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Abstract—The optimization of joint source and channel coding
for a sequence of numerous progressive packets is a challenging
problem. Further, the problem becomes more complicated if the
space-time coding is also involved with the optimization in a
multiple-input multiple-output (MIMO) system. This is because
the number of ways of jointly assigning channels codes and
space-time codes to progressive packets is much larger than
that of solely assigning channel codes to the packets. This paper
applies a parametric approach to address that complex joint
optimization problem in a MIMO system. We use the parametric
methodology to derive some useful theoretical results, and then
exploit those results to propose an optimization method where
the joint assignment of channel codes and space-time codes to
the packets can be optimized in a packet-by-packet manner. As
a result, the computational complexity of the optimization is
exponentially reduced, compared to the conventional exhaustive
search. The numerical results show that the proposed method
significantly improves the peak-signal-to-noise ratio performance
of the rate-based optimal solution in a MIMO system.

I. INTRODUCTION

Recently, there has been significant demand for the trans-
mission of multimedia services over wireless channels, which
has motivated intense research into cross-layer optimization
design [1]. Progressive sources, such as embedded images or
scalable video [2], [3], employ a manner of transmission such
that the quality of the decoded source improves when the
number of successfully received bits increases. However, such
advances in source coders have made the source bitstream very
susceptible to impairments in mobile fading channels.

Multiple-input multiple-output (MIMO) technology is an
important advance in wireless communications in terms of
the link reliability and data rate. Spatial diversity schemes,
such as orthogonal space-time block codes (OSTBC), improve
reliability by extracting the diversity gain to combat signal
fading from the channels. Spatial multiplexing schemes use
a layered approach to increase the data rate. One popular
example is the vertical Bell Laboratories layered space-time
(V-BLAST) architecture, where independent data signals are
transmitted over antennas to increase the data rate.

In this paper, we study the optimization of joint source,
channel, and space-time coding of progressive sources in such
a MIMO system. Progressive source encoders produce data
with gradual differences in the importance of their bitstreams.
We consider the system where the bitstream is taken from the
progressive source encoder, and is transformed into a sequence

of L packets. Such a system is depicted in Fig. 1. Each of
those L progressive packets can be encoded with different
channel codes and modulations in a similar way to the works
in [4]–[9]. Further, each packet can be encoded with different
space-time codes [10]–[15], to achieve the best end-to-end
performance as measured by the expected distortion of the
source. We assume that all the encoded packets have the same
time duration, Tpkt, and the same signal bandwidth, Wpkt.
We let ui denote the spectral efficiency (bits/s/Hz) of the ith
packet that has been encoded by a given channel code and
modulation (1 ≤ i ≤ L); ui is determined by the code rate of
the channel code, and by the alphabet size of the modulation.
We let vi denote the spatial multiplexing rate of the ith packet
that has been encoded by a space-time code. Then, the number
of information (or source) bits in the ith packet is expressed
as uiviTpktWpkt. As we increase either the spectral efficiency,
ui, or the spatial multiplexing rate, vi, the variance of the
quantization error from the source coder decreases, but the
probability of the packet error, caused by signal fading and
noise from the channels, increases.

Let Nse denote the number of candidate spectral efficiencies
considered in a system. The number of possible assignments
of Nse spectral efficiencies to a sequence of L progressive
packets is NL

se, which exponentially grows as L increases. As
an example, for the transmission of a 512×512 progressive
image with a rate of 1 bit-per-pixel (bpp), a sequence of
L = 128 packets is considered in [4]. Further, in the MIMO
system depicted in Fig. 1, if each packet can be encoded
with different space-time codes (e.g., V-BLAST, OSTBC,
and two-layer diagonal BLAST (D-BLAST)), which offer
different spatial multiplexing rates, the assignment of spatial
multiplexing rates as well as spectral efficiencies to L packets
yields a more complicated optimization problem. To address
this matter, for a single-input single-output (SISO) system,
there have been many studies about the optimal assignment
of spectral efficiencies to a sequence of progressive packets
[4]–[9]. For a MIMO system, however, those studies do not
immediately indicate how to jointly assign spectral efficiencies
and spatial multiplexing rates to progressive packets.

There have been some researches [13]–[15] to address that
complex optimization problem in a MIMO system. Those
works have focused on significantly reducing the number
of ways to assign space-time codes to progressive packets,
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Fig. 1. A progressive source transmission in a MIMO system. ui denotes the
spectral efficiency (bits/s/Hz), and vi denotes the spatial multiplexing rate of
the ith packet (1 ≤ i ≤ L).

but do not provide a complete solution for how to jointly
assign the spectral efficiencies and spatial multiplexing rates
to the packets. In [13]–[15], it was shown that performance of
the progressive transmission in MIMO systems is sensitive
to the way space-time codes are assigned to a sequence
of packets. However, to our knowledge, solutions for such
joint optimization problem in a MIMO system have not been
presented yet in the literature.

