units, or a given number of centimetres on a ruler or tape. 

Thus number was introduced for the first time in this research. Here, although 

comparison of two numerical quantities was not required, it was of interest to see 

whether the introduction of units in itself presented any difficulty. Children's 

comparisons with the unmarked strip of card (no units) provided the required contrast. 

Miller (1989) and Piaget and colleagues (1960) had demonstrated a difficulty involving 

children's judgement of qualitative amount. They had shown that children did not 

necessarily conserve amount when a quantity of material was divided into several 

pieces. Additionally, there had been speculation that children might have conceptual 

difficulties with the notion that a continuous length could be split into separate pieces 

and yet continue to be constitutive of the same continuous length (Piaget et al., 1960) 

or, conversely, (and more broadly) that a single aggregate consists simultaneously of the 

items that make it up (Lamon, 1996). The requirement in the present research to use 

comparators that separated units of length (the cubes) on the one hand and that 

subdivided continuous units of length (on the ruler and tape measure) on the other 
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presented children with concrete examples of this paradox, and it was of interest to see 

whether there would be any differences in success levels when using these comparators. 

So three of the comparators (the cubes, the ruler and the tape measure) were intended to 

suggest these areas of potential difficulty, while two (the unmarked strip of card, and 

the strip marked at 1 cm intervals with no subdivisions) were free of them. The 

unmarked strip of card made no use of units at all. (Children were simply asked to say 

whether a given line was longer, shorter, or about the same length as the entire strip). 

The strip of card marked and numbered at 1 cm intervals embodied continuous but un-

named units that were not subdivided. The collection of 1 cm wooden cubes constituted 

individual units that had to be conceptualised as a continuous length before a valid 

estimate could be made. Finally the ruler and tape measure, both marked with 

centimetres subdivided into millimetres, showed continuous, subdivided, named units. It 

was of interest to see whether, when the length of a line was estimated against 

comparators that did not differ among themselves in length, but did differ in the respects 

described, children would perform worse with some than with others. 

Comparing estimation and measurement 

When children had estimated the length of a set of lines in relation to the five 

comparators listed above, they were asked to use three of these devices (the cubes, the 

ruler and the tape measure) to measure nine of the lines. These three devices preserved 

the key differences regarding separation, continuity and subdivision discussed above; 

they were reduced to three (along with the reduction in the number of lines) because the 

measurement task was laborious and there was a concern to maintain children's interest 

and concentration. 

The use of comparators as measuring devices enabled direct comparison of the 

children's estimation and measurement skills. It also provided the possibility of 

eliminating certain variables from examination of their measuring ability. Thus if the 

differing features of cubes, ruler and tape measure had no effect on children's success 

when used in estimating, then any differences according to these devices when they 

were used for measurement could be ascribed to their characteristics specifically as 

measuring devices. 

The type of questioning used in the estimation study (whether a line was longer, shorter, 

or the same length) was retained for part of the measurement task and had two 

advantages. Firstly it facilitated comparison of the outcome of the tasks, since an 

important independent variable was retained. Secondly, it was intended to recall the 

164 



type of language likely to be familiar from the home setting (where measurement was to 

do with affordances), and measurement in this setting had been shown (in the first 

interview) to engage children's interest. 

5.2 Method 

5.2.1 Sample 

Seventy-six of the children who were involved in all other aspects of the research 

participated, twenty-five children in Year 1; twenty-three in Year 2 and twenty-eight in 

Year 3. 

5.2.2 Materials 

Lines 

The twenty-one lines whose lengths were estimated constituted three sets of seven: one 

set of lines that were overall rather 'short' (coloured red), one set of lines of 'medium' 

length (coloured purple), and one set of 'long' lines (coloured black). The lines in each 

set varied in length around a 'reference' line; all other lines in that set were either 

shorter or longer than this reference line (Table 5.02). 

The reference line in each set was equal in length to the comparators for that set. So the 

reference line in the 'short' set was 5 cm long, and children were asked to estimate the 

length of the lines in that set by comparison with a) an unmarked strip of card 5 cm 

long, b) 5 x 1 cm cubes; c) 5 units on the marked strip; and d) and e) 5 cm on the ruler 

and tape measure. (Thus the correct estimate of ordinal length when the reference line 

was compared with one of these comparators would be the same. Correct estimates for 

the other lines in the set would be either shorter or longer). The reference line and 

comparators for the 'medium' and 'long' sets of lines were respectively 12 cm and 19 

cm long. 

In each set, the six lines either longer or shorter than the reference line varied 

proportionately to it and were shorter than the reference line by approximately 6% (line 

3), 30% (line 2) and 60% (line 1); and longer than it by approximately 4% (line 5), 40% 

(line 6) and 60% (line 7). The actual length of the lines is set out in Table 5.02. They 

were of 0.5 cm width and each was presented on a separate sheet of A4 white card. As a 

factor in the design, these sets of lines are referred to as set hereafter. Line length is 

referred to as length. 
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Comparators 

1. Three strips of blue card 2 cm x 30 cm long, on each of which the central portion 

(with which children compared the length of lines) was black. On each strip the black 

portion was of equal length to the reference line in one of the three sets. Thus the 

lengths of the black portions were 5cm (for comparison with the set of red lines), 12 cm 

(for the purple set) and 19 cm (for the black set). 

2. A collection of 1 cm3  wooden cubes 

3. A strip of white card 4cm wide x 30 cm long, marked and numbered at 1 cm intervals 

(but not marked 'cm') 

4. The conventional 30 cm transparent plastic cm and mm ruler commonly used in the 

school where the research took place, used in the second interview, and described 

briefly in Chapter 3. The full dimensions of the ruler were 3.6 x 31 cm. Divisions of 1 

cm, '/2 cm and 1 mm were marked on one edge (marks extended respectively 6 mm, 4 

mm and 3 mm from the edge). Only cm were numbered. On the other edge, the pattern 

of markings was identical. Ten-millimetre divisions extended 6 mm from the edge of 

the ruler and were numbered 10 to 300; 5 mm (un-numbered) divisions extended 4 mm 

from the edge, and 1 mm (un-numbered) divisions 3 mm from the edge. The 0 cm mark 

occurred 7 mm from the end of the ruler at which the centimetre numbering began; the 

300 mm mark appeared at the same end on the opposite edge. The 0 mm and 30 cm 

marks occurred 5 cm from the end of the ruler where the millimetre numbering began. 

The marks and numbering together extended to a depth of 1 cm across the face of the 

ruler on each edge. The letters 'cm' were printed below the first centimetre space, and 

`rum' below the first millimetre space on their respective sides of the ruler. 

5. A fibreglass centimetre-and-inch dressmaker's tape measure, also used in the second 

interview, and described briefly in Chapter 3. Cm were displayed on one face, and 

inches on the other. Only the centimetre face of the tape was used for estimation and 

measurement. The full dimensions of the tape were 152.4 cm x 1 cm. The last marked 

cm units were 150 cm. One-centimetre divisions extended the full width of the tape, 

except for a central space printed with the relevant number of cm. Half-centimetre 

divisions (extending 5mm from one edge) and one-millimetre divisions (extending 3mm 

from the same edge) were marked but not numbered. The numbers were correctly 

positioned for reading when the tape was perpendicular to the reader. The zero position 

was at the extremity of the tape. A semi-circular stud sealed the tape fabric at both ends 

of the tape. The words and letters DEAN, FIBREGLASS TAPE, MADE IN 

166 



ENGLAND and CM were printed near the start of the tape. A summary of key features 

of the comparators is set out in Table 5.01. 

Table 5.01 Comparators in relation to which the lengths of lines were estimated 

Comparator Characteristics 
A plain, unmarked strip No units — undivided length 
A number of lcm wooden cubes Separated and un-numbered units 
A cardboard strip marked and 
numbered at 1 cm intervals, but not 
labelled 'cm' 

Continuous units that were numbered, 
but not named. The units were not 
subdivided. 

A ruler marked with cm and mm Continuous, subdivided, numbered and 
named units 

A tape measure marked with cm and 
mm 

Continuous, subdivided, numbered and 
named units 

5.2.3 Procedure 

Sessions were approximately 30 minutes long. 

The experimenter verified the children's understanding of the terms definitely longer, 

definitely shorter, and about the same length by presenting books of obviously different 

lengths, or of similar lengths, in appropriate pairs before starting the tasks. No child 

gave evidence of difficulty in understanding these terms when questioned about them in 

this context. The experimenter then said Today we are going to estimate, that is, guess, 

the length of some lines. We are going to use different things to estimate their length. 

Here is the first thing [e.g. plain unmarked strip]. I am going to hold up some lines, one 

at a time, and I want you to tell me whether the line is definitely longer, definitely 

shorter, or about the same length as this strip. 

The comparator was placed on the table in front of the child, where the child was free to 

handle it. The experimenter then successively held up each of the seven lines in one set, 

at the child's eye level and at a distance of approximately 80 cm from the child, asking 

each time Is this line definitely longer, definitely shorter, or about the same? [as the 

comparator given]. 

For example, for the red lines (reference line 5 cm long), a child was offered the plain 

unmarked strip, 5 cm long, for comparison, one at a time, with each of the lines in the 

set. The process of comparison was then repeated with the same set of lines but a fresh 

comparator, the child being asked, successively, to select 5 cubes, find 5 units on the 

marked strip, 5 cm on the ruler and 5 cm on the tape measure, and to compare the length 

of each of the lines with that of the comparator. Each time the child was asked to say 

whether a line was definitely longer, definitely shorter, or about the same length as the 
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given comparator (unmarked strip; a given number of cubes), or as a number of units 

identified on the comparator (the 30 cm marked strip, the ruler or the tape measure). 

Thus the experimenter said: Is the line definitely longer, definitely shorter, or about the 

same length as 5 cubes? ...as 5 units on your strip? ...as 5 cm on the ruler? ...as 5 cm 

on the tape measure? 

All seven lines in a set (see Table 5.02) were presented for estimation of their length in 

relation to one comparator, before moving to the next comparator. 

The three sets of lines: red, purple and black, were presented one set at a time. The order 

of presentation of the sets, and of the comparators, was systematically varied between 

children, and the lines within a set were presented in random order for each child. 

In the few cases where children, for the purposes of the comparison, were unable to 

count out a prescribed number of cubes accurately, or identify and name one- or two-

digit numerals on other comparators, the experimenter performed this task on the child's 

behalf. No special effort in relation to number was therefore required by the task. Most 

children made 105 estimates. 

5.2.4 Criteria used for assessing children's judgements 

As well as correct responses that used phrases modelled by the experimenter's questions 

(such as It's definitely longer), other responses that expressed acceptable estimates were 

also scored correct. Criteria were carefully considered so as to accommodate the range 

of expressions a child might use to express an acceptable judgement. Thus a child's 

estimate of the length of line 1 or line 2 was considered correct if they said that these 

lines were definitely shorter, shorter, or a bit shorter than the comparator. Their 

estimate of line 3, which was much closer in length to (though still shorter than) the 

reference line, was considered correct if they said this line was about the same or the 

same as the comparator and also if they said it was definitely shorter, shorter or a bit 

shorter. Their estimate of the length of the reference line, line 4, was considered correct 

only if they said it was about the same or the same as the comparator. Line 5 was scored 

correct if a child said either that this line was definitely longer, longer or a bit longer 

than the comparator, or if they said it was about the same or the same. Estimates of lines 

6 and 7 were considered correct if a child said it was definitely longer, longer, or a bit 

longer than the comparator. Two per cent of responses used other formulations. These 

were easily assimilated to one of the foregoing categories. These criteria are 

summarised in the right-hand column of Table 5.02. 
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Table 5.02. Lines whose lengths were estimated 

Length (cm) 

Short (red) Medium (purple) Long (black) 
Acceptable judgments 

against comparator 

Line 1 2 5 7.6 definitely shorter 
shorter 

a bit shorter Line 2 3 7 11.4 

Line 3 4.75 11.5 18.5 

definitely shorter 
shorter 

a bit shorter 
same 

about the same 

Line 4 5 (reference) 12 (reference) 19 (reference) 
same 

about the same 

Line 5 5.3 12.7 20 

definitely longer 
longer 

a bit longer 
same 

about the same 

Line 6 6.5 15.6 24.5 definitely longer 
longer 

a bit longer Line 7 8 19.2 29 

Regular checks were made to ensure that the child was judging the length of the line, 

and not that of the comparator; for example that a judgment of it's definitely shorter 

referred to the shortness of the line relative to the comparator, and not to the shortness 

of the comparator relative to the line. The check was made by saying, for example, Are 

you saying the line is shorter, or the cubes? 

5.3 Results 

Missing data 

Three children, for whom there was a large amount of missing data due to extended 

absence from school, were removed from the analysis. The few remaining missing 

observations occurred because of premature termination of a session due to school 

demands and amounted to 38 missing observations out of 7980. 

In a repeated measures design, analysis would result in the loss of an unacceptably large 

amount of information in view of the small proportion of scores that the missing values 

represented. Missing data were therefore substituted as follows. It was noted that for 22 
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of the missing values, 70% or more of values present for that item in that year-group 

were the same. For a further 6 missing values, between 50% and 69% of values were 

the same, and for the remaining 10 missing values, between 49% and 38% were the 

same. In view of this, missing values were assigned the modal response for that 

particular variable for that year-group. 

Analysis of accuracy 

Table 5.03 sets out means according to year-group, comparator, set and length. As 

before, on account of the girl/boy imbalance in Year 2, a preliminary analysis of 

variance included gender as a factor. There was no significant effect of gender, or 

significant interaction of gender with any other factor, including year-group. Gender 

was therefore excluded from further analysis. 

Table 5.03 	Mean (SD) percentage of correct estimates according to year-group, 
comparator, line set, and line length 

All Year 1 Year 2 Year 3 
Comparator 
Plain strip 81 (9) 77(9) 82 (8) 85 (7) 
Cubes 81 (11) 76 (11) 81 (13) 85 (9) 
Marked strip 83 (10) 79 (10) 84 (13) 85 (7) 
Ruler 81 (12) 78 (11) 80 (15) 86 (10) 
Tape measure 81 (11) 77(12) 80 (11) 86 (10) 
Set 
Red 79 (10) 74 (9) 80 (11) 83 (8) 
Purple 82 (10) 79 (10) 81 (10) 86 (8) 
Black 80 (9) 77 (10) 80 (9) 84 (9) 
Length 
Line 1 98 (4) 98 (3) 98 (5) 99 (2) 
Line 2 90 (10) 89 (12) 90 (10) 91 (9) 
Line 3 79 (17) 

49 (24) 
83 (19) 

76 (21) 
41 (21) 
74 (21) 

80 (14) 
51 (29) 
84 (21) 

80 (15) 
55 (20) 
90 (12) 

Line 4 
Line 5 
Line 6 79 (19) 74 (16) 76 (23) 85 (17) 
Line 7 93 (10) 88 (12) 91 (11) 98 (5) 

N 76 25 23 28 

Table 5.03 shows, for all comparators and all sets, high mean correct estimates by 

children in all year-groups. There was no year-group in which children obtained less 

than 74% of responses correct according to comparator or set, and standard deviations 

indicate a rather narrow range of scores, except for line 4. 
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To determine whether accuracy of estimates varied according to these factors, a four-

way mixed analysis of variance was conducted with year-group as between-subjects 

factor and comparator, set and length as within-subjects factors. The only factors for 

which there were significant main effects were year-group F (2, 73) = 8.30, p = .001) 

and length F (2.99, 218.17) = 86.13, p < .001). 

Post hoc tests showed significantly better estimation by Year 3 children than by those in 

Year 1 (p < .01). 

Post hoc tests also showed that there were significantly more correct estimates of line 1 

(the shortest) than of all other lines; and of line 7 (the longest) than of all other lines 

except line 2. There were no significant differences between lines 3, 5 and 6, or 

between line 5 and line 2. Line 4 (equal in length to the comparator) was judged 

significantly worse than all other lines. 

Although set was not significant overall, it was involved in an interaction with length F 

(7.50, 547.7) = 10.28, p < .01) as well as in a three-way interaction with length and 

year-group F (15.01, 547.7) = 1.83, p = .03). As there was a very small F ratio for the 

latter interaction, and no interaction of year-group with any other factor, it was 

considered likely that year-group made only a marginal contribution to these 

interactions and so the involvement of year-group was not pursued. 

Although type of comparator was not significant overall, there was a significant 

interaction between comparator and length F (13.60, 992.5) = 3.04,p < .01). 

Means plots were obtained to investigate the set-length and comparator-length 

interactions (Figure 5.01). 
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Figure 5.01(a) shows that while scores for the purple and black sets were progressively 

lower for each of lines 1, 2 and 3, scores for the red set fell for line 2 and then rose 

sharply for line 3. Further, scores for the red set ranked highest for lines 1, 3 and 4, but 

ranked lowest for line 5. This is the most likely explanation for the interaction between 

length and set. In the scores for each comparator, shown in 5.01(b), there was a 

tendency, from line 1 to line 7, for scores that were initially higher to become 

progressively lower in the rank order, best illustrated by the line indicating the score for 
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ruler. These two interactions made only a minor contribution to the overall picture 

regarding children's estimates and were therefore not further considered. 

