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Abstract 

Odours alter evaluations of concurrent visual stimuli. However, neural mechanisms underlying the 

effects of congruent and incongruent odours on facial expression perception are not clear. Moreover, 

the influence of emotional faces on odour perception is not established. We investigated the effects of 

one pleasant and one unpleasant odour paired with happy and disgusted faces, on subjective ratings 

and ERP responses to faces.  

Participants rated the pleasantness of happy and disgusted faces that appeared during 3 second 

pleasant or unpleasant odour pulses, or without odour. Odour pleasantness and intensity ratings were 

recorded in each trial. EEG was recorded continuously using a 128-channel system.  

Happy and disgusted faces paired with pleasant and unpleasant odour were rated as more or 

less pleasant, respectively, compared to the same faces presented in the other odour conditions. 

Odours were rated as more pleasant when paired with happy faces, and unpleasant odour was rated 

more intense when paired with disgusted faces. Unpleasant odour paired with disgusted faces also 

decreased inspiration. Odour-face interactions were evident in the N200 and N400 components.  

Our results reveal bi-directional effects of odours and faces, and suggest that odour-face 

interactions may be represented in ERP components. Pairings of unpleasant odour and disgusted faces 

resulted in stronger hedonic ratings, ERP changes, increased odour intensity ratings and respiratory 

adjustment. This finding likely represents heightened adaptive responses to multimodal unpleasant 

stimuli, prompting appropriate behaviour in the presence of danger.  

Keywords: Odours, emotion, ERP, perception 
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1. Introduction 

Previous research has shown that odours modulate face processing and recognition (Walla, 

2008; Steinberg et al., 2012), subjective ratings of faces (Bensafi et al., 2002; Dematte et al., 2007; Li 

et al., 2007; McGlone, 2013; Seubert et al., 2014; Cook et al., 2015), and perceptions of facial 

expression (Leppanen & Hietanen, 2003; Pause et al., 2004; Zhou & Chen, 2009; Seubert et al., 2010; 

Leleu et al., 2015a). The effects of odours on perception of facial expressions are often driven by 

affective congruency between odours and faces. For example, Leppanen and Hietanen (2003) 

observed that happy faces were recognised faster than disgusted faces in the presence of a pleasant 

odour. Moreover, Leleu et al. (2015a) observed that the minimum amount of visual information 

required to perceive an expression was lowered when the odour context was emotionally congruent. 

However, neural mechanisms underlying such effects are not established, and visual-olfactory 

combinations have rarely been addressed in the context of evaluative priming (Herring et al., 2013). 

Further, the influence of emotional faces on odour perception has not been investigated.  

The effect of odours on neural responses to facial expressions has been investigated using 

EEG, but the influence of congruency in such effects is less clear. One study showed that both neutral 

and unpleasant chemosensory signals modulated N170 amplitudes in responses to fearful facial 

expressions (Adolph et al., 2013). Another observed that stress sweat odour enhanced the late LPP in 

responses to neutral and ambiguous faces (Rubin et al., 2012). Leleu et al. (2015b) found that an 

aversive olfactory context modulated the P200 by amplifying the difference in response to neutral 

versus happy and disgusted facial expressions. Moreover, these previous experiments involved no 

explicit tasks regarding the facial expressions or olfactory stimuli. Therefore, whether the effects of 

congruent and incongruent odour-face interactions on EEG activity are comparable with subjective 

ratings of facial expressions has yet to be investigated. In doing so, we contribute to the understanding 

of the neural mechanisms underlying olfactory-visual influences on behaviour.   

Effects of non-face visual stimuli on odour perception are well documented (Gottfried & 

Dolan, 2003; de Araujo et al., 2005; Pollatos et al., 2007; Dematte et al., 2009; Seo et al., 2010; 

Olofsson et al., 2012; Hummel et al., 2017), where studies have demonstrated that visual information 
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can affect odour pleasantness and intensity perception. Neutral odours were rated less pleasant and 

more intense following unpleasant picture presentation, and more pleasant after viewing positive 

images (Pollatos et al., 2007). Another study showed that congruent symbol-odour pairs increased 

perceived pleasantness and intensity of a pleasant odour, and increased the unpleasantness of an 

unpleasant odour. A recent study by Hummel et al. (2017) showed that emotionally positive visual 

stimuli increased perceived pleasantness of pleasant odours. Such effects were reflected in the 

activation of brain structures relevant for reward processing. It is clear that visual information can 

affect odour perception and that olfactory-visual congruency plays a role, however, the effects of 

facial expressions on evaluations of odour pleasantness and intensity have not yet been investigated. 

Both face and odour processing almost always involve some aspect of emotion (Walla, 2008). 

Investigating bidirectional cross-modal effects of odours and emotional faces will provide further 

understanding of olfactory-visual integration in the context of emotion.  

The aim of the present study was to investigate the effects of a pleasant and an unpleasant 

odour paired with happy and disgusted faces on evaluations of the facial expressions and odour 

pleasantness and intensity. Our study is the first of its kind to observe effects of olfactory-visual 

interactions on perceptions of both the visual and odour stimuli, using ERP analysis. Given the 

previous findings (Leppanen & Hietanen, 2003; Seo et al., 2010; Leleu et al., 2015a), we 

hypothesised that congruent odour-face pairings would shift face and odour pleasantness ratings 

further in the direction of the given odour-face valence, and increase intensity ratings of odours. 

Moreover, in line with previous results (Rubin et al., 2012; Cook et al., 2015; Leleu et al., 2015b), we 

expected odour-face interactions to affect the P200 and LPP components of the ERP during face 

processing. The present study contributes to the more general concept of evaluative priming (Herring 

et al., 2013). Using odours and faces as both primes and targets, we aimed to extend the current 

understanding of the mechanisms underlying evaluative priming by examining the phenomenon in a 

cross-modal sense, using ERP analysis. 
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2. Methods and Materials 

2.1 Participants 

A total of 25 (11 male) healthy participants aged 18−30 years (mean ± standard deviation: 

23.28 ± 3.58) took part in the experiment after giving written informed consent in accordance with the 

Declaration of Helsinki. The study was approved by the Research Ethics Committee at the University 

of Liverpool. Two participants withdrew from the study, and data from a further three participants 

were subsequently excluded from the EEG analysis due to excessive amounts of artifacts. Hence, 

behavioural data from 23 (10 male) participants, and EEG data from 20 (9 male) participants were 

used in the analysis. All participants were initially screened in a separate session using the 

Sniffin’Sticks (Hummel et al., 1997) test battery to ensure adequate odour identification ability. 