In this paper, we use a parametric approach to address
this complex joint optimization problem. Specifically, we
employ a parametric model of the operational distortion-rate
function of the source, which is based on the distortion-rate
characteristic of the optimal source coder for the input source
of independent and identically distributed (i.i.d.) Gaussian
random variables. We use the parametric methodology to
derive some useful theoretical results, and then exploit those
results to propose an optimization method where the joint
assignment of spectral efficiencies (i.e., channel codes and
modulations) and spatial multiplexing rates (i.e., space-time
codes) to progressive packets can be optimized in a packet-
by-packet manner. As a result, the computational complexity
involved in the optimization decreases exponentially relative
to a conventional exhaustive search. Our work can be applied
to the state-of-the-art wireless communication systems such
as 3GPP Long Term Evolution and 5G systems based on
orthogonal frequency division multiplexing (OFDM) for the
delivery of progressive images.

II. PRELIMINARIES

First, we describe the evaluation of the expected distortion
of the progressive source. The system takes a compressed
progressive bitstream from the source encoder, and transforms
it into a sequence of packets with error detection capability.
Then, as shown in Fig. 1, the packets are encoded using
channel codes, modulations and space-time codes. At the
receiver, if a packet has been correctly received, decoding of
the next packet is considered by the source decoder. Otherwise,
the decoding stops and the source is reconstructed from only

the correctly decoded packets.
Let p(ui, vi) denote the probability of the packet error

with a spectral efficiency ui ∈ R = {R1, R2, . . . , RNse},
and spatial multiplexing rate vi ∈ C = {C1, C2, . . . , CNsmr},
where Nse is the number of candidate spectral efficiencies,
specified by channel codes and modulations, and Nsmr is the
number of candidate spatial multiplexing rates specified by
the space-time codes employed in a system. We let b(ui, vi)
denote the number of information (or source) bits in the
packet that employs ui ∈ R and vi ∈ C. Recall that we
have b(ui, vi) = uiviTpktWpkt, where Tpkt and Wpkt are the
time duration and the signal bandwidth of the coded packet,
respectively. Regarding R and C, it is assumed that for ui < uj

(ui, uj ∈ R) and vi ∈ C, we have p(ui, vi) < p(uj , vi) [5],
and that for vi < vj (vi, vj ∈ C) and ui ∈ R, we have
p(ui, vi) < p(ui, vj) [11].

Let D1,2,...,k(u1, u2, . . . , uk; v1, v2, . . . , vk) be the expected
distortion of the progressive source for the event where
ui ∈ R and vi ∈ C are assigned to the ith packet (i =
1, 2, . . . , k) in a sequence of k packets. We denote the op-
erational distortion-rate function of the source by f(x). From
the aforementioned decoding rule of the progressive codes,
D1,2,...,k(u1, u2, . . . , uk; v1, v2, . . . , vk) can be expressed as

D1,2,...,k(u1, u2, . . . , uk; v1, v2, . . . , vk)

=
k∑

n=0

f

( n∑
i=1

b(ui, vi)

)
Pc, n, (1)

where f
(∑n

i=1 b(ui, vi)
)

is the distortion of the source for
the case where the first n packets in a sequence of k packets
are used for the source decoding, and Pc, n is the probability
that no decoding errors occur in the first n packets with an
error in the next one. For 1 ≤ n ≤ k − 1, Pc, n is given by
Pc, n = p(un+1, vn+1)

∏n
i=1

(
1 − p(ui, vi)

)
; the probability

of an error in the first packet is Pc, 0 = p(u1, v1), and the
probability that all k packets are correctly decoded is Pc, k =∏k

i=1

(
1− p(ui, vi)

)
. Then, (1) can be rewritten as

D1,2,...,k(u1, u2, . . . , uk; v1, v2, . . . , vk)

=
k−1∑
n=0

f

( n∑
i=1

b(ui, vi)

)
p(un+1, vn+1)

n∏
i=1

(
1− p(ui, vi)

)
+ f

( k∑
i=1

b(ui, vi)

) k∏
i=1

(
1− p(ui, vi)

)
, (2)

where we have used the definitions of
∑I2

i=I1
a(i) , 0 and∏I2

i=I1
a(i) , 1 for an arbitrary function a(i).

