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Abstract—Caching at mobile edge servers can smooth temporal traffic
variability and reduce service load of base stations in mobile video
delivery. However, the assignment of multiple video representations to
distributed servers is still a challenging question in the context of adaptive
streaming, since any two representations from different videos or even
from the same video will compete for the limited caching storage. It
is therefore important, yet challenging, to optimally select the cached
representations for each edge server in order to effectively reduce the
service load of base station while maintaining a high quality of experience
(QoE) for users. To address this, we study on a QoE-driven mobile
edge caching placement optimization problem for dynamic adaptive
video streaming that properly takes into account the different rate-
distortion (R-D) characteristics of videos and the coordination among
distributed edge servers. Then, by the optimal caching placement of
representations for multiple videos, we maximize the aggregate average
video distortion reduction of all users while minimizing the additional
cost of representation downloading from the base station, subject not
only to the storage capacity constraints at the edge servers, but also
to the transmission and initial startup delay constraints at the users.
We formulate the proposed optimization problem as an integer linear
program (ILP) to provide the performance upper bound, and as a
submodular maximization problem with a set of knapsack constraints to
develop a practically feasible cost benefit greedy algorithm. The proposed
algorithm has polynomial computational complexity and a theoretical
lower bound on its performance. Simulation results further show that the
proposed algorithm is able to achieve a near-optimal performance with
very low time complexity. Therefore, the proposed optimization frame-
work reveals the caching performance upper bound for general adaptive
video streaming systems, while the proposed algorithm provides some
design guidelines for the edge servers to select the cached representations
in practice based on both the video popularity and content information.

Index Terms—Mobile edge caching, adaptive video streaming, wireless
video delivery, video-on-demand, submodular function maximization.

I. I NTRODUCTION

In the last decade, mobile multimedia services, such as streaming
of mobile videos, have become the main reason for the exponential
growth of global mobile data traffic over cellular networks [1].
For example, as revealed by [2] in 2016, real-time entertainment
that consists of streaming video and audio has become the largest
traffic category on virtually every network, and its continued growth
is expected to lead all the networks.Such a dramatic growth of
mobile video data poses significant challenges to both the video
content providers and the network service providers. One noticeable
consequence is the resultant acceleration of busy-hour traffic in
relation to the average traffic growth. Unlike other data traffic (e.g.,
web usage) that occurs throughout the day, video usage is more
likely to occur during evening hours and thus has a “prime time.”
Globally, mobile busy-hour traffic is expected to be 88 percent higher
than average-hour traffic by 2020, compared to 66 percent in 2015
[1]. Therefore, the mobile video traffic presents a high temporal
variability, which incurs congestion during peak traffic hours and
under-utilization during off-peak hours. To reduce the heavy traffic
load of the base station and provide context-aware servicesin close
proximity to the mobile multimedia users, mobile edge computing
has been introduced to push mobile computing, network control and
storage to network edges [3]. In particular, mobile edge caching
(MEC) is able to utilize the storage space of edge servers across
the network and to perform multimedia content placement during

off-peak hours, thereby smoothing out the temporal traffic variability
and reducing congestion and access latencies [4].

Simultaneously, the growing heterogeneity of user population in
terms of demands for specialized video content, display devices, and
access network capacity, has made the mobile video streaming a
much more complex task. Adaptive streaming technique, suchas the
dynamic adaptive streaming over HTTP (DASH), has emerged asan
effective method for video streaming over heterogeneous networks,
which can improve the overall user satisfaction by offeringseveral
representations of the same video content to different clients [5]. Each
representation is encoded with a pre-defined bitrate and/orresolution
by the content provider. The users then select the representation that
better fits to their requirements and the network conditions. Therefore,
it is promising to study the potential performance gain introduced
by the dynamic adaptive streaming in addition to the mobile edge
caching, and to investigate the proper mobile edge caching placement
schemes for dynamic adaptive streaming systems, in order toalleviate
the traffic load of the base station and reduce the access latencies of
the users (i.e., benefit of caching), and to satisfy heterogenous users’
demands (i.e., benefit of adaptive streaming). The basic question in
this context is how to place the local caches of the distributed edge
servers with appropriate video representations such that the overall
users’ QoE in terms of video qualities and latencies is maximized,
given the cache storage capacity of these edge servers. Different from
the caching schemes for traditional video streaming, the number of
video representations stored at the content server (which is managed
by the content provider) may become extremely huge since multiple
representations are stored for each video. This results in amuch more
difficult problem formulation with a higher computational complexity
to solve it. Therefore, in adaptive streaming based MEC systems,
people are not only concerned about which video should be cached
at which edge server, they also want to know which representation
of that video should be selected for caching.

Studies to date have investigated related work to deal with the
aforementioned caching and adaptive streaming from different per-
spectives. For mobile video delivery, caching at distributed edge
servers is demonstrated to be capable of greatly reducing the service
load of base station, and replacing the usually weak backhaul
connections from the base station with high-speed local links from
the edge servers to guarantee the lowdelay requirement of users
[6] 1. An efficient caching placement strategy is designed for two-
tier wireless content delivery networks to reduce the system design
complexity by using separate channels for content dissemination
and service [7]. For adaptive streaming, the work in [8] derives a
logarithmic QoE model based on empirical results and formulates
the cache management problem as a convex optimization problem.
In order to cope with dynamic video segment requests, an online
pre-fetching algorithm is proposed in [9] to adaptively pre-fetch
adaptive streaming video segments while considering the limited
bottleneck bandwidth between the content server and the edge server.

1According to [6], since the edge servers are much closer to the mobile
users,localized high-bandwidth communicationfrom the edge servers can be
achieved through enabling high frequency reuse or high-density spatial reuse
of communication resources, while the backhaul communication from the base
station fails to do so.
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However, the limitation of these state-of-the-art cachingschemes is
that thevideo content characteristicsare not taken into account. They
mainly focus on the rate (bitrate of encoded representations) and
delay (transmission delay) perspectives, and thus video sources with
different R-D behaviors are treated in the same way, which isnot the
optimal solution for the adaptive streaming scenario wheredifferent
representations have different R-D behaviors.

We therefore propose in this paper to develop a novel mobile
edge caching placement optimization framework for the adaptive
streaming based video-on-demand (VoD) system with proper con-
sideration of the R-D properties of the representations from different
videos. Specifically, we formulate the caching placement optimization
problem as an ILP, and target at maximizing aggregate average
video distortion reduction of all users while taking into account the
imposed constraints on the backhaul link, the edge servers’storage
capacity and the users’ transmission and initial startup delay. This
is accomplished by the optimal assignment of adaptive streaming
representations of multiple video sources to distributed edge servers.
Through solving the proposed ILP to obtain the optimal solution,
we are able to provide a performance upper bound for the caching
placement. However, it is NP-hard and thus too time-consuming to
be a practical solution for delay-sensitive video streaming. In order to
reduce the execution time of the caching placement algorithm in prac-
tice, we convert the original optimization problem to an equivalent
set function optimization problem and show its submodularity. By
using the diminishing return property of the submodular functions,
we develop a cost-benefit greedy algorithm for the caching placement,
which has polynomial computational complexity and offers close-to-
optimal performance (approximation ratio is theoretically proved to
have a lower bound and practically shown to be above95% under
different simulation settings in Section VI). We conduct extensive
simulations under different system settings. The simulation results
show that the proposed algorithm can scale very well with thesize
of the system. It also strikes the tradeoff between the algorithm
execution time and the performance in terms of both the average
distortion reduction per user and the base station transmission rate.
Overall, the contributions of this paper can be summarized as follows.

1) Through introducing adaptive streaming to allow cachingmul-
tiple representations for the same video, the proposed caching
placement optimization framework addressesthe users’ hetero-
geneity issue and thus achievesan additional caching perfor-
mance gain (in terms of higher average distortion reduction
per user and lower base station transmission rate)over the
caching schemes designed for general video files(i.e., single
representation for each video). It optimally allocates thecaching
resources of edge servers not only among different videos, but
also among multiple representations of the same video.

2) In addition tovideo content popularityand network conditions
that are commonly considered by existing caching schemes for
adaptive streaming,video content characteristics(i.e., the R-
D property) are further taken into account, to assign different
utilities to the representations with the same bitrate but from
different videos. In this way, the actual performance of the
caching system is properly evaluated in terms of the users’
viewing quality.

3) To efficiently solve the proposed caching placement optimiza-
tion, we convert it to an equivalent submodular maximization
problem with a set of knapsack constraints. We develop a
polynomial-time greedy algorithmand provide a theoretical
proof on the lower bound of its approximation ratio.

The rest of this paper is organized as follows. Section II re-
views the related works in literature. In Section III, we introduce

the mobile edge caching placement framework and related system
models. In Section IV, we formulate the caching problem as an
ILP by considering the users’ QoE and edge servers’ cache capacity
constraints. In Section V, we transform the original ILP to an
equivalent submodular maximization problem, and develop apractical
approximation algorithm to solve this problem with close-to-optimal
performance. Section VI presents experimental results, and evaluates
the gains of the proposed algorithm compared to existing algorithms.
The concluding remarks are given in Section VII.

II. RELATED WORK

The idea of using mobile edge caching to support the cellularlevel
communication has been recently explored in [6], [10]–[18]. In [10],
Liu et al. summarize the design aspects and challenges of mobile
edge caching. They further reveal that caching at the wireless edge
for 5G cellular networks is still an open problem since the unique
limitations in wireless networks due to the architecture and channel
(such as the network topology, link interference, users’ mobility, and
limited battery) must be considered when designing an appropriate
caching placement strategy. In [11], the authors study a caching
scheme for the 5G edge cloud network where contents are stored
with a price determined by the mobile network operator. The novel
FemtoCachingarchitecture in [6], [12] proposes mobile edge caching
at the small-cell access points, by compensating the backhaul capacity
with the storage capacity at the mobile edge to efficiently handle
some highly predictable bulky traffic (e.g., VoD traffic). The mobile
video caching placement over distributed edge servers is essentially
used to minimize the average downloading delay of users. The
authors in [13] develop a distributed caching optimizationalgorithm
via belief propagation for the heterogeneous cellular networks with
edge servers, in order to minimize the overall downloading delay.
Senguptaet al. [14] study the fundamental information theoretic
limit of mobile edge caching, revealing the optimal tradeoff between
the latencies and cache sizes. The work in [15] formulates a joint
routing and caching problem that targets at maximizing the fraction
of content requests served locally by the deployed edge servers, under
the consideration of some important features such as the storage
and bandwidth capacities of edge servers, and the content request
patterns of users. By further incorporating the users’ linkinterference
issue, a joint caching, routing and channel assignment problem is
proposed in [16] to maximize the throughput of the video delivery
over coordinated small-cell cellular systems.While most of the above
works assume a priori knowledge about the content popularity,
the authors in [17], [18] propose a context/trend-aware caching
scheme to predict the popularity information based on the users’
context (e.g., his/her personal characteristics, equipment, or external
factors), which explicitly learns the context-specific popularity of
video content through online learning and uses it to determine the
caching replacement decision.The online learning here indicates that
the context information becomes available in a sequential order and
is used to update the best predictor for the short-term popularity of
content at each time step, as opposed to the learning techniques that
generate the best predictor by learning on the entire training set at
only one dedicated training phase.However, all these above studies
only focus on the caching assignment problems for general (video)
files. This is however not sufficient in the context of adaptive video
streaming [10], where appropriate bitrate representations need to be
carefully determined and pre-fetched in the edge servers.