Participants were asked not to smoke, drink coffee or chew gum for two hours prior to the experiment, 

and were asked to minimise their use of fragranced products on the day. Participants were reimbursed 

for their time and travel expenses.  

2.2 Visual and olfactory stimuli 

Face-images of 30 actors (15 male) showing happy and disgusted expressions were used in 

the experiment, for a total of 60 faces. These were selected from the NimStim Set of Facial 

Expressions (Tottenham et al., 2009). All face images were frontal views, in colour, with a consistent 

light background and similar dimensions.  

Odours were administered through two tubes approximately 2 centimetres away from the 

nostrils, using a custom-built, continuous airflow, computer-controlled olfactometer with 8 channels 

(Dancer Design Ltd., UK). Odour pulses were embedded within a constant flow of clean air, in order 

to avoid effects of a sudden increase in airflow associated with presentation of an odour (Huart et al., 

2012). Airflow was kept constant at 2.5 l/min.  

There were three odour conditions in the experiment; pleasant, unpleasant and a neutral, 

‘clean air’ control. Methylmercaptan (1% dilution in Propylene Glycol), a rotten cabbage-like odour, 
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was selected for the unpleasant condition. Jasmine odour (no dilution) was selected for the pleasant 

condition. These dilutions were matched on perceived intensity based on data from previous 

experiments (Cook et al., 2015; Cook et al., in preparation). Odours were supplied by Symrise Ltd. 

(Netherlands). Propylene Glycol (1,2-Propanediol 99%, Sigma-Aldrich Ltd., UK) was used for 

dilution, the clean air control and constant flow.  

Both presentation of the experimental task stimuli and triggering of the odour valves were 

achieved using the Cogent 2000 v. 1.32 program (Wellcome Department of Imaging Neuroscience, 

United Kingdom) running in Matlab v. R2011a (The MathWorks, Inc., USA). In between 

experimental blocks and sessions, a Blueair 203 air purifier (Blueair Ltd., Sweden) was used to 

minimise any residual odour that may have carried into the next experimental block or session. 

2.3 Recordings 

EEG was recorded continuously using a 128-channel Geodesics EGI System (Electrical 

Geodesics, Inc., Eugene, Oregon, USA) with a sponge-based Geodesic Sensor Net. The sensor net 

was aligned with respect to three anatomical landmarks; two pre-auricular points and the nasion. 

Electrode-to-skin impedances were kept below 50 kΩ and at equal levels across all electrodes. The 

recording band-pass filter was 0.01−1000 Hz, and the sampling rate was 1000 Hz. Electrode Cz was 

used as the reference. 

Participants’ respiration and pulse rate were recorded continuously throughout the experiment 

with a piezo-electric respiratory belt transducer worn around the chest at the level of the epigastrium, 

and a finger pulse oximeter transducer worn on the index finger of the left hand (ADInstruments Ltd., 

Oxford, UK). Signals were transduced and extracted using LabChart 7 (ADInstruments Ltd., Oxford, 

UK). 

2.4 Procedure 

After application of the EEG cap, participants were seated in a dimly lit, sound attenuated 

room facing a 19 inch LCD monitor (60 Hz refresh rate) placed approximately 0.7 m in front of them. 
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First, the respiratory and pulse monitoring equipment was fitted onto participants and the signals were 

checked. Following this, the olfactometer head piece was fitted, and participants were given 

instructions. The experimental session lasted around 1.5 hours in total, including baseline odour 

ratings and the experimental task. Ratings of odour pleasantness, intensity, and familiarity were 

recorded before and after the task. Each odour was administered individually, in a four-second pulse 

manually triggered to coincide with the onset of inspiration. After each odour pulse, on-screen visual 

analogue scales prompted participants to rate the pleasantness (from 0 – very unpleasant to 100 – very 

pleasant), intensity (0 – no odour to 100 – very intense odour) and familiarity (0 – not familiar at all to 

100 – extremely familiar) of the odour.  

The experimental task was split into four blocks of 45 trials (180 trials in total). Trials were 

pseudo-randomly ordered such that each of the 30 actors appeared 6 times: showing a happy and a 

disgusted expression under each of the three odour conditions. A given actor never appeared showing 

the same expression more than once in each block. Odour presentation was also pseudo-random, such 

that all three odours were presented across all four blocks, but no two consecutive trials used the same 

odour. Figure 1 shows a flowchart of the trial procedure. Each trial began with a resting interval 

during which participants viewed a white cross on a black background. The duration of this interval 

was dependent upon the triggering of the odour pulse; the experimenter observed participants’ 

respiratory waveforms, and manually triggered the odour pulses at the very onset of inspiration. 

Odour pulses were 3000 ms in duration. At a random time point between 1000–2000 ms of the odour 

pulse, a happy (half of the trials) or disgusted face was displayed on-screen for 300 ms. Following the 

odour pulse, a 3000 ms resting interval with a black screen preceded a rating scale prompting 

participants to rate the pleasantness of the facial expression (from 0 – very unpleasant to 100 – very 

pleasant). Once they had responded, a second screen with two scales prompted participants to rate the 

pleasantness (from 0 – very unpleasant to 100 – very pleasant) and the intensity (0 – no odour to 100 

– very intense odour) of the odour administered in that trial. After their response, the next trial began.  

 

 



8 
 

2.5 Behavioural analysis 

Ratings of odour pleasantness, intensity and familiarity taken before and after the 

experimental task were collapsed and analysed using paired t-tests. Data from the experimental task 

were analysed using 2 × 3 repeated measures ANOVAs, observing differences in face pleasantness 

ratings, and odour pleasantness and intensity ratings with odour condition (pleasant, unpleasant, 

neutral) and face type (happy or disgusted) as the independent variables. Significant main effects were 

investigated using pairwise comparisons; significant interactions were followed up with post-hoc t-

tests and one-way ANOVAs, using Bonferroni correction for multiple comparisons. P values in all 

ANOVA effects were adjusted using the Greenhouse- All behavioural data was 

analysed using SPSS v. 22 software package (IBM Inc., USA). 