We consider a MIMO system with Nt transmit and Nr

receive antennas. A space-time codeword, S = [s1 s2 · · · sTs ]
of size Nt × Ts is transmitted over Nt transmit antennas and
Ts symbol durations. The Nr × 1 received signal vector, yl

(1 ≤ l ≤ Ts), can be expressed as

yl = Hsl + nl, (3)

where sl is an Nt × 1 transmitted signal vector, H is the
Nr×Nt channel matrix, and nl is an Nr× 1 zero-mean com-



plex Gaussian vector with E
[
nkn

H
l

]
=σ2

nINrδ(k − l), where
(·)H denotes Hermitian operation. We assume that the entries
of H are i.i.d ∼ CN (0, 1), and that H is random but constant
over the duration Ts of a codeword. Let γs := E

[
|(sk)i|2

]
/σ2

n

denote the signal-to-noise ratio (SNR) per symbol, where
(sk)i is the ith component of the transmit signal vector sk
(i = 1, . . . , Nt). Let Ns denote the number of symbols packed
within a space-time codeword S. The spatial multiplexing rate
is defined as Ns/Ts.

III. THE PROPOSED JOINT OPTIMIZATION METHOD

The joint optimization problem for a sequence of k progres-
sive packets in a MIMO system is to find the set of spectral
efficiencies u1, u2, . . . , uk ∈ R and spatial multiplexing rates
v1, v2, . . . , vk ∈ C that minimizes the expected distortion given
by (2). Due to the high nonlinearity of f(x) and p(x, y) in the
expected distortion, convex optimization techniques are not
exploited to find the optimal solution. To address this matter,
we consider a parametric model of the operational distortion-
rate characteristic of the source. When a sequence of i.i.d.
Gaussian random variables with zero mean and variance of
σ2 are encoded at bit rate x using an optimal source coder,
the distortion of the source is given by [16]

d(x) = σ22−2x. (4)

Although the distortion-rate bound, given by (4), can only
be achieved with no constraint on the coding length, the
operational distortion-rate function of a practical source coder
usually shows the same exponential rate decay of 2x at a high
bit rate [11].

Instead of the actual operational distortion-rate function
of the source, denoted by f(x), we take into account the
parametric distortion-rate function:

fp(x) = σ22−αx, α ≥ 2 (5)

where α is a parameter that is free to be adjusted for the
optimization, and σ2 ( ̸= 0) is a constant that does not
affect the optimization (this will be described in detail in this
section). The function in (5) parameterizes the distortion-rate
characteristic of the source d(x), given by (4), to include a
wide range of low-to-high bit rates x for a practical image
source coder. Suppose that instead of f(x), fp(x) is employed
for the computation of the expected distortion. Then, from (2),
the resulting expected distortion can be expressed as

Dp
1,2,...,k(u1, u2, . . . , uk; v1, v2, . . . , vk; α) =

k−1∑
n=0

σ2

( n∏
i=1

g
(
b(ui, vi)

))
p(un+1, vn+1)

n∏
i=1

(
1− p(ui, vi)

)
+σ2

k∏
i=1

g
(
b(ui, vi)

) k∏
i=1

(
1− p(ui, vi)

)
, (6)

where g(x) , 2−αx. Let s1,2,...,k = [u1, u2, . . . , uk;
v1, v2, . . . , vk] indicate a solution (or assignment) where a
spectral efficiency ui ∈ R and a spatial multiplexing rate
vi ∈ C are assigned to the ith packet (i = 1, 2, . . . , k).

From here onwards, we refer to the parametric distortion-
based optimal solution as the one that minimizes the expected
distortion of the source with the parametric distortion-rate
function fp(x) employed as given by (6). In the following, we
derive some theoretical results for the parametric distortion-
based optimal solution. Based on them, we will propose an
efficient optimization method for the joint source, channel,
and space-time coding of progressive packets.

Theorem 1: For some integer L in the range of L ≥ 2,
suppose that s1,2,...,L−1 = [r∗2 , r

∗
3 , . . . , r

∗
L; c

∗
2, c

∗
3, . . . , c

∗
L] is

a parametric distortion-based optimal assignment of spectral
efficiencies and spatial multiplexing rates to L−1 progressive
packets. That is,

Dp
1,2,...,L−1(r

∗
2 , r

∗
3 , . . . , r

∗
L; c

∗
2, c

∗
3, . . . , c

∗
L; α)

≤ Dp
1,2,...,L−1(r2, r3, . . . , rL; c2, c3, . . . , cL; α)

for any r2, . . . , rL ∈ R and c2, . . . , cL ∈ C. (7)

Then, if

Dp
1,2,...,L(r

∗
1 , r

∗
2 , . . . , r

∗
L; c

∗
1, c

∗
2, . . . , c

∗
L; α)