Dealing with the latitude allowed in criteria for correctness 

Lines 3, 4 and 5 in each set were close to each other in length, and it was expected that 

of the alternatives offered the most likely estimate for all of them would be about the 

same (i.e. about the same length as the comparator). However, line 3 was actually 

slightly shorter, and line 5 slightly longer than their comparator (Table 5.02), so that 

estimates of shorter and longer respectively were also counted as correct responses. 

Because it was considered important to assess children's ability to judge equality of 

length, responses accepted for line 4 were restricted to same and about the same. While 

reasonable in essence, this strategy resulted in broader success criteria for lines 3 and 5 

than for line 4, and could have contributed to the lower level of success in judging line 

4. 

The analysis of variance was therefore re-run a) with lines 3 and 5 excluded, and b) 

separately for lines 3 and 5. As in the full analysis, reported above, there was no main 

effect of comparator, and none of set, when lines 3 and 5 were excluded. In the separate 

analysis of lines 3 and 5 there was a main effect for set (F (2, 139.9) = 6.36 p < .01); 

judgements were significantly better for the red (short) set. In both a) and b), as before, 

Year 3 children did significantly better than those in Year 1 (for a), F (2, 73) = 7.34, p < 

.01); for b) F (2, 73) = 5.50, p < .01). 

The comparative lack of success with line 4 was further investigated by looking at the 

nature of the errors made by a fifty per cent sample of each year-group. Among the 

errors of children in Year 1 the proportions of judgements of shorter and longer were 

equal. Among children in Years 2 and 3, however, there were more than twice as many 

judgements of longer than of shorter. 

5.4 Discussion 

This type of estimation task had two key features. The first was that comparator and line 

compared were both physically present, and there was no need to make use of mental 

representations of length. This contrasted, for example, with Petitto's (1990) numberline 

studies, where children had to retrieve representations of sequence or proportions before 

they could make a judgement. The second was that children were not asked to quantify 

their comparisons, and were simply asked to say whether they thought lines were 
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definitely longer, definitely shorter, or about the same length as their comparators. 

Clearly in these circumstances, these children were good estimators, even at five years 

old. Success increased with age, but all year-groups attained a high proportion of correct 

responses. There was no evidence of any differences in performance according to 

gender. 

In the introduction to this chapter it was recalled that in the home context (on the 

evidence of the first interview) children typically encountered measurement of length as 

the estimation or calculation of affordances: of the fit of an object to the space available. 

Children were legitimate peripheral participators (Lave & Wenger, 1991) in these 

activities or interested observers of them (in the double sense that the activities were 

interesting, and that the children themselves often had a stake in the outcome) and it 

was argued that these factors might contribute to an early aptitude for visual estimation 

of relative length. The main finding of the current chapter is congruent with this 

proposal, as well as with indications, also mentioned in the introduction, in the 

developmental literature (Feigenson et al., 2004; 2002, Resnick, 1992; Bryant, 1974). 

There was slight evidence of variation in success with different comparators, but no 

overall difference according to comparator. In general terms this suggested that ability 

to judge relative length, in this case in the face of a number of distractors presented by 

physical differences between comparators, was very robust at the ages studied. More 

particularly, the features of comparators that had been selected to suggest difficulties 

that might be encountered when children contemplated units (separation, continuity and 

subdivision) proved no stumbling block, that is, the mere appearance of these features, 

in a non-measurement context, did not in itself confuse children. Nor, in itself, did the 

introduction of number: performance with the cubes, ruler and tape measure, where 

specific numbers of cubes or of cm were used in comparisons, was not significantly 

worse than it was with the unmarked strip. These findings partially address the theme at 

the end of Chapter 1 that is labelled 'mapping number on to quantity', where it was 

noted that some authors saw a natural transition from qualitative comparisons of length 

to comparisons involving units (Lamon, 1996; Resnick and Singer, 1993; Petitto, 1990) 

facilitated by the development of counting, while Miller (1989) expected the counting 

procedure, by its very dominance, to lead children astray when applied to continuous 

quantities. Although measurement itself was not involved, the results reported in this 

chapter, as far as they went, were consistent with the former view. 
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There was overall no significant difference in performance according to set, that is, 

according to the absolute length of the lines judged. This accords with the early findings 

of Bryant (1974) regarding the comparative ease for both children and adults of making 

relative as opposed to absolute judgements of size, and is a particularly striking example 

of it. The length of the three 'reference' lines for the red, purple and black sets differed 

from set to set by seven cm, and within sets, the longest and shortest lines differed from 

the reference line by as little as 3 cm (red set) and as much as 10 cm or more (black set). 

While children saw, therefore, a very wide range of lines as regards absolute length, 

good judgement of their relative lengths remained constant. 

Performance did differ significantly according to the ratio of the length of lines to the 

length of their comparator. There were significantly more correct estimates of line 1 (the 

shortest in each set) than of all other lines; and of line 7 (the longest in each set) than of 

all other lines except line 2. There were no significant differences among line 3, line 5 

(in every set the two closest in length to the comparator) and line 6, and none between 

line 5 and line 2. Line 4 (equal in length to the comparator) was judged significantly 

worse than all other lines. 

The overall picture is that there was a gradual improvement as the difference in length 

between line and comparator increased. The lines that were furthest in length from the 

comparator (lines 1 and 7 in every set) were the easiest to estimate correctly (with the 

exception that there was no significant difference between line 2 and line 7) 

undoubtedly due to the much greater discriminability of lines 1 and 7 from the 

comparator (Ross, 1997). The degree of success for lines that were second most distant 

from the comparator (lines 2 and & 6) 'overlapped' to some extent with that for lines 

that were closest to it (lines 3 and 5), but overall, the same picture held. The overlap is 

consistent with the 'accumulator' model of the mental representation of numbers as 

continuous magnitudes (see 1.3.1), in which the representation is dependent on 

discrimination of 'signal' from 'noise'. Siegler & Opfer (2003) point out that as 

magnitudes approach each other in size, there will be overlap, and discrimination will 

be harder. This model seems to fit the continuous magnitudes presented by the lines 

used in the present research rather well, and if discriminative capacity, as evidence 

seems to show, develops in early infancy, it would help to account for the high degree 

of success in estimation shown by the children in the present study. 
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The line (line 4) that was exactly the same length as the comparator proved hardest for 

children to judge correctly, with less than 50% success overall. This was not surprising, 

since in this case there was no difference to discriminate. In fact it represented the same 

kind of absolute judgement required of children by Lawrenson & Bryant (1972) and 

found by them to be poorly performed. The type of error made when judging line 4 in 

the present research was investigated, and while children in Year 1 were found to judge 

this line to be shorter than its comparator just as often as they judged it to be longer, 

children in Years 2 and 3 made twice as many erroneous judgements of longer than of 

shorter. Perhaps, in the absence of a discriminable difference, a general positive bias in 

favour of larger quantities was at work (Haylock and Cockburn, 1989) although there 

was no sign of this among the findings reported in the previous chapter, and no 

particular reason why this should be evident only among older children. 

Given the high degree of overall success irrespective of comparator or of absolute 

length of lines, together with the differences found according to length of line, we can 

summarise children's performance on this estimation task as both robust and nuanced. 

Differences among comparators made no overall difference to children's success in 

estimating. We may therefore be confident that any differences according to comparator 

when these were used as measuring devices could be ascribed to their characteristics 

specifically as measuring devices. It is to the measurement tasks that we now turn. 
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Chapter 6 

Measurement 

6.1 Introduction 

The analysis of children's visual estimation performance using all seven lines in each 

set (twenty-one lines in all) is considered to have given a thorough, substantial picture 

of children's estimation ability from 5 to 8 years old in the population and in the tasks 

studied. It was found that that the children were good estimators, and that their success 

did not differ significantly according to the type of comparator against which length of 

lines was estimated, or, overall, according to the absolute length of those lines (that is, 

according to whether the lines belonged to the 'short', 'medium' or 'long' set). It did 

differ according to length of line relative to the comparator within sets. Since 

differences among comparators had made no overall difference to children's success in 

estimating, any differences according to comparators when these were used as 

measuring devices could be ascribed to their characteristics specifically as measuring 

devices. Do differences among measuring tools affect ability to measure? Is there any 

evidence from children's handling of different devices that they consider units that are 

physically separate and units that form a continuous scale to be incommensurable? Do 

children falter when confronted with subdivided units? The materials children used in 

the measuring tasks were designed to investigate these questions. 

Careful thought was given to the type of measurement task employed. The research 

already reported showed that children had much more to say about their experience of 

measurement outside school than within school, and their recall of the former was much 

more vivid and personal. The measurement tasks were designed to make sense to 

children in the light of this out-of-school experience, the character of which had been 

broadly apparent in piloting. Thus in measuring up for floor or wall covering, a person 

may measure with a tape (in conventional units) the length, height or width to be 

covered, and then measure in the same way the available covering material. If this work 

is done collaboratively, one person may measure the space to be covered and announce 

the number of units that represent the height, length or width, while another measures 

the available material and announces the degree of fit (too short, too long, or just right). 

The three-part task given to the children was designed to suggest some of these features. 

Thus the experimenter asked the children a) to measure a line with the device supplied. 

Next they were asked b) whether that line was longer, shorter, or the same length as a 
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given number of units. Here the children had to compare their measurement with the 

number of units mentioned. This task, therefore, investigated how well children 

understood that a number (of units) may express an amount. The number used was that 

of the 'reference' length used in the estimation tasks — five, twelve or nineteen units —

associated respectively with the red, purple and black set of lines. (The procedure is 

more fully described below). Finally c), the children were asked, as an absolute 

judgement, how long the line actually was. 

So children were asked to make both a numerical measurement and a comparison. 

Conceptually, when a child had measured a line, and the experimenter asked, Is that 

shorter, longer, or the same length as (say) 12 cm? the question tested understanding 

that ordinal judgement (shorter, longer or same) was logically implied by a statement of 

length measured in units. The comparison thus examined one aspect of the application 

of number to quantity embedded in measurement practices. 

Measurements were deliberately limited in number because it was clear that a more 

extensive series would exhaust some children, as measuring demands more time and 

persistence than estimation. Of the twenty-one lines whose length was estimated, nine 

were measured and of the five comparators used in estimation, three were selected as 

measuring devices. Thus nine lines were measured with each of three devices, making 

twenty-seven measurements in all (Table 6.01). 

The lines selected for measurement were lines 3, 4 and 5 (those that were closest to each 

other in length) in each of the three sets. The numerical lengths of five of these nine 

lines included fractional units (Table 6.01) and required children to deal with the 

subdivision of units in an immediate and practical way. Of the five comparators used in 

estimation, the cubes, the ruler and the tape measure were selected as measuring 

devices. Between them, these three devices embodied all the areas of potential difficulty 

that were of special interest in this research. The cubes constituted separated, 

unnumbered units, while the units shown on the ruler and tape measure were numbered, 

continuous and sub-divided. These specific devices were chosen, too, because each was 

known (on the evidence of what children said at interview and of information from their 

teachers) to be familiar to the children as an everyday item either at home or at school, 

and (on the same evidence) most children had handled and manipulated cubes and rulers 

and some had used tape measures. However, familiarity does not necessarily lead to 

expertise. Each device needed to be handled and interpreted differently both because 

they were physically different, and because they represented units in different ways. It 
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was anticipated, therefore, that when children came to use comparators as measuring 

devices, there would indeed be significant differences according to the device used. 

It was expected that competent handling of the devices would become harder as line 

length increased, so that there would be an effect of set, and 'long' lines (black set) 

would be harder to measure than 'short' lines (red set). 

It was also expected that there would be a general improvement with increasing age. 

Children in Years 2 and 3 were expected to be more successful overall than those in 

Year 1. The latter were comparatively inexperienced in measuring with the ruler and 

tape measure, and although their teacher indicated that they had used a number of 

different non-conventional units for measurement including cubes, these young children 

were expected to have difficulty in manipulating 1 cm cubes, which were rather small. 

Better success was expected in Years 2 and 3 due to these older children's greater 

experience in measuring in school, and their likely greater experience in measuring out 

of school. 

Table 6.01 The lines within each set used for the measurement tasks. 

Length (cm) 

Short 
(red set) 

Medium 
(purple 

set) 

Long 
(black set) 

Line 
3 

4.75 1 1.5 18.5 

Line 
4 

5 
(reference) 

12 
(reference) 

19 
(reference) 

Line 
5 

5.3 12.7 20 

6.2 Method 

6.2.1 Sample 

Seventy-six of the children who were involved in all other aspects of the research 

participated, twenty-five children in Year 1; twenty-three in Year 2 and twenty-eight in 

Year 3. 
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6.2.2 Materials 

The collection of wooden 1 cm cubes, the 30cm ruler and the tape measure that were 

used in the estimation task were used as measuring devices. 

On the ruler, the edge to which the children were directed was marked in cm, half cm 

and mm, with cm marks numbered. (Millimetres were numbered in tens on the other 

edge.) The scale began 0.5 cm from the end of the ruler. Numbers on the ruler were 

correctly oriented for reading when the ruler was horizontal with respect to the reader. 

The face of the tape measure to which the children were directed was marked, as the 

ruler was, with cm and mm, with cm numbered. Here, the numbers were correctly 

oriented for reading when the tape was vertical with respect to the reader. The scale 

began at the end of the tape. (The reverse face of the tape was marked in inches and 

eighths of inches). Further details of the ruler and tape were given in Chapter 5. 

The 'reference' line in each set (line 4), together with the line next shortest (line 3), and 

the line next longest to it (line 5) (see Table 6.01) were measured. Each line was 

presented to the child horizontally, as before, on a sheet of A4 card. 

Written records were kept of children's measurements and of the ways in which they 

deployed measuring devices. 

6.2.3 Procedure 

The same seating arrangements in the school library were observed as for all other 

tasks. Measurement followed on from the estimation tasks and were, as previously 

stated, about 40 minutes in length. 

The children were asked to measure all three lines in all three sets with all three devices. 

Thus each child made nine measurements with each device. The children received the 

sets in a random order. Within each set, lines 3, 4 and 5 were randomly presented, 

randomisation being achieved for both set and line by shuffling the cards used. The 

order of the measuring devices was also randomised, this time by blind selection of the 

word 'cubes', 'ruler', or 'tape' printed on a sheet of paper. 

After the child had completed the estimation task, the experimenter handed to the child 

one of the cards with a line on it and said Can you measure this line for me now, 

please? and offered the ruler, the tape measure or a collection of cubes. After the child 

had measured a line with the device, the experimenter asked Is the line longer, shorter, 

or the same length? [as the appropriate 'reference' length in units]. 
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For example, the experimenter gave the child a collection of cubes that was greater than 

twelve and asked Is the line longer, shorter, or the same length as twelve cubes? 

(Twelve cubes were the 'reference' length for the purple set; five and nineteen cubes, 

respectively, for the red and black sets.) If the child miscounted, the experimenter 

supplied the right number of cubes, but did nothing further to help: the children 

arranged the cubes for measurement as they saw fit. If the ruler or tape was being used 

the experimenter asked Is the line longer than 12 cm, shorter than 12 cm, or 12 cm 

long? If the child had difficulty in identifying 12 cm on the ruler or tape, the 

experimenter located the mark for them, but again did nothing further. The number of 

cm mentioned was changed to five or nineteen as appropriate for the red and black sets. 

The child's response to the question was recorded in writing. The experimenter then 

asked How long is it [the line]? The response was similarly recorded. Ways in which 

measuring devices were deployed were also noted in writing. 

Children were asked to report comparisons and numerical measurements. Their report 

was recorded for each measurement. 

6.2.4 Analysis of results 

In all analyses, correct responses were totalled across the twenty-seven measurements, 

and subdivisions of the total were used for finer-grained analysis. 

Reporting of the analysis follows the order in which the measurement procedure was 

carried out by the children, that is, 1. physically measuring a line; 2. saying whether the 

line was shorter, longer, or the same length as the number of units mentioned by the 

researcher; 3. stating the absolute length of the line. Accordingly the three parts of the 

analysis concern: 

1. The correctness of positioning of the measuring devices 

2. The correctness of comparisons 

3. The correctness of numerical measurement 

Positioning of the measuring devices 

Children were scored on their alignment of the measuring device with the appropriate 

end of the line to be measured. Correct alignment required that the zero position on the 

scale (ruler, tape), or the placing of the outer edge of the first cube, coincided with the 
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end of the line. Also recorded were additional aspects of the deployment of devices that 

were considered relevant to the errors in measurement that children made. 

Comparisons 

A child's response that a line was shorter, longer or the same length as the number of 

units mentioned by the experimenter was termed their comparison because they 

compared their own numerical measurement with a number of units given orally by the 

experimenter (a relative judgement). 

Numerical measurement 

After they had measured a line and had made their comparison, children were asked 

how long the line actually was. Their response to this question was termed their 

numerical measurement (an absolute judgement). A numerical measurement was 

scored correct if it was accurate to within 2.5 mm of the actual length of the line. This 

was considered a reasonable degree of tolerance given the age of the children, and had 

the advantage of being able to accommodate phrases incorporating the term quarter (2.5 

mm being equal to 1/4 cm), since quarter (as well as half) are commonly used by many 

children to express fractional units. Success with this task required a number of abilities 

including the reading of the scale and the taking into account of fractional units. 

An example 

A child measuring the 4.75 cm line from the 1 cm mark on the ruler or tape, and 

reporting the line length as 5.75 cm (or five and three-quarters cm), would be scored 

incorrect for numerical measurement and incorrect for positioning the device with 

respect to the starting point for measurement. They would, however, be scored correct 

on their comparison if they said that the line they had measured as 5.75 cm was longer 

than the five units mentioned by the experimenter. Thus correctness of the comparison 

was based on the measurement they made, rather than on the actual length of the line. 