2.6 ERP analysis 

EEG recordings were pre-processed using BESA v. 6.0 (MEGIS GmbH, Germany). Data 

were first referenced to a common average using the common averaging method (Lehmann, 1987). 

The oculographic and, when necessary, electrocardiographic artifacts were removed by principal 

component analysis (Berg & Scherg, 1994). Data were visually inspected for the presence of any 

movement or muscle artifacts, and trials contaminated with artifacts were excluded. The mean number 

of accepted trials across all subjects and all conditions was 161 (± 17.02). Participants were excluded 

from the analysis if the number of trials accepted was less than 127 (2 standard deviations from the 

mean). The mean numbers of accepted trials for each condition were as follows: Clean air + happy 

face: 27, Clean air + disgusted face: 27, Jasmine + happy face: 27, Jasmine + disgusted face: 26, 

Methylmercaptan + happy face: 26, Methylmercaptan + disgusted face: 26.  

Data were band-pass filtered from 2−35 Hz and down-sampled to a rate of 256 Hz, and 

exported from BESA into the SPM12 software package (Statistical Parametric Mapping, UCL, 

England; http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). Event-related potentials (ERPs) in 

response to faces were computed separately for each odour and face condition by averaging respective 

epochs in the intervals ranging from 300 ms before photo onset to 1000 ms after photo onset. The 

baseline period ranged from -300 ms to 0 ms relative to the onset of the visual stimulus.  
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We applied an omnibus analysis of the effects of odours on ERPs involving all time points 

from 0 ms to 1000 ms and all scalp sites, allowing us to explore the effects of odours on ERPs without 

applying a priori knowledge of peak latencies. The SPM12 toolbox combines advanced statistical 

models with robust control for Type I error (Poline et al., 1997; Kiebel & Friston, 2004). In contrast 

to alternative approaches, such as permutation analysis of clusters of ERPs over the epoch time (Maris 

& Oostenveld, 2007), SPM applies the theory of random fields to volumes of space-time data. This 

allows for calculation of the degrees of freedom in the evaluation of statistical test results based on the 

spatial and temporal complexity of data (Worsley, 2003). 

The statistical analysis was performed in two steps. In the initial exploratory step, EEG data 

were converted into three-dimensional scalp-time images using SPM. The electrodes were mapped 

onto a standardised scalp grid sized 32 × 32 pixels (pixel size 4.25 × 5.3 mm2), representing the field 

potential planes stacked over the time axis. Images were smoothed with a Gaussian kernel of 9 × 9 × 

20 mm² .ms (full width at half maximum). Data from over the whole epoch (385 time samples) and all 

standardised scalp points were screened for statistically significant effects of odours and face-valence 

using a flexible factorial ANOVA for repeated measures. The flexible factorial model in SPM allows 

for the inclusion of the subject factor as an independent variable. We applied an uncorrected threshold 

of P < 0.001, and a cluster size of 20 contiguous space-time voxels to detect clusters affected by 

odours and face-valence. The data were masked such that only clusters occurring later than 100 ms 

following face onset were analysed. The amplitude data from these clusters were subsequently 

analysed using further repeated measures ANOVAs in SPSS v. 22 (IBM Inc., USA). The statistical 

threshold of this confirmatory analysis was P < 0.05.  

2.7 Analysis of respiratory movements 

 Respiratory movement signals were low-pass filtered, and averaged separately for each of the 

six conditions in the epoch of interest, then analysed statistically using a 2 × 3 repeated measures 

ANOVA (2 face types, 3 odours). The 7 s analysis epoch ranged from odour onset (t = 0 s) to 7 s after 

odour onset. Therefore, the interval 1–3 s coincided with the ERP analysis epoch. To control for Type 

I error due to the large number of ANOVAs, given that one ANOVA was computed on each time 
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sample, a permutation analysis with 500 permutations was used to correct the P values (Maris & 

Oostenveld, 2007). Data from the interval showing a significant effect of condition on respiratory 

movements were analysed using confirmatory repeated measures ANOVA in SPSS. We used a 2 × 3 

ANCOVA for repeated measures in BMDP 2V program (Biomedical Data Package, Cork, Ireland) to 

analyse whether changes in respiratory movement patterns contributed to the effects of experimental 

condition observed in ERP clusters.  

3. Results  

3.1 Baseline odour ratings 

 Mean ratings of odour pleasantness, intensity and familiarity taken before and after the 

experimental task were collated and are shown in Table 1. A paired t-test confirmed that jasmine was 

rated as significantly more pleasant than methylmercaptan (t(22) = 21.55, P < 0.001). A further paired 

t-test showed there was no significant difference between intensity ratings of jasmine and 

methylmercaptan (t(22) = -1.58, P = 0.13). A third t-test confirmed that there was no significant 

difference in familiarity ratings of jasmine and methylmercaptan t(22) = 1.14, P = 0.27). 

Table 1: Mean (± standard deviation) ratings of odour pleasantness, intensity and familiarity that 

were taken before and after the experimental task and concatenated. 

 Pleasantness Intensity Familiarity 

Jasmine 79.28 (± 6.97) 71.95 (± 7.67) 71.67 (± 15.48) 

Methylmercaptan 15.7 (± 11.94) 76.34 (± 13.08) 66.59 (± 19.23) 

 

3.2 Face and odour ratings during experimental task  

3.2.1 Face ratings under each odour condition 

Figure 2A shows the mean ratings of the happy and disgusted faces under each odour and 

face condition. A repeated-measures ANOVA revealed a significant main effect of odour on ratings of 

faces overall (F(2, 44) = 30.4, 
2

p = 0.58, P < 0.001). Pairwise comparisons indicated that all faces 

presented in the methylmercaptan odour condition were rated as less pleasant (44.68 ± 26.49) in 
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comparison to faces presented in both the clean air (48 ± 25.47) and jasmine (49.2 ± 26.43) conditions 

(P < 0.001), and faces in the jasmine condition were rated as significantly more pleasant than those in 

the clean air condition (P = 0.01). There was a significant main effect of face type on ratings of faces 

(F(1, 22) = 886.37, 
2

p = 0.98, P < 0.001), confirming that happy faces were rated as significantly 

more pleasant (72.55 ± 1.1) than disgusted faces (22.04 ± 1.09). There was also a significant 

interaction between odours and face type affecting face ratings (F(2, 44) = 4.28 
2

p = 0.16, P = 0.02). 