≤ Dp
1,2,...,L(r1, r

∗
2 , . . . , r

∗
L; c1, c

∗
2, . . . , c

∗
L; α)

for any r1 ∈ R and c1 ∈ C, (8)

we obtain

Dp
1,2,...,L(r

∗
1 , r

∗
2 , . . . , r

∗
L; c

∗
1, c

∗
2, . . . , c

∗
L; α)

≤ Dp
1,2,...,L(r1, r2, . . . , rL; c1, c2, . . . , cL; α)

for any r1, . . . , rL ∈ R and c1, . . . , cL ∈ C. (9)

In other words, s1,2,...,L = [r∗1 , r
∗
2 , . . . , r

∗
L; c

∗
1, c

∗
2, . . . , c

∗
L] is a

parametric distortion-based optimal solution for L progressive
packets.

Proof: The proof of this theorem as well as the proofs of
all other results are not included here due to space limitations,
but they can be found in [17]. �

Theorem 1 tells us that if the parametric distortion-rate
function fp(x), given by (5), is used to compute the expected
distortion, the joint assignment of the spectral efficiencies
and spatial multiplexing rates to progressive packets can be
optimized in a packet-by-packet manner. This optimization
method will be described in detail in this section.

Lemma 2: Consider an integer i in the range of 1 ≤ i ≤
L − 1. If s1,2,...,L−i+1 = [r∗i , r

∗
i+1, . . . , r

∗
L; c

∗
i , c

∗
i+1, . . . , c

∗
L]

is a parametric distortion-based optimal assignment of spec-
tral efficiencies and spatial multiplexing rates to L − i + 1
progressive packets, i.e.,

Dp
1,2,...,L−i+1(r

∗
i , r

∗
i+1, . . . , r

∗
L; c

∗
i , c

∗
i+1, . . . , c

∗
L; α)

≤ Dp
1,2,...,L−i+1(ri, ri+1, . . . , rL; ci, ci+1, . . . , cL; α)

for any ri, . . . , rL ∈ R and ci, . . . , cL ∈ C, (10)

then, for some integer j in the range of i + 1 ≤ j ≤ L, we
have

Dp
1,2,...,L−j+1(r

∗
j , r

∗
j+1, . . . , r

∗
L; c

∗
j , c

∗
j+1, . . . , c

∗
L; α)

≤ Dp
1,2,...,L−j+1(rj , rj+1, . . . , rL; cj , cj+1, . . . , cL; α)

for any rj , . . . , rL ∈ R and cj , . . . , cL ∈ C. (11)



In other words, s1,2,...,L−j+1 = [r∗j , r
∗
j+1, . . . , r

∗
L; c∗j , c

∗
j+1,

. . . , c∗L] is a parametric distortion-based optimum for L−j+1
progressive packets. �

Lemma 2 tells us that if a parametric distortion-based opti-
mal solution for a given number of packets (or, equivalently, a
given transmission rate in bpp) has been obtained, an optimal
solution for a smaller number of packets (or a lower trans-
mission rate) can be immediately found without additional
computation. As an example, if s1,2,3 = [r∗1 , r

∗
2 , r

∗
3 ; c

∗
1, c

∗
2, c

∗
3]

is a parametric distortion-based optimum for a sequence of
three packets (L = 3), then s1,2 = [r∗2 , r

∗
3 ; c∗2, c

∗
3] is an

optimum for a sequence of two packets (L = 2), and
s1 = [r∗3 ; c∗3] is an optimum for a single packet (L = 1).
Lemma 2 is used to prove the subsequent Lemma 4, Theorem
5, and Corollary 6.

Lemma 3: For an integer L in the range of L ≥ 2, we have

Dp
1,2,...,L(r1, r2, . . . , rL; c1, c2, . . . , cL; α)

< Dp
1,2,...,L−1(r1, r2, . . . , rL−1; c1, c2, . . . , cL−1; α)

for any r1, . . . , rL ∈ R and c1, . . . , cL ∈ C. (12)

�
Lemma 3 is used in the proof of Lemma 4.
Lemma 4: Consider some integers i, j in the range of

1 ≤ i ≤ L − 1 and i + 1 ≤ j ≤ L. If s1,2,...,L−i+1 =
[r∗i , r

∗
i+1, . . . , r

∗
L; c

∗
i , c

∗
i+1, . . . , c

∗
L] is a parametric distortion-

based optimum for L − i + 1 progressive packets (that is, if
(10) holds), we obtain

Dp
1,2,...,L−i+1(r

∗
i , r

∗
i+1, . . . , r

∗
L; c

∗
i , c

∗
i+1, . . . , c

∗
L; α)

< Dp
1,2,...,L−j+1(r

∗
j , r

∗
j+1, . . . , r

∗
L; c

∗
j , c

∗
j+1, . . . , c

∗
L; α). (13)

�
Lemma 4 is employed in the proof of Theorem 5, which

derives some constraints on the search space of R and C when
we find a parametric distortion-based optimal solution.