Factor structure 

As explained above, of the seven lines in each set used in the estimation tasks, only the 

three 'central' lines in each set were used for the measurement tasks. While the twenty-

one lines used in the estimation tasks had overlapped in length between sets (for 

example black lines 1 and 2 were shorter than purple lines 3 to 7, (see Table 5.02) there 

were no overlaps among the nine lines retained, and the sets to which they belonged 

now became 'islands', the differences between sets being much more marked. Moreover 

the three lines retained in each set were very close in length (within a set, no difference 
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was greater than 1 cm). Thus, while the remaining lines within each set differed enough 

to provide different measurement tasks, the major differences in line length became 

those between the three sets. In these circumstances, it was decided to discard 'line' as a 

factor in the analysis of variance, so that two within-subjects factors remained: device 

and set. 

Additional data collected: acknowledgement of fractional units 

One of the hypotheses of this research was that children would have difficulties with the 

notion that units of length can be subdivided. Each standard line and just one other (that 

of 20 cm) were a whole number of units (cm) in length (Table 6.01). All other lines 

embodied fractional units and were used to investigate the children's manner of 

reporting, or failing to report, incomplete units. Where children acknowledged 

fractional units, a record was kept of the ways in which they did so. (see Appendix 3). 

6.3 Results 

6.3.1 Missing data 

The same three children who had been removed from the Estimation analysis due to a 

large amount of missing data were removed from the Measurement analysis. Missing 

Measurement data after this amounted a total 54 out of 2052 observations, again due to 

premature termination of a session due to school demands. To avoid further loss of data 

in a repeated measures design, these missing values were replaced. A random allocation 

procedure was used in a manner that preserved the proportion of correct and incorrect 

judgements for the variable, within the year-group for which they were missing. In the 

majority of cases, this was a single substitution within a variable within one year-group. 

In total there was only one occasion where as many as four substitutions were made. 

Thus the substitutions are unlikely to have introduced significant differences into the 

results. 

6.3.2 Understanding of the term 'measure' 

Four children asked what was meant, or appeared not to know what to do, when asked 

to measure a line. These were all in Year 1. The children were given appropriate 

guidance. 

6.3.3 Preliminary analyses 

As before, on account of the girl/boy imbalance in Year 2, gender was initially included 

as a variable in all three analyses of variance (positioning the device; the comparisons; 
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and numerical measurement) but, as before, produced no main effect or interaction with 

any other factor including year-group, and so was excluded from all further analyses. 

6.3.4 Positioning the device 

How children handled the devices in making their measurements went a long way 

towards explaining their degree of success in measuring, as well as providing 

information about their understanding of the way in which units were embodied and 

represented in the different devices. The most important decision children had to make 

concerned the positioning of the measuring device in relation to the line to be measured, 

and the most important aspect of that was whether or not (cubes), the first cube was 

aligned with the end of the line to be measured, and (ruler and tape) whether or not the 

zero mark was so aligned. There were other important aspects of positioning. In the case 

of measurement with cubes, it was necessary to remove gaps in the line of cubes, to 

ensure that the line of cubes was straight, and to make sure that if the cubes shifted as 

they were laid, compensating adjustments were made to maintain correct alignment. In 

the case of both cubes and tape, it was necessary that children had a clear view of the 

line to be measured, and did not obscure their own view, for example by covering the 

line with the measuring device so that the full length of the line was not visible to them 

when the measurement was made. (The ruler was transparent, so in this case it did not 

matter if the line was covered). 

What the children did in respect of the starting point of their measurement is reported 

first. Whether gaps were closed and correct maintenance of a straight line of cubes was 

attempted is reported next. Finally, whether the full length of the line measured was 

visible to the child when they declared their measurement is reported. 

Table 6.02 and Figure 6.01 show the mean proportion of measurements (out of 27) 

where children used the correct starting point on the measuring device. Overall the 

children made a poor selection of starting point, except when measuring with cubes. 

184 



Table 6.02 Mean (SD) proportion (%) of measurements where children used the 
correct starting point on the measuring device. 

Year 
1 

Year 
2 

Year 
3 

All 
years 

Measuring 
device 

13 47 61 40 
Ruler (21)  (37) (36) (38) 

29 31 31 30 
Tape measure (32) (32) (32) (31) 

79 90 88 86 
Cubes (25) (10) (16) (19)  

All correct 40 56 60 52 
starting points (17) (19) (19) (20)  

N 25 23 28 76 

Figure 6.01. Mean proportion (%) of measurements where children used the correct 
starting point on the measuring device. 
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Note. Error bars to show SD arc not provided because their overlapping heights would have confused the 
figure. 

In all year-groups the correct starting point was much more likely to be selected for 

cubes (in approximately 80% to 90% of measurements) than when using the tape 

measure (approximately 30% of measurements) or ruler (13% to 61% of 
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measurements). Table 6.02 and Figure 6.01 indicate little difference between year-

groups for cubes and tape, but more use of correct starting points for the ruler in each 

successive year-group. Large standard deviations, especially for ruler and tape measure, 

indicate that individual children differed widely in their degree of correct use of starting 

points. 

A two-way analysis of variance had year-group and measuring device as factors. 

Significant main effects were found for year-group (F (2, 73) = 9.28, p < .001) and 

device (F (1.9, 138.92) = 96.13, p < .001) and there was a significant interaction 

between them (F 4, 138.92) = 6.38, p < .001). 

Post hoc tests showed that overall, children in Year 2 and Year 3 selected correct 

starting points significantly more often than children in Year 1 (p < .01) with no 

significant difference between children in Years 2 and 3. The tests also confirmed that, 

overall, there were significantly more correct starting points using the cubes than the 

ruler or tape measure (p <. 01), with no significant difference between ruler and tape. 

The significant interaction between device and year-group was accounted for (Figure 

6.01) by the very poor selection of correct starting point on the ruler by Year 1 and the 

comparatively much better performance by Year 3. Differences between year-groups for 

the other two devices were not so marked. 

Separate analyses of variance for each year-group (Year 1 (F (2, 48) = 49.78, p <.001); 

Year 2 (F (2, 44) = 29.37, p <.001); Year 3 (F (2, 54) = 31.87, p <.001)) confirmed that 

when measuring with the cubes Year 1 and Year 2 children used significantly more 

correct starting points than with the ruler and tape (p <.01), with no significant 

difference between ruler and tape. Year 3 children were most likely to select the correct 

starting point when using the cubes, and least likely to do so when using the tape. For 

Year 3 there were significant differences among all three devices (p < .01). Separate 

analyses of variance for each device (ruler (F (2, 73) = 6.25, p <.001); tape (F (2, 73) = 

.09, NS); cubes (F (2, 73) = 3.33, p = .04) and post hoc tests showed that when using the 

ruler, Year 2 and Year 3 children selected the correct starting point significantly more 

often than those in Year 1 (p < .01). When using the cubes, Year 2 selected the correct 

starting point significantly more often than Year 1 (p = .04) with no other significant 

differences. There were no significant differences among year-groups for starting points 

with the tape. 
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6.3.4.1 Consistency of use of correct starting points 

Even when children used the correct starting point, very few did so consistently except 

when using the cubes. Half the children in Years 2 and 3 always aligned the first cube 

correctly, and almost all did so in more than fifty per cent of the measurements. Even in 

Year 1, more than one third of the children always aligned the first cube correctly. 

Performance with the ruler was much worse. More than half the children in Year 1 

never aligned the ruler correctly, and only five did so in more than one tenth of their 

measurements. In Year 2, there was a much more even spread among children of 

degrees of consistency in correct alignment of the ruler. Three children never used the 

correct starting point, four always did so, and the remainder of the children were more 

or less evenly distributed between these two extremes. In Year 3 there were five 

children who never used the correct starting point with the ruler, but overall children 

used a higher proportion of correct starting points than in Year 2. Year on year, 

children used the ruler increasingly correctly, but even in Year 3, only five children 

always did so. 

In selecting the correct starting point for the tape measure, there was little difference 

between the year-groups. Only three children in the whole sample always used the 

correct starting point. Half the children in Year 3, almost half in Year 2 and over one-

third in Year 1 never used it. The remainder were, as with the ruler, fairly evenly spread 

between the two extremes. 

6.3.4.2 Predominant starting points 

The children made nine measurements with the ruler and nine with the tape measure. 

The main points from which children started their measure were (in addition to 0 cm, 

the correct starting point) -0.5cm, 0.5 cm and 1 cm, but many used a variety of non-

typical starting points. In the case of children in Years 2 and 3, these were often poor 

alignments where children were two or three millimetres off one of the typical starting 

points. For children in Year 1 the use of a non-typical starting point usually reflected a 

completely haphazard approach, with no detectable strategy, and many non-typical 

starting points employed. In Years 2 and 3, for a given measurement, children typically 

took up several starting points before settling on one, and in those year-groups both 

initial and later starting points typically conformed to one of the predominant 

categories. Thus a Year 2 or 3 child might start from 1 cm, move to 0 cm, and move 

back to 1 cm before finally making their measurement. In all cases the last starting 

point taken up was the one recorded. 
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Ruler 

On the ruler, those who measured from -0.5 cm were in fact measuring from the very 

end of the ruler: the scale began half a centimetre from the end of the device. Those 

measuring from 0.5 cm began from the first of the prominent half-cm marks to be seen 

along its edge. A variety of non-typical starting points were also used. 

Consistency of starting point for all nine measurements with the ruler was very rare. 

More than half the children in Year 1 measured from the end of the ruler (-0.5 cm) some 

of the time. In roughly equal proportions, about 40% sometimes measured from the 

correct starting point (0 cm), from the 0.5 cm mark and from the 1 cm mark. Ninety-two 

per cent of children in Year 1 used other starting points some or all of the time. 

More than one third of the children in Year 2 sometimes measured from the end of the 

ruler, and a similar proportion also sometimes measured from the first half-cm mark. 

Over half sometimes measured from the 1 cm mark. A majority (78%) sometimes 

measured from the correct starting point; 48% did so most of the time. Sixty-five per 

cent of children in Year 2 occasionally measured from other starting points. 

In Year 3, only 14% of children ever measured from the end of the ruler (-0.5 cm), and 

21% from the first half-cm mark. Sixty-four per cent sometimes measured from the 

correct starting point, and half did so most of the time. Thirty-nine per cent occasionally 

measured from other starting points. 

Four children (one in each of Years 1 and 2 and two in Year 3) identified on the ruler 

the number mentioned by the experimenter (5, 12 or 19) and used that as their starting 

point. 

Overall the number of children who sometimes used the correct starting point on the 

ruler increased in successive year-groups. 

Tape measure 

Consistency of starting points using the tape measure was just as rare as it was with the 

ruler. Around half the children in Years 1 and 3 — more (70%) in Year 2 - sometimes 

used the 0.5 cm point on the tape to begin their measurement, but most of these did so 

only occasionally. Measuring from -0.5 cm was infrequent, since the scale started from 

the end of the tape; the three children who used this starting point placed the end of the 

tape 0.5cm from the left-hand end of the line being measured. 
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When using the tape, fewer children than was the case with the ruler ever used the 

correct starting point. Only one child in each year-group consistently did so, and there 

was little difference among year-groups as to the number of children who sometimes 

did so. In this, too, the tape differed from the ruler, where an increase from year to year 

was discernible. With the tape, more than half the children in each year-group 

sometimes measured from the 1 cm mark, and surprisingly, over one third of children in 

Year 3 frequently or consistently did so. 

Fifteen children, almost evenly divided across year-groups, sometimes measured from 

the number (5, 12 or 19) mentioned by the experimenter. This was three times as many 

as had done so when using the ruler. 

Most children in Year 1, more than half in Year 2, and just over one-third in Year 3 

measured from a variety of non-typical starting points with the tape measure. In the case 

of many children in Year 1, this was visibly the result of unsuccessful attempts to bring 

this long, loosely hanging, unwieldy device into sensible contact with the line to be 

measured. 

6.3.4.3 Measuring with cubes: other adjustments 

For each measurement with cubes, Table 6.03 shows the number of children who, as 

well as aligning the first cube correctly, removed any gaps in the line of cubes, ensured 

that the line of cubes was straight, and sought to make compensating adjustments to 

maintain correct alignment if the cubes shifted as they were laid. It can be seen that 

although more than half the children in each year-group observed all these precautions 

for the majority of their nine measurements with cubes, no more than five in any year-

group did so with complete consistency. In this, the older children were no better than 

the younger overall. 

Table 6.03 Number of children in each year-group making all necessary 
adjustments when measuring with cubes 

Measurements 
In all nine In 5 to 8 In 1 to 4 In none N 

Year 1 5 13 7 0 25 
Year 2 3 17 3 0 23 
Year 3 5 18 5 0 28 

A two-way analysis of variance with year-group and cubes as factors showed (F (2, 

146) = 10.03, p < .001) that when children measured lines in the red (shortest) set with 

the cubes, they attempted all necessary adjustments significantly more often than when 
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they measured purple or black lines (i.e. those in the longer sets) (p < .001). There was 

no main effect of year-group, but there was a significant interaction involving year-

group. Separate analyses for the three school years showed that children in Year 1 were 

significantly more careful when they measured the red lines (they attempted to make all 

necessary adjustments in 76% of measurements) than when they measured the purple 

ones (all necessary adjustments attempted in 53% of measurements): (F (1.71, 141.1) = 

4.87, p = .02). The same was true of Year 2. All necessary adjustments were attempted 

in 89% of measurements of the red lines and 65% of the purple: (F (2, 44) = 4.15, p — 

.02). Surprisingly, neither red nor purple differed significantly from black — the longest 

lines — where children persisted in their efforts to make all the necessary adjustments in 

71% of measurements (Year 1) and in 69% (Year 2). In Year 3, red lines were again the 

most carefully measured, but here the significant differences (F (2, 54) = 8.75, p = .001) 

were between red (84% with all adjustments made) and black (51%) (p = .002); and 

between purple (77%) and black (p = .01). Thus the longest lines were least carefully 

measured in Year 3. However, large standard deviations in all year-groups for black 

lines indicated that different children persisted to different degrees. 

6.3.4.4 Obscuring the line 

A number of children partially or completely covered the line they were measuring with 

the measuring device. In the case of the ruler, which was transparent, the line was still 

visible, so that its full length could be seen. The cubes or tape were both wider than the 

line they measured and children frequently completely obscured a line with them, so 

that they could no longer see it. Sometimes this was avoided. Table 6.04 shows, for the 

children in each year-group, the incidence of obscuring the line with the measuring 

device. 

In the case of cubes, these were often stacked on the line, rather than parallel to and in 

contact with it. This did not indeed make accurate measurement impossible (it was 

virtually impossible with the tape in these circumstances) but it made it difficult. The 

child could not see whether the first cube laid had shifted from its alignment with the 

left-hand end of the line, nor could they see by how much a cube overlapped at the other 

end of the line without, in both cases, lifting and replacing cubes. This made adjustment 

of the line of cubes more complicated and less successful than it need have been, and 

judgements about equality or non-equality of length, more complicated and less reliable. 

Table 6.04 shows that the majority of children deployed the cubes in such a way as to 

create these difficulties, and that a similar number of children did so in each year-group. 
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Table 6.04 Number of children who obscured the line with the measuring device: 
incidence in each year-group 

Children 

Never 

obscuring the 
Cubes 

Sometimes 

line to be measured 

Always 
N 

Year 1 6 9 10 25 
Year 2 2 10 11 23 
Year 3 5 13 10 28 

Tape N 
Never Sometimes Always 

Year 1 4 7 14 "")5 

Year 2 20 2 1 23 
Year 3 25 2 1 28 

As for the tape, despite having carefully identified their chosen starting point on this 

device, and aligned it often carefully with the left-hand end of the line to be measured, 

children sometimes covered the line with the tape and had to peer under it to determine 

the position of the other end of the line in relation to the scale. Sometimes they made a 

guess. This behaviour was rare in Years 2 and 3, but common in Year 1, as Table 6.04 

shows. 

6.3.5 The comparisons 

These were the child's report, after measuring a line, as to whether the line was longer, 

shorter, or the same length as the 'reference' number of units mentioned by the 

experimenter. This report was called the child's 'comparison' because they compared 

their own numerical measurement with a number of units given orally by the 

experimenter. Correctness of comparisons was thus judged on the basis of the 

measurement made, rather than on the actual length of the line measured. 

6.3.5.1 Analysis of accuracy of comparisons 

The means of correct comparisons according to year-group, measuring device and set 

were calculated and are shown in Table 6.05. Overall performance was poor, success 

being in the region of 50% although children in Years 2 and 3 did rather better than this 

with the ruler. 
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Table 6.05 Mean (SD) proportion (%) of correct comparisons made by children 
according to year-group, device and set. 

Year 1 Year 2 Year 3 All years 

Measuring device 

Ruler 42 (23) 60 (28) 67 (30) 56 (29) 

Tape measure 50 (25) 47 (24) 52 (28) 50 (26) 

Cubes 42 (24) 45 (21) 47 (23) 45 (23) 

Set 

red 44 (20) 47 (26) 56 (28) 49 (26) 

purple 45 (28) 50 (24) 53 (27) 50 (27) 

black 45 (24) 55 (26) 57 (29) 52 (27) 

All comparisons 44 (24) 51 (25) 55 (28) 50 (26) 

N 25 23 28 76 
Note: Each child made 27 comparisons. 