Post-hoc one-way ANOVAs were employed to investigate this interaction, by observing the effects of 

odours on face ratings of happy and disgusted faces separately. For happy faces, a one-way ANOVA 

revealed a significant effect of odour (F(2, 44) = 18.83, 
2

p = 0.46, P < 0.001). Pairwise comparisons 

indicated that happy faces presented in the jasmine odour condition were rated as more pleasant 

(74.78 ± 5.77) in comparison to the same faces presented in both the clean air (72.64 ± 5.31, P = 

0.002) and methylmercaptan (70.24 ± 5.89) odour conditions (P < 0.001), and happy faces in the 

methylmercaptan condition were rated as significantly less pleasant than those in the clean air 

condition (P = 0.001). For disgusted faces, a one-way ANOVA revealed a significant effect of odour 

(F(2, 44) = 28.29, 
2

p = 0.56, P < 0.001). Pairwise comparisons indicated that disgusted faces in the 

methylmercaptan condition were rated significantly less pleasant (19.12 ± 5.85) than the same faces in 

both the clean air (23.38 ± 5.52) and jasmine (23.62 ± 5.26) odour conditions (P < 0.001). There was 

no significant difference in ratings of disgusted faces between the jasmine and clean air conditions (P 

> 0.05).  

3.2.2 Odour pleasantness ratings  

Figure 2B shows the mean odour pleasantness ratings from experimental trials for each odour 

and face condition. A repeated-measures ANOVA revealed a significant main effect of odour type on 

odour pleasantness ratings (F(2, 44) = 323.76, 
2

p = 0.94, P < 0.001). Pairwise comparisons confirmed 

that the jasmine odour was rated as more pleasant (74.56 ± 7.75) than both clean air (51.87 ± 3.19) 

and methylmercaptan (20.55 ± 7.45, P < 0.001); and that methylmercaptan was also rated as 



12 
 

significantly less pleasant than clean air (P < 0.001). There was also a significant main effect of face 

type on odour pleasantness ratings (F(1, 22) = 12.29, 
2

p = 0.36, P = 0.003), indicating that all odours 

were rated as more pleasant (49.67 ± 23.15) when presented with happy faces in comparison to when 

presented with disgusted faces (48.31 ± 23.27). The interaction between odours and face type 

affecting odour pleasantness ratings did not reach statistical significance (F(2, 44) = 2.34 
2

p = 0.1, P = 

0.11).  

3.2.3 Odour intensity ratings 

Figure 2C shows the mean odour intensity ratings from experimental trials for each odour and 

face condition. A repeated-measures ANOVA revealed a significant main effect of odour type on 

intensity ratings (F(2, 44) = 219.26 
2

p = 0.91, P < 0.001). Pairwise comparisons confirmed that 

methylmercaptan was rated as more intense (58.25 ± 15.45) than both jasmine (49.94 ± 13.67, P = 

0.003) and clean air (2.63 ± 2.49, P < 0.001); and that jasmine was also rated as significantly more 

intense than clean air (P < 0.001). There was no significant main effect of face type (P > 0.05); 

however, there was a significant interaction between odour and face type affecting odour intensity 

ratings during experimental trials (F(2, 44) = 6.89, 
2

p = 0.24, P = 0.003). Post-hoc t-tests confirmed 

that this effect was driven by intensity ratings of methylmercaptan: when presented in combination 

with disgusted faces, methylmercaptan was rated as significantly more intense (60.11 ± 16.38) than 

the same odour presented with happy faces (56.39 ± 14.96, t(22) = -3.34, P = 0.003). There were no 

significant effects of face type on intensity ratings of clean air or jasmine (P > 0.05).  

3.3 ERP components 

 Figure 3 illustrates the event-related potentials in response to faces across all trials and all 

conditions in the form of a butterfly plot and topographic maps of selected potential components. The 

topography of the first component showed bilateral positivity over the occipital electrodes and 

negativity over frontal electrodes, peaking around 95 ms (see Figure 3B). This is consistent with 

characteristics of the P1 component, which is related to early processing of visual stimuli (Hopf et al., 
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2002). The second component, peaking around 145 ms (Figure 3C), showed negative potential over 

parietal and temporal electrodes, consistent with characteristics of the N170 face-processing 

component (Bentin et al., 1996). The next component peaked around 200 ms (Figure 3D), showing 

positive potential in parietal-occipital, and strong negative potential in central-frontal electrodes, 

consistent with typical characteristics of the N200 component (Folstein & Van Petten, 2008). The 

fourth component peaked at 395 ms (Figure 3E) and showed weak positivity in occipital electrodes. 

The final component was a long-latency component peaking around 500 ms (Figure 3F), showing a 

strong negative potential over occipital and parietal electrodes, and a positive potential over central 

midline electrodes. These components are consistent with characteristics of the N400 component, 

implicated in the processing of meaningful stimuli, including faces (Kutas & Federmeier, 2011), and 

the late positive potential (LPP), which is sensitive to the emotional content of pictures, words and 

faces (Cacioppo et al., 1993; Cuthbert et al., 2000; Hajcak et al., 2006; Hajcak et al., 2007). 

3.4 Effects of odours and face-valence on ERPs 

SPM12 was used to compute a 2 × 3 (face valence × odour) repeated measures ANOVA on 

smoothed scalp-time images of data from 0−1000 ms relative to the onset of the faces. The ANOVA 

revealed scalp-time clusters showing significant main and interaction effects of face-valence and 

odour on the ERP response to faces. Figure 4 illustrates these significant scalp-time clusters. The 

corresponding topographic maps from each odour/face condition for each significant cluster are 

shown with bar graphs representing the mean EEG scalp-amplitude (µV). 