In another line of research, some works have been done to leverage
caching in the dynamic adaptive video streaming system [8],[9],
[19]–[25]. From the rate adaptation perspective, Leeet al. [19]
investigate the bitrate oscillation and sudden rate changeproblem
occurring through the interaction between the clients and caches, and
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TABLE I
COMPARISON WITH THE MOST RELEVANT WORKS ON MOBILE EDGE CACHING FOR VIDEO STREAMING.

This work [6], [12] [13], [15], [16] [20] [9] [25] [23], [24]
Applicable to adaptive streaming Yes No No Yes Yes Yes Yes

Optimal performance upper bound Yes No Yes Yes Yes No No
Approximation algorithm guarantee Yes Yes Yes N/A Yes No No

Operational-cost/rate-cost aware Yes Yes Yes Yes Yes No Yes
Video content characteristicsaware Yes No No No No Yes No

propose an approach that uses shaping to eliminate such oscillations.
Jin et al. [20] apply caching to adaptive streaming, and study the
optimal transcoding and caching allocation scheme in mediacloud in
order to minimize the total operational cost of delivering on-demand
adaptive video streaming, with the assumption that each mobile user
accesses one edge server for video downloading. Gaoet al. [21]
investigate the tradeoff between storage and transcoding computation
in the cloud, and propose a cost-efficient partial transcoding scheme
for content management based on user viewing patterns. Zhaoet
al. [22] further develop a video segment-based caching strategy
for multiple representation VoD systems to minimize the storage
and transcoding costs. In order to cope with dynamic requests, the
work in [9] proposes an online pre-fetching algorithm to adaptively
pre-fetch adaptive streaming video segments while respecting the
limited bottleneck bandwidth between the content server and the
edge server. To improve the users’ QoE, the authors in [8] derive
a logarithmic QoE model based on empirical results and formulate
a cache management problem for adaptive streaming as a convex
optimization problem, thereby providing an analytical framework
for this engineering problem. The work in [23] proposes an in-
network video caching policy for information centric networks to
enhance users’ QoE in terms of average user throughput, based on the
content popularity distribution. A QoE-driven DASH video caching
and adaptation algorithm is proposed in [24] to make the caching
and replacement decision based on the content context (e.g., segment
popularity) and the network context (e.g., downlink bandwidth).
However, all these works only focus on the operational-cost/rate
perspective and thus neglect thevideo content characteristicsof the
representations from different video contents. Here, the video content
means the distinct foreground, background and motion in thevideo,
which results in different rate-distortion (R-D) behaviors (considered
as thevideo content characteristics) for different video sources after
encoding. In other words, this difference of video content (or R-D
behaviors) between different videos is not considered in the above
works, where the multiple representations encoded from different raw
videos but with the same bitrate are assumed to have the same system
utility. Therefore, their caching performance depends only on the
video content popularity and network conditions. However,as will
be justified by the experimental results in Section VI, it is only by
carefully considering thevideo content characteristics(i.e., the R-D
behavior) that the actual performance of the caching systemcan be
properly evaluated in terms of user utility.

In our previous work [25], we have partially addressed this issue by
proposing a wireless video caching placement optimizationproblem
for dynamic adaptive video streaming and a fast approximation
algorithm to minimize the average video distortion of all clients,
under the edge servers’ storage capacity constraints. In this work, we
further provide a general optimization formulation as an ILP along
with its optimal solution as a performance upper bound. In addition,
we also take into account other QoE metrics, such as the initial startup
delay, in order to better reflect the actual utility of each video stream.
Finally, we study in detail the approximation algorithm forthe cache
allocation, and provide a theoretical lower bound on its performance.

In summary, Table I lists the differences between this work and

the most relevant papers in the literature on mobile edge caching for
video streaming. Within these references, [6] and [12] are the most re-
lated model. Through the comparison in Table I, it can be seenthat the
work in [6] and [12] is a caching scheme designed for general video
files (i.e., single representation for each video) and only considers
video content popularity distribution and network conditions, while
this work addresses the caching resource allocation among different
videos and different representations of adaptive streaming through the
consideration of video content characteristics (i.e., theR-D property).
In addition, the femto-cache algorithm proposed in [6] and [12] has
been selected as a comparison algorithm in Section VI, whichjustifies
that compared to the femto-cache algorithm, this work can achieve a
higher caching performance gain in terms of higher average distortion
reduction per user and lower base station transmission rate.

III. F RAMEWORK AND SYSTEM MODELS

In this section, we introduce the mobile edge caching placement
framework for dynamic adaptive video streaming systems andrelated
models.

A. Framework

Consider a wireless adaptive streaming based VoD system as
illustrated in Fig. 1. Suppose that the base station storesF video
files, each of which is encoded intoM different representations.S
edge servers with certain capabilities of pre-fetching video content
are deterministically placed in the wireless coverage region of the
base station, and are assumed to connect to the base station through
single hop transmission. If the connection between the basestation
and edge servers in some cases is multi-hop, the multi-hop connection
characteristics can be considered as the end-to-end transmission rate
between them.These edge servers are geographically closer to the
mobile users and enable high-density spatial reuse of the wireless
resources with high-speed localized communication, whichis usually
assumed to be much faster than the backhaul links connected to the
base station [12]. For the VoD service with a priori knowledge of
the video popularity distribution, some popular video filescan be
pre-fetched by the edge servers during the off-peak hours torelieve
the service load of the base station and to replace the weak backhaul
communication.

The mobile edge caching placement criteria for adaptive streaming
are as follows. Whenever a mobile user sends a playback request for
a specific video, it attempts to download the highest possible quality
representation from its adjacent edge servers in accordance with the
content placement and the available download link capacity. If the
same high quality representation is cached in multiple edgeservers,
the user might want to download it from the edge server with the
highest transmission rate, in order to reduce the initial startup delay.
That is, the user will first determine whether there is a representation
with the highest bitrate available at one of its adjacent edge servers
and the download of this representation can be supported by the
link capacity with an acceptable downloading delay. If yes,the user
could download and playback that representation; otherwise, it would
make a further selection for the representation with the next lower
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bitrate. This determination will continue until a representation with
an affordable bitrate is found at an edge server or the representation
with the smallest bitrate is reached. When no representation of the
requested video is available at any adjacent edge server, the user has
to turn to the base station and download the representation with the
highest bitrate that could be afforded by the backhaul link connected
to the base station. However, downloading from the base station will
result in a much more expensive transmission cost since the backhaul
communication resource is typically very limited comparedto the
high-speed links offered by the adjacent edge servers.

B. System Models

We now describe in more detail the model that we consider in this
work, and introduce the notation.

Let first F denote the set ofF video files that are offered to
the users. Any video filef ∈ F is encoded into a set ofM
representationsZf = {zf,m|∀m = 1, 2, . . . ,M} with the m-th
representationzf,m having an encoding bitrate beingRf,m. We
further suppose that this set is sorted in a decreasing orderof the
encoding bitrate, i.e.,Rf,i > Rf,j ,∀1 ≤ i < j ≤ M . Therefore, the
complete set including all representations for all the video files can
be denoted asZ = ∪f∈FZf . For the sake of simplicity, and without
loss of fundamental generality, we adopt the assumption from [20],
that each video file has the same lengthT . Such assumption is mainly
proposed for the notational convenience, and could be easily lifted
by breaking a longer file into multiple files of the same length[12].
If in some scenarios the video lengths are significantly heterogeneous
and this assumption becomes no longer reasonable, we can usethe
notation Tf to represent the length of video filef in the cache
capacity constraint ofILP in Eq. (8b) (or its equivalent submodular
problem in Eq. (12b)), which would not fundamentally changethe
corresponding analysis and algorithm design.

To illustrate the connection between the edge servers and the
users, the wireless network is defined by a bipartite graphGsu =
(S ,U , Esu), whereS represents the set ofS edge servers,U denotes
the set ofU mobile users, and a graph edge(s, u) ∈ Esu indicates
that a wireless communication link exists from the edge server s ∈ S
to the useru ∈ U . The download link transmission rate of the wireless
link (s, u) is denoted byc(s,u)

2. For each edge servers ∈ S , the
cache storage capability is constrained by the capacityBs. Finally,
we denote byN (u) the neighboring edge servers of useru ∈ U . We
assume thatN (u) is sorted in a decreasing order of the download
link capacity, such that(i)u ∈ N (u) represents the edge server with
the i-th largest capacity of the link to the useru. In this paper, we
study the caching system with the caching placement decision to be
made for a certain time period (e.g., several hours during the peak
hours, or even several days), during which the average demand for
the set ofF video files is assumed to be known in advance, as in
[12], [20], [29]. In this way, the backhaul is only used to refresh the
caches at the rate at which the user request distribution evolves over
time, which is a much slower process than the time scale at which the
users place their requests [12]. Therefore, we adopt the assumption
from [12], [20], that users’ requests are statistically independent and
a probability mass functionPu,f is used to represent the average

2In this paper, we assume that we have detected and known the accurate
channel state information (CSI) for the upcoming transmission frame and
that the transmission ratec(s,u) is known a priori. For the time-vary
wireless channel whenc(s,u) is not perfectly known and may change over
time, channel prediction techniques [26] can be used to estimate the link
transmission rate. For example, the finite state Markov channel model [27],
[28] is widely adopted as a good approximation in modeling and predicting
the time-varying processes of wireless links. However, thedetailed description
of these channel prediction techniques is beyond the scope of this paper.
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Fig. 1. (a) Example of the system layout, where mobile users are randomly
distributed, while edge servers are connected to the base station with backhaul
links and can be deterministically placed in the coverage region. (b) The
connectivity bipartite graph indicating how mobile users are connected to the
edge servers.

probability that the video filef ∈ F is requested by the useru ∈ U
within this time period. This independent user request model is an
acceptable approximation in an average sense or when the content
popularity variation over time is relatively slow.

We further consider a caching system where a representationof a
video file is either cached fully (i.e., the whole representation of the
lengthT ) or not cached at all in any edge server3, the representation
placement strategy can be represented by a bipartite graphGzf,m,s =
(Z,S ,Ezf,m,s) between vertices representing edge servers inS , and
vertices describing video representations inZ. An edge(zf,m, s) ∈
Ezf,m,s is drawn whenzf,m (i.e., them-th representation of video
file f ) is stored in the cache of edge servers. To better understand the
representation placement strategy as shown by the bipartite graph, we
can further denoteAF×M×S as theF × M × S adjacency matrix
of Gzf,m,s, such that∀s ∈ S , as

f,m = 1 indicates that an edge
(zf,m, s) ∈ Ezf,m,s exists andas

f,m = 0 denotes the absence of an
edge betweenzf,m ands, i.e.,

as
f,m =







1, if the edge servers caches them-th
representation of videof ;

0, otherwise.
(1)

C. Quality-of-Experience Models

According to [32], both the initial startup delay (the waiting
time interval between the client’s request and the beginning of the
playback) and the average video quality (the average video distortion)
are the key factors that affect the quality of experience (QoE) of video
streaming services.