Theorem 5: Consider an integer i in the range of 1 ≤ i ≤
L−1. If s1,2,...,L−i+1 = [r∗i , r

∗
i+1, . . . , r

∗
L; c

∗
i , c

∗
i+1, . . . , c

∗
L] is

a parametric distortion-based optimum for L−i+1 progressive
packets (that is, if (10) holds), then for every integer j in the
range of i + 1 ≤ j ≤ L, at least one of the following three
conditions holds:

i) r∗i < r∗j , ii) c∗i < c∗j , iii) r∗i = r∗j , c∗i = c∗j . (14)

That is, we obtain at least L− i constraints on r∗i or c∗i of the
ith packet. �

Corollary 6 follows immediately from Theorem 5.
Corollary 6: If s1,2,...,L = [r∗1 , r

∗
2 , . . . , r

∗
L; c

∗
1, c

∗
2, . . . , c

∗
L]

is a parametric distortion-based optimum for L progressive
packets, i.e.,

Dp
1,2,...,L(r

∗
1 , r

∗
2 , . . . , r

∗
L; c

∗
1, c

∗
2, . . . , c

∗
L; α)

≤ Dp
1,2,...,L(r1, r2, . . . , rL; c1, c2, . . . , cL; α)

for any r1, . . . , rL ∈ R and c1, . . . , cL ∈ C, (15)

then, for every integer i, j in the range of 1 ≤ i ≤ L− 1 and
i+ 1 ≤ j ≤ L, at least one of the following three conditions

holds:

i) r∗i < r∗j , ii) c∗i < c∗j , iii) r∗i = r∗j , c∗i = c∗j . (16)

That is, we obtain at least (L2 − L)/2 constraints on
r∗1 , r

∗
2 , . . . , r

∗
L−1 or c∗1, c

∗
2, . . . , c

∗
L−1. �

By Corollary 6, we are able to reduce the search space of
R and C when finding a parametric distortion-based optimal
solution.

Based on Theorem 1 and Corollary 6, a parametric
distortion-based optimal solution for L progressive packets can
be obtained in the following way.
Step 1: Choose the best parameter α∗ of the parametric model
of the distortion-rate function, fp(x) = σ22−αx, as follows:

α∗ = arg min
α∈{α1,α2,...,αQ}

D1,2,...,L(r
∗
1(α), r

∗
2(α), . . . , r

∗
L(α);

c∗1(α), c
∗
2(α), . . . , c

∗
L(α)), (17)

where D1,2,...,L(·) is the expected distortion of the source,
given by (2), employing the actual distortion-rate function
f(x). For a given parameter α ∈ {α1, α2, . . . , αQ}, r∗i (α)
and c∗i (α) can be obtained through Steps 2–4 below.

From α∗ chosen in (17), we obtain a parametric distortion-
based optimal solution of r∗1(α

∗), r∗2(α
∗), . . ., r∗L(α

∗) and
c∗1(α

∗), c∗2(α
∗), . . ., c∗L(α

∗).
Step 2: In order to find r∗i (α) and c∗i (α) for a given parameter
α, the packet index i is initialized as i = L.
Step 3: If i = L,

r∗L(α), c∗L(α) = arg min
rL∈R, cL∈C

Dp
1 (rL; cL; α), (18)

otherwise (i.e., 1 ≤ i ≤ L− 1),

r∗i (α), c∗i (α) =

arg min
ri∈R, ci∈C

Dp
1,2,...,L−i+1(ri, r

∗
i+1(α), . . . , r

∗
L(α);

ci, c
∗
i+1(α), . . . , c

∗
L(α); α), (19)

subject to at least one of the three constraints :

i) r∗i (α) < r∗j (α); ii) c∗i (α) < c∗j (α); iii) r∗i (α) = r∗j (α),

c∗i (α) = c∗j (α), for every integer j in the range of

i+ 1 ≤ j ≤ L, (20)

where Dp
1,2,...,L−i+1(·) (1 ≤ i ≤ L) is the expected distortion

of the source with parametric distortion-rate function fp(x),
and is given by (21) at the top of the next page.
Step 4: Set i = i−1. If i = 0, we have obtained r∗1(α), r