A three-way analysis of variance with year-group, device and set as factors found 

significant main effects of year-group (F (2,73) = 6.70; p < .001) and device (F (2,146) 

= 8.06; p < .001) and a significant interaction between device and year-group (F (4,146) 

= 3.83; p = .005). Post hoc tests showed children in Year 1 to be significantly less 

successful in their comparisons than those in Years 2 and 3 (p = .03). They also showed 

the comparisons to be significantly worse with the cubes than with the ruler (p = .001). 

The interaction, as Figure 6.02 indicates, was explained by the fact that while Years 2 

and 3 performed similarly, that is, much better with the ruler than with the cubes or 

Figure 6.02 Correct comparisons: interaction between device and year-group 
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tape, Year 1 children performed no better with the ruler than with the cubes, and rather 

less well than with the tape. This picture was confirmed by analyses of variance 

performed separately for the three year-groups, which showed no significant difference 

among the devices for children in Year 1, while children in both Year 2 (F (2, 44 = 5.50; 

p = .007) and Year 3 (F (2, 54 = 7.64; p = .001) made significantly more correct 

comparisons when they used the ruler than when they used the tape or the cubes (p < 

.05). 

6.3.6 Numerical measurement 

For each line, the numerical measurement each child actually reported was entered as 

data in decimal notation. If the child's utterance was not wholly numerical but could 

sensibly be interpreted in this way, such an interpretation was made. For example if, 

having measured a line with the ruler, a child said five and two little lines, '5.2' was 

entered. Where numerical interpretation was not straightforward - where, for example 

the child said five and a bit — no numerical measurement was entered, and their 

utterance was counted as an error (although a separate record of such non-numerical 

acknowledgements of fractional units was kept). Cubes are non-subdivided units, and 

the number of expressions available to children here to express fractional units 

numerically was in practice limited to and a half or and a quarter or and three quarters 

(recorded as .5, .25 and .75). If children declined to give a numerical measurement, 

either replying, when asked how long the line was, that they did not know, or simply 

reiterating that it was longer, shorter, or the same length as the number of units supplied 

by the experimenter, a zero was entered and the response counted as an error. 

Numerical measurements were counted as correct if a child reported a measurement 

within 2.5 mm of the actual length of the line. Children were scored correct or incorrect 

irrespective of their mention of units. 

6.3.6.1 Analysis of correctness 

Each child made twenty-seven numerical measurements. The data giving their 

performance according to year-group, device and set are shown in Table 6.06. 

On average, under one third of numerical measurements were correct by the 2.5 mm 

criterion, ranging from 21% in Year 1 to 36% in Year 3 (Table 6.06). A three-way 

analysis of variance with one between-subjects factor (year-group) and two within-

subjects factors (measuring device and set) was performed. There were significant main 

effects for all three factors: year-group (F (2,73) = 7.88, p = .001); device (F 
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(1.87,136.3) = 13.15, p < .001) and set (F (2,146) = 11.10, p < .001). There was also a 

significant interaction between device and set (F (4,4) = 2.47, p = .045). Post hoc tests 

showed that Year 1 children made significantly fewer correct measurements than those 

Table 6.06 Mean (SD) proportion (%) of correct numerical measurements made by 
children according to year-group, device and set. 

Year 1 Year 2 Year 3 All 
Measuring 
device 
Ruler 24 (29) 43 (29) 52 (29) 40 (29) 
Tape measure 23 (20) 28 (20) 29 (20) 27 (20) 
Cubes 16 (16) 29 (15) 25 (15) 24 (16) 
Set 
red 26 (22) 36 (22) 41 (21) 34 (22) 
purple 17 (17) 27(17) 26 (16) 23 (17) 
black 20 (19) 37 (19) 40 (19) 32 (18) 
All numerical 
measurements 21 (14) 33 (14) 36 (14) 30 (18) 

N 25 23 28 76 
Note: Each child made 27 measurements. 

in Year 2 (p = .02) and Year 3 (p < .001); and that significantly more correct 

measurements were made with the ruler than with the tape or the cubes (p < .01 in both 

cases), with no significant difference between tape and cubes. (This partly reflected the 

findings for the comparisons, where overall performance was worse with the cubes than 

the ruler.) Post hoc tests showed that the medium-length (purple) lines were 

significantly worse measured than either the short (red) lines (p < .001) or the long 

(black) ones (p = .001). Since the significant interaction between device and set had a 

very small F ratio, it was considered that any interaction effect was likely to be 

marginal, and was not further investigated. 

6.3.6.2 Failure to report a numerical measurement 

Among the numerical measurements recorded as incorrect were an overall average of 

23% of responses where children did not give a numerical measurement when 

requested, either repeating their previous response that the line was shorter, longer, or 

the same length as the number of units mentioned by the experimenter, or saying that 

they did not know how long it was. This proportion was smaller in each successive 

year-group and was 35% in Year 1; 20% in Year 2 and 16% in Year 3. There were 
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significant differences (F (2,73) = 10.87, p < .001) between Year 1 and Year 2, and 

between Year 1 and Year 3 (p < .01 in both cases). 

6.3.6.3 Response to lines that embodied fractional units 

A prediction of the research was that children would have difficulty in dealing with 

fractional units. Each child measured fifteen lines that were not a whole number of units 

long, and their reports of these measurements were expected to give evidence of such 

difficulty. 

When children ignored fractional units, they either reported whole numbers, or no 

numerical measurement at all, simply reiterating that a line was shorter, longer, or the 

same length as the number of units mentioned by the experimenter. 

When children did acknowledge fractional units, they did so in a number of ways that 

included mention of halves and quarters; mention of a number of units additional to cm, 

sometimes implicitly, such as five and three (5cm and 3mm); numerical allusions to 

subdivisions on the ruler and tape such as ...and two little lines or five points before 

twelve; and expressions that could not be interpreted numerically, such as nearly six or 

twelve and a bit. Sometimes an expression mixed these categories, such as four and a 

half and two millimetres (see Appendix 3). Table 6.07 shows acknowledgment of 

fractional units however acknowledged. It can be seen that that no child acknowledged 

fractional units on more than twelve occasions out of a possible fifteen, while 

approximately half the children in Years 2 and 3 did so less than fifty per cent of the 

time. Only one child in Year 1 acknowledged fractional units on more than fifty per 

cent of possible occasions, and more than half never acknowledged them. 

Table 6.07 Number of children in each year-group acknowledging fractional units. 

Year 13 to 15 8 to 12 1 to 7 None N 

1 0 1 10 14 25 

2 0 10 12 1 23 

3 0 14 13 1 28 

Total 0 25 35 16 76 
Note: acknowledgements out of a possible 15 

Evidence of adjustment of starting point 

If children dislike dealing with fractional units, it is likely that they will take measures 

to avoid having to do so. In the present research, where children using the ruler and tape 

were often observed to make several changes of starting point before settling on one, 

195 



and where their final decisions represented a wide variety of starting points, it seemed a 

reasonable hypothesis that a starting point might be selected with a view to avoiding 

fractional units. To test this, an examination was made of the measurement of certain 

lines. These were lines that involved fractional units, but would enable a whole number 

of units to be reported if, when measuring, an adjustment of 0.5 cm were made from the 

correct starting point. The result was compared with the outcome of measuring those 

lines that also involved fractional units, but where a whole number would not be the 

outcome if the half-centimetre adjustment were made. The half-centimetre adjustment 

was chosen because as a fraction it was familiar to the children, and thus likely to attract 

them, and because half-cm were easily visible on the ruler and tape. 

Inspection of Table 6.01 shows that (a) if line 3 in the purple set and line 5 in the black 

set were measured from -0.5 cm or from 0.5 cm on the ruler or tape, a whole number 

could be reported (11 or 12 cm in the first case and 18 or 19 cm in the second). By 

contrast, (b), if line 3 or line 5 in the red set, or line 5 in the purple set were measured 

from -0.5 cm or from 0.5 cm, this would not enable a child to report a whole number. 

(The total number of measurements in (a) and (b) above is therefore ten). 

The number of starting points from -0.5 cm or from 0.5 cm for (a) and for (b) were 

calculated. In Year 3, on average, 22% of children adjusted their starting point by half a 

centimetre when this would allow them to report a whole number (a), compared with 

13% when it would not (b). In Year 2 the averages were 26% and 13% respectively, and 

in Year 1, 22% and 23%. The difference (calculated on counts of those children giving 

the two responses for the ten measurements) was significant for Year 2 (t = 2.48, df = 8, 

p = .04). These data provide some indication that in Years 2 and 3, some choice of 

incorrect starting points may have been motivated by the desire to avoid fractional units. 

This is supported by the very similar proportions for (a) and (b) in Year 1, where 

children's very poor measurement performance would not suggest any strategy at all in 

their measuring behaviour. 

Other evidence 

A second source of evidence was offered by those instances where children, measuring 

with the ruler or the tape, declined to report a numerical measurement, and either said 

they did not know how long the line was, or simply reiterated that the line was longer, 

shorter, or the same length as the number of units mentioned by the experimenter. By all 

three year-groups, significantly more non-numerical responses were made for lines that 

incorporated fractional units than for lines that were a whole number of units in length. 
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In Year 3, an average of 14% of responses on lines incorporating fractional units gave 

no numerical measurement, compared with 7% on lines that were a whole number of 

units in length (t = 2.20, df = 11, p < .01); in Year 2 the corresponding averages were 

21% and 13% ; (t = 2.13, df = 15, p = .03); and in Year 1 they were 34% and 22% (t = 

2.14, df = 14, p = .02). These figures, including a particularly high proportion in Year 

1, suggest that some children may have 'played safe' by declining to give a numerical 

measurement when confronted with fractional units that they did not know how to 

report. The fact that this tendency lessened in successive year-groups supports this 

interpretation, since it is likely that older children had more resources they could call 

upon to help them report fractional units. 

6.4 Discussion 

6.4.1 Main finding 

Overall, the children's measuring ability was found to be poor, with little improvement 

from year-group to year-group except when measuring with the ruler. 

6.4.2 Understanding of the term 'measurement' 

It is worthy of comment that when handed a collection of cubes, a ruler or a tape 

measure, and asked to measure a line, only four children in the entire sample ever 

showed themselves at a loss as to what to do. With these exceptions (all in Year 1) 

every child aligned cubes, ruler or tape in the same plane as the line to be measured, and 

whichever starting point was used on the device, usually began their measurement at the 

left-hand end of the line. (The exception was measurement with cubes, where cubes 

might be stacked at various positions on the line before being moved to the left-hand 

end.) Although some children struggled with the measurement device, none asked for 

help. So children knew what measuring looked like, and were confident in undertaking 

it. Their measuring ability, however, was poor. 

6.4.2 Declining to report a numerical measurement 

Although very few children declared any difficulty when they were asked to measure, 

there was a substantial number of measurements where there was no numerical 

response. This was true of just over one-third of measurements in Year 1, one-fifth in 

Year 2, and 16% in Year 3. It has been argued that a proportion of these non-numerical 

responses may have been due to a desire to avoid dealing with fractional units. This 
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desire, however, if present, may have been just one aspect of a general lack of 

confidence that developed only as a child became fully involved in the measuring 

operation, and their lack of hesitation when asked to measure may itself have been one 

index of their lack of understanding of what was entailed in measurement. 

6.4.3 Success in measuring lines of differing lengths 

It had been expected that the shortest lines (red set) would be better measured than the 

longest (black set) because correct handling of the measuring devices would be more 

demanding when measuring longer lines. This did not occur. Instead, on average, there 

was no difference in the degree of correct measurement of the longest and shortest sets 

of lines, and both were better measured by all year-groups than lines of medium length 

(purple set) (although the difference was smaller for Year 1). It is possible that red lines 

were better measured simply because they were shorter, while black lines, especially for 

Years 2 and 3, drew out the children's better efforts because they were visibly more 

challenging. This difference should be set in the context of poor measurement 

performance overall, however, where accuracy was nearly always below fifty per cent. 

6.4.4 Measuring with cubes 

In the great majority of measurements using cubes, with little difference between year-

groups, children correctly aligned the first cube with the end of the line to be measured. 

However, there was poor consistency in ensuring that the length of the line to be 

measured was matched by the joint length of the cubes used to measure it. That is, the 

conservation of length essential to measurement was poorly observed. Though more 

than half the children in each year-group did frequently remove gaps in the line of 

cubes, ensure that the line was straight, and restore proper alignment if the cubes 

moved, no more than five children in each class invariably did so. In this, the older 

children were no better than the younger overall (Table 6.03). Children in Year 2 and 

Year 3 were, however, less careful in placing their cubes when there were eighteen or 

more cubes to be placed (lines in the black set), than when only five were needed, 

whereas for children in Year 1 there was no difference. This suggested that older 

children did understand what was needed, but became bored, or their concentration 

lapsed, during the lengthier task, whereas children in Year 1 either found it hard to 

manipulate even five cubes with the care required, or did not see the need for care. 
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However, even when they had only five cubes to attend to, children in Years 2 and 3 

failed to take all necessary care with about a quarter of their measurements. It is not 

possible to say, however, whether measurement with cubes was simply not perceived by 

older children as a task worthy of their best efforts, or whether they really did not under-

stand the principle of conservation of length as it applied in this measurement task. 

The practice of covering the line to be measured with the measuring device, such that 

the length of the line could not be viewed, is puzzling. Cubes were often stacked on the 

line, rather than parallel to and in contact with it. Table 6.04 shows that the great 

majority of children always or sometimes obscured the line in this way, and that the 

older children did this just as often as the younger. This practice bore no discernible 

relation to how well the cubes were handled in other respects; for example children who 

had laid cubes with great care might then have to lift the outermost ones to determine 

the whereabouts of the ends of the lines. It was as if the idea that two lengths could be 

equivalent was not fully accepted, and that instead, the children were trying to unify the 

length to be measured with the instrument used to measure it. This suggests that the idea 

that measurement is about equivalence between a number of units and the length of an 

item being measured was not really understood. A general argument could of course be 

made that we expect inappropriate behaviour where an activity seems without purpose, 

and that the children could not see the purpose of measuring lines. However, children 

had, during their interviews, given plenty of reasons for measurement in everyday life at 

home that seemed good to them. They knew that, when they were asked to measure the 

lines, the experimenter wanted to know how well they measured, and their confidence 

in going about the task did not suggest that they found it meaningless or puzzling. 

The correct starting point was selected much more often for the cubes than for the ruler 

or tape measure. However, in view of the inefficiency of other strategies for deployment 

of the cubes discussed above, it may be that to call the placing of the first cube exactly 

at the end of the line 'correct alignment for measurement' may be to over-interpret a 

simple act of matching. 

Correct numerical measurements with cubes were on average less than 25% across year-

groups and only at 25% for children in Year 3 (Table 6.06). Although subdivisions were 

not available on the cubes to help children meet the criterion of accuracy to within 

2.5mm, older children used the terms a quarter, half and three-quarters on many 

occasions during the research, and use of one of these terms would have satisfied the 2.5 

mm criterion for any of the lines measured (Table 6.01), so that lack of subdivisions on 
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the cubes was not an insuperable obstacle to accurate measurement. Overall, poor 

numerical measurement with cubes seems to have been due to failure to marshal 

consistently the various skills involved, but there is evidence, too, of lack of 

understanding of underlying principles. 

Children were scored for the correctness of their comparisons, irrespective of the 

correctness of the numerical measurements on which they were based. To be successful, 

children had to make a mental comparison of two numerical quantities and convert the 

result into a comparative judgment. This was not, on the face of it, a difficult task, and 

yet on average only 45% of children overall made the judgement correctly, and only 

47% of children in Year 3 did so (Table 6.05). Absolute judgements are known to be 

more difficult for children than relative judgements (Bryant, 1974), and here children 

were asked to compare two sets of units expressed as absolute numbers to produce a 

relative judgement (shorter or longer), so perhaps the task was rather more difficult 

than it appeared. However, it is also possible that some children had not thought of the 

numbers they were considering as units of length; that is, they knew that one of the 

numbers was larger than the other but were confused as to what this implied about 

length. If this is what happened, it contributes to the picture of confusion about basic 

aspects of measurement. 

6.4.5 Measuring with the ruler 

Children in Year 1 clearly had very little idea about how to measure with a ruler, with 

an average of only 13% correct starting points. On average, over half the measurements 

were made from the correct starting point in Year 2, and over two-thirds in Year 3, 

(although there was no significant difference between these two year-groups). Of the 

three devices, only the ruler showed much improvement in use of the correct starting 

point after Year 1, strongly suggesting that greater familiarity and frequency of use of 

the ruler in later school years accounted for improvements, especially as the ruler used 

in the study was of the type most commonly used in the school. 

Several specific starting points other than the zero position on the scale were favoured 

when children measured with the ruler, indicated in Table 6.04. The most commonly 

chosen starting point other than the correct one for children in Years 2 and 3 was the 1 

cm mark, indicating lack of understanding that numbers on a ruler label units of length 

on the device. 