For each useru ∈ U , the initial startup delay constraint requires
that the waiting time interval between submitting a requestand the
actual video playback should not exceed the maximum tolerable

3In some scenarios where the sizes of video files are very large(e.g.,
HD videos, or video lengthT is too long) and the caching storage resource
becomes the critical concern, we can alternatively adopt the partial caching
strategy that caches the first portion of the same lengthT ′ (T ′ ≪ T ) for each
representation of each video. The reason is as follows. Based on the studies
on users’ behavior and viewing patterns in some practical VoD systems, such
as YouTube [30] and PPTV [31], it is observed that usually users only watch
a small portion of the full content of a video. For example, statistics in [30]
show that 95% of the views last shorter than 200 seconds. Therefore, the
consumption of caching storage greatly decreases by only partially caching
the firstT ′ seconds of each representation (e.g.,T ′ = 200 s), and the system
is still efficient since most of the time (e.g.,> 95%) the users are satisfied
with the partially cached content.
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waiting time of that user, which is denoted asdu,max. Let us assume
first that the video representationzf,m ∈ Z is available in the cache
of useru’s adjacent edge servers ∈ S . Let us further denote with∆T
the time fraction within a video file that is required to be buffered by
the user before the actual playback starts on the user’s screen. Then
the initial startup delay experienced by the useru to download the
representationzf,m from the edge servers is:

dsu,f,m =
Rf,m ·∆T

c(s, u)
, ∀u ∈ U , ∀zf,m ∈ Z, ∀s ∈ S . (2)

Here, we set the transmission rate of links from the non-adjacent edge
servers of a user to a small positive value that is arbitrarily close to
zero, i.e., for alls /∈ N (u) we havec(s,u) = ε, whereε → 0 and
accordinglydsu,f,m → +∞. Similarly, when the requested video is
not available in the edge servers, the initial startup delayexperienced
by the useru to downloadzf,m from the base station is:

du,f,m =
Rf,m ·∆T

c(BS, u)
,∀u ∈ U ,∀zf,m ∈ Z, (3)

wherec(BS, u) is the download link transmission rate of the wireless
link connecting the base station and the user.

Then, we use a general rate-distortion functionDmax −
∆Df (Rf,m) to denote the distortion of them-th representation
of the videof with the encoding bitrateRf,m, whereDmax and
∆Df (Rf,m) represent a constant maximal distortion when no video
is decoded and the distortion reduction (or quality improvement) after
successfully decoding this representation, respectively.By utilizing the
R-D model in [33],∆Df (Rf,m) can be expressed as:

∆Df (Rf,m) = Dmax −D0 −
θ

Rf,m −R0
(4)

where the variables,θ, R0 and D0, are empirical parameters that
depend on the actual video content; they can be estimated as
the fitting parameters from the empirical rate-distortion curves of
different videos by using regression techniques.

IV. QOE-DRIVEN CACHING PLACEMENT OPTIMIZATION

PROBLEM

In this section, we describe the QoE-driven mobile edge caching
placement optimization problem for adaptive streaming, and formu-
late it as an ILP.

A. Problem Description and Challenges

The QoE-driven mobile edge caching placement problem for adap-
tive streaming can be summarized as follows: given the representation
set of source video files, the file popularity distribution, the edge
server storage capacity and the network topology, how to place the
representations of the video files in the distributed edge servers such
that the total system utility (which is defined by Eqs. (7) and (8a)
in the next subsection) is maximized subject to the caching capacity
constraint of each edge server and the downloading delay requirement
of each user.

If each video file has only one representation and each user
has only access to one edge server, the optimal placement strategy
becomes simple and straightforward. That is, each edge server should
cache as many of the most popular video files as possible untilits
storage is full. However, for the case of dense edge server deployment
where each user can have access to more than one edge servers,
the optimal content placement strategy becomes highly nontrivial.
Furthermore, if each video file is available in different representations
with different bitrates, the optimal placement problem becomes even
more complicated.

Compared to the caching problem with general files, the fundamen-
tal technical challenges introduced by the adaptive video streaming,
i.e., multiple representations of a video file need to be cached, can
be explained as follows. The general file caching problem usually
addresses the caching resource competition issue among different files
by placing appropriate files in the distributed edge servers. It is also
based on the assumption that there is no difference between different
files in terms of the system utility, i.e., downloading a different file
would lead to the same utility improvement (e.g., the increase of
hit ratio). When the adaptive video streaming is taken into account,
however, people are not only concerned with which video file should
be cached at which edge server, they also want to know which
representation(s) should be selected to cache in order to maximize
the overall system utility. This means that not only different video
files, but also the multiple representations of the same video file will
compete for the caching resource at the edge servers. In addition,
due to the difference ofvideo content characteristics, downloading
the same bitrate representation of different video files would also
result in different utility improvement (e.g., the distortion reduction).
Even for the same video file, the caching resource allocationproblem
becomes more complicated since the relationship between the utility
improvement (e.g., the distortion reduction) and the bitrate of the
different representations is nonlinear and presents the diminishing
return property. It should be noted that all of the above issues
introduced by the adaptive streaming cannot be straightforwardly
addressed by the general file caching problem, which motivates us
to study the following caching placement optimization problem for
adaptive streaming.

B. System Utility Function

First, we introduce two sets of auxiliary binary variables:

βs
u,f,m =







1, if user u gets them-th representation
of video f from edge servers;

0, otherwise.
(5)

γu,f,m =







1, if user u gets them-th representation
of video f from the base station;

0, otherwise.
(6)

We then define the following utility function, based on both the
average video distortion reduction experienced by the useru and the
cost of the representation downloading either from the edgeserver
or the base station:

Qu =
∑

f∈F

M
∑

m=1

∑

s∈N (u)

βs
u,f,m · Pu,f · [∆Df (Rf,m)− η0 ·Rf,m]

+
∑

f∈F

M
∑

m=1

γu,f,m · Pu,f · [∆Df (Rf,m)− η ·Rf,m] (7a)

≈
∑

f∈F

M
∑

m=1

∑

s∈N (u)

βs
u,f,m · Pu,f ·∆Df (Rf,m)

+
∑

f∈F

M
∑

m=1

γu,f,m · Pu,f · [∆Df (Rf,m)− η ·Rf,m]. (7b)

As usually done in many rate-distortion optimization problems [34],
in the utility function defined in Eq. (7a), we imposethe bandwidth
constraints (from the edge servers and the BS) as the cost penalty,
rather than putting them as hard constraints. It representsa typical
optimization objective that trades bandwidth (resource cost) for video
quality. Specifically,[∆Df (Rf,m) − η0 · Rf,m] in the first term
of Eq. (7a) includes the video distortion reduction∆Df (Rf,m)
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of downloading the representationzf,m, and a transmission cost
penaltyη0 ·Rf,m whereη0 is the unit price parameter corresponding
to the representation downloading ofzf,m from the adjacent edge
servers. As constrained by Eq. (8f), for any useru ∈ U and any
video file f ∈ F , at most oneβs

u,f,m,∀m = 1, 2, . . . ,M,∀s ∈
N (u) equals to 1. Therefore, the weighted summation (where the
weight is the video request probabilityPu,f ) over all F video files,
∑

f∈F

∑M
m=1

∑

s∈N (u) β
s
u,f,m · Pu,f · [∆Df (Rf,m) − η0 · Rf,m],

represents the average video distortion reduction plus theaverage
transmission cost penalty experienced by useru downloading request-
ed video representations from its adjacent edge servers. Likewise,
the second term in Eq. (7a) represents the average video distortion
reduction plus the average transmission cost penalty experienced
by user u downloading requested video representations from the
base station. Due to the limited bandwidth available in the backhaul
channel, the unit price for downloading from the base station is much
higher than the unit price for accessing the adjacent edge servers (i.e.,
η ≫ η0)4. As a consequence, the overall caching system will prefer
to store representations in the edge servers, since downloading the
same representation from an edge server achieves the same distortion
reduction gain while the transmission cost is much lower. Users
will only access the base station for representation downloading in
some rare cases when they are highly rewarded. This happens either
when there is no representation of the requested video cached in
their adjacent edge servers, or when the cached content has avery
poor quality and the distortion reduction gain of a better quality
representation is so high that downloading it from the base station
with a higher transmission cost is worthy for the overall utility
improvement. For the sake of simplicity, hereinafter, we assume that
η0 → 0 and η is a positive constant, and thus define the utility
function as shown in Eq. (7b).

C. Optimization Problem Formulation

Mathematically, the QoE-driven mobile edge caching placement
problem for adaptive streaming can be formulated as an integer linear
program (ILP), as follows:

ILP: max
A,β,γ

∑

u∈U

Qu (8a)

s.t.
∑

f∈F

M
∑

m=1

as
f,m · Rf,m · T ≤ Bs,∀s ∈ S , (8b)

βs
u,f,m · dsu,f,m ≤ du,max,∀u ∈ U ,∀zf,m ∈ Z, ∀s ∈ S , (8c)

γu,f,m · du,f,m ≤ du,max,∀u ∈ U , ∀zf,m ∈ Z, (8d)

βs
u,f,m ≤ as

f,m,∀u ∈ U , ∀zf,m ∈ Z, ∀s ∈ S , (8e)
M
∑

m=1

γu,f,m +
M
∑

m=1

∑

s∈N (u)

βs
u,f,m ≤ 1, ∀u ∈ U ,∀f ∈ F , (8f)

βs
u,f,m ∈ {0, 1}, ∀u ∈ U , ∀zf,m ∈ Z,∀s ∈ S , (8g)

γu,f,m ∈ {0, 1}, ∀u ∈ U , ∀zf,m ∈ Z, (8h)

as
f,m ∈ {0, 1}, ∀zf,m ∈ Z, ∀s ∈ S . (8i)

4For the sake of simplicity, we assume in this paper that the unit down-
loading priceη0 is the same for different edge servers, since the downloading
cost of the same representation from different edge serversdiffers very slightly
compared to the much larger downloading cost from the base station. This
assumption could be lifted by assigning a different unit downloading priceηs0
in Eq. (7a) to an edge servers. Then, the ILP in Eq. (8) can be similarly solved
by setting the optimization objective according to Eq. (7a). For the equivalent
submodular maximization problem and its approximation algorithm, we only
need to re-sort the set of neighboring edge serversNu for each useru, in
such a way that(i)u ∈ N (u) represents the edge server offering thei-th
smallest unit downloading price.

