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Abstract—Caching at mobile edge servers can smooth temporal traffic
variability and reduce service load of base stations in molke video
delivery. However, the assignment of multiple video repreantations to
distributed servers is still a challenging question in the ontext of adaptive
streaming, since any two representations from different \deos or even
from the same video will compete for the limited caching stoage. It
is therefore important, yet challenging, to optimally selet the cached
representations for each edge server in order to effectivel reduce the
service load of base station while maintaining a high qualit of experience
(QoE) for users. To address this, we study on a QoE-driven male
edge caching placement optimization problem for dynamic adptive
video streaming that properly takes into account the diffeent rate-
distortion (R-D) characteristics of videos and the coordimtion among
distributed edge servers. Then, by the optimal caching plaament of
representations for multiple videos, we maximize the agggate average
video distortion reduction of all users while minimizing the additional
cost of representation downloading from the base station, ubject not
only to the storage capacity constraints at the edge serverdut also
to the transmission and initial startup delay constraints & the users.
We formulate the proposed optimization problem as an intege linear
program (ILP) to provide the performance upper bound, and as a
submodular maximization problem with a set of knapsack consaints to
develop a practically feasible cost benefit greedy algoritn. The proposed
algorithm has polynomial computational complexity and a theoretical
lower bound on its performance. Simulation results further show that the
proposed algorithm is able to achieve a near-optimal perfanance with
very low time complexity. Therefore, the proposed optimizéion frame-
work reveals the caching performance upper bound for generaadaptive
video streaming systems, while the proposed algorithm prades some
design guidelines for the edge servers to select the cachegpresentations
in practice based on both the video popularity and content iformation.

Index Terms—Mobile edge caching, adaptive video streaming, wireless
video delivery, video-on-demand, submodular function mainization.

I. INTRODUCTION
In the last decade, mobile multimedia services, such aaratrg

off-peak hours, thereby smoothing out the temporal trafficability
and reducing congestion and access latencies [4].
Simultaneously, the growing heterogeneity of user poprain
terms of demands for specialized video content, displaycdsy and
access network capacity, has made the mobile video strgamin
much more complex task. Adaptive streaming technique, ssde
dynamic adaptive streaming over HTTP (DASH), has emergeghas
effective method for video streaming over heterogeneotwarks,
which can improve the overall user satisfaction by offersayeral
representations of the same video content to differenmttsligs]. Each
representation is encoded with a pre-defined bitrate amdémiution
by the content provider. The users then select the represamthat
better fits to their requirements and the network conditidinerefore,
it is promising to study the potential performance gainddtrced
by the dynamic adaptive streaming in addition to the mobidgee
caching, and to investigate the proper mobile edge cacHampment
schemes for dynamic adaptive streaming systems, in ordgletoate
the traffic load of the base station and reduce the accesxiaseof
the users (i.e., benefit of caching), and to satisfy heteroge users’
demands (i.e., benefit of adaptive streaming). The basistigein
this context is how to place the local caches of the disteithedge
servers with appropriate video representations such Heabverall
users’ QOE in terms of video qualities and latencies is maen
given the cache storage capacity of these edge serversréifffrom
the caching schemes for traditional video streaming, thabax of
video representations stored at the content server (whichainaged
by the content provider) may become extremely huge sincéipteul
representations are stored for each video. This resultsrincn more
difficult problem formulation with a higher computationarmplexity
to solve it. Therefore, in adaptive streaming based MECesyst
people are not only concerned about which video should beechc
at which edge server, they also want to know which repretienta

of mobile videos, have become the main reason for the expi@henof that video should be selected for caching.

growth of global mobile data traffic over cellular networks].[
For example, as revealed by [2] in 2016, real-time enteriaint

Studies to date have investigated related work to deal wigh t
aforementioned caching and adaptive streaming from diffeper-

that consists of streaming video and audio has become tgeskar spectives. For mobile video delivery, caching at distefutdge

traffic category on virtually every network, and its congdugrowth

servers is demonstrated to be capable of greatly reducangetvice

is expected to lead all the networkSuch a dramatic growth of load of base station, and replacing the usually weak ba¢khau

mobile video data poses significant challenges to both thieovi
content providers and the network service providers. Orieesble
consequence is the resultant acceleration of busy-hofiictria
relation to the average traffic growth. Unlike other datdfitge.g.,

connections from the base station with high-speed loc#kliinom
the edge servers to guarantee the Idelay requirement of users
[6] . An efficient caching placement strategy is designed for-two
tier wireless content delivery networks to reduce the systiesign

web usage) that occurs throughout the day, video usage i® moomplexity by using separate channels for content disssiom

likely to occur during evening hours and thus has a “primeetim
Globally, mobile busy-hour traffic is expected to be 88 petdegher
than average-hour traffic by 2020, compared to 66 percenDirb 2
[1]. Therefore, the mobile video traffic presents a high terap
variability, which incurs congestion during peak trafficun® and
under-utilization during off-peak hours. To reduce thewetaffic
load of the base station and provide context-aware seriicekse
proximity to the mobile multimedia users, mobile edge cotimgu
has been introduced to push mobile computing, network obatrd
storage to network edges [3]. In particular, mobile edgehicar

and service [7]. For adaptive streaming, the work in [8] wksia
logarithmic QoE model based on empirical results and foatesl
the cache management problem as a convex optimizationgmobl
In order to cope with dynamic video segment requests, amenli
pre-fetching algorithm is proposed in [9] to adaptively -feech
adaptive streaming video segments while considering timeteld
bottleneck bandwidth between the content server and the selyer.

1According to [6], since the edge servers are much closer gontbbile
users,ocalized high-bandwidth communicatidrom the edge servers can be
achieved through enabling high frequency reuse or higlsitlespatial reuse

(MEC) is able to utilize the storage space of edge Serverssacr of communication resources, while the backhaul commuisicdtom the base

the network and to perform multimedia content placemenindur

station fails to do so.



However, the limitation of these state-of-the-art cachdighemes is the mobile edge caching placement framework and relatetkrays
that thevideo content characteristiese not taken into account. Theymodels. In Section IV, we formulate the caching problem as an

mainly focus on the rate (bitrate of encoded representstiamd
delay (transmission delay) perspectives, and thus vidaoces with
different R-D behaviors are treated in the same way, whiciotshe
optimal solution for the adaptive streaming scenario witkfferent
representations have different R-D behaviors.