More than a quarter of the children sometimes measured from the 0.5 cm mark. Half-

centimetres were marked with a longer line than the 1 mm lines, so these were 
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prominent divisions on the ruler, and this was the first such line. It is difficult to see 

why this starting point should be attractive, although some evidence was found that 

avoiding fractional units may have been implicated on some occasions. Four children 

sometimes found on the ruler the number of units (5, 12 or 19) mentioned by the 

experimenter and aligned this mark at the start of the line to be measured; this happened 

more frequently when the tape was used. It suggests considerable confusion, with 

children simply making use of a number they knew to be relevant in some way. 

As Table 6.02 shows, very few children consistently used a single starting point for all 

nine measurements and between 11 and 15 children in each year-group used a variety of 

starting points that were not among the most favoured. This variety must indicate that 

they had no settled principle for the use of the ruler. A hypothesis that children adjusted 

their starting point so as to avoid dealing with fractional units was tested and evidence 

was found that this might have happened in some cases. 

Table 6.02 does however show that children in Years 2 and 3 made a larger number of 

measurements from the zero mark on the ruler scale than from other marks, and 

although it could be argued that only complete consistency would indicate 

understanding of the principle of measuring from the start of the scale, increasing use of 

the zero mark must at the very least indicate that a preference was being established, 

probably as a result of instruction and increasing practice in measuring with a ruler. 

Given the frequency of measurement from incorrect starting points, considerable 

inaccuracy in reported measurements was to be expected, and as Table 6.06 shows, 

measurements that were correct by the 2.5 mm criterion ranged from 13% in Year 1 to 

only 51% in Year 3, with no significant difference in accuracy between Years 2 and 3. 

Also contributing to the low level of accuracy were failure to offer a numerical 

measurement when invited to do so, and reporting whole numbers when confronted 

with fractional units. Table 6.07 shows that no children consistently reported fractional 

units when appropriate, and nearly half the children in Year 2 and Year 3 did so on less 

than half the possible occasions. There is evidence that these three causes of error may 

have been interrelated. That is, on some occasions children may have adjusted their 

starting points to avoid dealing with fractional units, and may have inappropriately 

reported whole numbers for the same reason. 

Nevertheless, only when measuring with the ruler were children in the older year-

groups appreciably more accurate than children in Year 1 (Figure 6.03). This suggests 

that increased experience in measuring with the ruler as well as increased instruction 

201 



results in improvement. However, the much smaller extent to which children in the 

older year-groups were more accurate with the cubes or the tape measure than children 

in Year 1 suggests that any knowledge of measurement gained from practice with the 

ruler was not generalised to other devices. 

For children in Years 2 and 3, comparisons using the ruler were significantly better than 

those using the tape or cubes. However, there was no significant difference in 

correctness between tape and cubes, and none for children in Year 1 between any of the 

devices. Speculation in the literature (Petitto, 1990; Piaget et al., 1960) that separate 

units may differ in their difficulty for children from scaled measuring devices thus 

received no support from this research. 

It will be recalled that correctness of the comparisons was assessed independently of 

correctness of numerical measurements. For cubes and tape, correctness of the 

comparisons was on average 45% to 50%, and differed little between year-groups, or 

between the two devices. It has already been suggested that this uniformly poor 

performance of a relatively simple task may have been due to children's difficulties in 

associating the numbers they saw on the device and heard from the experimenter with 

the judgments of length they were asked to make. If older children were no better than 

younger in making this association where cubes and tape were concerned, there is no 

obvious reason why they should have been better with the ruler. It seems that greater 

familiarity with the ruler must have facilitated this outcome with the older children, but 

it is not clear by what mechanism this could have happened. 

6.4.6 Measuring with the tape 

No more than one third of measurements with the tape were made from the correct 

starting point on the scale, and in this there were no significant differences between 

year-groups. Considering that the scale started at the end of the tape, so that only 

matching this to the end of the line was required for success, this result was surprising, 

and suggested that, even though many had said at interview that they had seen tape 

measures used at home, few had used one much themselves. The way in which the end 

of the tape was sealed with a flat semi-circular stud which projected some way towards 

the 1 cm mark, may for some have proved a distraction. About half the children in each 

year-group sometimes measured from near the 0.5 cm position (Table 6.02). 

Approximately the same number of children sometimes measured from the 1 cm mark 

with the tape as with the ruler, but a greater number than with the ruler — fourteen —

sometimes began their measurement from the 5, 12 or 19 cm mark. If this type of choice 
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did indicate real confusion, then it is understandable that this would have been greater 

with the unfamiliar tape than with the ruler. Children sometimes covered the line to be 

measured with the tape, as they did with the cubes, so that the line they were measuring 

was not visible to them, but in the case of the tape, this behaviour was practically 

confined to Year 1. 

Mean correct numerical measurements with the tape were very low and reached 25% 

only in Year 3, with no significant difference between Years 2 and 3. As already 

suggested, the desire to avoid fractional units (data for ruler and tape were combined to 

investigate this) may have contributed to this lack of success. 

Not surprisingly, Year 1 children were at sea when handling the tape, finding its length 

and lack of rigidity very difficult to handle, and sometimes seemingly preoccupied by 

the long series of numerals printed on it. Children in Year 2 and especially Year 3, 

however, manipulated the tape better and might have been expected to be able to use of 

knowledge of the ruler and its scale in measuring with the tape. This did not occur. 

Comparisons using the tape were about 50% correct, did not differ significantly from 

correct comparisons for cubes, or (like cubes) among year-groups. As with cubes, this 

surprisingly poor performance of an apparently simple task is hard to explain for the 

older children, except by some degree of dissociation between numbered units on the 

tape and the notion of length. 

When, in making their comparisons, children were asked to convert an absolute 

judgement (their measurement in units) to a relative judgement, (that is, whether the line 

was shorter, longer or the same length as a number of units mentioned by the 

experimenter) no more than half did so successfully. Yet the reverse procedure 

(reported in Chapter 5) — responding in relative terms when a specific number of units 

was mentioned — showed a very high success rate. This seems to be a case, seen so often 

in the literature, of sensitivity to the exact form of the task. Apparent similarity of 

cognitive demand does not necessarily predict performance. 

Practice in measuring with the ruler (as suggested above) and not sheer familiarity with 

it as a 'cultural tool' seems likely to have accounted for the improved performance over 

the others of the oldest year-group; the difficulty of coping with its numbering and 

subdivisions produced poor results even with Year 3. 

Units of length are similarly represented on tape measures and rulers. It might be 

expected that children who have practiced measuring with a ruler will make use of this 
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knowledge when asked to measure with a tape measure, with which they have had less 

practice. The fact that accuracy with the tape measure was so poor indicates that if there 

was any transfer of knowledge, its effect was slight. 
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Chapter 7 

Associations between measurement and measurement- 
related abilities 

7.1 Introduction 

The overall structure of the research reported in Chapters 4 to 6 was informed by the 

logical relationship between measurement and measurement-related concepts. Thus the 

language and concepts of ordinal comparisons of length (Chapter 4) logically underpin 

estimation of ordinal length (Chapter 5), while ordinal comparisons underpin 

measurement involving units (Chapter 6). An important outstanding question, however, 

was whether the corresponding language, estimation and measurement abilities 

supported each other psychologically. 

To help understand this, statistical tests of association between the outcomes of the 

three sets of tasks (reported respectively in Chapters 4, 5 and 6) were conducted. It will 

be recalled that these tasks tested a) children's understanding of terms used to describe 

ordinal length (such as shorter, widest, as tall as) together with the concepts such 

language expressed (Chapter 4); b) their success in estimating whether lines were 

shorter, longer, or the same length as various comparators, such as a number of cubes, 

or a number of cm on a ruler (Chapter 5); and c) their measurement ability (Chapter 6). 

Measurement ability was tested in two ways, reported in Chapter 6 as 'comparisons' 

and 'numerical measurement'. In their comparisons, after measuring a line in units, 

children were asked to say whether that line was shorter, longer, or of the same length 

as a number of units mentioned by the experimenter (that is, to compare their 

measurement with the number of units mentioned). In their numerical measurements, 

they were asked, as an absolute judgement, how long (in units) the line they had 

measured actually was. Comparisons were thus logically dependent on numerical 

measurement. Because of the logical priority of numerical measurement, and because 

the absolute judgments it called for are the typical outcome of measurement, only the 

numerical measurement scores were used in the tests of association. 

Several subsets among the tasks were of particular interest in exploring associations. 

The 'complex' language tasks in Chapter 4 constituted one such subset, because they 

were at the same time tests of conservation of length (see the description in Chapter 4). 

It had been noted that, since Piaget, the literature had not given the central place to the 

psychological relationship between conservation of length and measurement concepts 
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that their logical relationship merited. Association between performance on complex 

language tasks and that on numerical measurement was therefore investigated. 

Wherever feasible, in the remainder of this chapter, the phrase 'the language and 

concepts of ordinal length' will be shortened to language'; 'visual estimation of ordinal 

length' will be shortened to 'estimation'; and 'numerical measurement' will be 

shortened to 'measurement'. 

7.2 Method 

Sample 

The complete data required for correlational analysis were available for 68 children: 

twenty-one in Year 1; twenty-one in Year 2; and twenty-six in Year 3. 

7.2.1 Internal reliability testing 

Valid statistical comparisons could be made only where performance on each series of 

tasks could be assumed to reflect a coherent set of competencies in those performing 

them. It will be recalled that, so as to assess generality of understanding, the variety of 

materials employed had been wide, and it was possible that this variety affected the 

extent to which the tasks within a series tapped similar competencies. Internal reliability 

was therefore computed separately for scores on the tasks reported in Chapter 4 

(language); Chapter 5 (estimation); and Chapter 6 (measurement). For this purpose, 

each child's mean score across a) all language tasks, b) all estimation tasks and c) all 

numerical measurement tasks were calculated and used to calculate Cronbach's alpha. 

Acceptable alpha values (a (language) = .85; a (estimation) = .73; a (numerical 

measurement) = .76) were obtained for the three sets of tasks. It would have been 

interesting to explore correlations between performance in estimation and measurement 

tasks further for the individual measuring devices (ruler, cubes and tape measure). 

However, the outcomes of these three subsets of tasks did not achieve acceptable alpha 

values (perhaps because the means were of smaller numbers of scores) and so were not 

subjected to tests of association. 

Next, each child's mean score across 'complex' language tasks (those constituting tests 

of conservation of length) were used to calculate a, and achieved a satisfactory value (a 

= .82). 
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Correlations were thus examined among scores for language, estimation and numerical 

measurement. Scores just for 'complex' language tasks were examined for correlation 

with those for numerical measurement. Association of scores for language, estimation 

and numerical measurement with children's ages was also explored. 

7.2.2 Correlations 

Language, estimation and measurement scores were first examined for correlation with 

the children's ages at the date on which each child undertook the relevant tasks. 

Pairwise correlations of scores for language/estimation, language/measurement and 

estimation/measurement were then conducted. 

7.3 Results 

7.3.1 Age 

With all year-groups included, there was a moderate, positive, significant correlation of 

age with language scores (r (66) = .46; p < .01). The same was true, to a lesser extent, of 

measurement (r (66) = .36; p = .01). Estimation scores showed a weak, non-significant 

association with age (r (66) = .22; p = .07). The same calculations performed within 

each year-group with language, measurement and estimation showed for all three 

variables very weak (r < .2), non-significant associations with age. 

7.3.2 Language/ Estimation 

The associations between children's language and estimation scores are plotted in 

7.01A. It can be seen that the scores from the three year-groups overlapped 

substantially, and for children in all three years, there was a wide range of scores for 

both abilities. For the combined data set (all three year-groups) the correlation between 

language and estimation was r (66) = .33, p < .01. There was a somewhat weaker partial 

correlation when age was controlled for; this was weaker still, and just missed 

significance (p = .052), when both age and measurement were controlled for (Table 

7.01). The correlations were repeated separately for the three year-groups. For Years 2 

and 3 there were only very weak, non-significant zero-order associations that changed 

little when age and measurement were controlled for. In contrast, in Year 1 there was a 

strong and highly significant association almost unaffected by age or measurement 

(Table 7.01). This indicated a close association between understanding the everyday 

language and concepts of length and the ability to make visual estimations, limited to 

five to six-year-olds. 
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Figure 7.01 Scatterplots of children's scores for language against estimation (A); for 
language against measurement (B); and for estimation against measurement (C). 
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7.3.3 Language/ Numerical measurement 

The associations between children's language and measurement scores are plotted in 

Figure 7.01B. Substantial overlap between the scores of the three year-groups can again 

be seen. For the combined data set (all three year-groups) the correlation between 
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Table 7.01 Pearson's coefficients for zero order and partial correlations among a) 
language of ordinal length, b) visual estimation of ordinal length and c) numerical 
measurement. 

Variables controlled for All Y1 Y2 Y3 

Estimation 
Language 

All 
None 
Age 

Age and measurement 

.33** 
.28* 
.24 

Year 1 
None 
Age 

Age and measurement 

.72** 
.71* 
.70* 

Year 2 
None 
Age 

Age and measurement 

.11 

.09 
-.04 

Year 3 
None 
Age 

Age and measurement 

-.15 
-.13 
-.17 

Measurement 
Language 

All 
None 
Age 

Age and estimation 

.30* 
.15 
.06 

Year 1 
None 
Age 

Age and estimation 

.12 

.15 
-.06 

Year 2 
None 
Age 

Age and estimation 

.23 

.22 

.21 

Year 3 
None 
Age 

Age and estimation 

.05 

.12 

.16 
Estimation 

All 
None 
Age 

Age and language 

.39** 

.35** 

.33** 

Year 1 
None 
Age 

Age and language 

.22 

.27 

.24 

Year 2 
None 
Age 

Age and language 

.54* 

.55* 

.54* 

Year 3 
None 
Age 

Age and language 

.26 

.25 

.27 

*p<.05; **p.01 

Note 1. In partial correlations, coefficients are shown with i) age controlled for and ii) age and the third 
variable controlled for. 
Note 2. Coefficients are given for the whole sample N= 68) and separately for the three year-groups (Y1, 
N=21; Y2, N=21; Y3, N=26). 
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language and measurement was r (66) = .30, p = .01. Re-calculation controlling first for 

age and then for age and estimation, however, revealed only very weak non-significant 

associations between language and measurement (Table 7.01). The partial correlations 

were repeated for the three year-groups separately and were, at best, weak. None were 

significant (Table 7.01). 

7.3.4 Measurement/ Estimation 

The associations between children's measurement and estimation scores are plotted in 

Figure 7.01C, where a positive relation between measurement and estimation scores is 

evident. There is again no clear differentiation among the three year-groups as their 

ranges of abilities overlap considerably. For the combined data set the correlation 

between measurement and estimation was r (66) = .39, p < .01. This correlation 

remained modest and highly significant when recalculated controlling for age, and then 

for age and language (Table 7.01). The partial correlations were repeated separately for 

the three year-groups. For Years 1 and 3 there was only a weak non-significant 

association between measurement and estimation when controlling for age and then for 

language and age. However, in Year 2 there was a moderate, positive, significant 

association (Table 7.01). 

7.3.5 Complex language tasks/numerical measurement 

There were only very weak, non-significant correlations between complex language 

tasks and numerical measurement both overall, and for any year-group, with or without 

controlling for age. (In the zero order correlations, r < .2 except for Year 2 where 

r = .27). 

7.4 Discussion 

Previous chapters showed that, overall, children had good understanding of everyday 

language and concepts of measurement; that their visual estimation ability was good; 

but that their measurement ability was poor. In relation to some aspects of their 

performance there was substantial variation within year-groups; analysis of variance 

showed, however, that there was typically an overall improvement between Years 1 and 

3. 
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7.4.1 Correlations with age 

Across the whole sample, correlations performed for the three types of ability with 

children's age showed a moderate association with language scores and a more modest 

association with measurement scores. There was however no significant association of 

age with estimation scores, despite the fact that analysis of variance had identified a 

significantly higher mean score for estimation in Year 3 than in Year 1. This effect was 

explained by the great variation in ability across the year-groups. 

When correlations of the language, estimation and measurement scores with children's 

age were performed separately for the three year-groups, there were no significant 

associations. Thus, despite an overall association of language and measurement scores 

with age, within each year-group older children were no more successful than younger 

and a wide range of language and measurement proficiency was indicated. So for these 

two abilities, improvement was not so much age-related as year-group related, 

suggesting, as one would expect, an effect of teaching and of (perhaps cohort-specific) 

life experience. 

7.4.2 Correlations among language, estimation and measurement scores. 

There were modest, positive associations among language, estimation and measurement 

scores. However when age and the third factor were controlled for, only measurement 

and estimation scores were significantly correlated, and then only modestly. There was 

no significant association between language and measurement, either overall, or for any 

year-group, suggesting that language ability in itself had little bearing on measurement 

ability. There was, however, a strong positive correlation of language with estimation 

ability that was confined to Year 1, and a moderate positive correlation of estimation 

ability with measurement ability confined to Year 2 (Table 7.01). This suggested a 

ladder effect, whereby a degree of proficiency with the everyday language and concepts 

of measurement supported ability in estimation of ordinal length in Year 1, and 

proficiency in estimation supported measurement ability in Year 2, (although it is 

possible that the direction of support was from measurement to estimation in Year 2: 

this is discussed later). These suggestions are now further explored. 