3.4.1 Main effects of happy and disgusted faces on the ERP response to faces 

There was a significant main effect of face valence on the ERP response to faces peaking at 

192 ms and 704 ms after face onset (uncorrected P < 0.001), coinciding with the N170 latency 

window and the late-LPP, respectively (see Figure 4A). Subsequent t-tests performed on EEG 

amplitude data from these two clusters showed that happy faces yielded stronger EEG amplitude than 

disgusted faces in both the 192 ms cluster (t(19) = -5.01, P < 0.001), and the 704 ms cluster (t(19) = -

2.91, P = 0.009). 
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3.4.2 Main effect of odour on the ERP response to faces 

Another statistically significant scalp-time cluster represented a main effect of odour on ERP 

response to faces peaking at 165 ms following face onset (unc. P < 0.001), in frontal electrodes during 

the N170 time-window (see Figure 4B). A confirmatory one-way ANOVA in this cluster showed a 

significant effect of odour (F(2, 38) = 16.84, 
2

p = 0.47, P < 0.001). Pairwise comparisons indicated 

that there were significant differences in EEG amplitude between all three odour conditions (P < 

0.05): irrespective of face-valence, faces in the clean air condition produced a small negative 

amplitude (-0.24 ± 0.76), faces in the pleasant odour condition produced a very small negative 

amplitude (-0.1 ± 0.68), and faces in the unpleasant odour condition produced a positive amplitude 

(0.27 ± 0.95).  

3.4.3 Odour-face interactions affecting the ERP response to faces 

An interaction between odour and face-valence yielded a significant effect on ERP response 

to faces in two scalp-time clusters (unc. P < 0.001, see Figure 4C). One such interaction peaked at 259 

ms following face onset (F(2, 38) = 7.77, 
2

p = 0.29, P = 0.003). Post-hoc t-tests were employed to 

further investigate this interaction. These showed that happy faces produced a significantly greater 

negative potential at right frontal electrodes (-0.42 ± 0.58) than disgusted faces (-0.02 ± 0.79) in the 

clean air condition (t(19) = -3.63, P = 0.002), and that disgusted faces produced a significantly greater 

negative potential (-0.32 ± 0.48) than happy faces (-0.06 ± 0.81) in the unpleasant odour condition 

(t(19) = 2.19, P = 0.04). There was no significant difference in the amplitude produced by happy and 

disgusted faces in the pleasant odour condition (P > 0.05). An interaction between odour and face 

valence also occurred at 352 ms following face onset (F(2, 38) = 5.98, 
2

p = 0.24, P = 0.01). Post-hoc 

t-tests showed that disgusted faces produced a greater positive potential at left frontal-parietal 

electrodes (0.29 ± 0.68) than happy faces (-0.01 ± 0.48) in the clean air condition (t(19) = -2.78, P = 

0.01), and that happy faces produced a greater positive potential (0.21 ± 0.5) than disgusted faces (-

0.76 ± 0.52) in the unpleasant odour condition (t(19) = 2.76, P = 0.01). There was no significant 
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difference in ERP amplitudes produced by happy and disgusted faces in the pleasant odour condition 

(P > 0.05).  

3.5 Respiratory movements 

 Figure 5A shows averaged respiratory waveforms for each condition in a 7 s interval, 

beginning at odour onset. A repeated-measures ANOVA (2 face-types, 3 odours) showed a 

statistically significant effect of odour during the interval 1530–2215 ms (P < 0.05), and a significant 

interaction between face valence and odour during the interval 1434–1796 ms (P < 0.05). Given that 

these intervals overlapped, it is likely that the main effect in the interval 1530–2215 ms was driven by 

the interaction during the interval 1434–1796 ms. To analyse these effects further, respiratory 

movement data from these intervals were subjected to repeated measures ANOVAs in SPSS. This 

confirmed a significant effect of odour on respiratory movements during the interval 1530–2215 ms, 

(F(2, 38) = 3.53 
2

p = 0.16, P = 0.05), where pairwise comparisons confirmed a significant difference 

in respiratory movements between the jasmine and methylmercaptan odour conditions (P = 0.04). 

Inspiration was reduced during stimulation with methylmercaptan, compared to jasmine odour (see 

Figure 5A & 5B). Further analysis confirmed the interaction between odour and face valence during 

the interval 1434–1796 ms (F(2, 38) = 3.44, 
2

p = 0.15, P = 0.05), and post hoc t-tests revealed that 

this interaction was representative of a marginally significant difference between respiratory 

movements in trials presenting happy faces compared to those presenting disgusted faces in the 

unpleasant odour condition only (t(19) = 1.8, P = 0.09). Inspiration was reduced during presentation 

of disgusted faces compared to presentation of happy faces in the unpleasant odour condition (see 

Figure 5A & 5C).  

Intervals showing significant effects of odour and face valence on respiratory movements 

overlapped with the period in which ERPs were recorded and analysed. However, repeated measures 

ANCOVA showed that there were no statistically significant covariate effects of respiratory 

movements on ERP data from any of the five significant scalp-time clusters (P > 0.05). Therefore, it is 
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unlikely that differences in respiratory movements directly affected odour- or face-related ERP 

changes.  

 

4. Discussion 

 Results showed that odour-face priming effects were bidirectional: Pleasant and unpleasant 

odours influenced evaluations of happy and disgusted facial expressions, and happy and disgusted 

faces also affected perceptions of odour pleasantness and intensity. In particular, unpleasant odour 

paired with disgusted faces resulted in shifts in face evaluation, increased odour intensity ratings and a 

reduction in respiratory movement. Such bidirectional priming effects are instances of a multi-modal 

integration that may be driven by a negative bias induced by the relevance for threat detection, or 

hedonic congruency of unpleasant odours and faces. Effects of odour-face interactions manifested in 

changes in cortical potentials during the N200 and N400 components of face ERPs.  