ILP by considering the users’ QOE and edge servers’ cachaecigp
constraints. In Section V, we transform the original ILP to a
equivalent submodular maximization problem, and develpaatical
approximation algorithm to solve this problem with closesptimal
performance. Section VI presents experimental results eanluates

We therefore propose in this paper to develop a novel mobilee gains of the proposed algorithm compared to existingrifgns.
edge caching placement optimization framework for the tidmp The concluding remarks are given in Section VII.

streaming based video-on-demand (MoD) system with proper c

sideration of the R-D properties of the representations fdifferent
videos. Specifically, we formulate the caching placemetitrapation

Il. RELATED WORK
The idea of using mobile edge caching to support the cellaiaal

problem as an ILP, and target at maximizing aggregate agersgpmmunication has been recently explored in [6], [10]-[18][10],

video distortion reduction of all users while taking intocaant the
imposed constraints on the backhaul link, the edge seretosage
capacity and the users’ transmission and initial startupydelhis
is accomplished by the optimal assignment of adaptive rsiireg

representations of multiple video sources to distributdgieeservers.

Through solving the proposed ILP to obtain the optimal sotyt

Liu et al. summarize the design aspects and challenges of mobile
edge caching. They further reveal that caching at the veselige
for 5G cellular networks is still an open problem since théqua
limitations in wireless networks due to the architecturd ahannel
(such as the network topology, link interference, usersbitity, and
limited battery) must be considered when designing an apjate

we are able to provide a performance upper bound for the mgchicaching placement strategy. In [11], the authors study dingc

placement. However, it is NP-hard and thus too time-consgntd
be a practical solution for delay-sensitive video stregmin order to
reduce the execution time of the caching placement algorithprac-
tice, we convert the original optimization problem to an igglent
set function optimization problem and show its submodtyaiBy
using the diminishing return property of the submodularcfions,
we develop a cost-benefit greedy algorithm for the cachiaggrhent,
which has polynomial computational complexity and offelsse-to-
optimal performance (approximation ratio is theoreticadtoved to
have a lower bound and practically shown to be ab®%# under
different simulation settings in Section VI). We conductessive
simulations under different system settings. The simomatiesults
show that the proposed algorithm can scale very well withsize
of the system. It also strikes the tradeoff between the #hgor

scheme for the 5G edge cloud network where contents aredstore
with a price determined by the mobile network operator. Theeh
FemtoCachingarchitecture in [6], [12] proposes mobile edge caching
at the small-cell access points, by compensating the batkbhpacity
with the storage capacity at the mobile edge to efficientlpdha
some highly predictable bulky traffic (e.g., VoD traffic). @ mobile
video caching placement over distributed edge serverssesnéally
used to minimize the average downloading delay of users. The
authors in [13] develop a distributed caching optimizatidgorithm

via belief propagation for the heterogeneous cellular ngtes with
edge servers, in order to minimize the overall downloadietayl
Senguptaet al. [14] study the fundamental information theoretic
limit of mobile edge caching, revealing the optimal traddigtween

the latencies and cache sizes. The work in [15] formulategirg |

execution time and the performance in terms of both the geerarouting and caching problem that targets at maximizing taetion

distortion reduction per user and the base station traisgonigate.
Overall, the contributions of this paper can be summarizsbiéows.

1) Through introducing adaptive streaming to allow cachimgj-

tiple representations for the same video, the proposedirgc
placement optimization framework addressies users’ hetero-
geneity issue and thus achievas additional caching perfor-
mance gain (in terms of higher average distortion reducti

per user and lower base station transmission raie@r the
caching schemes designed for general video fligs, single
representation for each video). It optimally allocatesdaehing

resources of edge servers not only among different videas, t?

also among multiple representations of the same video.

2) In addition tovideo content popularityand network conditions
that are commonly considered by existing caching schemes

adaptive streamingyideo content characteristids.e., the R-

D property) are further taken into account, to assign diffier

utilities to the representations with the same bitrate bainf

different videos. In this way, the actual performance of th
caching system is properly evaluated in terms of the use

viewing quality.
3) To efficiently solve the proposed caching placement aptim

tion, we convert it to an equivalent submodular maximizatio
problem with a set of knapsack constraints. We develop
polynomial-time greedy algorithmand provide a theoretical

proof on the lower bound of its approximation ratio.

of content requests served locally by the deployed edgesemmder
the consideration of some important features such as theagso
and bandwidth capacities of edge servers, and the contgoese

hpatterns of users. By further incorporating the users’ imtkrference

issue, a joint caching, routing and channel assignmentlgmolis
proposed in [16] to maximize the throughput of the video \ael
over coordinated small-cell cellular systems.While mdghe above

on

works assume a priori knowledge about the content popwylarit
the authors in [17], [18] propose a context/trend-awarehicac
scheme to predict the popularity information based on thersus
context (e.g., his/her personal characteristics, equipnte external
actors), which explicitly learns the context-specific pltapity of
video content through online learning and uses it to deteenthe
aching replacement decisiohhe online learning here indicates that
fe context information becomes available in a sequentid¢roand
is used to update the best predictor for the short-term poylof
content at each time step, as opposed to the learning temihat
8enerate the best predictor by learning on the entire trgisiet at
only one dedicated training phadgowever, all these above studies

rs

only focus on the caching assignment problems for generdégy
files. This is however not sufficient in the context of adaptiideo
streaming [10], where appropriate bitrate representsticeed to be
cglrefully determined and pre-fetched in the edge servers.