In the aboveILP , the objective is to maximize the aggregate utility
defined in Eq. (7b), or equiavelent to maximize the average video
distortion reduction of all users (which is equivalent to minimizing
the aggregate average video distortion) while minimizing the trans-
mission cost of the representation downloading from the base station.
The decision variables are the representation placement strategy
represented by the adjacency matrixAF×M×S ∈ {0, 1}F×M×S

and the sets of auxiliary binary variablesβ and γ. The constraint
in Eq. (8b) represents the cache capacity constraints of each edge
server, whereT is the time duration of each video file. The startup
delay constraints in Eqs. (8c) and (8d) specify that the initial startup
delay experienced by the useru to download the representationzf,m
either from the edge servers or the base station should not exceed
the maximum tolerant waiting timedu,max. The constraint in Eq.
(8e) sets up a consistent relationship between the decisionmatrix A

and auxiliary variablesβ, ensuring that the representation selected
by a user is already cached and available at the edge servers.
The constraint in Eq. (8f) imposes that for any videof , the user
u can only download at most one representation from at most one
edge server (or the base station), to avoid duplicated downloading of
multiple representations for the same video or the same representation
from multiple edge servers (or the base station). Together with the
startup delay constraints in Eqs. (8c) and (8d), it ensures that only
one representation will be downloaded by the useru for the video
f . Furthermore, this representation is the largest possiblebitrate
representation under the user’s download link capacity andthe startup
delay constraints, since otherwise the value of the objective function
in Eq. (8a) decreases, which indicates a non-optimal solution. The
constraints in Eqs. (8g)-(8i) define the binary decision andauxiliary
variables, respectively.

The optimal solution of theILP can be obtained by the generic
solver IBM ILOG CPLEX [35], using a branch-and-cut search. The
branch-and-cut procedure follows a search tree consistingof nodes,
each of which represents a relaxed LP subproblem to be solved. It
then involves running a branch and bound algorithm to createtwo
new nodes from a parent node, and adding additional cutting planes
to tighten the LP relaxations and reduce the number of branches
required to solve the original ILP. In general, the branch-and-cut
search requires exponential computational complexity to achieve the
optimal solution in the worst case [36], [37]. Therefore, the ILP
problem in Eq. (8) is NP-hard. Specifically, it can be observed that the
cardinality of the decision variablesA, β, andγ is FMS, UFMS,
and UFM , respectively. By using the branch and bound method
for the binary decision variables, in the worst case, the number of
nodes observed by the CPLEX solver would be upper bounded by
2FMS × 2UFMS × 2UFM . At each node the solver needs to solve a
relaxed LP problem with the SIMPLEX method. This corresponds to
an exponential computational complexityO(22U·3F ·3M·2S ) and thus
incurs an incredibly long execution time when the problem scale
becomes large.

V. EQUIVALENT SUBMODULAR MAXIMIZATION PROBLEM AND

ALGORITHM DESIGN

In order to efficiently cope with the difficulties of solving the ILP
in Eq. (8), in this section, we convert it to an equivalent setfunction
optimization problem. We prove that it is a submodular maximization
problem over independence constraints. We finally develop new
practically efficient algorithms with polynomial computational time
complexity and theoretical approximation guarantees.

A. Equivalent Problem Formulation as a Set Function Optimization

In accordance with the adjacency matrixAF×M×S in the ILP
in Eq. (8), the finite ground set of the equivalent set function
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optimization problem can be viewed as:

V = {V1, . . . ,Vs, . . .VS}, (9)

Vs = {vs1,1, . . . , v
s
1,M , . . . , vsf,m, . . . , vsF,1, . . . , v

s
F,M},∀s ∈ S ,

where the ground set is partitioned intoS disjoint subsets. Each
subsetVs denotes the full set of all representations of all files that
may be cached on the edge servers, and the elementvsf,m represents
the placement of them-th representation of video filef (i.e., zf,m)
on the cache of the edge servers. For a given adjacency matrix
AF×M×S , the corresponding representation placement setA ⊆ V
can be defined in such a way thatvsf,m ∈ A corresponds to the case
as
f,m = 1 and vice versa.

When initial startup delay constraints are taken into account, the
feasible set should be re-defined by eliminating the elements that
violate the maximum tolerance of the initial startup delay from the
ground setV in Eq. (9). From the perspective of users, for anyu ∈ U ,
the initial startup delay constraint indicates that a representation that
could be downloaded from an edge sever within the maximum delay
bound is considered feasible and might contribute to the aggregate
expected distortion reduction. In theILP in Eq. (8), such a constraint
is indicated by Eq. (8c), which corresponds to a feasible subset of
the ground setV:

Ωu =

{

vsf,m ∈ V

∣

∣

∣

∣

dsu,f,m ≤ du,max,∀s ∈ S ,∀zf,m ∈ Z

}

⊆ V,

∀u ∈ U . (10)

It should be noted that for a given representation setFM and known
transmission rate for links betweenS andU , the feasible subsetΩu

is also given with respect to the value ofdu,max. Accordingly, the
utility function of useru in Eq. (7) can be rewritten in terms of the
set function, by also considering the initial startup delayconstraints,
as:

Qu(A) =
∑

f∈F

M
∑

m=1

|N (u)|
∑

i=1

[m−1
∏

n=1

|N (u)|
∏

j=1

(1− 1|
v
(j)u
f,n

∈(A∩Ωu)
)

]

(11)

·

[i−1
∏

j=1

(1− 1|
v
(j)u
f,m

∈(A∩Ωu)
)

]

· 1|
v
(i)u
f,m

∈(A∩Ωu)
· Pu,f ·∆Df (Rf,m)

+
∑

f∈F

[ M
∏

m=1

|N (u)|
∏

j=1

(1− 1|
v
(j)u
f,m

∈(A∩Ωu)
)

]

· Pu,f · [∆Df (Rf,m∗)− η · Rf,m∗ ].

The definition of Eq. (11) follows the distributed caching place-
ment criterion in Section III-A. In Eq. (11),1|x∈X is an indicator
function, which is 1 if x ∈ X and 0 otherwise; and the term
[
∏m−1

n=1

∏|N (u)|
j=1 (1−1|

v
(j)u
f,n

∈(A∩Ωu)
)]·[

∏i−1
j=1(1−1|

v
(j)u
f,m

∈(A∩Ωu)
)]·

1|
v
(i)u
f,m

∈(A∩Ωu)
= 1 is the indicator function defined over the feasible

placement setA∩Ωu for the case where them-th representation of
video file f is the best representation that useru could find in its
neighboring edge servers while the initial startup delay constraint is
satisfied, and this representation is at the cache of edge server (i)u. In
particular,[

∏m−1
n=1

∏|N (u)|
j=1 (1− 1|

v
(j)u
f,n

∈(A∩Ωu)
)] = 1 indicates that

no representation with an index smaller thanm is available at any
of the adjacent edge servers; and[

∏i−1
j=1(1− 1|

v
(j)u
f,m

∈(A∩Ωu)
)] = 1

indicates that them-th representation is not available at any of the
edge servers with a larger download link rate (shorter initial startup
delay) than the edge server(i)u. The term [

∏M
m=1

∏|N (u)|
j=1 (1 −

1|
v
(j)u
f,m

∈(A∩Ωu)
)] = 1 indicates that no representation of video filef

can be found in any neighboring edge server of useru, and the user
u will download from the base station the representationzf,m∗ that

has the highest bitrate while still respecting the initial startup delay
constraint, namelyzf,m∗ = argmax{zf,m∈Z, du,f,m≤du,max} Rf,m.

Therefore, the original optimization problemILP in Eq. (8) can
be reformulated as a constrained set function optimizationproblem
that leads to the same solution of theILP based on the distributed
caching placement criterion in Section III-A, as follows:

SUB: max
A⊆V

Q(A) =
∑

u∈U

Qu(A) (12a)

s.t. A ∈ I, (12b)

I =

{

A′ ⊆ V

∣

∣

∣

∣

∑

f∈F

M
∑

m=1

1|vs
f,m

∈A′ · Rf,m · T ≤ Bs,∀s ∈ S

}

.

Comparing the original problemILP in Eq. (8) with the equivalent
set function optimization formulationSUB in Eq. (12), it can be seen
that the objective function and the first constraint in the problemILP
in Eq. (8) are transformed to Eqs. (12a) and (12b) in problemSUB,
respectively. The initial startup delay constraint of eachuseru in Eq.
(8c) is preserved by the feasible subsetΩu applied in the objective
function Qu(A) as defined in Eq. (11), while the delay constraint
in Eq. (8d) is ensured by the definition ofzf,m∗ in Eq. (11). The
constraints in Eqs. (8e) and (8f) are also guaranteed sinceQu(A)
in Eq. (11) is derived according to the distributed caching placement
criterion in Section III-A.That is, for each video, only oneachievable
representation with the highest bitrate will be selected for each user
with its coefficient,either [

∏m−1
n=1

∏|N (u)|
j=1 (1 − 1|

v
(j)u
f,n

∈(A∩Ωu)
)] ·

[
∏i−1

j=1(1−1|
v
(j)u
f,m

∈(A∩Ωu)
)]·1|

v
(i)u
f,m

∈(A∩Ωu)
or [

∏M
m=1

∏|N (u)|
j=1 (1−

1|
v
(j)u
f,m

∈(A∩Ωu)
)], in Eq. (11) being one, while the coefficients of the

other representations are all zeros.

B. Submodular Maximization Problem

Submodularity, often viewed as adiscrete analogueof convexity,
plays a central role in discrete optimization. Its characterizing prop-
erty, diminishing marginal returns, makes submodular maximization
an efficient approach for many real-world applications, including
approximation algorithms and many challenging problems inmachine
learning. We show now that problemSUB in Eq. (12) is a submodular
maximization problem. We first review and include the definition of
submodular functions according to [38]–[40].

Definition 1. Submodularity: LetV be a finite ground set, and a
set functiong : 2V → R is submodular if and only if for any sets
X ⊆ Y ⊆ V and for any elementv ∈ (Y \ X ), we have

g(X ) + g(Y) ≥ g(X ∪ Y) + g(X ∩ Y), (13)

or equivalently

g(X ∪ {v}) − g(X ) ≥ g(Y ∪ {v})− g(Y), (14)

which captures the diminishing marginal return characteristics such
that the benefit of adding a new element into the set decreasesas the
set becomes larger.

We now prove that the objective function of the problemSUB in
Eq. (12) is monotone submodular.

Proposition 1. The objective function in Eq. (12a) is a monotone
submodular function over the ground setV as defined in Eq. (9).

Proof: This proposition can be proved by using the definition of
monotonicity and submodularity.