For Year 1, the strong association between understanding of language on the one hand, 

and estimation ability on the other constituted the lower rung of the ladder: these 

abilities were not associated for Years 2 and 3. Both sets of tasks involved ordinal 

judgements and used questions of a similar structure, but in the language tasks, children 

saw a wide range of everyday materials, and had to respond to a much broader range of 
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`length' vocabulary than was employed in the estimation tasks. In the latter, while 

language and materials were more restricted, the tasks themselves were more 

demanding, using many lines of different lengths, different types of comparator, and 

involving units. It seemed that for the youngest group of children, the highly-structured 

language tasks (reinforced by the extent to which they made ordinal comparisons 

routinely in everyday life) did tap abilities which supported the more demanding 

comparisons required by the estimation tasks, and that this support was no longer 

needed by children from the two older year-groups for whom language and estimation 

abilities were by then independent. 

When it came to associations between the ability to make ordinal estimations of length 

and measurement ability, none were significant except for Year 2, where there was a 

moderate positive correlation. This effect constituted the upper rung of the ladder, 

whereby ordinal estimation supported numerical measurement. 

At least two interpretations are possible as to the direction of the effect. The first is that 

logical order was the most influential factor: ordinal comparisons underpin 

measurement with units. According to this interpretation, in Year 2 the extent to which 

children made correct estimations supported their measurement ability, while by Year 3, 

this effect was complete, and the two abilities were independent. In Year 1, 

measurement ability was at too low a level to benefit from any such support. 

The second possibility was that improvements in measurement drove improvements in 

estimation in Year 2, facilitated by overall improvements in arithmetical skills feeding 

into measurement practices. Incidental evidence of arithmetic skills being deployed in 

classroom measurement activities was given in Interview 1. The argument would be that 

by Year 3, measurement and arithmetic skills were developing independently, and that 

in Year 1, children were at too early a stage in both skills for either to support the other. 

That measurement could be supporting estimation looks implausible, however, in the 

light of very good scores for estimation, contrasting with very poor scores for 

measurement in all year-groups. 

The 'ladder' remains a hypothesis, since the abilities featuring in it may in fact be 

independent of each other, or accounted for by other factors, and this is a third 

possibility. Nevertheless, the design of the research incorporated the idea that language 

was likely to underpin estimation, and estimation likely to underpin measurement, 

psychologically as well as logically, so that it is a persuasive hypothesis. 
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The correlational pattern overall provides a rich basis for reflection on how the 

curricular arrangement of topics leading up to measurement might best be organized, 

and on how judicious selection of language and materials can support the logical 

transitions children need to make. 

Surprisingly, no association was found between ability in the 'complex' language tasks 

(which were also conservation tasks) and numerical measurement, despite the logical 

relationship between conservation of length and the ability to measure. However, there 

was a high level of success on the part of all year-groups in the language tasks, 

suggesting that most children had surpassed the conceptual requirements of 

conservation (as measured by these traditional tasks) that were needed for measurement, 

and this probably explained the lack of association. The finding leaves unexplained, 

however, examples of non-conservation of length in relation specifically to 

measurement identified in surveys (e.g. Hart 2004; Department of Education and 

Science 1981) and in the present research. This is considered further in the Discussion 

chapter. 

213 



Chapter 8 

Discussion 

8.1 Introduction 

The present research investigated children's ability in measurement and its allied 

competences. Studies reviewed in Chapter 1 provided valuable but very various insights 

into this ability. In consideration of this, the present research restricted itself to an 

integrated set of tasks designed to assess basic measurement and measurement-related 

abilities and offered to the same group of children. The research investigated the 

children's understanding of the everyday language and concepts of length, their ability 

to estimate ordinal length, and their ability to measure in units. The same experimental 

tasks were suitable for three successive primary school year-groups and enabled 

comparison of their abilities. The fact that a single sample of children participated 

enabled exploration of how these abilities might be associated. To help understand how 

the abilities were acquired, the research also investigated the children's own accounts of 

the home and school contexts in which they experienced measurement. The results of 

each interview and each series of tasks were discussed in Chapters 3 to 7. The present 

chapter identifies and discusses the findings that were judged to be the most important. 

It does so in relation to the research questions and key theoretical themes summarised at 

the end of Chapter 1, and to the literature reviewed in that chapter. It also indicates how 

future investigation could be taken forward, and considers some classroom implications 

of the present findings. 

The most important findings of this research were all, as it happened, somewhat 

unexpected, particularly when considered together. Firstly, children turned out to be 

poor measurers. Secondly, and in contrast, they showed very good ability in several 

competences that logically underpin measurement, and might have been expected to 

support it. Thirdly, performance in these underpinning competences was unexpectedly 

and extraordinarily robust. It varied little across many different tasks indicating, to this 

extent, conceptual security. Fourthly, while the children's understanding of 

measurement did not mature with age and two to three years of schooling to anything 

like the extent that might have been expected, there was nevertheless evidence of a 

developmental process from the underpinning competences to measurement itself. 

Finally, the influence of 'real life' experience on understanding of measurement was 
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mixed. On balance, there were probably more ways in which it hindered than helped. 

Each of these findings is discussed below. 

8.2 Main findings 

8.2.1 Children as measurers 

Children in this research measured surprisingly poorly. Those in Years 2 and 3 

measured better with the ruler than with the other two devices, but even in these year-

groups only about half these measurements were correct by the criterion set. While the 

immediate causes of the children's poor performance, as observed, arose from their 

handling of the measuring devices, these procedural errors suggested conceptual 

difficulties. Firstly, children were notably inconsistent in their choice of starting point 

on the ruler or tape to begin their measurement. This suggested no settled idea (whether 

correct or incorrect) about the relationship of units on these instruments to the length to 

be measured. Secondly, supporting evidence for the frailty of this understanding came 

from the way in which children often covered the line to be measured with a device, so 

that matching units on the device to the length to be measured could not be achieved. 

Having noticed that matching could not be achieved, children did not change their 

strategy. This suggested that the idea of equivalence between the units of length shown 

on the device and the length measured, if this idea existed, was overtaken by the 

inclination to create a single length by superimposition. Operational transitive inference 

seemed to be lacking here. Thirdly, there was the opinion of some of the older children 

in the second interview, that the ruler could not measure an item longer than itself. Half 

the children expressing this opinion could not suggest a way of dealing with the 

situation that involved using the ruler to add more units (cf. Brown et al., 1995). The 

units were not, seemingly, 'detachable' from the ruler that embodied them. 

The subdivisions on the ruler appeared, as predicted, to be a source of difficulty, when 

these were required to measure a line that was not a whole number of units long. This 

difficulty was reflected in children often apparently choosing not to give a numerical 

measurement at all, or to state a number of whole units, when fractional units were 

involved. 

When the cubes were used as units, the failure of many children to be consistent in 

closing up the gaps between them similarly suggested lack of understanding that 

equivalence between the length of the line of cubes and the length to be measured was 

essential. It seems fair to describe this as failure to conserve length, not as in traditional 

conservation tasks, but in the 'applied' sense exemplified in surveys of performance in 
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mathematics and science. Thus, in one survey, children failed to mark the start point of 

a clockwork toy when measuring the distance it travelled (Department of Education and 

Science, 1981). In another, children were asked to compare the length of parallel lines 

drawn on squared paper. Because the ends of the lines were offset, direct comparison of 

the two lines was impossible, but still it did not occur to some children to count the 

number of squares crossed by each line. The line lengths were compared visually, and 

errors resulted (Hart, 2004). As in the failure to place cubes correctly (in the present 

research), these are examples of non-conservation of length in practical contexts. 

Measurements with the cubes and tape measure were performed equally poorly, and 

were worse performed than those using the ruler. This provided no support for the view 

that continuous scales (represented by the tape measure and ruler) would make the 

meaning of units more difficult to grasp than discrete units (the cubes) (Piaget et al., 

1960), or indeed for the reverse view (Petitto, 1990). It also suggested that children 

could not make use of conceptual knowledge they may have gained through practice 

with the ruler when it came to dealing with the units embodied in the other devices. The 

notion of functional fixedness (Casler & Kelemen 2005; Miller 1989) whereby the 

function of a tool, learned as a social norm (Rakoczy, Hamann, Warneken & Tomasello, 

2010) may for that very reason obstruct full understanding of its properties and their 

`portability' to other contexts, seems to apply here. The deployment of the calculator in 

the classroom (where the nature of the tool might invite greater flexibility) has 

encountered similar problems (Guin & Trouche, 1999). Even where the far richer 

resources of computer environments have been developed, as tools, specifically to 

instantiate mathematical principles (Noss & Hoyles, 1992), it has not always been clear 

to the developers whether children participating in the computer activities have 

understood those activities as mathematically structured. 

The idea, therefore, that conventional measurement instruments, as 'cultural tools' with 

which children are familiar, may both assist them to measure correctly and also support 

their acquisition of underlying logical principles (Nunes et al., 1993) receives little 

support from the present research. The first interview showed the measuring tape to be 

very familiar from out-of-school contexts, but this did not help children use it correctly 

when measuring. While performance with the familiar ruler was better among the older 

children with longer experience of using it than among the younger children, its 

subdivisions seemed to be avoided by many. In the second interview, the fact that the 

greater numbers on the ruler were displayed in conjunction with the smaller units 
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seemed to disrupt any understanding that there is an inverse relation between size and 

number of units. In this case, the physical appearance of the measuring instrument, for 

all its familiarity, actually obstructed understanding of the concepts it embodied. These 

findings suggest that basic ideas (such as the fact that larger numbers do not necessarily 

indicate greater amount) should be explicitly taught and exemplified, and that the 

benefits of familiarity cannot be taken for granted. Teaching of measurement may, for 

example, profit from being routinely supported at first by simplified, if unfamiliar, 

devices such as rulers marked with units that are not subdivided or numbered. Children 

would then need to rely on counting the number of units that were equal to the length to 

be measured. The marking of numerals on the ruler could then be introduced and 

explained as a check on the counting of units, and in due course the conventional use of 

numerals on rulers could be presented in the light of a convenience for measurers. 

Evidence of conceptual difficulties about the relationship between number and quantity 

came from children's 'comparisons', in which less than half the responses were correct, 

even in Year 3. When children had measured a line and declared what they took to be its 

length as a number (with or without mentioning units), they were asked whether the line 

was therefore shorter, longer, or the same length as a 'reference' number of units 

mentioned by the experimenter. It was this comparison of two numbers that was so 

poorly performed. On the reasonable assumption that most of the children were easily 

able to tell which was the greater of two numbers under twenty (20 cm being the 

maximum length of a line and 19 cm the largest 'reference' number), it must have been 

uncertainty about how these numbers mapped on to the physical length of a line 

(enabling them to say which of two lines was, for example, shorter) that led to errors. 

Finally, and most strikingly, there was clear evidence from the second interview that at 

least one-third even of the older children did not understand that there is an inverse 

relation between the size and number of units required to measure a given length. This 

simple and fundamental principle of the proportional reasoning involved in 

measurement thus eluded many children in this sample. Among the themes summarised 

at the end of Chapter 1, that on ratio and proportion considered a range of research in 

which children were successful in some contexts and unsuccessful in others. The 

findings of the present research, in which children simply commented on the scales on 

common measuring devices, indicated unequivocally that many would find difficulty 

with everyday measurement tasks. 
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8.2.2 Competences underpinning measurement 

Language 

Children proved to be expert comprehenders of the everyday language of comparative 

length, an ability not examined in the previous investigations reviewed. Piaget (Piaget et 

al., 1960) discussed the understanding of ordination as a logical pre-requisite for 

relative judgements of length; Bryant (1974) established that relative judgements are 

made early and are easier to make than absolute judgements; Resnick (1992) proposed 

categories of protoquantitative reasoning that develop early, underlie all reasoning about 

quantities, and are all relative in character; while Feigenson et al., (2004) argued for an 

ability to discriminate ratios between quantities in early infancy. Furthermore, the 

present research showed that experience of measurement in the home favours 

judgements of affordance or 'fit', which are relative judgements. All this evidence 

pointed to the likelihood of early competence in judging relative length, but no evidence 

was offered about the role of language in these relative judgements. (This was not, of 

course, possible for the infancy studies). 

The present research investigated such language in a dedicated series of tasks. It 

investigated children's ability to understand the everyday language of length (that is, of 

the attributes of height, length, and width) as they made relative judgements in the 

differing contexts of a substantial number of displays. Some of the subtleties of the way 

in which we use language that may have misled children as to the meaning of these 

attributes were described in the introduction to Chapter 4. 

Despite these subtleties, children in all age-groups proved to be excellent 

comprehenders of such everyday language. They were highly successful in making 

comparisons of height, length, and width in a wide range of contexts, the sole difficulty 

concerning certain judgements of height where the human figure was involved. This 

was no mean achievement, and meant that one likely barrier to the understanding of 

measurement, that is, the everyday language involved, could be ruled out. 

Conservation of length 

The children were also good conservers of length in the traditional sense. The language 

tasks incorporated a 'complex' condition in which the spatial arrangement of a 

substantial number of displays tested conservation of length in its traditional Piagetian 

form. With the sole exception regarding height already mentioned, these tests posed 

remarkably few difficulties to children. 
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The competence with which conserving judgements were made should be given its full 

weight. Conservation tests have long figured (either centrally or peripherally) in studies 

of the development of measurement (Piaget et al., 1960; Boulton-Lewis, 1987; Miller, 

1989; Petitto, 1990), as well as (in the broader sense explained above) in mathematics 

surveys (Department of Education and Science, 1981; Hart, 2004) because conservation 

is indispensible to any ability to judge amount. Performance on such tests has frequently 

been found to be weak. By contrast, performance in the present research showed the 

children to have this building block firmly in place. This did not guarantee, however, 

that they would conserve length in the broader sense, as required by the measurement 

tasks, and they frequently failed to do so. 

Visual estimation of length 

Children were consistently very good estimators of ordinal length throughout a long and 

demanding series of comparisons. They were not confused when asked to make their 

ordinal comparisons in relation to a given number of units. They were successful 

regardless of the absolute length of the line whose length was judged. Most surprisingly, 

the differences between the 'comparators' against which the length of lines was judged, 

designed to be challenging, proved no obstacle. These five comparators comprised one 

plain unmarked strip, three devices marked and numbered in various ways, and a 

collection of wooden cubes. Children were equally successful with all of them. Their 

performance did differ according to the ratio of the length of a line to that of its specific 

comparator: the greater the ratio, the greater the likelihood of being correct. This was to 

be expected in view of the greater discriminability of that difference in length (Ross, 

1997), and was reflected in poorer performance in correctly estimating that certain lines 

were the same length as their comparator (where there was no difference to 

discriminate). 

Lack of influence of the materials used 

In language and estimation tasks, children's performance was, surprisingly, consistently 

good in the face of a wide variety of experimental materials. In measurement tasks, 

performance was somewhat better with the ruler than with the other devices, but was 

pretty consistently poor. Conceptual difficulties arising at the contextual level were 

therefore few. 

In Chapters 4 and 5, the rather lengthy description of materials used for each series of 

tasks reflected the care that had been taken to include features designed to test in many 

different contexts the conceptual understanding examined. Thus the displays used in the 
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language tasks (for example, human figures, toy cars, writing implements in both 2-D 

and 3-D format) and the different spatial orientations in which they were arranged in the 

`complex' displays, required children to apply nuanced language conventions regarding 

height, length, and width correctly for successful performance. In the estimation tasks 

an elaborate combination of line lengths with five comparators that exemplified (or not) 

discrete and continuous units, subdivisions and numbers were meant to assemble 

various factors that previous research had identified as presenting difficulties to 

children. In the event, this variety produced a surprisingly uniform result. In the 

language tasks, only very few, very specific displays to do with human height were 

found difficult; other variations were easily dealt with. In the estimation tasks, neither 

the type of comparator nor the absolute length of lines affected the outcome, which was 

uniformly successful, except for lines close in length, or of equal length, to their 

comparator. Performance on the measurement tasks was uniformly poor, with 

performance with the ruler by older children achieving only a modestly higher level. 

It has already been remarked that in existing research on measurement, different types 

of tasks and materials produced different outcomes. Few studies encompassed the range 

of variation in materials used in the present research, and above all not with the same 

participants. The single sample used in the present research revealed how stable across 

contextual variation children's performance can be. It suggests that children may leave 

behind conceptual difficulties arising at the contextual level, while overarching 

conceptual difficulties, such as those associated with the very notion of units, in many 

cases remain. One way of looking at these results is to say that they amplify those of 

earlier studies (Resnick & Singer, 1993; Bryant, 1974) that concluded that relative 

judgments are made earlier in development and are easier to make than the difficult 

absolute judgements characteristic of measurement with units. The present research 

brings into focus the detailed texture of that ease and that difficulty. 

8.2.3 Age 

While overall there was improved performance with age, this was a great deal less, and 

less clear-cut, than might have been expected. Nevertheless, there was evidence of a 

`ladder effect' between competencies from year-group to year-group. 

The most typical finding in each series of tasks was a significant difference between the 

performance of children in Years 1 and 3, but no significant difference between the two 

younger or the two older year-groups. Among the results of some sub-sets of the tasks 

(for example in the tests of 'height above ground' and in measurement performance 
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with tape and cubes) the degree of success was practically the same for all three year-

groups. There was little difference, either, when it came to interpretative or procedural 

errors (which nonetheless had conceptual implications), such as identifying the smaller 

unit as larger (in the second interview); using an incorrect starting-point for measuring 

with the cubes and tape; and obscuring a line to be measured with the measuring device. 