In another line of research, some works have been done tatpye
caching in the dynamic adaptive video streaming system [H],
[19]-[25]. From the rate adaptation perspective, Leteal. [19]

The rest of this paper is organized as follows. Section Il reavestigate the bitrate oscillation and sudden rate chamgblem

views the related works in literature. In Section Ill, weratuce

occurring through the interaction between the clients arahes, and



TABLE |
COMPARISON WITH THE MOST RELEVANT WORKS ON MOBILE EDGE CACHIG FOR VIDEO STREAMING

This work | [6], [12] | [13], [15], [16] | [20] | [O] | [25] | [23], [24]
Applicable to adaptive streaming Yes No No Yes | Yes | Yes Yes
Optimal performance upper bound Yes No Yes Yes | Yes | No No
Approximation algorithm guarantee Yes Yes Yes N/A | Yes | No No
Operational-cost/rate-cost aware| Yes Yes Yes Yes | Yes | No Yes
Video content characteristiawvare Yes No No No No | Yes No

propose an approach that uses shaping to eliminate sudlatisos.

the most relevant papers in the literature on mobile edgkigdor

Jin et al. [20] apply caching to adaptive streaming, and study thadeo streaming. Within these references, [6] and [12] laeentost re-

optimal transcoding and caching allocation scheme in meldiad in
order to minimize the total operational cost of deliveringaemand
adaptive video streaming, with the assumption that eachlenaber
accesses one edge server for video downloading. Gaal. [21]
investigate the tradeoff between storage and transcodingpatation
in the cloud, and propose a cost-efficient partial transtpdicheme

lated model. Through the comparison in Table I, it can be Heatrthe
work in [6] and [12] is a caching scheme designed for genaddos
files (i.e., single representation for each video) and omgs@ers
video content popularity distribution and network cordit, while
this work addresses the caching resource allocation amifiegetht
videos and different representations of adaptive streguthiough the

for content management based on user viewing patterns. Ehaoconsideration of video content characteristics (i.e.,RF@ property).
al. [22] further develop a video segment-based caching siratetn addition, the femto-cache algorithm proposed in [6] ah®] [has

for multiple representation VoD systems to minimize therage
and transcoding costs. In order to cope with dynamic requéise
work in [9] proposes an online pre-fetching algorithm to tdeely
pre-fetch adaptive streaming video segments while respedhe
limited bottleneck bandwidth between the content servet tie
edge server. To improve the users’ QoE, the authors in [8eler
a logarithmic QoE model based on empirical results and ftatau

been selected as a comparison algorithm in Section VI, whitifies
that compared to the femto-cache algorithm, this work cdmeae a
higher caching performance gain in terms of higher averégertion
reduction per user and lower base station transmission rate

1.
In this section, we introduce the mobile edge caching plargm

FRAMEWORK AND SYSTEM MODELS

a cache management problem for adaptive streaming as axXCoOrWE mework for dynamic adaptive video streaming systemsrafaded

optimization problem, thereby providing an analytical nfiework

for this engineering problem. The work in [23] proposes an in

network video caching policy for information centric netk® to
enhance users’ QOoE in terms of average user throughputl basthe
content popularity distribution. A QoE-driven DASH videaahing
and adaptation algorithm is proposed in [24] to make the iogch
and replacement decision based on the content context$egment
popularity) and the network context (e.g., downlink bardiWj.
However, all these works only focus on the operational/caist
perspective and thus neglect thieleo content characteristiad the
representations from different video contents. Here, tHeoscontent
means the distinct foreground, background and motion irvitieo,
which results in different rate-distortion (R-D) beha@dconsidered
as thevideo content characteristicéor different video sources after
encoding. In other words, this difference of video contemt R-D
behaviors) between different videos is not considered & ahove
works, where the multiple representations encoded frofereifit raw
videos but with the same bitrate are assumed to have the sateens
utility. Therefore, their caching performance dependsyomh the
video content popularity and network conditions. Howeas,will
be justified by the experimental results in Section VI, it idyoby
carefully considering theideo content characteristi¢se., the R-D
behavior) that the actual performance of the caching systmbe
properly evaluated in terms of user utility.

In our previous work [25], we have partially addressed tbssie by
proposing a wireless video caching placement optimizapiablem
for dynamic adaptive video streaming and a fast approxonati
algorithm to minimize the average video distortion of alients,
under the edge servers’ storage capacity constraintsidmtirk, we
further provide a general optimization formulation as ai lalong
with its optimal solution as a performance upper bound. lditamh,
we also take into account other QoE metrics, such as thalistartup
delay, in order to better reflect the actual utility of eactiea stream.
Finally, we study in detail the approximation algorithm fbe cache
allocation, and provide a theoretical lower bound on it$grerance.

In summary, Table | lists the differences between this watll a

A. Framework

Consider a wireless adaptive streaming based VoD system as
illustrated in Fig. 1. Suppose that the base station stéreddeo
files, each of which is encoded int different representationsy
edge servers with certain capabilities of pre-fetchingewiadtontent
are deterministically placed in the wireless coverageoregif the
base station, and are assumed to connect to the base statiagh
single hop transmission. If the connection between the btetéon
and edge servers in some cases is multi-hop, the multi-hopextion
characteristics can be considered as the end-to-end tigssiemrate
between themThese edge servers are geographically closer to the
mobile users and enable high-density spatial reuse of theless
resources with high-speed localized communication, whiarsually
assumed to be much faster than the backhaul links conneztés t
base station [12]. For the VoD service with a priori knowledof
the video popularity distribution, some popular video fileen be
pre-fetched by the edge servers during the off-peak hourslieve
the service load of the base station and to replace the wezdhaal
communication.

The mobile edge caching placement criteria for adaptiveasting
are as follows. Whenever a mobile user sends a playback sefpre
a specific video, it attempts to download the highest possiohlity
representation from its adjacent edge servers in accoedaitb the
content placement and the available download link capalfitthe
same high quality representation is cached in multiple estgeers,
the user might want to download it from the edge server with th
highest transmission rate, in order to reduce the init@itsp delay.
That is, the user will first determine whether there is a regméation
with the highest bitrate available at one of its adjacenteesigrvers
and the download of this representation can be supportechéy t
link capacity with an acceptable downloading delay. If ytbg, user
could download and playback that representation; othervitisvould
make a further selection for the representation with thet tmxer



bitrate. This determination will continue until a repretsgion with
an affordable bitrate is found at an edge server or the reptason
with the smallest bitrate is reached. When no representatiche
requested video is available at any adjacent edge sereeustr has
to turn to the base station and download the representatitmtiae
highest bitrate that could be afforded by the backhaul lioknected
to the base station. However, downloading from the bas®staitill
result in a much more expensive transmission cost sinceatiehaul
communication resource is typically very limited compatedthe
high-speed links offered by the adjacent edge servers.

B. System Models

We now describe in more detail the model that we considerig th

work, and introduce the notation.