4.1 Effects of odour-face combinations on perception 

 Happy faces in the pleasant odour condition were rated as most pleasant, happy faces in the 

unpleasant odour condition were rated as least pleasant, and happy faces in the clean air condition 

were rated between the two. This finding corresponds with previous results showing that odour 

valence linearly modulated evaluations of neutral faces (Seubert et al., 2014; Cook et al., 2015). 

Disgusted faces were rated as significantly less pleasant when they were presented with an unpleasant 

odour, compared to the same faces paired with a pleasant odour or no odour. The lack of difference 

between ratings of disgusted faces in the clean air and pleasant odour conditions may be attributable 

to the stronger influence of a negative odour on evaluations. This is consistent with the negative bias 

hypothesis, which states that the influence of negative stimuli is often greater than the influence of 

positive stimuli of the same intensity (Ito et al., 1998; Smith et al., 2003; Smith et al., 2006). Indeed, 

previous studies have shown that unpleasant odours increase aversion to other unpleasant events, 

whereas pleasant odours had no effect (Stancak et al., 2015). The increase and decrease in 

pleasantness ratings of happy and disgusted faces paired with pleasant and unpleasant odours, 

respectively, suggests that the congruency of odour-face valence may play a role in the subjective 
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evaluation of facial expressions (Leppanen & Hietanen, 2003; Leleu et al., 2015b). In particular, 

stronger subjective reactions to disgusted faces in the presence of an unpleasant odour may be 

characteristic of an evolutionarily adaptive response to combined aversive stimuli from visual and 

olfactory modalities.  

 Interestingly, regardless of valence, all odours were rated as more pleasant when paired with 

happy faces compared to when they were paired with disgusted faces. The unpleasant odour was also 

rated as more intense when it was paired with disgusted face stimuli. These findings are consistent 

with previous studies showing effects of various visual stimuli on odour perception (Pollatos et al., 

2007; Seo et al., 2010; Hummel et al., 2017), and novel in the respect that emotional faces were also 

able to induce such effects. Our results demonstrate not only that pleasant and unpleasant odour can 

influence continuous subjective evaluations of happy and disgusted faces, but also that emotional 

faces can affect perceptions of odour pleasantness and intensity. The hedonic congruency of faces and 

odours may contribute to these effects.  

4.2 Effects of odour-face combinations on electrophysiological responses 

 Odour-face interactions were observed during the N200 component of face ERPs. The N200 

has been implicated in the analysis, discrimination and classification of visual stimuli (Ritter et al., 

1983; Naatanen & Picton, 1986). In the clean air condition, happy faces produced greater negative 

potential amplitude than disgusted faces. In the unpleasant odour condition, disgusted faces produced 

greater negative potential amplitude than happy faces. In the pleasant odour condition, face valence 

did not differentiate the potential amplitude. A similar, but reversed effect was found in the N400 

component, which is known to be involved in processing contextual information about faces (Kutas & 

Federmeier, 2011): Disgusted faces produced greater positive potential amplitude than happy faces in 

the clean air condition, and happy faces produced a greater positive potential amplitude than disgusted 

faces in the unpleasant odour condition. Again, there was no difference in the amplitude produced by 

happy and disgusted faces in the pleasant odour condition.  



18 
 

Pleasant odour appeared to induce a moderate response to faces in both components, 

regardless of the face valence. A possible explanation for this is that the hedonic state induced by the 

pleasant odour was strong enough to mask any interactions with faces valence. Happy and disgusted 

faces may have been perceived as congruent or incongruent with clean air or unpleasant odour, and 

vice versa, resulting in increased cortical potentials for such congruent and incongruent pairings. 

These findings are consistent with those of Castle et al. (2000), who showed significant differences in 

the N400 for congruent versus incongruent stimuli in an unpleasant odour condition, but not in a 

pleasant odour condition. Our results are also partially consistent with those of Leleu et al. (2015b), 

who found odour-face interactions during the P200, and showed that unpleasant odour context 

amplified the difference in responses to neutral versus happy and disgusted faces. However, their 

results suggested that unpleasant odour context increased responses to emotional faces in general, 

regardless of the face valence. On the other hand, our results suggest that unpleasant and no odour 

contexts amplified the difference between happy and disgusted faces, whilst pleasant odour eliminated 

effects of face valence in N200 and N400 components. 

Recent studies from the more general evaluative priming literature suggest that evaluative 

incongruity is represented in the LPP and N400 components (Zhang et al., 2010; Herring et al., 2011). 

Herring et al. (2011) argued that the N400 may be more specifically involved in semantic, rather than 

evaluative incongruity, and cross-modality priming. Our results show a possible incongruity effect 

during the N400, and may therefore lend support to the finding that the N400 represents effects of 

congruency in cross-modal priming (Zhang et al., 2010). Encoding perspectives of evaluative priming 

suggest that primes activate object-evaluation associations in memory that make the valence of targets 

more accessible, thus facilitating evaluative priming. On the other hand, response perspectives suggest 

that primes influence the ease with which a person can generate a response to the target. A recent 

meta-analysis of evaluative priming studies argued that both encoding and response processes are 

involved in most cases, depending on the task (Herring et al., 2013). The present study observed 

effects of odours on face-ERPs, likely involved in encoding, as well as in subjective behavioural 

responses. Our results therefore support the findings of Herring et al. (2013), and contribute that both 
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encoding and response mechanisms were involved in evaluative priming where odours and faces 

served as cross-modal primes and targets. 

 An interesting odour-face interaction was also observed in the respiratory movement data. In 

the unpleasant odour condition, the amplitude of inspiratory movements was significantly reduced 

during presentation of disgusted faces compared to happy faces. Decreased inspiration when an 

unpleasant olfactory stimulus was simultaneously paired with a congruent unpleasant visual stimulus 

is another example of the adaptive role of olfactory-visual integration in our multisensory 

environment. Indeed, aversive odours act as a warning about dangers in our surroundings and evoke 

withdrawal reflexes (Stevenson, 2010). Evidently, this warning is heightened when an odour is 

accompanied by a congruent visual stimulus, resulting in decreased inspiration in the case of the 

present study. Such a finding is in keeping with the notion that our senses work together to enhance 

the salience of biologically meaningful events, increasing the speed at which responses can be 

generated (Stein & Stanford, 2008). Indeed, previous studies showed enhanced skin conductance 

responses for unpleasant images combined with unpleasant odour (Banks et al., 2012), and decreased 

inspiratory time and breath duration for high arousal and unpleasant stimuli (Ritz et al., 2000; Gomez 

et al., 2004). 