When the outcomes of the three main series of tasks (language, estimation and 

measurement) were correlated with chronological age, there were significant, moderate, 

positive correlations for language and measurement, but these disappeared when the 

calculations were performed for each year-group separately. What accounted for this 

was substantial variation in performance according to age that crossed year-group 

boundaries, so that only when the full range of ages was considered could any trend be 

picked out. Together with the significant differences in performance frequently found 

only between Years 1 and 3, this presented no clear picture of the influence of 

development and education on measurement ability. 

When age and the third factor were controlled for in partial correlations, however, an 

important developmental effect came into focus. Ability in the language and estimation 

tasks correlated strongly and positively for Year 1 children, while estimation and 

measurement ability were moderately positively correlated for Year 2. This suggested a 

`ladder' whereby facility with the language of comparative length supported children, at 

an early stage, in making accurate estimations of comparative length, while estimation 

ability in turn facilitated accuracy in measurement by children at a later stage. 

In the case of Year 1, then, there was a strong association between understanding of 

language on the one hand, and estimation ability on the other. Both sets of tasks 

involved ordinal judgements and used questions of a similar, closely-prescribed, 

structure, but there the resemblance ended. In the language tasks, a wide range of 

everyday real and pictured items was used, and questioning was about height and width 

as well as length. In the estimation tasks, only the lengths of lines were compared, many 

more comparisons were made, and numbers and units were involved. Nevertheless, it 

seemed that for the youngest group of children, the language tasks (reinforced no doubt 

by the extent to which they made ordinal comparisons routinely in everyday life) did tap 

abilities which supported the more demanding comparisons required by the estimation 

tasks. 
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8.2.4 The social and the conceptual 

Finally, the question of broadest scope and potential interest was: what do children learn 

about measurement in their everyday social context - in 'real life' - and how might this 

affect their conceptual understanding of measurement? The terms 'social' and 

`conceptual' are of broad connotation and their respective applications in the present 

research were not straightforward. Nevertheless, the terms represent a contrast that is of 

considerable consequence for education. Below, the term 'social' is especially broadly 

construed, and includes classroom experience. The 'conceptual' in measurement is 

taken to include, for example, conservation of length, transitivity, and logical 

characteristics of units. 

Resnick's succinct remark that at every opportunity for mathematics learning, children 

learn "both less than and more than mathematics" (Resnick, 1992: 107) captures the 

nature of the contrast between the social and the conceptual, as well as the difficulty of 

separating the two. Applied to measurement, the less and more neatly present the 

paradox that although everyday life throws up a wealth of social situations involving 

measurement, conceptual aspects are not likely to be especially salient. This is so even 

when measurement is at the heart of a social activity, such as (in the present research) 

when buying new clothes or furniture, cooking, and home decorating. The value to 

children of those social activities consisted in their importance in the children's lives 

and in the pleasure they gave. Less was likely to be learned about measurement itself 

because the focus was on the social function it served. More than measurement was 

learned because that activity was embedded in an event of greater social substance. 

In the general discussion at the end of Chapter 3, it was argued that guided experience 

of measurement in school had probably led to the greater precision observed when 

children in Years 2 and 3 spoke of units than when those in Year 1 did so. Yet precision 

does not necessarily imply conceptual understanding. Even in school, where the social 

setting is overtly dedicated to learning, and the focus is clearly on measurement itself, 

children's perceptions of the social meaning of an activity may still influence what is 

learned. In the present research, recall of occasions in school when measurement took 

place was strikingly specific, and it was the specificity of the procedure that seemed to 

be the focus. Precisely how the ruler or metre stick was manipulated on a particular 

occasion, specific numbers of units and their addition, and, frequently, writing down the 

outcome of a measurement were what children in Years 2 and 3 talked about. The 

`social' value children attached to these activities might be described as 'getting the job 
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done'; reflections like ...so we knew the bigger jug held more water (Table 3.09) were 

rare. If the goal of an activity is to complete a procedure, it is not difficult to see how 

conceptual understanding could be bypassed. For example, fifty per cent of the children 

in Year 3 stated that only 'small things' could be measured with a ruler (Chapter 3). 

While half of these, when pressed, spoke of measuring a larger object by iterating the 

ruler and adding the units, just as many could only suggest making up the full length of 

a longer object by placing some other item at the end of the ruler. These children had no 

ready access to the idea of measurement as the iteration of a unit; probably the 

customary way of deploying the standard school ruler had obscured that. Thus at first 

sight, neither home nor school terrain seemed necessarily to favour conceptual 

understanding: the conceptual content of children's experiences risked being 

overwhelmed by the social in both settings. 

This discouraging evidence was balanced, however, by evidence of positive features, 

particularly of the home setting. First, as already noted, most measurement activities in 

the home served to determine the fit of an item to available space. These featured the 

affordances and relative judgements identified by Gibson (1979) and Bryant (1974) as 

forerunners of the absolute judgements characteristic of measurement in units. 

Referring to the same class of ability, Resnick & Singer (1993) spoke of the 

protoquantitative relationship of fittingness and considered this to be the basis of ratio 

reasoning, also essential to understanding units. The home setting thus provided 

children with the opportunity to acquire important competences underpinning 

measurement, and did so in circumstances where familiarity and the enthusiasm 

frequently associated with the activities were likely to make them a favourable basis for 

future learning. Secondly, measurement typical of the home setting occurred as part of 

problem-solving activities and strategies. This was particularly evident in the comments 

of children in Years 2 and 3 (Chapter 3), for example in the description of laying a 

wooden floor, or of mapping the London underground system. This approach was 

highly valued by the Primary Mathematics Framework (Department for Children, 

Schools and Families, 2006) which expected learning to occur as the outcome of 

problem-solving 'enquiries'. Enjoyment of problem-solving activities in the home may 

encourage a positive attitude to problem-solving in school, including the persistence 

required, and the present research gave evidence that the home setting could nurture this 

engagement. 
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In the interviews, what one might call the demands of the narrative gave evidence of an 

additional social influence. One example again concerned units, whose whole purpose is 

to make quantification precise. In telling the story of an important event that involved 

measurement, quantities expressed in units were often absurdly large, especially in 

Years 1 and 2. (Year 3 children were more precise). The younger children never 

exaggerated in the direction of smaller numbers of units than were plausible, so that this 

was not simply a case of increasing accuracy with age. Rather, large numbers seemed to 

be used as markers of the importance of an event. An alternative explanation of this 

finding is that this early favouring of larger numbers was an example of a general bias 

in language usage towards terms expressing greater, rather than lesser, quantity noted by 

Haylock and Cockburn (1989). There was no sign of this bias among the children's 

ordinal comparisons in Chapter 4. In the estimation tasks reported in Chapter 5, children 

in Years 2 and 3 did make twice as many erroneous judgements of longer than of 

shorter, but children in Year 1 showed no such bias. Overall, this explanation is not 

persuasive. 

A second example of the influence of narrative was the construction of meaning around 

the lesser-known measuring instruments children were shown in the second interview, 

notably the clock and thermometer. The social function of the clock was so pervasive 

that its marking of important events (Haylock and Cockburn, 1989) in the 'narrative' of 

daily life took complete precedence over its recording of the passing of time and the 

visible units in which this was measured. The unfamiliar thermometer prompted in 

many children a network of associations reminiscent of Vygotsky's (1986) 'chain 

complexes' (forerunners by some distance of fully-developed concepts) in an effort to 

characterise its function. Thus its red ink was associated with blood; blood and the word 

`temperature' were associated with illness and hospitals; while the colour red and the 

idea of rising heat, boosted by memories of a television cartoon, prompted the notion of 

an explosion. 

It is possible that the cognitive importance of this type of narration by individuals has 

been underestimated. In the literature, where a tradition stemming from the work of 

Vygotsky has prioritised social over individual construction of meaning (e.g. Hoyles, 

Healy & Sutherland 1991; Noss & Hoyles 1992; Sfard 2001), the focus in classroom 

research has been on dialogic features of cognitive construction where partners in the 

process have typically been seen equally as producers. The potential represented by the 

receptive role of listener (likely to be an attentive adult) has been largely ignored. This 
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role can be useful in two ways. Firstly, a narrative is directed at an audience and the 

listener provides that audience. The narrative situation requires an effort to engage, to 

convince, perhaps to justify a stance, all conducive to the exercise of reasoning skills, 

which have an important part to play in conceptual development. Secondly, such 

narrations are likely to give evidence of both social and conceptual components of the 

narrator's thinking, and did so in the current research. The narrations, (sometimes seen, 

as in the current research, in the context of an interview) offer an opportunity to the 

reflective listener to privilege the development of the conceptual components by skilful 

questions or prompts. The science education literature has provided many hundreds of 

examples of 'interviews about instances' and 'interviews about events', (Driver, Guesne 

& Tiberghien 1985; Driver, Squires, Rushworth & Wood-Robinson 1994) where children's 

explanations of science phenomena are elicited in individual interviews. However, the focus 

was on children's non-conventional science schemas, and the purpose was to identify 

commonalities among these. Little importance seems to have been attached to the social 

component of what children may have said, and the transcripts of some interviews show little 

attempt to understand what may have been of importance to children (e.g. Vosniadou & 

Brewer 1992). With the help of suitably trained adults both in and out of school, it 

seems feasible to plan one-to-one conversations where socially-embedded 

conceptualisations are accepted and valued but also refined so as to foster cognitive 

advance. 

An influence that was 'social' in some sense but was hard to pin down concerned height 

and the human figure. In the first interview, when asked how they knew the researcher 

was taller than themselves, a majority in each year-group said that she must be because 

she was an adult or a `teacher'; and when asked whether adults were always taller than 

children, only in Year 3 did an appreciable number (just over one-third) allow that there 

could be exceptions. It seemed that a 'status' criterion was involved in this judgement of 

height. Inconsistently, however, about half the children in each year-group said that they 

themselves would be taller if they stood on a table. A detailed analysis in Chapter 4 of 

children's comparative judgements of 'tallness' revealed that, among various 

complicated displays, only artificially raised human figures gave rise to erroneous 

judgements of greater height. It seemed that the notion of height in relation to human 

figures incorporated some metaphorical flavour that influenced the children's ordinal 

judgements. 
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Thorough attunement to the social context is indispensible to understanding the 

subtleties of language usage. Chapter 4 described in some detail potential conceptual 

difficulties that might be engendered by the everyday language of length, but these 

turned out not to be difficulties for the children concerned. Instead (with the exception 

in certain circumstances of human height, already mentioned) their ordinal judgements 

as responses to questions about height, length and width turned out to be excellent. 

Their mastery of the receptive language skills needed for correct responses was fully 

equal to the conceptual demands of the tasks, including the tests of conservation that 

constituted the 'complex' tasks in this series. What they had learned from their social 

context about the everyday language of length was entirely supportive of their 

conceptual development. 

Thus there were two aspects to the sheer vitality of the social, as reflected in children's 

productive and receptive language in this research, reported respectively in Chapters 3 

and 4. On the one hand measurement in the social context of the home could be highly 

motivating; it produced experiences of measurement that could form a sound basis for 

quantification with units in school; and it provided problem-solving opportunities as the 

basis for strategy development. Social aspects of school procedures encouraged an 

appetite for detail and accuracy. The known, everyday language of length, acquired in a 

variety of social contexts, was navigated with ease. 

When children were confronted with the unknown, however, the picture was rather 

different. A drive to produce meaning took control, sometimes with positive effects for 

learning, and sometimes with negative. In one context, for example, it helped children 

to articulate their knowledge of fractional units (see Appendix 3), while in another it led 

them to decline the suggestion that thermometers measured anything, in favour of a 

view that the instrument indicated whether you were ill, or was to do with blood. But in 

neither case did the drive to create meaning seem a natural ally of the reflection 

necessary for conceptual understanding. The social requirement to communicate an 

effective narrative, of which the first interview gave numerous examples, was similarly 

likely to override reflection. In one way or another, it seemed, social resources stood 

ever-ready to fill the gaps in conceptual understanding, and it is the difficult task of 

pedagogy to help children to make a distinction between the two. It was suggested 

above that advantage could be taken of children's narrations to strengthen burgeoning 

conceptual elements within them. But the idea that teachers can build on children's 

informal experience in any straightforward way must be considered problematic. 
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8.2.5 Reflections on earlier research 

In this section, perspectives in the literature reviewed in Chapter 1 are revisited. 

The paradoxical role of a logico-mathematical framework 

The first reflection is far from new, but it retains its importance because a bias it 

identifies is perennially attractive. That is, the high status of logico-mathematical theory 

seems to exert a kind of gravitational pull on the study of the psychological 

development of mathematical understanding. Clearly the mathematics involved in 

measurement must provide the concepts whose development is studied, but frequently 

the mathematics also supplies the types of explanation offered for experimental results, 

where no independent argument or evidence is offered for their validity, and where the 

psychological component is missing. Thus, Piaget (1965) explains a certain type of 

error in seriation tasks by stating that children have not yet integrated their separate 

understanding of ordinal and cardinal number. This integration also logically underlies 

ability to understand units. Yet in the 'towers' task, at a stage where such integration is 

supposed to be complete, it still does not occur to children to iterate a makeshift unit in 

order to measure. At this point Piaget must introduce a further layer of explanation: he 

contends that the continuous length to be measured is not experienced as comparable 

with separate units (Piaget et al., 1960). It is not clear how either the first or the later 

explanation could be justified empirically, but the logical allure of such explanations 

can divert the researcher from a critique of their relevance. 

A second and particularly important example is furnished by the definition of 

measurement adopted by the same author and woven into every aspect of his account: 

To measure is to take out of a whole one element, taken as a unit, and to 
transpose this unit on the remainder of a whole: measurement is therefore a 
synthesis of subdivision and change of position. (Piaget et al., 1960:3) 

The issue here is not that of relevance: this definition, after all, does capture the logical 

essence of iterating a unit in measurement. However, it also suggests that the unit 

remains part of the object measured, rather than separate but equivalent to part of its 

length. This is not obviously consistent with transitive inference as a fundamental 

feature of measurement, where the length of the object measured and the length 

embodied in the measuring device are logically distinct, and so available for 

comparison. Now this apparent contradiction can easily be dealt with within an overall 

logical framework. But the researcher accepting these conceptual guides can be left at a 
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loss when their features are played out in concrete terms. In the present research, 

apparent failure to treat the line measured and the measuring device as independent 

embodiments of length led children to cover up the line with the device, hampering the 

whole measurement operation, and raising doubts about their understanding of transitive 

inference. Some also insisted that long objects could not be measured with 'short' 

rulers; measurement by iteration of the ruler as a unit or group of units apparently did 

not occur to them. Which of the two types of difficulty should be seen as more 

fundamental? Should such findings indeed be seen as entirely separable 

psychologically, and each type of finding be investigated as an independent 

phenomenon? More recent research has generally taken the latter approach, but it has 

led to a field containing many isolated studies. 

Researchers who avoid acceptance of the Piagetian logical framework can still accept 

the plentiful a priori guidance it offers as to 'where to look' for fruitful areas of 

empirical enquiry. In the first example given above, discussion of the theoretical 

integration of ordinal with cardinal number suggests that children may indeed struggle 

to grasp how a number sequence marks amount on a measuring device. So it proved in 

the present research. 

The value of surveys 

Concerns about the insecurity of concepts underlying measurement, identified in 

surveys of mathematical performance, were mostly borne out by the present research. 

While children conserved length with ease in traditional conservation tasks (reported in 

Chapter 4), they failed to do so in the context of the measurement tasks, just as they had 

in practical contexts used in surveys (e.g. Department of Education and Science, 1981). 

The measurement tasks and the interviews in the present research also provided 

examples of apparent failure to understand measurement as iteration of a unit; of 

transitivity (Brown et al., 1995); of the inverse relation between size and number of 

units (Brown et al., 1995; Kouba et al., 1988); of sub-division of units, and that larger 

units may be made up of smaller ones (Hiebert, 1981); and of general inaccuracy in 

measurement (Hiebert, 1981). Despite doubts about exactly what can be learned from 

them, therefore (Kamii and Lewis, 1991; Silver and Kenney, 1993), such surveys (like 

the Piagetian heritage) have demonstrated their value in suggesting to researchers 

`where to look'. 
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Cultural tools 

The general Vygotskian precept that learning is by means of 'cultural tools' has inspired 

a number of studies in measurement research (e.g. Nunes et al., 1993; Miller, 1989) but 

there is little consistent evidence that conceptual understanding is advanced by the 

prominence of the tool within the given culture. Children performed better with a more 

familiar device (the ruler in the present research and in Nunes et al. (1993), but worse 

with the familiar algorithm for calculating area in the latter study, and with the tape 

measure in the current research. Moreover the degree of any beneficial effect varies 

with different samples: in the current research, though measuring with the ruler 

compared favourably with the cubes and tape, it was still very poor compared with that 

of the Nunes et al. sample. Miller notes that socially-induced 'functional fixedness' may 

inhibit the extending of any benefit to new contexts. Potential benefits of practices like 

`unitising' using materials common in a given social environment (Lamon, 1994) 

remain speculative. It seems that in teaching about units, each device should be assessed 

for its pedagogic merits, by conceptual rather than social criteria, in a specific teaching 

context. The present research, together with a wealth of Piagetian studies (e.g Piaget et 

al., 1960:110), demonstrate that salient aspects of the representation of units may distort 

conceptual content, and that what may turn out to be salient is not easy to predict. This 

seems to apply equally to conventional and experimental representations of units. 