Let first 7 denote the set of" video files that are offered to
the users. Any video filef € F is encoded into a set of\/
representationsZ; = {zyn|Vm = 1,2,..., M} with the m-th
representationzs ,, having an encoding bitrate bein§y,... We
further suppose that this set is sorted in a decreasing afdére
encoding bitrate, i.eRf; > Ry ;,V1 <1i < j < M. Therefore, the
complete set including all representations for all the wifiees can

Video 1 Video F
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Fig. 1. (a) Example of the system layout, where mobile usergandomly

distributed, while edge servers are connected to the baserstvith backhaul

links and can be deterministically placed in the coveraggore (b) The

connectivity bipartite graph indicating how mobile users eonnected to the
edge servers.

probability that the video filef € F is requested by the usere U/

be denoted ag = U Z;. For the sake of simplicity, and without within this time period. This independent user request rmaden

loss of fundamental generality, we adopt the assumptiom ff20],

acceptable approximation in an average sense or when ttienton

that each video file has the same len@thiSuch assumption is mainly popularity variation over time is relatively slow.

proposed for the notational convenience, and could beyekiédd
by breaking a longer file into multiple files of the same len[jt8].
If in some scenarios the video lengths are significantlyrogeneous

and this assumption becomes no longer reasonable, we caeiseplacement strategy can be represented by a bipartite graph

notation T; to represent the length of video fil¢ in the cache

We further consider a caching system where a representatian
video file is either cached fully (i.e., the whole represgataof the
lengthT") or not cached at all in any edge seryyghe representation

TS

(2,8,¢&:;,,.s) between vertices representing edge servers, iand

capacity constraint ofLP in Eq. (8b) (or its equivalent submodularvertices describing video representationsZinAn edge(zs,m,s) €

problem in Eq. (12b)), which would not fundamentally charige
corresponding analysis and algorithm design.

To illustrate the connection between the edge servers aed
users, the wireless network is defined by a bipartite grdph =
(S,U, Esu), whereS represents the set ¢f edge serverdd denotes
the set ofU mobile users, and a graph edge u) € &, indicates
that a wireless communication link exists from the edgeesene S

to the usem € U. The download link transmission rate of the wireless

link (s,u) is denoted byc<s’u)2. For each edge serverc S, the
cache storage capability is constrained by the capaBity Finally,
we denote byV'(u) the neighboring edge servers of usee 1. We

assume that\V'(u) is sorted in a decreasing order of the downloa%
link capacity, such thati).. € N(u) represents the edge server with™

the i-th largest capacity of the link to the user In this paper, we
study the caching system with the caching placement dectsidoe
made for a certain time period (e.g., several hours duriregpsak
hours, or even several days), during which the average dirftan
the set of I’ video files is assumed to be known in advance, as
[12], [20], [29]. In this way, the backhaul is only used toresh the
caches at the rate at which the user request distributiolves/over
time, which is a much slower process than the time scale athathie
users place their requests [12]. Therefore, we adopt tharggon
from [12], [20], that users’ requests are statisticallyepdndent and

E:4 .5 Is drawn whenzy ., (i.e., them-th representation of video
file f) is stored in the cache of edge seryeillo better understand the
flepresentation placement strategy as shown by the bggrtiph, we
can further denoteA rxarxs as theF x M x S adjacency matrix
of G, ,..s, such thatvs € S, a},, = 1 indicates that an edge
(2f,m>8) € &4 ,,,s €XiSts anda} ,,, = 0 denotes the absence of an
edge between; ,, ands, i.e.,

1, if the edge serveg caches then-th
$om = representation of videg; 1)
0, otherwise.

Quality-of-Experience Models

According to [32], both the initial startup delay (the wagi
time interval between the client's request and the begmmihthe
playback) and the average video quality (the average vigsortion)
are the key factors that affect the quality of experienceH)3d video
pfreaming services.

For each user € U, the initial startup delay constraint requires
that the waiting time interval between submitting a requesl the
actual video playback should not exceed the maximum tderab

3In some scenarios where the sizes of video files are very lege,
HD videos, or video lengtl’ is too long) and the caching storage resource

a probability mass functior, ; is used to represent the averag@ecomes the critical concern, we can alternatively adoptpértial caching

2In this paper, we assume that we have detected and known theate
channel state information (CSI) for the upcoming transimrssrame and
that the transmission rate(, ,) is known a priori. For the time-vary

strategy that caches the first portion of the same lefittir” < T') for each
representation of each video. The reason is as follows.Bagrethe studies
on users’ behavior and viewing patterns in some practic@ $pstems, such
as YouTube [30] and PPTV [31], it is observed that usuallyrsisaly watch

wireless channel when, ,,) is not perfectly known and may change overa small portion of the full content of a video. For examplatistics in [30]

time, channel prediction techniques [26] can be used tonasti the link
transmission rate. For example, the finite state Markov mblamodel [27],
[28] is widely adopted as a good approximation in modelind aredicting
the time-varying processes of wireless links. Howeverdsimiled description
of these channel prediction techniques is beyond the scbpiesopaper.

show that 95% of the views last shorter than 200 seconds.efdrer the
consumption of caching storage greatly decreases by omtjalpa caching
the firstT’ seconds of each representation (1. = 200 s), and the system
is still efficient since most of the time (e.g» 95%) the users are satisfied
with the partially cached content.



waiting time of that user, which is denoted @&smax. Let us assume  Compared to the caching problem with general files, the forede
first that the video representation ,, € Z is available in the cache tal technical challenges introduced by the adaptive videmaming,
of useru’s adjacent edge servere S. Let us further denote withT  i.e., multiple representations of a video file need to be edgclesan
the time fraction within a video file that is required to befeoéd by be explained as follows. The general file caching problemallsu
the user before the actual playback starts on the user'srscignen addresses the caching resource competition issue amdeediffiles
the initial startup delay experienced by the useto download the by placing appropriate files in the distributed edge servéiis also

representatiory ,,, from the edge servey is: based on the assumption that there is no difference betwé#eredt
Ry - AT files in terms of the system utility, i.e., downloading a di#nt file
ufom = W’Vu EUNzsm € Z,Vs €S. (2)  would lead to the same utility improvement (e.g., the insecaf

o ) ) hit ratio). When the adaptive video streaming is taken irdcoant,
Here, we set the transmission rate of links from the nonezdjgedge however, people are not only concerned with which video fileutd
servers of a user to a small positive value that is arbiyralibse t0  pe cached at which edge server, they also want to know which
zero, l.e., fors alls ¢ N(u) we havec, . = e, wheree — 0 and  representation(s) should be selected to cache in order kinize
accordinglyd,, ¢, — +oo. Similarly, when the requested video iSthe oyerall system utility. This means that not only differeideo
not available in the edge servers, the initial startup de_bq;erlenced files, but also the multiple representations of the sameoviie will
by the useru to downloadzy,,,, from the base station is: compete for the caching resource at the edge servers. Iticaddi
d _ Rpm - AT due to the difference ofideo content characteristicdownloading
. fym = c(BS,u) the same bitrate representation of different video files ld/also
wherec(BS, u) is the download link transmission rate of the Wireles{fj;rl]t flgr ?r']ﬁee;g:]:t\'lli'(tj)é(')ﬁ;ﬁermtﬁ;ns;ééieﬁg';é?jﬁﬂ?ﬁé?ﬁiﬂ% r:r)]
link connecting the base station and the user. ) T . : )
9 . . . becomes more complicated since the relationship betwesentility
Then, we use a general rate-distortion functidbmax —