A main effect of odour, irrespective of face valence, was observed in the N170 component of 

face ERPs. The unpleasant odour produced the greatest, positive potential amplitude, the pleasant 

odour produced very small negative amplitude, and clean air produced negative amplitude. The 

findings are partially consistent with those of Leleu et al. (2015b), who showed a generic 

enhancement of the EEG response to faces, regardless of their emotional content, between 130 and 

180 ms after face onset when faces were presented with an odour. Moreover, results from our 

previous study showed an increase in N170 amplitude when faces were presented in the presence of 

an odour (Cook et al., in preparation). It is likely that faces presented in the unpleasant odour 

condition produced the largest N170 amplitude due to greater salience of the unpleasant odour. This is 

consistent with the aforementioned negative bias hypothesis (Ito et al., 1998), and may further 

represent an evolutionary adaptive response to aversive stimuli.  
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 An effect of face valence, regardless of odour condition, was observed in the N170 and late-

LPP components of face ERPs. Happy faces produced a stronger amplitude potential across all odour 

conditions than disgusted faces. Whilst previous studies have suggested that the N170 response is 

similar across faces, irrespective of emotional expression (Eimer et al., 2003; Eimer & Holmes, 

2007), others have found differential effects depending on emotional expression (Batty & Taylor, 

2003). The LPP is also known to be sensitive to the valence of pictures, words and faces (Cacioppo et 

al., 1993; Cuthbert et al., 2000; Hajcak et al., 2006; Hajcak et al., 2007). It is possible that happy 

faces resulted in increased cortical amplitude potentials due to a boosting effect of positive valence, in 

the same way that the pleasant odour context masked effects of congruency in odour-face interactions. 

We argue that happy faces may have had a greater activation effect on reward circuitry or valuation 

structures in the brain (Lebreton et al., 2009). This may apply in particular to the cluster in the N170, 

as it was located in frontal electrodes and is thus more likely to represent activity of reward structures 

such as the orbitofrontal cortex.  

4.3 Multisensory negative bias 

 A key theme emerging across our results is the accumulation of negative stimuli across 

olfactory and visual modalities to affect perception of both odours and faces, and even respiratory 

movements. Specifically, unpleasant odour paired with disgusted faces resulted in stronger face and 

odour unpleasantness ratings, increased odour intensity ratings and decreased respiratory amplitude. 

These findings correspond with the aforementioned negative bias hypothesis (Ito et al., 1998; Smith et 

al., 2003; Smith et al., 2006).  

Given the effect of aversive odour-face combinations evidenced in the present results, it is 

important to consider the multisensory nature of this negative bias effect. From an evolutionary 

perspective, odours serve as warnings about threats in our environment (Paustenbach & Gaffney, 

2006; Stevenson, 2010), allowing us to respond quickly and correctly to potential adverse events 

(Taylor, 1991). Unpleasant odour contexts may therefore heighten awareness and increase attention to 

stimuli from other modalities, particularly if these other stimuli also signal a negative event. 

Supporting this idea, a very recent study showed that exposure to an unpleasant odour increased the 
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sense of presence in virtual reality (Baus & Bouchard, 2017). Another showed that unpleasant odour 

increased responses to painful stimuli relative to pleasant odour (Villemure et al., 2003). Moreover, 

another recent study found that unpleasant odour increased aversion and related skin conductance 

responses to monetary losses. It was argued that unpleasant odour likely primes avoidance behaviour, 

and consequently boosts existing avoidance responses to negative events (Stancak et al., 2015). Such 

findings combined with the present results indicate increased attention to negative stimuli when an 

aversive, unpleasant odour is also present. These effects likely relate to an evolutionarily adaptive 

mechanism where cross-modal stimuli interact and accumulate in the brain to produce an appropriate 

behavioural response when aversive stimuli signal danger.  

4.4 Limitations 

 A limitation of the present study was the use of only one pleasant and one unpleasant odour. 

The odours used were selected on the basis that they were generically very pleasant and very 

unpleasant (avoiding food and body specific odours). The large differences in odour pleasantness 

ratings observed suggest that they were indeed hedonically distinct. However, the findings may relate 

to specific characteristics of these two odours, and caution should be exercised before generalising 

across all pleasant and unpleasant odours. Future studies should endeavour to include a variety of 

olfactory and visual stimuli to further investigate cross-modal effects on perception, since specific 

odours (e.g. perfume fragrances, food odours) may interact differently with faces as well as other 

types of visual stimuli.   

4.5 Summary 

 In summary, the results show that pleasant and unpleasant odours are able to influence 

evaluations of both happy and disgusted facial expressions, and that these facial expressions are also 

able to modulate evaluations of odour pleasantness and intensity. Olfactory-visual congruency may 

have a role in these effects. A key finding was that pairings of unpleasant odour and disgusted faces 

resulted in stronger shifts in face evaluation, increased odour intensity ratings and a decrease in 

inspiration. It is likely that the multisensory combination of congruent aversive olfactory and visual 
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stimuli strengthens hedonic responses and produces withdrawal behaviours as part of an adaptive 

mechanism. Olfactory-visual interactions were represented in the N200 and N400 components of face 

ERPs. Differences in ERP amplitude evoked by happy and disgusted faces were apparent in clean air 

and unpleasant odour conditions, whilst such differences were masked by a pleasant odour context. It 

is possible that the hedonic state induced by the pleasant odour was able to mask effects of face 

valence. In a wider context, our results also suggest that both encoding and response mechanisms are 

involved in cross-modal evaluative priming. 
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Figure legends 

Figure 1: Flowchart of experimental trial procedure. At the start of each trial, participants 

viewed a white fixation cross on a black background. Participants were instructed to relax 

and breathe normally during this time. At the very onset of a participant’s inspiration, the 

experimenter triggered a three-second odor pulse. At a random time-point between 1–2 s of 

the odour pulse, a photograph of either a happy or a disgusted face was displayed for 300 ms. 