We further observe the cache storage constraint of edge server
s ∈ S in Eq. (12b), and note that each elementvsf,m ∈ A
(corresponding to the caseas

f,m = 1 in AF×M×S) has a non-uniform
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cost ofRf,m · T and s has a storage budget ofBs. This constraint
can be viewed as a knapsack constraint on the subsetVs ∈ V.
Overall, the distributed caching placement problem in Eq. (12) is
a submodular maximization problem subject to a set of knapsack
constraints, which still is generally NP-hard and requiresexponential
computational complexity to reach the optimum by either ILPor other
optimization methods.It is expected that by exploiting submodularity,
the polynomial-time greedy algorithm is able to provide an effective
approximation of the optimal solution of this NP-hard problem [41].
However, according to [41], [42], the greedy algorithm can only
efficiently address the simplest case (i.e., a submodular maximization
problem subject to one knapsack constraint) with theoretical approxi-
mation guarantee. When the number of knapsack constraints becomes
greater than one, the greedy algorithm in general is no longer efficient,
and in the worst case its approximation ratio will be arbitrarily bad.
An exception exists if the set of multiple knapsack constraints form
a matroid [38], such as the cache placement problem in [6] and
[12] where the knapsack constraints are proved to be a partition
matroid since all video files have the same size. In comparison, the
proof of matroid for the multiple knapsack constraints in [6] and
[12] no longer holds in our case because of the different video file
sizes introduced by adaptive streaming. However, due to thespecial
structure of the knapsack constraints in Eq. (12) (i.e., each knapsack
constraint is imposed on the subsetVs ∈ V, and the set of all
knapsack constraints is imposed on the finite ground setV), we
develop in the next subsection a polynomial-time greedy algorithm
and provide a theoretical proof on the approximation ratio of the
proposed greedy algorithm.

C. Approximation Algorithm

To efficiently solve the submodular maximization problem inEq.
(12) with polynomial time complexity and theoretical approximation
guarantees, we develop ak-cost benefit (k-CB) greedy algorithm.
The system parameter,k = 0, 1, 2, . . . specifies the size of the initial
set. Specifically, the proposedk-CB greedy algorithm considers all
feasible initial setsA0 ⊆ V of cardinality k. Starting from any
initial setA0, at stept, the cost benefit greedy procedure iteratively
searches over the remaining setVt−1 \ At−1 and inserts into the
partial solutionAt−1 an element according to Eqs. (16) and (17), until
the remaining set reduces to an empty set. In other words, thecost
benefit procedure adds at each iteration an element that maximizes
the ratio between marginal benefitQ(At−1 ∪ {vsf,m}) − Q(At−1)
and costRf,m · T among all elements still affordable under the
remaining storage budget until no more elements can be added. The
proposedk-CB greedy algorithm then enumerates all initial sets
A0 ⊆ V of cardinality k, augments each of them following the
cost benefit greedy procedure, and selects the initial set achieving
the largest value of the objective functionQ(A) =

∑

u∈U Qu(A)
and finds its solution set as the final placement setA∗

k. For the
special case ofk = 0, the algorithm reduces to a simple cost benefit
greedy algorithm starting withA0 = ∅. On the other hand, if we
remove the cost termRf,m · T in Eqs. (15) and (16) and only
add at each iteration an element maximizing the marginal benefit
Q(At−1 ∪{vsf,m})−Q(At−1), the algorithm reduces to ak-simple
greedy algorithm. The completek-cost benefit greedy algorithm is
described in Algorithm 1. Since thek-simple greedy algorithm is
only slightly different from Algorithm 1, it is thus omitteddue to the
space limit.

In terms of computational complexity, the running time of the
proposedk-CB greedy algorithm isO((SFM)k+1U), indicating
a polynomial time complexity and a very short additional imple-
mentation delay that is introduced by running the algorithmto find

Algorithm 1 k-Cost benefit (k-CB) greedy algorithm
Input: system parameterk; finite ground setV ; video lengthT ;

encoding bitrateRf,m for any representationzf,m ∈ Z;
and cache storage capacityBs for any edge servers ∈ S.

Output: caching placement setA∗
k

1: id := 1 // the index of the initial set
2: for any initial setA0 ⊆ V and |A0| = k do
3: V0 := V and t := 1 // initialization
4: for t = 1, 2, 3, . . . do
5: // greedy search iteration
6:

θt := max
vs
f,m

∈Vt−1\At−1

Q(At−1 ∪ {vs
f,m}) − Q(At−1)

Rf,m · T
(15)

7:

v
st
ft,mt

:= arg max
vs
f,m

∈Vt−1\At−1

Q(At−1 ∪ {vs
f,m}) − Q(At−1)

Rf,m · T

(16)

8: if

∑

f∈F

M
∑

m=1

1|
v
st
f,m

∈(At−1∩Vst
)∪{v

st
ft,mt

}
· Rf,m · T ≤ Bst

(17)

then
9: At := At−1 ∪ {vstft,mt

} andVt := Vt−1

10: else
11: At := At−1 andVt := Vt−1 \ {vstft,mt

}
12: end if
13: if Vt \ At 6= ∅ then
14: t := t+ 1
15: else
16: break
17: end if
18: end for
19: Aid := At and id := id+ 1
20: end for
21: A∗

k := argmaxi∈{1,2,...,id−1}

∑

u∈U Qu(Ai)

the final caching placement set. As the value ofk increases, the
running time of the proposed algorithm becomes longer whilethe
performance improves. In Theorem 1, we prove that whenk = 2,
the theoretical worst-case performance guarantee of the proposed
algorithm is 1

2
(1− 1/e), i.e., its solution achieves at least the ratio

1
2
(1− 1/e) ≈ 0.316 of the optimal objective value. In practice, as it

will be shown in the simulation results in Section VI, the algorithm
performance approximation ratio is much higher than the theoretical
lower bound, which is generally above0.95.

Theorem 1. The better cache placement result achieved by running
separately and comparing the2-cost benefit greedy algorithm given
in Algorithm 1 and the2-simple greedy algorithm provides a1

2
(1−

1/e) approximation.That is, in the worst case, it can achieve a
performance guarantee of ratio1

2
(1− 1/e) to the optimum.

Proof: This theorem can be proved by using the diminishing
return property of submodular functions. For the details, please refer
to Appendix A.

VI. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of our mobile edge
caching placement optimization algorithms, and derive simple guide-
lines for effective cache allocation in wireless adaptive streaming
systems under different simulation settings. We compare their perfor-
mance with two schemes in the recent literature: 1)Femto-Cache, the
femto-caching system and its associated greedy algorithm proposed
in [12], which aims at minimizing the average downloading delay
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Fig. 2. Network connectivity graph withS = 4 edge servers andU = 40
independently and randomly distributed users, where (a) the edge servers are
uniformly placed, and (b) the edge servers are placed according to the user
distribution, i.e., more edge servers are placed in the areawith higher user
density.
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Fig. 3. Distortion reduction vs. encoding bitrate curves ofthe four videos.

of users for wireless video content delivery through allocating the
cached content among the distributed edge servers; and 2)Pop-Cache,
the popularity based adaptive streaming caching system proposed in
[20], where each edge server caches all bitrate representations for
a few top popular videos and only pre-fetches the highest bitrate
representations for some other less popular videos, subject to the
allocated cache storage capacity.As comparison algorithms, pop-
cache is selected as a non-cooperative caching scheme that only
considers the video content popularity, while femto-cacheis chosen
as a cooperative caching scheme that considers both the video content
popularity and the cooperation among edge servers. The reason for
this selection is to show the caching performance gain achieved
by exploiting the cooperation through the comparison between pop-
cache and femto-cache. In addition, as a comparison betweenthe
two cooperative caching schemes, the proposed algorithm achieves
additional caching performance gain compared to femto-cache.

A. Simulation Settings

We consider a wireless network whereU = 40 users are randomly
distributed in a cellular region formed by a disk of radius 100 m with
the base station located at the center. Four edge servers (S = 4) are
distributed in the cellular region in two different ways. Specifically,
the edge servers are either uniformly placed as shown in Fig.2(a), or
placed according to the user distribution as shown in Fig. 2(b). The
connectivity range (effective transmission range) of eachedge server
is set to75 m, which results in the network connectivity graphs shown
in Figs. 2(a) and 2(b). In accordance with the simulation settings in
[6], we assume that the base station operates on a 20 MHz band with
a spectral efficiency of 4 bits/s/Hz, while each edge server operates
on a 20 MHz band with a spectral efficiency of 6 bits/s/Hz and the
interference issue between the edge servers is neglected. Since current
802.11 WiFi standards allow operations on multiple 20 MHz bands,
we further assume that the neighboring edge servers are operating on
the orthogonal bands and each edge server allocates its transmission
resource in a fair and uniform way between users.

Four test videos (F = 4, Crowd Run, Riverbed, Tractor, and
Sunflower) with 1080p resolution (1920× 1080) [43] are selected as
the video files needed for caching. These four test videos correspond
to different content types, i.e., dense object motion forCrowd Run,
rich details/fine textures and dense object motion forRiverbed,
camera movement and medium object motion forTractor, and small
object motion for Sunflower, respectively. Suppose that the time
duration of each video clip isT = 10 s, and∆T = 1 s is the
time fraction within a video clip that is required to be buffered by
the user before the actual playback starts on the user’s screen, and the
constant maximal distortion is set asDmax = 500. At a frame rate of
30 fps, we further encode each video intoM = 3 representations with
encoding rate being{3R, 2R, R} andR = 2 Mbps. The distortion
reduction versus encoding bitrate curves of these four videos are
illustrated in Fig. 3, where we see that the video content plays a key
role in the rate-distortion characteristics. In particular, the distortion
reduction increases faster with the rate when the video content has
smaller motion. The storage capacity for each edge server isset to
Bs = 6RT = 120 Mbits. We further assume that the popularity of
the four videos follows a Zipf distribution with parameter 0.56 [30],
i.e., the requesting probabilities ofCrowd Run, Riverbed, Tractor,
and Sunflowervideos are 0.38, 0.25, 0.20, and 0.17, respectively
5. We implement the proposed and comparison algorithms on a 48-
processor server with 252 GB of RAM using Linux 3.1 kernel, where
each processor is an Intel Xeon CPU E5-2680 at a clock frequency
of 2.50 GHz.

B. Performance Comparison

In Table II, we compare the performance of the different cache
allocation algorithms in the two network topologies shown in Fig.
(2), in terms of the theoretical computational complexity,average
distortion reduction per user (achieved by the cached content in
edge servers), approximation ratio with respect to the average distor-
tion reduction per user, and base station transmission rate. Besides
the proposedk-CB greedy algorithm, the simple greedy algorithm
in Table II stands for the0-simple greedy algorithm, where we
remove the cost termRf,m · T in Eqs. (15) and (16) and only
add at each iteration an element maximizing the marginal benefit
Q(At−1 ∪ {vsf,m}) − Q(At−1) in Algorithm 1. In addition, the
optimal solution of theILP in Eq. (8) obtained by the IBM ILOG
CPLEX solver [35] using a branch and bound method with a very
high (i.e., exponential) time complexityO(22U·3F ·3M·2S ) is given as
a performance upper bound. From the perspective of computational
complexity, this optimal solution would become infeasiblewith the
increase of either the number of representations or the network
scale. In contrast, in different network topologies, the proposedk-
CB greedy algorithm achieves a good approximation performance
with the approximation ratio generally above 0.95 but with amuch
lower (i.e., polynomial) time complexityO((SFM)k+1U). The
computational complexity of the proposedk-CB greedy algorithm
could be further reduced ask decreases, with the cost of only a slight
reduction on the approximation ratio. Specifically, whenk = 0, the
proposed algorithm achieves a linear time complexity whichis the
same as the femto-cache and pop-cache algorithms.