∗
2(α),

. . ., r∗L(α), and c∗1(α), c
∗
2(α), . . ., c

∗
L(α) for a given parameter

α; thus go to Step 1. Otherwise, go to Step 3. �
We first describe Steps 2–4. Eq. (19) follows from Theorem

1. In (18) and (19), it is shown that the joint assignment of
spectral efficiencies and spatial multiplexing rates to L packets
is optimized in a packet-by-packet manner; that is, for the ith
packet, only two optima r∗i (α) and c∗i (α) are exhaustively
searched (1 ≤ i ≤ L), from which the global minimum of
Dp

1,2,...,L(·) can be attained. The expected distortion in (18)
and (19) of Step 3, given by (21) at the top of the next page,
can be derived from (6). From (18), (19), and (21), it is seen



Dp
1,2,...,L−i+1(ri, r

∗
i+1(α), . . . , r

∗
L(α); ci, c

∗
i+1(α), . . . , c

∗
L(α); α) = σ2p(ri, ci) + σ2g

(
b(ri, ci)

)(
1− p(ri, ci)

)
×

[
L−i∑
n=1

( n∏
k=2

g
(
b(r∗i+k−1(α), c

∗
i+k−1(α))

))
p(r∗i+n(α), c

∗
i+n(α))

n∏
k=2

(
1− p(r∗i+k−1(α), c

∗
i+k−1(α))

)
+

L+1−i∏
k=2

g
(
b(r∗i+k−1(α), c

∗
i+k−1(α))

) L+1−i∏
k=2

(
1− p(r∗i+k−1(α), c

∗
i+k−1(α))

)]
. (21)

that the selection of r∗i (α) and c∗i (α) does not depend on how
large σ2 (̸= 0) is, but depends on how large α (≥ 2) is. To
emphasize this, in Steps 1–4, we have used the notation r∗i (α)
and c∗i (α) instead of r∗i and c∗i , respectively. The constraint
given by (20), which reduces the search space of R and C for
the evaluation in (19), is based on Corollary 6. Consequently,
following Steps 2–4, the number of ways to assign Nse spectral
efficiencies and Nsmr spatial multiplexing rates to L packets,
of which the expected distortions need to be evaluated for the
optimization, is given by Nsteps 2−4 ≤ NseNsmrL, where the
inequality follows from the constraint given by (20). Note that
the number of possible assignments for an exhaustive search
is (NseNsmr)

L.
We next describe Step 1. In (17), the best parameter α∗

is chosen to minimize the expected distortion of the source.
Note that the actual distortion-rate function f(x) has been
used to compute the expected distortion. In (17), due to the
high nonlinearity of f(x), we resort to an exhaustive search
of α∗ that minimizes the expected distortion. If α ≥ 2 is
quantized into Q levels for the exhaustive search, Steps 2–4
should be repeated Q times. This is because for every α ∈
{α1, α2, . . . , αQ}, r∗i (α) and c∗i (α) (1 ≤ i ≤ L) should be
obtained to calculate D1,2,...,L(·). Thus, the number of ways
of assignment, of which the expected distortions need to be
evaluated in Steps 1–4, can be expressed as

Nsteps 1−4 ≤ QNseNsmrL, (22)

where the inequality follows from the constraint of (20). Eq.
(22) indicates that even in the worst case, the number of ways
of assignment decreases exponentially from (NseNsmr)

L to
QNseNsmrL, relative to an exhaustive search. We note that,
however, a parametric distortion-based solution is suboptimal
in terms of the expected distortion performance, while an
exhaustive search obviously yields the optimal performance.
In the next section, we will assess the performance of our
solution.

IV. NUMERICAL EVALUATION

We numerically evaluate the performance of the proposed
optimization method. We take three space-time codes into
consideration: V-BLAST with an MMSE receiver, OSTBC
with a decorrelator, and two-layer D-BLAST with a group
zero-forcing receiver [18]. Group decoding is a recent de-
coding method which can be regarded as a compromise
between zero-forcing and maximum likelihood decoding. The
spatial multiplexing rates of OSTBC, two-layer D-BLAST,

and V-BLAST are denoted by C1, C2, and C3, respectively,
and a set of candidate spatial multiplexing rates is given
by C = {C1, C2, C3}. We have C2 = 2Nt/(Nt + 1) and
C3 = Nt for Nt transmit antennas. In the complex OSTBC,
the Alamouti code achieves C1 = 1 for Nt = 2, and C1 = 3/4
is the maximum achievable rate for Nt = 3 or 4. For Nt ≥ 5,
C1 = 1/2 is the maximum rate. We assume a MIMO system
with Nr ≥ Nt ≥ 2. The strict inequality of C1 < C2 < C3

can be shown to hold for Nt ≥ 2. In this evaluation, as
an example, a set of candidate spectral efficiencies is chosen
as R = {1, 2, 3, 4} (bits/s/Hz). The channel is assumed to
experience slow fading such that the fading coefficients remain
nearly constant over a packet and are i.i.d. across different
packets. We assume that the channel estimation at the receiver
is perfect in such slow fading channels.