After a 3 s resting interval with a black screen, a visual-analogue scale prompted participants 

to rate the pleasantness of the photograph (very unpleasant – very pleasant), 6 seconds after 

odour onset. Following this, a second screen with two scales then prompted participants to 

rate the pleasantness (very unpleasant – very pleasant) and intensity of the odour (no odour – 

very intense odour). Once participants had completed these ratings, the next trial began. 

Figure 2: Mean ratings of face pleasantness, odour pleasantness and odour intensity. 

(A) Bar graph illustrating the mean ratings of face pleasantness in each odour and face 

condition. White bars represent clean air trials (labelled CLA), grey bars represent trials using 

jasmine odour (labelled JAS), and black bars represent trials using methylmercaptan (labelled 

MERC). Asterisks indicate statistically significant differences. (B) Bar graph illustrating 

mean ratings of odour pleasantness in each odour and face condition. White bars represent 

trials where happy faces were presented (labelled H), and black bars represent trials where 

disgusted faces were presented (labelled D). Odour conditions are labelled CLA, JAS, 

MERC. Asterisks indicate significant effects. (C) Bar graph illustrating mean ratings of odour 

intensity in each odour and face condition. White bars represent trials where happy faces 

were presented (labelled H), and black bars represent trials where disgusted faces were 

presented (labelled D). Odour conditions are labelled CLA, JAS, MERC. Asterisks indicate 

statistically significant differences. 

Figure 3: Butterfly plot of grand average ERP response to faces and corresponding 

scalp topographies. (A) Butterfly plot of grand average ERPs in response to faces. Peak 

latencies of distinct ERP components (95 ms, 145 ms, 200 ms, 395 ms and 530 ms) are 

highlighted with arrows. (B) Latency component 95 ms (P1). The topographic maps of grand 

average ERPs overlaid on the volume rendering of the human head are shown. (C) Latency 

component 145 ms (N170). (D) Latency component 200 ms. (E) Latency component 395 ms 

(N400). (F) Latency component 500 ms (LPP). 

Figure 4: Repeated-measures ANOVA showing the effects of the three odour conditions 

and two face conditions on ERP response to faces. . (A) Main effect of face-valence on 

ERP response to faces across all odour conditions. The green panel shows statistically 

significant latency periods (uncorrected P < 0.001) in the scalp-time plot where F values 

represent the strength of variance between SOA conditions over the horizontal axis of the 

scalp in every time sample from 0 ms and 1000 ms relative to the onset of the face 

photograph. The scalp values over the horizontal axis of the scalp are averages of F values 

occurring at each vertical point for a given horizontal point in the standardized scalp map 

(from -6.8 cm to +6.8 cm). There were two spatio-temporal clusters showing a statistically 

significant effect of face-valence. Below the green panel is the standard scalp map of 

statistically significant clusters using ERPs. The first significant cluster, labelled 1, peaked at 

192 ms and had negative amplitude. The second, labelled 2, peaked at 704 ms and also had 
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negative amplitude. Bar graphs illustrate the mean EEG amplitude for each cluster under each 

face condition (µV). White bars represent trials with happy faces, and black bars represent 

trials with disgusted faces. Asterisks indicate statistically significant differences (P < 0.05). 

Corresponding topographic maps of the numbered significant clusters for the two SOA 

conditions are shown. White circles with a black outline pinpoint the centre of significant 

electrode clusters. (B) Main effect of odour condition on ERP response to faces across both 

face conditions. The green panel shows statistically significant latency periods (P < 0.05 

FWE) in the scalp-time plot where F values represent the strength of variance between odour 

conditions. One spatio-temporal cluster showed a statistically significant effect of odour 

during the N170 time-window. Below the green panel is the standard scalp map of the 

statistically significant cluster. Bar graphs illustrate the mean EEG amplitude at this cluster 

under each odour condition (µV). The white bar represents the clean air condition (labelled 

CLA), the grey bar represents the pleasant odour condition (labelled JAS) and the black bar 

represents the unpleasant odour condition (labelled MERC). Asterisks indicate statistically 

significant differences (P < 0.05). Corresponding topographic maps of the significant cluster 

for the three odour conditions are shown. (C) Interaction between odour and face-valence 

condition affecting ERP response to faces. The green panel shows statistically significant 

latency periods (P < 0.001 uncorrected) in the scalp-time plot. Two spatio-temporal clusters 

during the LPP showed were significantly affected by an interaction between odour and face-

valence conditions. Below the green panel is the standard scalp map of the statistically 

significant clusters. The first significant cluster, labelled 1, peaked at 259 ms and had 

negative amplitude. The second, labelled 2, peaked at 352 ms and had positive amplitude. Bar 

graphs illustrate the mean EEG amplitude for each cluster under each condition (µV). White 

bars represent trials with happy faces, and black bars represent trials with disgusted faces. 

Odour conditions are labelled CLA, JAS, and MERC. Asterisks indicate statistically 

significant differences (P < 0.05). Corresponding topographic maps of the numbered 

significant clusters for all conditions are shown. 

Figure 5: Average respiratory waveforms for each condition. Respiratory movement 

signals from every subject across all trials were averaged over a period of 7 seconds, 

beginning at odour onset (Time 0). The blue line represents clean air trials using happy faces 

(denoted as ‘Cla H’), the red line represents pleasant odour trials using happy faces (‘Jas H’) 

and the yellow line represents unpleasant odor trials using happy faces (‘Merc H’). The pink 

line represents clean air trials using disgusted faces (‘Cla D’), the green line represents 

pleasant odour trials using disgusted faces (‘Jas D’) and the black line represents unpleasant 

odour trials using disgusted faces (‘Merc D’) The grey rectangle indicates the time interval 

where respiratory movement signals differed significantly according to a two-way ANOVA 

for repeated measures (P < 0.05). Upwards deflection of respiratory signals corresponds to 

inspiration. 

 

 

 