D) () 1 denot the isorion of hexth epressaton TSN 50, e S et e e et o
of the video f with the encoding bitrateR¢ ,,,, where Dy, and P P g

ADjs(Rym) represent a constant maximal distortion when no Vidergzturn property. It should be noted that all of the above &ssu

is decoded and the distortion reduction (or quality improgat) after ntroduced by the adaptive streaming cannot be straighiafly

. . . . addressed by the general file caching problem, which mesvast
successfully decoding this representation, respect®elytilizing the 1o studv the following caching placement optimization for
R-D model in [33],AD;(Ry,~) can be expressed as: y 9 gp P

adaptive streaming.
0

" Rym — Ro

where the variablesf, Ry and Dy, are empirical parameters that First introd ; ts of iliarv bi iables:

depend on the actual video content; they can be estimated as 'St We Introduce two sets of auxiliary binary variables.

the fitting parameters from the empirical rate-distortiamves of 1, if useru gets them-th representation

different videos by using regression techniques. Bafom = of video f from edge serves; (5)
0, otherwise.

NueU,Vzpm € Z, (3)

Al)f (Rf,m) = Dmax - DO (4)

B. System Ultility Function

IV. QOE-DRIVEN CACHING PLACEMENT OPTIMIZATION
PROBLEM 1, if useru gets them-th representation

Yu,fym = of video f from the base station; (6)

In this section, we describe the QoE-driven mobile edge ingch 0. otherwise

placement optimization problem for adaptive streamingl ommu- _ _ - )
late it as an ILP. We then define the following utility function, based on botfe t

average video distortion reduction experienced by the userd the
cost of the representation downloading either from the esigeer

A. Problem Description and Challenges or the base station:

The QoE-driven mobile edge caching placement problem fapad M
tive streaming can be summarized as follows: given the septation  Qu = > > > 85t Pus - [ADf(Rpm) — 10 - Ryp,m]
set of source video files, the file popularity distributiohe tedge FEF m=1seN (u)
server storage capacity and the network topology, how toeptae M
representations of the video files in the distributed edgeese such + Z Z Yu,fom - Pu g [ADg(Rfm) — 0+ Rfm] (7a)
that the total system utilitywhich is defined by Eqgs. (7) and (8a) feFm=1
in the next subsectigns maximized subject to the caching capacity M
constraint of each edge server and the downloading delajresgent Y N> Bigm Pug - ADf(Rym)
of each user. FEF m=1seN (u)
If each video file has only one representation and each user M
has only access to one edge server, the optimal placemeegstr ~ + O O Yusum - Purs - [AD;(Rpm) =1+ Rym]- (7b)
becomes simple and straightforward. That is, each edgerssinould ferm=1

cache as many of the most popular video files as possible itstil As usually done in many rate-distortion optimization peshs [34],
storage is full. However, for the case of dense edge seryoyleent in the utility function defined in Eq. (7a), we impo#iee bandwidth
where each user can have access to more than one edge serverstraints (from the edge servers and the BS) as the coattpen
the optimal content placement strategy becomes highlyrw@it rather than putting them as hard constraints. It represgrigpical
Furthermore, if each video file is available in differentnegentations optimization objective that trades bandwidth (resourcs)dor video
with different bitrates, the optimal placement problemdiees even quality. Specifically,[ADs(Rysm) — no - Rym] in the first term
more complicated. of Eq. (7a) includes the video distortion reductidRD (R, )



of downloading the representatioty,.,,, and a transmission costIn the abovelLP, the objective is to maximize the aggregate utility
penaltyno - R, wWherenyg is the unit price parameter correspondinglefined in Eq. (7b), or equiavelent to maximize the averageori
to the representation downloading ©f . from the adjacent edge distortion reduction of all users (which is equivalent tonmiizing
servers. As constrained by Eq. (8f), for any usere U/ and any the aggregate average video distortion) while minimizing trans-
video file f € F, at most oneg;, ¢ ,,,,¥vm = 1,2,...,M,Vs € mission cost of the representation downloading from the Is¢ation.
N (u) equals to 1. Therefore, the weighted summation (where tfide decision variables are the representation placemeategy
weight is the video request probabilify, ) over all F video files, represented by the adjacency matiikqxrxs € {0,1}7%M*x3
dier M sent(w) B fom - Pug - [ADg(Rym) —no - Ry,m], and the sets of auxiliary binary variablgband ~. The constraint
represents the average video distortion reduction plusatiegage in Eq. (8b) represents the cache capacity constraints df edge
transmission cost penalty experienced by usdownloading request- server, wherél" is the time duration of each video file. The startup
ed video representations from its adjacent edge servekewise, delay constraints in Egs. (8c) and (8d) specify that theaingtartup
the second term in Eq. (7a) represents the average videmrtitist delay experienced by the userto download the representatioen ,,,
reduction plus the average transmission cost penalty xped either from the edge serveror the base station should not exceed
by userwu downloading requested video representations from tllee maximum tolerant waiting timé. max. The constraint in Eq.
base station. Due to the limited bandwidth available in taekbaul (8e) sets up a consistent relationship between the deaisairix A
channel, the unit price for downloading from the base stasanuch and auxiliary variableg3, ensuring that the representation selected
higher than the unit price for accessing the adjacent edgerse(i.e., by a user is already cached and available at the edge server
1> no)*. As a consequence, the overall caching system will pref@he constraint in Eq. (8f) imposes that for any vidépthe user
to store representations in the edge servers, since dosingpdhe w« can only download at most one representation from at most one
same representation from an edge server achieves the sstotioln  edge server (or the base station), to avoid duplicated dwamitg of
reduction gain while the transmission cost is much lowerergs multiple representations for the same video or the sameseptation
will only access the base station for representation doaditg in from multiple edge servers (or the base station). Togetli#r the
some rare cases when they are highly rewarded. This hapfiees e startup delay constraints in Egs. (8c) and (8d), it ensunas dnly
when there is no representation of the requested video daiche one representation will be downloaded by the usdor the video
their adjacent edge servers, or when the cached content haiya f. Furthermore, this representation is the largest posdiitiate
poor quality and the distortion reduction gain of a bettenliyy representation under the user’'s download link capacitytaedtartup
representation is so high that downloading it from the bdagom delay constraints, since otherwise the value of the oljedtinction
with a higher transmission cost is worthy for the overalllityti in Eq. (8a) decreases, which indicates a non-optimal swlufThe
improvement. For the sake of simplicity, hereinafter, weuase that constraints in Eqs. (8g)-(8i) define the binary decision auxiliary
no — 0 andn is a positive constant, and thus define the utilityariables, respectively.
function as shown in Eq. (7b). The optimal solution of thdLP can be obtained by the generic
solver IBM ILOG CPLEX [35], using a branch-and-cut searcheT
o ) branch-and-cut procedure follows a search tree consistimgpdes,
C. Optimization Problem Formulation each of which represents a relaxed LP subproblem to be solved
Mathematically, the QoE-driven mobile edge caching plamam then involves running a branch and bound algorithm to créeate
problem for adaptive streaming can be formulated as anéniagear new nodes from a parent node, and adding additional cutiizgep