As a performance comparison, the average distortion reduction per
user and the approximation ratio achieved by the proposedk-CB
greedy algorithm generally outperforms the other two comparison
algorithms (femto-cache and pop-cache), while the base station

5Please note that this popularity distribution is chosen as an illustrative
example. The proposed algorithm can be applied to any other popularity
distribution, which is also experimentally justified in Table III in Section
VI-D.
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TABLE II
COMPARISON ON COMPUTATIONAL COMPLEXITY AND ALGORITHM PERFORMANCE

Theoretical Network topology 1 Network topology 2
Algorithm computation Ave. distortion Approx. BS rate Ave. distortion Approx. BS rate

complexity reduction ratio (Mbps) reduction ratio (Mbps)
Optimum O(22U·3F ·3M·2S ) 423.0 - 0 399.7 - 6.00

3-CB Greedy O((SFM)4U) 418.6 0.990 0 397.5 0.995 6.00
2-CB Greedy O((SFM)3U) 416.6 0.985 0 397.0 0.993 6.34
1-CB Greedy O((SFM)2U) 409.9 0.969 0 393.9 0.986 6.69
0-CB Greedy O(SFMU) 402.5 0.952 0 389.9 0.976 6.00

Simple Greedy O(SFMU) 344.4 0.814 17.98 356.9 0.893 14.72
Femto-Cache O(SFMU) 404.0 0.955 0 381.1 0.954 6.00
Pop-Cache O(SFM) 265.5 0.628 29.88 308.4 0.772 22.75
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Fig. 4. Average distortion reduction per user vs. cache sizein (a) network
topology 1, and (b) network topology 2; and base station transmission rate
vs. cache size in (c) network topology 1, and (d) network topology 2; where
the simulation setting isF = 4 video files,M = 3 representations,S = 4
edge servers, andU = 40 users.

transmission rate incurred by the proposed algorithm is usually kept at
a very low level. For example, pop-cache and femto-cache algorithms
result in 0.772- and 0.954-approximation ratio of the optimal solution
in network topology 2, with the base station transmission rate of 22.75
Mbps and 6.00 Mbps, respectively. For the case ofk = 0 andk = 1,
the proposedk-CB greedy algorithm advances the approximation
ratio to 0.976 and 0.986, respectively. Whenk becomes large, e.g.
k = 3, the proposed algorithm can even achieve 0.995-approximation
ratio, while the base station transmission rate is 6 Mbps, which
is the same as the optimal solution. The fundamental reason why
the proposed algorithm outperforms the others is the following.
In addition to the consideration of video file popularity andthe
cooperation among different edge servers, the caching decision for
the representations of different videos can be further adapted to the
video content characteristicsin our algorithm. For videos with small
motion (e.g.,Tractor and Sunflower), the proposed algorithm only
allocates the basic representation with the smallest bitrate R at each
edge server, while for videos with larger motion (e.g.,Crowd Runand
Riverbed), representations with larger bitrate2R or 3R are allocated
at some edge servers to gain larger distortion reduction. Asa result,
a better overall cache allocation performance can be achieved by the
proposed algorithm.
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Fig. 5. Comparison between multiple representation caching and single
representation caching: average distortion reduction peruser vs. cache size
in (a) network topology 1, and (b) network topology 2; and base station
transmission rate vs. cache size in (c) network topology 1, and (d) network
topology 2; where the simulation setting isF = 4 video files, M = 3
representations,S = 4 edge servers, andU = 40 users.

C. Impact of System Parameters

In this subsection, we evaluate and compare the algorithm per-
formance of different schemes under various simulation settings, in
order to gain a further insight into the impact of different system
parameters. In this set of simulations, we still adopt the same settings
as in Section VI-A, unless stated otherwise.

1) Cache SizeBs: Fig. 4 illustrates the results measuring the
average distortion reduction per user and the additional base station
transmission rate under two different network topologies,by varying
the cache size of each edge serverBs. In this simulation, all edge
servers have the same cache size, which is varied from2RT = 40
Mbits to 14RT = 280 Mbits. The general observation for all
algorithms under different network topologies is that the average dis-
tortion reduction per user increases and the base station transmission
rate decreases, as the cache size gradually increases. The reason is
that, the edge server can pre-fetch more video representations in its
local cache with the increment of the cache size, which in turn can
create more opportunities for the different edge servers toserve more
user requests without the need to communicate with the base station.
For the comparison algorithms, when the cache size is small (e.g.,
Bs = 2RT ) such that a very limited number of representations could
be stored in the edge servers, the femto-cache algorithm outperforms
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the pop-cache algorithm with the achieved average distortion reduc-
tion per user very close to the optimal solution. On the contrary,
when the cache size is large (e.g.,Bs = 12RT ), the pop-cache
algorithm outperforms the femto-cache algorithm in terms of the
achieved average distortion reduction per user. Compared with these
two algorithms, the proposedk-CB greedy algorithm can achieve
a better approximation performance in terms of the largest average
distortion reduction per user (i.e., largest approximation ratio), while
the additional base station transmission rate is very closeto the
optimal solution. The simple greedy algorithm stands for the 0-
simple greedy algorithm that is obtained by removing the caching
storage cost consideration (i.e., the termRf,m · T in Eqs. (15) and
(16)) in Algorithm 1 and settingk = 0. Therefore, the average
distortion reduction per user achieved by the simple greedyalgorithm
is comparable to the proposedk-CB greedy algorithm when the
caching storage resource is not limited (i.e., when the cache size
Bs is large). In contrast, whenBs is small, the overall caching
performance of the simple greedy algorithm is even poorer than
femto-cache algorithm. In addition, for all different cache sizesBs

and different network topologies, the average distortion reduction per
user will be improved with the increment of the initial set size k. It
can be seen in Fig. 4 that whenk increases to 3, all the performance
curves almost overlap with those of the optimal solution.

For the same setting as in Fig. 4, we further show in Fig. 5
the additional caching performance gain introduced by adaptive
streaming with multiple representations for each video, interms
of both the average distortion reduction per user and the base
station transmission rate. Here, adaptive streaming method denotes
the optimal solution to theILP in Eq. (8), where each video is
encoded to three representations with encoding rate being6 Mbps,
4 Mbps and2 Mbps, respectively. In comparison, single rep. (e.g.,2
Mbps) method represents the optimal solution to theILP in Eq. (8),
where only single representation is encoded for each video with a
specific encoding rate (e.g.,2 Mbps). It can be demonstrated that for
both network topologies and different caching sizes, a higher average
distortion reduction per user and a lower base station transmission
rate can be achieved through introducing adaptive streaming into the
caching system, compared to any of the three single representation
caching cases.

2) Number of UsersU : From the result shown in Table II
and Figs. 4 and 5, it is justified that the performance comparison
among different algorithms is similar for both network topology 1
and network topology 2, i.e., independent of the specific network
topology. Therefore, we select network topology 1 shown in Fig.
2(a) as the representative network in the following subsections, and
studied the impact of other parameters.We vary the number of users,
and accordingly shown in Fig. 6 the average distortion reduction
per user, base station transmission rate and algorithm running time
achieved by different algorithms under two cache size settings,
namelyBs = 6RT = 120 Mbits andBs = 10RT = 200 Mbits,
respectively. Figs. 6(a) and 6(b) show that the average distortion
reduction per user generally decreases as the number of users
increases. The reason is that the base station and all the edge servers
allocate their transmission resources fairly to all the connected users.
When more users join the network and connect to the base station
and edge servers, they will compete for the shared transmission
resources, which indicates a higher probability of communication
link interference and lowers the average user throughput. The major
exception occurs when the number of usersU is small for the pop-
cache algorithm. For example, instead of the expected decreasing
behavior, the average distortion reduction per user achieved by pop-
cache algorithm would increase whenU increases from 40 to 60
in Fig. 6(a). This can be explained as follows. When the localcache
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Fig. 6. (a) Average distortion reduction per user, (c) base station transmission
rate and (e) algorithm running time vs. number of users when cache size
Bs = 6RT = 120 Mbits; and(b) average distortion reduction per user, (d)
base station transmission rate and (f) algorithm running time vs. number of
users when cache sizeBs = 10RT = 200 Mbits; where the simulation
is conducted in network topology 1 withF = 4 video files, M = 3
representations, andS = 4 edge servers.

size is limited, pop-cache algorithm allocates as many representations
with the highest bitrate as possible to each edge server while the
caching priority of each representation is in a decreasing order of the
popularity. ForU=40, the average user throughput in the network
allows the edge server to pre-fetch the highest bitrate representation
of 6 Mbps. WhenU increases to 60, the highest bitrate representation
allowed to be cached in the edge server reduces to 4 Mbps due
to the reduction of the average user throughput. Therefore,more
representations of different videos with lower bitrates can be cached
in each edge server, which in turn results in a higher distortion
reduction for each user. It can also be noted that when the cache size
is large enough (theBs = 10RT case) to pre-fetch a large number of
representations, the simple greedy algorithm could achieve the same
average distortion reduction per user as the optimal solution. Figs.
6(c) and 6(d) show that the base station rate achieved by the proposed
k-CB greedy algorithm is the same as the optimal solution, which is
0 for different number of users.

The algorithm running time is another performance metric which
has the same as the average distortion reduction per user. InFigs. 6(e)
and 6(f), we compare the actual running time of different algorithms,
and show the impact of the number of usersU on the running time.
Through the curves in Figs. 6(e) and 6(f), the previous theoretical
analysis of the computational complexity is well justified.That is,
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Fig. 7. (a) Average distortion reduction per user, (c) base station transmission
rate and (e) algorithm running time vs. number of edge servers when cache
size Bs = 6RT = 120 Mbits; and (b) average distortion reduction per
user, (d) base station transmission rate and (f) algorithm running time vs.
number of edge servers when cache sizeBs = 10RT = 200 Mbits; where
the simulation is conducted in network topology 1 withF = 4 video files,
M = 3 representations, andU = 40 users.

the proposedk-CB greedy algorithm and simple greedy algorithm,
as well as the other two comparison algorithm, have the polynomial
computational complexity as shown in Table II. Specifically, the
computational complexity of all the algorithms (excludingthe pop-
cache algorithm) is linear with respect toU , while the computational
complexity of the pop-cache algorithm is not affected byU .

3) Number of Edge ServersS: We still consider a network
organization as in the network topology 1 shown in Fig. 2(a),but vary
the number of edge servers that are uniformly placed in the cellular
region. We then show in Fig. 7 the average distortion reduction
per user, base station transmission rate and algorithm running time
achieved by different algorithms under two cache size settingsBs =
6RT = 120 Mbits and Bs = 10RT = 200 Mbits, respectively.
Figs. 7(a) and 7(b) show that the average distortion reduction per
user generally increases as we place more edge servers in thecellular
region. The reason is that when the number of edge servers increases,
each edge server serves a smaller number of users, which decreases
the probability of communication link interference among users and
thus increases the average user throughput. In addition, a denser
deployment of the edge servers within the same cellular region creates
more opportunities for the coordination between edge servers to cache
different representations and better support the users’ requests by the
cached content. Figs. 7(c) and 7(d) show that the base station rate
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Fig. 8. (a) Algorithm running time, (c) average distortion reduction per user,
and (e) approximation ratio vs. number of edge servers, and (b) algorithm
running time, (d) average distortion reduction per user, and (f) approximation
ratio vs. number of video files, where the video popularity distributions follow
a Zipf distribution with parameter 0.8.

achieved by the proposedk-CB greedy algorithm is the same as the
optimal solution.