Learning in informal contexts 

The present research investigated children's experience of informal contexts in which 

they learned about measurement, and expected evidence of "a constitutive role in 

learning for improvisation...and emergent processes" (Lave & Wenger, 1991: 16). There 

was indeed evidence of learning in informal settings, but this did not appear to favour 

conceptual development in any straightforward way, and indeed sometimes appeared to 

obstruct it. This was discussed in some detail earlier in this chapter. This finding, 

however, should be set beside other evidence that sound mathematical models are 

indeed developed in non-formal settings where a person's real livelihood is involved 

(Nunes, 2010). 

Relative judgements 

Early development of relative judgements, which were quite sophisticated in some 

domains (Feigenson et al., 2004; Resnick 1992; Gibson 1979; Bryant 1974; Carpenter 

& Lewis, 1976;) was amply confirmed in the present research by the language and 

estimation results. 
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Units 

Difficulties regarding units, of which the most fundamental were to do with the general 

relationship between larger and smaller units (Lamon, 1996; Nunes and Bryant, 1996; 

Davydov,1982; Carpenter & Lewis, 1976; Piaget et al., 1960) were all reflected, in one 

way or another, in the findings of the present research. 

Principles and procedures 

Finally, the debate about the relationship between conceptual and procedural 

knowledge, and whether there is evidence that procedures promote conceptual learning 

runs through much of the research reviewed. Resnick & Singer (1993); Karmiloff-Smith 

(1992) and Piaget et al. (1960) all accord procedural knowledge a fundamental role in 

conceptual development. Gravemeijer et al. (2003) and Lamon (1994) considered child-

created procedures to be particularly efficacious in promoting conceptual understanding. 

In contrast, Kornilaki & Nunes (2005); Miller (1989) and Carpenter & Lewis (1976) 

provided evidence that conceptual understanding might develop independently of 

procedures. The present research did not engage with this debate as such; however the 

findings did strongly suggest that flawed measuring procedures were the result of 

conceptual confusion. 

8.2.6 The developmental and the instructional: summary 

What classroom implications might, in general terms, be suggested by the results of the 

present research? 

As stated in Chapter 1, the research was conducted from an individual constructivist 

perspective, because socio-cultural accounts seemed unable to explain how fundamental 

conceptual difficulties might be overcome at the individual level, except by what 

amounted to procedural mastery. This seemed an inadequate mechanism. On the other 

hand, while the influence of social factors is offered at its periphery, traditional 

individual constructivism gives a rather solipsistic account of cognitive development 

with little to say about the mechanisms of learning. Learning occurs, however, and (in a 

broad sense) always in a social context. 

It was argued earlier in this chapter that the dominance of the social over the cognitive 

in children's everyday lives and language has not, on the evidence of the present 

research, always been an ally of cognitive advance. So the task for education (long 

acknowledged) is to harness dimensions of social experience and activity in and out of 

school that are potentially beneficial for learning. The following summarises indications 

230 



in the present research as to how this might be done. It also identifies conceptual 

difficulties that may be developmental in character that are relatively intractable. 

Such intractability, discussed in the first section of this chapter, was demonstrated in the 

present research by apparent failure to understand some fundamental conceptual 

underpinnings of measurement. These were: the inverse relation between size and 

number of units; the idea that larger units may 'contain' smaller ones; operational 

conservation; operational transitive inference; and how numbers may express amount. It 

seemed that for some children neither general developmental factors nor planned 

classroom experiences had conferred secure understanding. Previous research, reviewed 

in Chapter 1, confirms the intractability of difficulties in establishing these conceptual 

underpinnings. Chapters 4 and 5 demonstrated that where children were conceptually 

secure, they were so across many novel instantiations of the concepts that they 

understood. A tentative conclusion might be that where there are intractable conceptual 

problems, there is little point in attempting to overcome them indirectly by offering 

children a range of materials, or by teaching a range of activities, designed to induce 

understanding. Such instantiations may be used for their intrinsic interest and to 

consolidate understanding, but the emphasis should be on frequent, simple explanation 

of the principle involved, such as the fact (already mentioned) that a larger number does 

not necessarily mean a greater amount of anything. Such 'up front' explanations seem 

rather neglected, or deemed unnecessary; for example in the curricular objectives for 

measurement in the Primary Mathematics Framework, 2006, discussed in the General 

Introduction to this research. 

To turn next to the correlations of performance on language, estimation and 

measurement tasks with age, reported in Chapter 7: there were no significant 

correlations with children's age within any year-group. In itself this does not suggest an 

important role for developmental factors in the abilities tested by these tasks. On the 

other hand there was (except for estimation), a modest, positive and significant 

correlation with age across the sample as a whole. Together with the analyses in 

Chapters 4, 5 and 6, which typically show significantly better performance in Year 3 

than in Year 1, this suggests an effect of teaching, and perhaps of the children's 

everyday experience in other settings, rather than of development. The correlational 

evidence is far from conclusive, however, and it could just be that development is slow, 

and that is why only a weak relationship is discernible across a sample with this profile. 
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But there is certainly no evidence of strong developmental shifts in understanding, and 

there may be, therefore, good scope for effective instruction to make a difference. 

In considering effective instruction, it is worth recalling that in Chapter 3, the current 

research showed school measurement activities to encourage precision, but to be 

detached from the purposes of measurement in the wider world, and probably rather 

boring. By contrast, measurement activities at home were in the service of interesting 

goals. As far as possible, this should be the rule in the classroom too. 

Reference was made above to the harnessing of the social in the service of the cognitive. 

It was suggested earlier in this chapter that the importance of the listener to 

children's narratives had been underestimated. The narratives considered were those 

about events of social importance to the children, where cognitive content was 

overridden by the purely social interest of the material. (Excerpts from such narratives 

were set out in Chapter 3). It was argued that a predominantly dialogic view of 

language interactions had neglected the role of the reflective listener, and how 

cognitively useful elements of children's narratives might be noted and encouraged by 

such a listener. This is an idea (and a practice) worthy of developing within the 

classroom and outside it. 

Meanwhile the dialogic model is rapidly developing, to the benefit of classroom 

learning. Researchers are currently constructing and testing classroom interactions, 

particularly among peers, that may advance conceptual understanding and are pursuing 

theoretical understanding of how and why such interactions work, when they do. 

8.2.7 Directions for future research 

This research featured intensive work with three year-groups in a single school involved 

in the same experimental tasks. By these means, a very full picture of the range of the 

abilities of this sample in measurement and cognate skills was achieved, and 

investigation of possible associations among these was made possible. Experience with 

this repeated measures design, together with the results, provides clear indicators as to 

how work in the field could be taken forward. 

It is safe to say that future research should focus on measurement itself. The poor 

measurement ability shown in the present results did not appear to be underlain by 

confusion about qualitative comparisons of length, either in language and conceptual 

terms, or in estimating length visually: children were very successful in both language 
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and estimation studies. In the former, the one anomalous difficulty regarding the height 

of human beings was clearly enough defined not to require further investigation. In 

relation to the two younger age-groups, the ways in which language and estimation 

ability may mediate measurement ability for individuals, suggested by the correlational 

analysis, also deserve further study. 

As far as measurement is concerned, we find in the children's apparent confusion about 

some of its basic conceptual aspects a clear agenda for further investigation. These basic 

aspects are both non-numerical and numerical, and some relate to defining 

characteristics of separable units and of scaled devices as such. This being the case, if 

aspects of the current design were retained, the cubes and the ruler respectively could 

serve as exemplars, and the tape measure be dropped. The number of lines measured 

could be reduced to a small set between, say, 11cm and 13 cm in length (the 'medium-

length' set in the current research) since there was no significant difference in children's 

success between measuring much longer and much shorter lines. These reductions in 

treatment levels would substantially shorten the period of time needed for data 

collection, reducing the scope for intrusion of extraneous variables, and for the 

possibility of any training effect. In further investigations, the first job would be to 

determine whether the present findings regarding measurement are replicated with an 

enlarged sample that includes older children and children from a broader range of social 

and cultural backgrounds. Going up the present age-range rather than down is indicated 

because the correlational analysis showed performance on the measurement tasks for 

the oldest group of children to be independent of their language and estimation ability, 

so that a focus on measurement among, say, seven to nine-year-olds would be 

examining the nature of relatively settled concepts. Finally and ideally, a longitudinal 

study, retaining the strengths of the repeated measures design, would enable a greater 

focus on developmental questions. 

Non-numerical problems of measurement 

The length of an object and the units that are used to equal its length when it is 

measured are conceptually equivalent: without being identical with its length, the units 

conserve the length of the object being measured, and do so when they are physically 

separated from it. As discussed at the start of this chapter, some of the behaviours and 

statements of the children suggested that many did not wholly distinguish equivalence 

from identity, but seemed to be identifying the units with the length to be measured. If 

such behaviours and statements are replicated, their meaning should be pursued. The 
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listener role referred to above in connection with narratives would be important here; 

some version of the 'think aloud technique' (van Someren, Barnard & Sandberg, 1994) 

could be employed. 

Numerical problems of measurement 

a) The inverse relation between size and number of units is a logical principle in 

measurement that is not essentially numerical in character, but apparent failure to 

understand it in the present research was always demonstrated in relation to visible 

numerals. Further research here does not seem to be necessary. The children's responses 

(in the second interview) were generally unambiguous; so were their justifications of 

them. The further work needed is work in the classroom where necessary, probably by 

direct explanation of this form of the 'more is more' fallacy (cf. Piaget et al., 1960; 

Correa et al., 1998). 

b) The transition from qualitative to quantitative expressions of amount has been 

identified as a key transition for children (Resnick & Singer, 1993; Piaget et al. 1960;) 

When children were asked in the present research to say whether their measurement in 

units meant that the line was shorter, longer or the same length as a number of units 

given by the experimenter, no more than half the responses were correct. Many declined 

to make this relative judgement at all. It was suggested above that some had not fully 

worked out that the numbers they were considering actually expressed length. But one 

must tread warily. Children were very successful in making similar relative judgements, 

also involving number, prior to their own measurements (see Chapter 5). There seems 

to be great sensitivity here to details of the task, particularly, perhaps, to the exact 

language used by the experimenter. It had been hoped that by using the same 

experimental materials (ruler, cubes and tape) for both the relative and the absolute 

judgements involved, irrelevant influences would be removed, but this precaution 

proved insufficient. This is an important area for continued research, as children are 

expected to be able to estimate length in absolute terms very early on their school career 

(Primary Mathematics Framework, Department for Children, Schools and Families, 

2006: Year 1 Block D. Assessment focus: Ma3, Measures). However, careful thought 

would need to be given to avoiding results that could be an artefact of the experimental 

situation and the language used. 

c) Children's utter confusion about how to align a device, even the familiar ruler, when 

measuring length, seems best addressed jointly by research and pedagogy, beginning 

with investigation of how well children understand the basis of measurement as 
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iteration of a single unit and proceeding, where necessary, to practice this form of 

measurement. Devices with simplified, initially un-numbered scales could then be 

gradually introduced, as suggested earlier. The routine use of fully conventional devices 

such as the ruler, replete with subdivisions, would, where children seemed at all 

insecure, be introduced to them with considerable care. The difficulties presented to 

children in the current research by the need to take account of fractional units and the 

extent to which (it was suspected) they took evasive action underlines the necessity of 

careful nurturing of basic understanding, quite possibly into late primary education. The 

project of Gravemeijer et al., (2003), reviewed in Chapter 1, is an excellent example of 

the construction in the classroom of understanding of units. 

8.2.8 Concluding remarks 

The current findings raise some intriguing questions of a general character. Why does 

sound conceptual understanding of amount at the ordinal level fail to be generally 

supportive of measurement with units? How is it that successful performance across a 

wide variety of materials is the rule for ordinal comparisons, while the physical 

appearance of some of the same materials seems to be a decisive factor in failures of 

measurement itself? What exactly is the influence of specific social experiences of 

measurement on conceptual understanding, either at home or in school? It is hoped that 

future research will cast light on these questions. 
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Appendices 

Appendix 1 

Materials used in the research 

Figure A.01 Ruler 

Figure A.02 Tape measure 

Figure A.03 Cubes 

Figure A.04 Thermometer 

Figure A.05 Weighing machine 

Figure A.06 Measuring jug 

Figure A.07 Clock 

Figure A.08 Marked and numbered strip 

Figure A.09 Unmarked strips 

Figure A.10 Toy figures 

Figure A.11 'Steps' for raising toy figures 
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Figure A.12 Block for raising toy figures 

Figure A.13 Toy cars 

Figure A.14 2D figures. A: simple; B: complex. Who is the tallest? 

Figure A.15 2D crayons. A: simple; B: complex. Which is the widest? 

Figure A.16 Lines. A: simple; Which line is shorter than the red one? B: complex: 

Which line is shorter than the pink one? 

Figure A.17 Lines whose lengths were estimated (red set). 
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Figure A.01 Ruler 
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Figure A.05 Weighing machine 
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Figure A.06 Measuring jug 

Figure A.07 Clock 
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Figure A.08 Marked and numbered strip 
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Figure A.09 Unmarked strips 
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Figure A.10 Toy figures 

Figure A.11 'Steps' for raising toy figures 

Figure A.12 Block for raising toy figures 
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Figure A.13 Toy cars 
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Figure A.14 (A) 2-D figures (simple) Who is the tallest? 
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Figure A.14 (B) 2D figures. 2-D figures (complex) Who is the tallest? 
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Figure A.15 (A) 2D crayons (simple) Which is the widest? 
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Figure A.15 (B) 2D crayons (complex). Which is the widest? 
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Figure A.16 (A): simple. Which line is shorter than the red one? 
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Figure A.16 (B): complex. Which line is shorter than the pink one? 
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Figure A.17 Lines whose lengths were estimated (red set). 
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Appendix Two 

Excerpt from the second interview with a Year 2 child, illustrating partial understanding 
of the relationship between the two scales on the weighing machine. 

Experimenter: here you've got two different scales, two different ways of measuring, 
one there [indicates gram scale] and one there [indicates ounce scale]. Can you see the 
little g here? [indicates g scale]. 

Marie-Claire: Grams? 

E: Exactly. This scale is measuring the weight in grams and this one, can you see that 
little 'oz'? It stands for ounces. [Explains oz in terms of parts of a lb (fruit or veg)]. It's 
a different way of measuring weight. So here we've got grams, here [indicates g scale] 
and here we've got ounces [indicates oz scale]. Do you want to weigh these? [toys]. [M-
C places about 40g of toys in pan]. How much do they weigh? 

M-C: Between the 40 and the 60. 

E: And what about oz? 

M-C: Between the 1 and the 2. 

E: So which do you think weighs more, 1 gram or 1 oz? 

M-C: Gram 

E: Why? 

M-C: It's cos they're — I'm looking at the numbers. 

E: OK. Tell me about the numbers. 

M-C: Cos 20's big, 40's big, 80's big, 100's big. 

E: What about these? [indicates oz scale]. 

M-C: They're quite small for a number, but it's the same kind of thing to tell you some 
things. 

E: When you say it's the same kind of thing even though the number's small, what do 
you mean? 

M-C: It will still tell you the measurement even though it's different numbers. It won't 
tell you the same, but it's kind of the less of the same. 

E: Can you explain that a bit? 

M-C: You see when you see this bit here [indicates g scale] that's a bigger number than 
that bit [indicates oz scale]. Say if I put my hand there and it goes up to there — it goes 
up to the 4 [indicates 4 on the oz scale]. It goes up to 100 [on the g scale], and it goes up 
to the 4, and the 3, and 80 and 100, 120.... When it gets to 120 it will tell you what the 
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grams are...and it'll tell you the same, not the same thing, but it will tell you 
[how]...heavy it is in oz. 

E [Removes scales] If I weighed some flour in there, and it came to 2 oz, about how 
many grams do you think it would be? 

M-C: 40? 

E: And if I weighed some flour, and it came to 5 oz, about how many grams do you 
think it would be? 

M-C: Can I use my hands? [Counts on fingers] 80? 
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Appendix 3 

Some ways in which children reported fractional units when they measured 
lines. 

Child Actual 
Measurement 

(cm) 

Reported as 

Year 1 1 12.5 A bit longer. To the middle line. 
A bit longer. Up to the big line near 
the 12. 

2 12.5 Halfway to 13 
3 21.3 21 and 3 steps to go 

Year 2 1 12.7 A quarter to 13 
2 12.5 12 middle 

4.6 4 cm and 6 halves 
5.2 5 and 2 of them lines 

3 12.5 12 and 13 
4 13.5 14 and a little bit less 
5 13.6 4 more bits, it goes to 14 

12.6 4 more mm, it makes 13 
5.6 Half 6 

6 11.5 Half 11 
7 6.5 Half 6 cm 
8 12.5 120.5 mm [i.e would be .5 if in cm] 
9 5.2 About 1 more, a little chip from 5 
10 11.5 About 12 cm, 5 points before it 
11 18.75 Just a little bit to 19. 19 and a quarter. 

Year 3 1 4.7 4 and a half and 2 mm 
2 5.3 5, 3. [i.e. 5cm and 3mm] 
3 11.5 Line in the middle from 12 
4 11.5 Half of 11 

11.5 Half of 12 
5 4.6 4 cm and 6 halves 
6 12.7 12 rounded up to 13 
7 18.5 5 points after 18, so 18 and a half 
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