program (ILP), as follows: to tighten the LP relaxations and reduce the number of besch
) required to solve the original ILP. In general, the branob-aut
ILP: X}g,’; Z Qu (82)  search requires exponential computational complexityctoexe the
My ueu optimal solution in the worst case [36], [37]. Thereforee thP
s problem in Eq. (8) is NP-hard. Specifically, it can be obsémat the
t. . -T < By, , o o . -
st ;; Apm - Bym T < Bs, Vs €8 (8b) cardinality of the decision variabled4, 3, and~ is FM S, UFMS,

. s and UF M, respectively. By using the branch and bound method
Busgom i fm < dumas, Vi €U Vzpm € 2,V5 €S, (8C) ¢4 the binary decision variables, in the worst case, the emof
Yu,fom * Qu,fom < dumax, YU € U, V25 m € Z, (8d)  nodes observed by the CPLEX solver would be upper bounded by
Bofm < @, Yu €U Zpm € Z,¥s €S, (8e) 27MS x 2UEMS  oUFM At each node the solver needs to solve a

relaxed LP problem with the SIMPLEX method. This correspotal

M M
Z Vafom + Z Z B pm < 1,Yu€U,Yf € F, (8f) an exponential computational complexity(22V-3F3M-25) and thus
1

m= m=1seN (u) incurs an incredibly long execution time when the probleralesc
Ba fom € {0,1},Yu €U, Vzpm € Z,¥s €S, (8g) Dbecomes large.

Yu,pm € {0, 1}, Vu €U, Vzpm € Z, (8h) V. EQUIVALENT SUBMODULAR MAXIMIZATION PROBLEM AND
atm €{0,1},Vzpm € Z,Vs € S. (8i) ALGORITHM DESIGN

In order to efficiently cope with the difficulties of solvinge ILP
“4For the sake of simplicity, we assume in this paper that thedown- in Eq. (8), in this section, we convert it to an equivalent fseiction

Ioa(zinfgtﬁriceno is the samtetf_or iiffere(rjw_;fedget Szwefm the dol‘_""r‘]lt?ad"bptimization problem. We prove that it is a submodular mazation
cost of the same representation from different edge s very slightly ; : .

compared to the much larger downloading cost from the bas@rst This probl_em over .|ndepend.ence cqnstralnts. We f|naII¥ deve!eyzv n
assumption could be lifted by assigning a different unit dimading pricen; practically efficient algorithms with polynomial computatal time

in Eq. (7a) to an edge serverThen, the ILP in Eq. (8) can be similarly solved complexity and theoretical approximation guarantees.

by setting the optimization objective according to Eq. (For the equivalent

submodular maximization problem and its approximatioroaigm, we only A Equivalent Problem Formulation as a Set Function Optitian
need to re-sort the set of neighboring edge seryéisfor each usem, in . . . .

such a way thati), € N(u) represents the edge server offering i In accordance with the adjacency matukrxarxs in the ILP
smallest unit downloading price. in Eg. (8), the finite ground set of the equivalent set functio



optimization problem can be viewed as:

V={Vi,...,V,...Vs},

s s
VS:{vl,ly"'yvl,I\/I7"'

9)

s s s
7Uf,nL7 e 7UF,17 e 7UF,]\J}7V8 S S:

where the ground set is partitioned inf® disjoint subsets. Eac

has the highest bitrate while still respecting the initi@rgip delay

constraint, namely s+ = argmax(z, ez, d, ;. <du.max} LLfim
Therefore, the original optimization problethP in Eq. (8) can

be reformulated as a constrained set function optimizapiablem

h that leads to the same solution of thé® based on the distributed

subsetV, denotes the full set of all representations of all files th&2ching placement criterion in Section I1I-A, as follows:

may be cached on the edge serveand the element; ,, represents
the placement of then-th representation of video fil¢ (i.e., zf,m)

on the cache of the edge server For a given adjacency matrix ¢

Arxmxs, the corresponding representation placement4et V

can be defined in such a way thgt,, € A corresponds to the case

a%m =1 and vice versa.