Figs. 7(e) and 7(f) illustrate the comparison of the algorithm
running time versus the number of edge serversS achieved by the
different algorithms. These actual running time curves also justify
that the computational complexity of all the algorithms have the
polynomial computational complexity as shown in Table II.

D. Performance Evaluation for Larger System Settings

Finally, we conduct simulations for larger scale settings.In total,
F = 15 test videos with 1080p resolution (1920×1080) 6, available
at [43], are selected as the video files to be cached in the edgeservers
and requested by the users. They correspond to different motion
and video types (such as, sports, documentary, cartoon and movie).
For the video popularity, we investigate three different popularity
distributions, i.e., the Zipf distribution with parameter0.8 and 0.56,
and the uniform distribution. We also consider a larger wireless
network withU = 200 users randomly distributed in a cellular region
formed by a disk of radius 200 m, andS = 16 edge servers uniformly
placed in this cellular region. The storage capacity of eachedge server
is set toBs = 18RT = 360 Mbits, and all the other parameters are

6These videos are:Aspen, Blue Sky, Controlled Burn, Crowd Run, Dinner,
Ducks Take Off, Riverbed, In To Tree, Life, Old Town Cross, Station2,
Sunflower, Touchdown Pass, Tractor, andPark Joy.



13

TABLE III
COMPARISON OF AVERAGE DISTORTION REDUCTION PER USER AND BASESTATION TRANSMISSION RATE UNDER DIFFERENT POPULARITY

DISTRIBUTIONS.

Algorithm Zipf distribution, parameter 0.8 Zipf distribution, parameter 0.56 Uniform distribution
Ave. distortion reduction BS rate (Mbps) Ave. distortion reduction BS rate (Mbps) Ave. distortion reduction BS rate (Mbps)

Optimum 459.2 1.63 455.2 0.45 449.4 0
2-CB Greedy 454.4 1.34 450.1 1.77 443.0 2.4
1-CB Greedy 454.2 1.34 449.9 1.77 442.6 2.4
0-CB Greedy 453.6 1.34 449.4 1.77 442.0 2.4

Simple Greedy 408.4 52.69 394.1 62.35 371.7 76.67
Femto-Cache 442.2 1.31 436.3 1.65 426.9 2.4
Pop-Cache 379.2 75.41 350.7 97.22 284.2 150.27

the same as previously. The other simulation settings are the same
as in Section VI-A.

In Table III, we compare the average distortion reduction per
user and the base station transmission rate obtained by different
caching placement algorithms under the three different popularity
distributions. Although the system settings scale with a larger number
of videos, edge servers and users, it is again verified that, for
all popularity distributions the proposedk-CB greedy algorithm
outperforms the femto-cache and pop-cache algorithms. It achieves
a higher average distortion reduction per user, and comparable or
lower base station transmission rate. Specifically, for allpopularity
distributions, the proposedk-CB greedy algorithm (k = 0, 1, 2)
improves the average distortion reduction per user by at least 11.4
(in MSE) compared to the femto-cache algorithm, and improves by
at least 74.4 (in MSE) compared to the pop-cache algorithm. This
average video distortion reduction per user performance isonly about
5 (in MSE) lower than the optimal solution, while the additional base
station transmission rate is comparable with the optimal solution. In
terms of the average additional base station transmission rate over all
the three popularity distributions, the difference between the proposed
k-CB greedy algorithm and the optimal solution is only 1.1 Mbps.

In order to gain a further insight into the superiority of theproposed
algorithm over the optimal ILP solution provided by the generic
solver IBM ILOG CPLEX [35], we compare the performance of the
proposed0-CB greedy algorithm, the simple greedy algorithm, and
the optimal solution in Fig. 8. Specifically, we show the performance
comparison of the algorithm running time, the average distortion
reduction per user, and the approximation ratio versus the number
of edge serversS in Figs. 8(a)-8(c), respectively. The same set of
performance comparison versus the number of video filesF is shown
in Figs. 8(d)-8(f), respectively. We see that the previous theoretical
analysis of the computational complexity is well justified.That is,
the optimal solution needs a very high computational complexity
which is exponential toS and F , while both the proposed0-
CB greedy algorithm and simple greedy algorithm achieve a linear
computational complexity. In addition, the overall approximation ratio
of the proposed0-CB greedy algorithm is greater than 0.95 in Fig.
8(c) and greater than 0.99 in Fig. 8(f), respectively. Therefore, the
performance of the proposed0-CB greedy algorithm is very close to
the performance upper bound guided by the optimal solution,but the
actual running time is much shorter. In other words, the proposed
algorithm has a much lower increasing rate of the running time and
scales better than the optimal solution solved by the generic solver
IBM ILOG CPLEX [35]. Considering a practical wireless video
caching system with a large number of videos, representations, edge
servers and users, the long waiting time for the IBM ILOG CPLEX
solver to obtain the optimal solution makes it infeasible inpractice.
In contrast, the proposed algorithm is suitable for the delay sensitive
video applications since it is capable of achieving a near-optimal
solution within a short period of time.

Next, in Fig. 9, we proportionally scale up the system according to
the settings in Table IV and show its impact on different algorithms.
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Fig. 9. (a) Average distortion per user and (c) average base station
transmission rate per user vs. system scale when cache sizeBs is set
to 30RT = 12G bits, 60RT = 24G bits, 90RT = 36G bits, and
120RT = 48G bits, respectively, for the four system settings; and (b)
Average distortion per user and (d) average base station transmission rate
per user vs. system scale when cache sizeBs is set to 60RT = 24G
bits, 120RT = 48G bits, 180RT = 72G bits, and240RT = 96G bits,
respectively, for the four system settings. The video popularity distributions
follow a Zipf distribution with parameter 0.8.

Here, we assume that each edge server operates on a 20 MHz band
with a spectral efficiency of 60 bits/s/Hz, and the length of each
video clip is T = 200 s. The other simulation settings are the
same as in Section VI-A. For these large system settings, it becomes
infeasible for IBM ILOG CPLEX solver to get the optimal solution
due to the exponential computation complexity issue. Therefore, we
compare the caching performance (in terms of the average distortion
reduction per user and the average base station transmission rate per
user) of the proposed0-CB greedy algorithm with the simple greedy,
femto-cache and pop-cache algorithms in Fig. 9. It can be seen that
scaling up the system will not degrade the caching performance
of all the different algorithms. In particular, the proposed 0-CB
greedy algorithm keeps a relatively stable caching performance and
a relatively stable performance gain compared to other algorithms
under all the different system settings, which indicates that it can
also be applied to VoD systems with larger settings than any of the
system settings studied in this paper.

E. Discussion

In terms of the system design, the above observations show that,
when the cache size of each edge server is large enough to pre-
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TABLE IV
SYSTEM SETTINGS INFIG. 9.

Index No. of videosF No. of usersU No. of edge serversS Radius of cellular region Smaller cache sizeBs Larger cache sizeBs

1 250 500 4 200 m 30RT = 12G bits 60RT = 24G bits
2 500 1000 8 280 m 60RT = 24G bits 120RT = 48G bits
3 750 1500 12 350 m 90RT = 36G bits 180RT = 72G bits
4 1000 2000 16 400 m 120RT = 48G bits 240RT = 96G bits

fetch a large number of representations, the proposed simple greedy
algorithm could almost achieve the same average distortionreduction
per user as the optimal solution, with only a linear computational
complexity. For the proposedk-CB greedy algorithm, it generally
outperforms the other comparison algorithms for differentsimulation
settings. In addition, we can seek the tradeoff between the algorithm
performance and the computational complexity (algorithm running
time) by adapting the value of the initial set sizek. A larger k
improves the algorithm’s performance, but at the cost of a longer
execution time. In practice, to have a near optimal approximation
solution with affordable algorithm running time, we could set k to 0
or 1 for large scale networks.

In addition, these observations could further provide somedesign
guidelines for the edge servers to select the cached representations
with corresponding bitrates. That is, the caching placement strategy
for all the representations of all the videos is not only dependent
on the video popularity distribution, but also affected by the video
content characteristics(i.e., the R-D behavior). For the same video
type, straightforwardly, a larger amount of representations with higher
bitrates needs to be cached by the edge servers for more popular
videos. While for different video types, a larger amount of represen-
tations with higher bitrates need to be cached by the edge servers
for videos with larger motion of the objects, or videos with more
complex content (e.g., dense objects, camera movement, andzoom
effect). Overall, the proposed algorithm complies well with these
design guidelines and scales well with the size of the system. Since
it could further strike the tradeoff between the algorithm performance
and the computational complexity (algorithm running time), it is
therefore useful for the practical system design.

VII. C ONCLUSION

This paper studied a QoE-driven mobile edge caching placemen-
t optimization problem for adaptive streaming systems. We have
provided an ILP formulation to achieve the performance upper
bound, and an equivalent constrained submodular maximization that
is used to develop an approximate algorithm with polynomialtime
complexity. Simulation results have justified that the proposed cost
benefit greedy algorithm could achieve a near-optimal performance
without introducing a long additional computation delay, which is
therefore suitable for delay sensitive applications such as adaptive
streaming. These results also demonstrated that by introducing adap-
tive streaming to allow caching multiple representations for the
same video, the proposed caching placement optimization framework
could achieve an additional caching performance gain (in terms of
higher average distortion reduction per user and lower basestation
transmission rate) over the single-representation caching schemes. We
also found that the performance of the caching placement is greatly
affected by the R-D properties of different video contents,in addition
to the common considerations (such as video content popularity
distribution and network conditions) of existing caching schemes on
adaptive streaming. Based on the analysis and simulation results, we
further provided some design guidelines for the caching resource
allocation of the edge servers among multiple bitrate representations.
For the same video type, a larger amount of representations with
higher bitrates needed to be cached by the edge servers for more
popular videos. While for different video types, a larger amount

of representations with higher bitrates needed to be cachedby the
edge servers for videos with larger motion of the objects, orvideos
with more complex content. For future work, we plan to formally
extend the proposed mobile edge caching placement policy tofuture
network architectures, such as information-centric networks (ICNs)
and software-defined networks (SDNs).

APPENDIX A
PROOF OFTHEOREM 1

If the cardinality of the optimal solution to the problemSUB in
Eq. (12) is not greater than two, then such a solution can be found by
Algorithm 1 through enumerating all possible sets with cardinality
of two or less. In the following, we only consider the case that
the optimal solution to problemSUB has a cardinality greater than
two. Specifically, denoteA∗ as the optimal solution, which is further
ordered such that:

Q({v1, v2, . . . , vt}) = max
v∈A∗\{v1,v2,...,vt−1}

Q({v1, v2, . . . , vt−1}∪{v}).