With suitably powerful channel codes, the error proba-
bility when not in outage is very small, and hence the
outage probability is an accurate approximation of the ac-
tual probability of the packet error [19]. Let Pout,1(γs),
Pout,2(γs), and Pout,3(γs) denote the outage probabilities
of OSTBC, D-BLAST, and V-BLAST, respectively. For a
given spectral efficiency R ∈ R and a spatial multiplex-
ing rate C1 ∈ C, the outage probability of OSTBC is
given by Pout,1(γs) = Pr

[
log2

(
1 + γs∥H∥2F /C1

)
< R

]
[13],

where ∥ · ∥F denotes the Frobenius norm of the matrix.
For a given spectral efficiency R ∈ R and a spatial
multiplexing rate C2 ∈ C, the outage probability of D-
BLAST provided by [18] is expressed as Pout,2(γs) =
Pr

[
log2 det(INt +NtγsH

H
1 QH

1 Q1H1) < TsC2R/2
]
, where

H1 and Q1 are given by Eqs. (4) and (6) of [18], respec-
tively. For the V-BLAST scheme, we consider pure spatial
multiplexing [20] where data is split into several substreams,
one for each transmit antenna, and each substream undergoes
independent temporal coding to avoid complex joint decoding
of substreams at the receiver. For this scheme, an outage event
occurs when any of the substreams is in outage Thus, the
outage probability of V-BLAST, for a given spectral efficiency
R ∈ R and a spatial multiplexing rate C3 ∈ C, is given
by Pout,3(γs) = Pr

[∪Nt

k=1 {log2 (1 + γk) < C3R/Nt}
]

[20],
where γk = 1/[(INt + γsH

HH)−1]kk − 1, and [·]kk indicates
the kth diagonal entry of a matrix. From the outage probability
expressions given above, we calculate the probability of the
packet error, p(R,Ci), in (21).

We evaluate the performance of the proposed optimization
method using the source coder SPIHT [3] as an example,
for 8 bpp 512 × 512 Lena and Pepper images with trans-
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Fig. 2. The PSNR performance for the transmission of 8 bpp 512 × 512
Lena image in SISO Rayleigh fading channels. The transmission rate is 0.5
bpp and the number of packets is L = 64.

mission rates of 0.5 and 1.0 bpp. The number of packets is
chosen as L = 64 and 128 for the 0.5 and 1.0 bpp rates,
respectively.1 The end-to-end performance is measured by
the expected distortion, D1,2,...,L(·). To compare the image
quality, we use the peak-signal-to-noise ratio (PSNR) defined
as 10log10(255

2/D1,2,...,L(·)) (dB). To find the best α∗ of
the parametric distortion-rate function, fp(x) = σ22−αx, we
quantize α into Q bins for the range of 2 ≤ α ≤ M , such
that the width of each bin is given by (M − 2)/Q. In our
evaluation, we set M and Q to be 20 and 1, respectively.

To begin, we observe the PSNR performance of the pro-
posed optimization method when employed in a SISO sys-
tem. For this case, only spectral efficiencies are optimally
assigned to progressive packets, and space-time codes are
not employed. Recall that in a SISO system, there have
been many studies about the optimal assignment of spectral
efficiencies to progressive packets. The local search algorithm
[4] and heuristic algorithm based on graph search [6] are
among the best optimization methods in terms of the expected
distortion performance (or, equivalently, mean squared-error
performance). In [6], it is shown that the two algorithms
provide nearly identical mean squared-error performances for
progressive transmission, which are near optimal [4]. Fig. 2
shows the PSNR performances of the proposed method and
the local search algorithm in a SISO system, in addition
to showing the upper bound on the PSNR performance (or,
equivalently, the lower bound on the expected distortion) that
is presented in [4], [6] for reference. Fig. 2 also depicts the
PSNR of a rate-based optimal solution [21], [22] that assigns
the spectral efficiencies to packets in a way that the expected
number of correctly decoded information bits is maximized,
rather than minimizing the expected distortion. The search