When initial startup delay constraints are taken into antothe
feasible set should be re-defined by eliminating the elesnémt
violate the maximum tolerance of the initial startup deleyni the
ground sed in Eq. (9). From the perspective of users, for ang U/,
the initial startup delay constraint indicates that a repn¢ation that

SUB: maXQ = Qu(A (12a)
ueU
A€, (12b)
M
7= {.A/ cvy Z Z 1|1,;7”6A1 "Ry T < B, Vs € S}

feFm=1

Comparing the original probleriLP in Eq. (8) with the equivalent
set function optimization formulatioBUB in Eq. (12), it can be seen
that the objective function and the first constraint in thebgpem ILP
in Eq. (8) are transformed to Egs. (12a) and (12b) in prob&inB,
respectively. The initial startup delay constraint of easkru in Eq.

could be downloaded from an edge sever within the maximuraydel(8c) is preserved by the feasible subSkt applied in the objective

bound is considered feasible and might contribute to theeagge

function Q.(A) as defined in Eqg. (11), while the delay constraint

expected distortion reduction. In thieP in Eq. (8), such a constraint in Eq. (8d) is ensured by the definition ef ..~ in Eg. (11). The

is indicated by Eq. (8c), which corresponds to a feasiblessubf
the ground sev:

Q, = {v‘;,m eV

& pom < dumax, V5 € S,V2pm € z} cv,

Yu € U. (10)

It should be noted that for a given representationSet and known
transmission rate for links betweeghandi{, the feasible subsé?,,
is also given with respect to the value @f max. Accordingly, the

utility function of userw in Eq. (7) can be rewritten in terms of the

set function, by also considering the initial startup detapstraints,
as:

M N (u) |:m1 [N ()]

=222 2 |1 IT =1 ciina,)| @D
fEFm=1 1i=1 n=1 j=1 ’
i—1
' {H(l - 1|v§«j2:ie<Amu>)] Ay eanay)  Pos - ADs (Bpm)
j=1 ’ ’

M N (w)]

+> I I a

- 1|u;,jzy’g e(AmQu))]
feFtm=1 j=1 :

Py [ADg(Rpm=) — 1 Rpme].

The definition of Eqg. (11) follows the distributed cachingaqs-

ment criterion in Section llI-A. In Eq. (11)1].cx is an indicator

function, which is1 if x € X and 0 otherwise and the term
m— N (u

T TS )‘(1—1|v<{;u€(AmQ -T2 (-1 W0 e ang, ik

1| ;ﬂuewm )= = listhe |nd|cator functlon define

placement se#d N Q,, for the case where the:-th representation of
video file f is the best representation that usercould find in its
neighboring edge servers while the initial startup delayst@int is
satisfied, and thIS representatlon is at the cache of edgersey.. In
particular, [~ H‘ “)‘(1 — 1|W)“ (AN, ))] 1 indicates that
no representatlon with an index smaller thanis available at any

of the adjacent edge servers; ajjq;_ Y1 -1 W92 cann, ))] =1

over the feasible

constraints in Egs. (8e) and (8f) are also guaranteed ihgeA)

in Eqg. (11) is derived according to the distributed cachitag@ment

criterion in Section IlI-A.That is, for each video, only oaehievable

representation with the highest bitr%e will be selectedefach user
\ (u)\

with its coefficient, either [[ [ [T, (1 — 1] (J)uewm ))]

[NV ( u)\
L2020 ¢ V00 e (ana,) ©F T TLAE (0
1|U(J)ue(Arm ))] in Eq. (11) belng one, while the coefﬂuents of the
other representations are all zeros.

B. Submodular Maximization Problem

Submodularity, often viewed asdiscrete analoguef convexity,
plays a central role in discrete optimization. Its chanazitey prop-
erty, diminishing marginal returns, makes submodular mézation
an efficient approach for many real-world applications,luding
approximation algorithms and many challenging problemsachine
learning. We show now that proble8UBin Eqg. (12) is a submodular
maximization problem. We first review and include the deitmitof
submodular functions according to [38]-[40].

Definition 1. Submodularity: Lety be a finite ground set, and a
set functiong : 2¥ — R is submodular if and only if for any sets
X CY CV and for any element € (Y \ X), we have

9(X)+9() 2 g(XUY)+9(XNY), (13)
or equivalently
9(X U{v}) = g(X) =2 g(YU{v}) —g(Y), (14)

which captures the diminishing marginal return characséids such
that the benefit of adding a new element into the set decresstse
set becomes larger.

We now prove that the objective function of the probl&udB in
Eqg. (12) is monotone submodular.

Proposition 1. The objective function in Eq. (12a) is a monotone

indicates that then-th representation is not available at any of thduPmodular function over the ground sétas defined in Eq. (9).

edge servers with a larger download link rate (shorterahstartup
delay) than the edge servér),. The term [[T2_ TTM(*I(1 —
1| (,)“ c(AnQ. ))] = 1 indicates that no representation of video ffle
can 'be found in any neighboring edge server of useand the user
u Will download from the base station the representatipp,- that

Proof: This proposition can be proved by using the definition of
monotonicity and submodularity. u
We further observe the cache storage constraint of edgesrserv
s € S in Eg. (12b), and note that each elemerjt,, € A
(corresponding to the cagg ,,, = 1in Arxmxs) has a non-uniform



cost of Ry, - T and s has a storage budget @f.. This constraint Algorithm 1 £-Cost benefit {-CB) greedy algorithm
can be viewed as a knapsack constraint on the suiset V. Input: system parametek; finite ground set’; video lengthT;
Overall, the distributed caching placement problem in B@) (is encoding bitratefz s, ,, for any representationy ., € Z;
a submodular maximization problem subject to a set of krepsa ~and cache storage capaci for any edge serves € S.
constraints, which still is generally NP-hard and requisegonential  QUtPut: caching placement set;

: . - - 1: id := 1 // the index of the initial set
computational complexity to reach the optimum by either dr®ther : - o o

T hodst i d that b loiti bmodulari 2: for any initial setA” C V and|A°| =k do

optimization methodst is expected that by exploiting submodularity, 5. ~y,0 "\, andy .= 1 // initialization
the polynomlal-tlme gree_dy aIgont_hm is aple to provide #eative 4. for 1 —1,2.3,... do
approximation of the optimal solution of this NP-hard pevbl[41].  s. I greedy search iteration
However, according to [41], [42], the greedy algorithm camyo 6:
efficiently address the simplest case (i.e., a submodulaimnization QAT U {v3 ) — QA
problem subject to one knapsack constraint) with theak#ipproxi- . . N Ryom - T s
mation guarantee. When the number of knapsack constragntsies fm '

greater than one, the greedy algorithm in general is no loeffieient, 7

and in the worst case its approximation ratio will be arhitysbad. vt i arg s QAT U {vs . 1) — (At
An exception exists if the set of multiple knapsack constsaform feome v§ EViTIiat-l Ry T
a matroid [38], such as the cache placement problem in [6] and ) (16)
[12] where the knapsack constraints are proved to be a ipartit & if

matroid since all video files have the same size. In compayide > f: 1] - , Rpn-T<B. (7)
proof of matroid for the multiple knapsack constraints i) ghd for o em S AT e U 3T T = T

[12] no longer holds in our case because of the differentovifile

. . . - . then
sizes introduced by adaptive streaming. However, due tspleeial } ¢ i1 st b yyt—1