(18)
In other words,v1 is an element of the optimal solution setA∗

that has the largest value of the objective function, andv2 is an
element that achieves the largest marginal increase in the value of the
objective function if it is added to the set{v1}, and so on. Denote
A0∗ = {v1, v2} as the set comprising the first two elements of the
optimal solution setA∗. For any elementvk ∈ A∗ \A0∗ and any set
Y ⊆ V, following from the submodularity and the ordering property
of the optimal solution setA∗, we have the following inequalities:

Q(A0∗ ∪ Y ∪ {vk}) −Q(A0∗ ∪ Y) ≤ Q({vk})−Q(∅) (19)

≤ Q({vk}) ≤ Q({v1}),

Q(A0∗ ∪ Y ∪ {vk})−Q(A0∗ ∪ Y) ≤ Q({v1} ∪ {vk})−Q({v1})
(20)

≤ Q({v1, v2})−Q({v1}).

By summing up Eqs. (19) and (20), we have:

2[Q(A0∗ ∪ Y ∪ {vk})−Q(A0∗ ∪ Y)] ≤ Q(A0∗). (21)

Since the proposed cost-benefit greedy algorithm enumerates all
possible choices of the starting set with cardinality of two, we
consider a specific greedy procedure within Algorithm 1 where the
setA0∗ is selected as the starting set, i.e.,A0 = A0∗. Next, we will
prove that the objective function value of the solution set obtained
by this greedy procedure guarantees at least a ratio1

2
(1 − 1/e) to

the value achieved by the optimal solution setA∗.
Define a new set functiong(A) = Q(A) − Q(A0∗), and its

monotone submodularity can be directly obtained sinceQ(A) is
a monotone submodular function as shown in Proposition 1 and
Q(A0∗) has a constant value. For any stept, we have:

g(A∗) ≤ g(At ∪A∗) = g(At ∪ (A∗ \ At)) (22a)

≤ g(At) +
∑

vs
f,m

∈A∗\At

[g(At ∪ {vsf,m})− g(At)] (22b)

= g(At) +
∑

vs
f,m

∈A∗\At

[Q(At ∪ {vsf,m})−Q(At)], (22c)
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where, Eqs. (22a) and (22b) follow from the monotonicity and
submodularity of the set functiong(A), respectively; and Eq. (22c)
is obtained by applying the definition ofg(A).

Let t∗ be the last step at which the greedy procedure can add a new
element toAt∗−1, i.e., for t > t∗, the greedy procedure cannot add
any new element toAt due to the capacity constraint in Eq. (17). In
this case, the approximate solution is obtained asAt∗ . If At∗ = A∗,
then such an approximate solution achieves the optimal performance,
otherwise, there must exist an elementvt′+1 ∈ A∗ which is obtained
from Eq. (16) at stept′ but cannot be added to the setAt′ since
Rft′+1mt′+1

· T +
∑

f∈F

∑M
m=1 1|v

s
t′

f,m
∈(At′∩Vs

t′+1
)
·Rf,m · T >

Bs
t′+1

. Without loss of generality, we further assume thatt′i+1, i =
1, 2, 3, . . . , Nt denotes the ordered steps for allvt′

i
+1 ∈ A∗ but not

added toAt′i until time t. Then, for allt = 0, 1, 2, . . . , t∗, according
to Eq. (22), we have the following inequality:

g(A∗) ≤ g(At) +
∑

vs
f,m

∈A∗\(
⋃Nt

i=1
{v

t′
i
+1

}∪At)

Rf,m · T · θt+1

+
∑

vs
f,m

∈
⋃Nt

i=1{vt′
i
+1}

Rf,m · T · θt′
i
+1 (23a)

≤ g(At) +

(

∑

s∈S

Bs −
∑

vs
f,m

∈A∗∩At

Rf,m · T

)

θt+1

+
∑

vs
f,m

∈
⋃Nt

i=1{vt′
i
+1}

Rf,m · T · θt′
i
+1 (23b)

≤ g(At) +

(

∑

s∈S

Bs −
∑

vs
f,m

∈A0∗

Rf,m · T

)

θt+1

+
∑

vs
f,m

∈
⋃Nt

i=1{vt′
i
+1}

Rf,m · T · θt′
i
+1. (23c)

In Eq. (23a), we divide the setA∗ \At into
⋃Nt

i=1{vt′i+1} (the subset
of nodes that are inA∗ but not added intoAt) and (A∗ \ At) \
⋃Nt

i=1{vt′i+1} = A∗ \ (
⋃Nt

i=1{vt′i+1}∪At). Based on the update and
determination procedure in Lines 8-12 in Algorithm 1, we have (A∗\
⋃Nt

i=1{vt′i+1}) ⊆ Vt and thusA∗ \ (
⋃Nt

i=1{vt′i+1} ∪At) ⊆ Vt \At.
From Eq. (15), we then haveQ(At∪{vsf,m})−Q(At) ≤ Rf,m ·T ·
θt+1,∀v

s
f,m ∈ A∗\(

⋃Nt

i=1{vt′i+1}∪A
t). Next, we consider the nodes

in
⋃Nt

i=1{vt′i+1}. Since each nodevt′
i
+1 is obtained based on Eqs.

(15) and (16) at stept′i, we haveQ(At′i ∪ {v
s
t′
i

f
t′
i
,m

t′
i

})−Q(At′i) =

Rf
t′
i
,m

t′
i

·T ·θt′
i
+1. Sincet′i+1 ≤ t andAt′i ⊆ At, we haveQ(At∪

{v
s
t′
i

f
t′
i
,m

t′
i

})−Q(At) ≤ Rf
t′
i
,m

t′
i

·T · θt′
i
+1 from the submodularity.

Therefore, the inequality in Eq. (23a) holds; Eq. (23b) follows from
the fact thatA∗ is a feasible set and thus

∑

vs
f,m

∈A∗ Rf,m · T ≤
∑

s∈S Bs, Eq. (23c) is obtained sinceA0∗ ⊆ At.

Denote Tt as the set of time steps at which the element
vstft,mt

obtained by Eq. (16) can be added intoAt−1. Let Wt =
∑

τ∈T t Rfτ ,mτ ·T andW0 = 0. By the definition of the elementvt∗ ,
we denoteW ′ = Wt∗+1 = Wt∗ +Rft∗+1,mt∗+1

·T and haveW ′ ≥
∑

s∈S Bs −
∑

vs
f,m

∈A0∗ Rf,m · T = W ′′. For j = 1, 2, . . . ,W ′,
we define an auxiliary variableρj = θt if j = Wt−1 + 1, . . . ,Wt.
Therefore, we have the following relationship betweenρj andWt.
For anyt ∈ Tt,

∑Wt

j=Wt−1+1 ρj = (Wt−Wt−1)·θt = Rft,mt ·T ·θt;

for any t /∈ Tt, we have
∑Wt

j=Wt−1+1 ρj = 0 sinceWt = Wt−1. The
definition of Tt is the set of time steps at which the elementvstft,mt

obtained by Eq. (16) can be added intoAt−1. Sincet∗ is the last
step at which the greedy procedure can add a new element toAt∗−1,

we havet∗ ∈ T t∗ , and

g(At∗ ∪ {vt∗+1}) (24a)

= Q(At∗ ∪ {vt∗+1}) − Q(A0∗) (24b)

= Q(At∗ ∪ {vt∗+1}) − Q(At∗ ) + Q(At∗−1 ∪ {vt∗}) − Q(A0∗) (24c)

= · · · · · ·

= Q(A
t∗

∪ {vt∗+1}) − Q(A
t∗

) +
∑

τ∈T t∗

[Q(A
τ−1

∪ {vτ}) − Q(A
τ−1

)]

(24d)

= Rft∗+1,mt∗+1
· T · θt∗+1 +

∑

τ∈T t∗

Rfτ ,mτ · T · θτ (24e)

= (Wt∗+1 − Wt∗ ) · θt∗+1 +
∑

τ∈T t∗

(Wτ − Wτ−1) · θτ (24f)

=

Wt∗+1
∑

j=1+Wt∗

ρj +

Wt∗
∑

j=1

ρj =

W ′
∑

j=1

ρj . (24g)

Similarly, g(At) =
∑

τ∈T t Rfτ ,mτ · T · θτ =
∑Wt

j=1 ρj ,∀t =
1, 2, . . . , t∗. DenoteG as the solution set obtained by the2-simple
greedy algorithm with initial setA0∗ = {v1, v2}, then, based on Eq.
(23), we have:

g(At∗ ∪ {vt∗+1}) + g(G)

g(A∗)

≥

W ′
∑

j=1

ρj + g(G)

min
t=1,2,...,t∗

{g(At) + W ′′θt+1} +
∑

vs
f,m

∈
⋃Nt
i=1

{v
t′
i
+1

}

Rf,m · T · θt′
i
+1

(25a)

=

W ′
∑

j=1

ρj + g(G)

min
t=1,2,...,t∗

{Wt
∑

j=1

ρj + W ′′ρWt+1

}

+
∑

vs
f,m

∈
⋃Nt
i=1

{v
t′
i
+1

}

Rf,m · T · θt′
i
+1

(25b)

=

W ′
∑

j=1

ρj + g(G)

min
k=1,2,...,W ′

{k−1
∑

j=1

ρj + W ′′ρk

}

+
∑

vs
f,m

∈
⋃Nt
i=1

{v
t′
i
+1

}

Rf,m · T · θt′
i
+1

(25c)

From [44], we have
∑W ′

j=1 ρj/mink=1,2,...,W ′{
∑k−1

j=1 ρj +

W ′′ρk} ≥ 1−e−W ′/W ′′

≥ 1−1/e. On the other hand, based on the
maximal marginal benefit criterion of the simple greedy solution set
G and Eq. (18), we haveg(G) ≥

∑

vs
f,m

∈
⋃Nt

i=1{vt′
i
+1}

Rf,m ·T ·θt′
i
+1.

Therefore, we can obtain:

g(At∗ ∪ {vt∗+1}) + g(G)

g(A∗)
≥ 1− 1/e. (26)

From the inequality above we have that at least one of the values
g(At∗ ∪ {vt∗+1}) andg(G) is greater than or equal to1

2
(1− 1/e) ·

g(A∗). If g(G) ≥ 1
2
(1− 1/e) · g(A∗), then we haveQ(G) ≥ 1

2
(1−

1/e) ·Q(A∗); otherwise, based on the definition of the set function
g(A) = Q(A)−Q(A0∗) and Eq. (21), we have:

Q(At∗ ) = Q(A0∗) + g(At∗ ) (27a)

= Q(A0∗) + g(At∗ ∪ {vt∗+1}) − [g(At∗ ∪ {vt∗+1}) − g(At∗ )] (27b)

= Q(A0∗) + g(At∗ ∪ {vt∗+1}) − [Q(At∗ ∪ {vt∗+1}) − Q(At∗ )] (27c)

≥ Q(A0∗) +
1

2
(1 − 1/e) · g(A∗) −

1

2
Q(A0∗) (27d)

≥
1

2
(1 − 1/e) · Q(A∗). (27e)

Therefore, the larger value ofQ(At∗) andQ(G) is greater than or
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equal to 1
2
(1− 1/e) ·Q(A∗), and the theorem is proved.
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