1The transmission rates and the number of packets in this evaluation are
the same as those used in [4], [6].
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Fig. 3. The PSNRs of various optimization schemes, each subtracted by the
PSNR of the proposed method, for the transmission of 8 bpp 512×512 Lena
image in 2× 2 MIMO i.i.d. Rayleigh fading channels. The transmission rate
is 0.5 bpp and the number of packets is L = 64.

space of R for a sequence of progressive packets is too large
to find a global optimal solution through an exhaustive search.
Thus, the PSNR achieved by an exhaustive search is not
presented in Fig. 2. It is shown that the PSNR performance
of the proposed method is seen to be close to that of the local
search algorithm, and is significantly better than that of the
rate-based optimal solution.2

Next, we evaluate the PSNR performance in a 2×2 MIMO
i.i.d. Rayleigh fading channels. The system parameters are
set equal to those used in a SISO system. Note that in a
SISO system, a rate-based optimal assignment of spectral
efficiencies to progressive packets can be found in a packet-
by-packet manner [22]. This can be immediately extended to
a MIMO system such that a rate-based optimal assignment
of spectral efficiencies and spatial multiplexing rates to the
packets can be obtained using a packet-by-packet method.
In other words, we are able to obtain a rate-based optimal
solution even for the case where space-time codes are involved
in the optimization.

On the other hand, the optimization algorithms that are
proposed to minimize the expected distortion in a SISO system
do not immediately tell us how to jointly assign the spec-
tral efficiencies and spatial multiplexing rates to progressive
packets. We are unaware of any algorithm in [4]–[9] that
has been successfully extended to the case where space-time
coding is also involved in the optimization. For this reason, we
cannot compute and present the PSNR performances of those
optimization algorithms. Fig. 3 shows the PSNR performances
in 2 × 2 MIMO systems. For better visual comparison, Fig.
3 depicts the PSNR difference between our solution and the
others; that is, Fig. 3 shows the PSNRs of the upper bound and

2The numerical evaluations for a Pepper image and other transmission rates
yield similar results, which are not depicted here for limited space.



a rate-based optimal solution, each subtracted by the PSNR of
our solution. It is seen that the proposed method is able to
significantly improve the performance of a rate-based optimal
solution. Fig. 3 also shows the performance of a suboptimal
case where a space-time code is excluded from a candidate set.
It is seen that there is a significant PSNR gap between the two
cases where a single space-time code has been excluded and
not excluded. This indicates that when progressive packets are
transmitted in a MIMO system, the PSNR performance would
improve if a variety of space-time codes are employed to
encode a sequence of packets. This motivated us to suggest an
optimization method that is able to handle two or more space-
time codes to transmit progressive packets in a MIMO system.
For the PSNR performance of the proposed method shown in
Fig. 3, (19) has been computed with the constraint given by
(20). We note that the same set of spectral efficiencies and
spatial multiplexing rates is obtained when (19) is computed
with and without the constraint. That is, the constraint in
(20) reduces the computational complexity involved with the
optimization without losing any PSNR performance.

V. CONCLUSIONS

The joint optimization of source, channel, and space-time
coding for a series of numerous progressive packets is a chal-
lenging problem. To our knowledge, a feasible solution for this
joint optimization problem has not yet been presented in the
literature. This paper uses a parametric methodology to solve
such a complex joint optimization problem. In the proposed
method, employing a parametric distortion-rate function, we
jointly optimize the assignment of spectral efficiencies and
spatial multiplexing rates to progressive packets in a packet-
by-packet manner. As a result, the computational complexity
of the optimization is exponentially reduced, compared to
an exhaustive search. Moreover, some constraints on the
search space are derived to further reduce the complexity. The
numerical results show that the proposed solution significantly
improves the PSNR performance of a rate-based optimal
solution in a MIMO system. In addition, the performance of
our solution when applied to a SISO system is close to that of
local search algorithm, one of the best optimization methods
proposed for a SISO system.

Lastly, we note that our solution can be computed indepen-
dently of a specific progressive source, once the best α∗ of the
parametric function for that source has been chosen. Thus, if
a single parameter α∗ is known to the receiver side, which
requires only a small amount of overhead, our solution for
spectral efficiencies and spatial multiplexing rates can then
be recomputed at the receiver side. Therefore, the overhead
information for the solution is unnecessary. In general, the
number of parameters in a parametric model should remain
small, because both the overhead and the optimization time
grow with the number of parameters. In our approach, only a
single parameter α is taken to avoid such a problem.

The work in this paper has significance in terms of its impact
on the area of multimedia communications, and deepens our
understanding of joint source and channel coding problem in a

MIMO system. As a future work, we consider extending our
joint source, channel, and space-time coding to progressive
transmission in multiview settings where multiple cameras are
coded and sent to clients in a progressive fashion.
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