S . 9: Ab = AU {0 }andVvi:=V
structure of the knapsack constraints in Eqg. (12) (i.e.hda@apsack 4. else ©me
constraint is imposed on the subsgt < V, and the set of all 11. At = AT and V= VT (o3 Y
knapsack constraints is imposed on the finite ground)getwe 12: end if .
develop in the next subsection a polynomial-time greedpréttym  13: if Vt\ A" # 0 then
and provide a theoretical proof on the approximation rafiche 14: ti=t+1
proposed greedy algorithm. 15: else
16: break
17: end if
C. Approximation Algorithm 18: end for
- L 19: ia = At andid :=id + 1
To efficiently solve the submodular maximization problenmEiq. 20: enﬁfcé)r A ‘ et

(12) with polynomial time complexity and theoretical apgroation
guarantees, we develop facost benefit K-CB) greedy algorithm.
The system parametét,= 0, 1, 2, ... specifies the size of the initial
set. Specifically, the proposddCB greedy algorithm considers all ) .
feasible initial setsA’ C V of cardinality k. Starting from any the final caching placement set. As the valuekoincreases, the
initial set.4°, at stept, the cost benefit greedy procedure iterativelyunning time of the proposed algorithm becomes longer wiite
searches over the remaining 8ét-! \ A'~! and inserts into the Performance improves. In Theorem 1, we prove that whes 2,
partial solutiond’~! an element according to Egs. (16) and (17), unti® t_heore_tlclal worst-case performance guarantee of tbpoped
the remaining set reduces to an empty set. In other wordscdhe alugorlthm is5(1—1/e), i.e., |_ts solut_lon _achleves at Ieast_the ratl_o
benefit procedure adds at each iteration an element thatmizee 21 — 1/¢€) & 0.316 of the optimal objective value. In practice, as it
the ratio between marginal bene@(At—l U {U}_m}) B Q(At—l will be shown in the simulation results in Section VI, the @ithm

and costR;., - T among all elements still affordable under th’€'formance approximation ratio is much higher than therttecal
remaining storage budget until no more elements can be adthed 0Wer bound, which is generally abo?e95.

proposedk-CB greedy algorithm then enumerates all initial set¥heorem 1. The better cache placement result achieved by running
A° C v of cardinality k, augments each of them following theseparately and comparing thicost benefit greedy algorithm given
cost benefit greedy procedure, and selects the initial dgewdng in Algorithm 1 and the2-simple greedy algorithm provides %\(1 _

the largest value of the objective functi@d(A) = >°, ., Qu(A) 1/e) approximation.That is, in the worst case, it can achieve a

and finds its solution set as the final placement 4gt For the performance guarantee of rati§(1 — 1/e) to the optimum.
special case of = 0, the algorithm reduces to a simple cost benefit . . L
greedy algorithm starting wittd’ = (. On the other hand, if we Proof: This theorem can be proved by using the diminishing

remove the cost temR;.. - T in Egs. (15) and (16) and only return property of submodular functions. For the detaileage refer
add at each iteration an element maximizing the marginakfiten 1© APPeENdix A. u
QA" U{v},,}) — Q(A"™"), the algorithm reduces to/asimple
greedy algorithm. The complete-cost benefit greedy algorithm is VI. EXPERIMENTAL RESULTS
described in Algorithm 1. Since the-simple greedy algorithm is  In this section, we evaluate the performance of our mobilgeed
only slightly different from Algorithm 1, it is thus omittedue to the caching placement optimization algorithms, and derivepgnguide-
space limit. lines for effective cache allocation in wireless adaptiveeaming
In terms of computational complexity, the running time o€ th systems under different simulation settings. We compagi ferfor-
proposedk-CB greedy algorithm isO((SFM)**'U), indicating mance with two schemes in the recent literaturesdto-Cachgthe
a polynomial time complexity and a very short additional ieap femto-caching system and its associated greedy algorittapoped
mentation delay that is introduced by running the algoritionfind in [12], which aims at minimizing the average downloadindagte

211 A = argmaxe (1,2, id—1} yey QulAi)




Network topology 1 Network topology 2

Four test videos ¥ = 4, Crowd Run Riverbed Tractor, and
Sunflowe) with 1080p resolution1920 x 1080) [43] are selected as
the video files needed for caching. These four test videagspond
to different content types, i.e., dense object motionGoowd Run
rich details/fine textures and dense object motion Riverbed
camera movement and medium object motionTaactor, and small
object motion for Sunflower respectively. Suppose that the time

‘ duration of each video clip iF" = 10 s, andAT = 1 s is the

e Ry time fraction within a video clip that is required to be buéd by
(b) the user before the actual playback starts on the user'srscaad the

constant maximal distortion is set &5,.x = 500. At a frame rate of

_Fig. 2. dNettlworkdconnO(Iecti\ftydgrta_;;htwciitls =4 edhge sg\)/;‘r; antl =40 30 fps, we further encode each video itb= 3 representations with
independently and randomly distributed users, where e servers are : ; _ . .

uniformly placed, and (b) the edge servers are placed aocpid the user encodl.ng rate being3 R, _QR’ R} and E = 2 Mbps. The dlstqrtlon
distribution, i.e., more edge servers are placed in the witta higher user reduction versus encoding bitrate curves of these fourogdare

density. illustrated in Fig. 3, where we see that the video conterngphakey
Distortion feduction vs. bitrate curves role in the rate-distortion characteristics. In particutae distortion
reduction increases faster with the rate when the videoeobritas
smaller motion. The storage capacity for each edge serveetiso
B, = 6RT = 120 Mbits. We further assume that the popularity of
the four videos follows a Zipf distribution with paramete66 [30],
i.e., the requesting probabilities @rowd Run Riverbed Tractor,

y (m)
y (m)

—=&— Crowd Run

Distortion reduction (in MSE)

200 / —&— Riverbed

—<— Tractor
—=— Sunflower

4 6 8 10
Bit rate (in Mbps)

and Sunflowervideos are 0.38, 0.25, 0.20, and 0.17, respectively
5. We implement the proposed and comparison algorithms on-a 48
processor server with 252 GB of RAM using Linux 3.1 kernelenéh
each processor is an Intel Xeon CPU E5-2680 at a clock frexyuen

Fig. 3. Distortion reduction vs. encoding bitrate curveghaf four videos. of 2.50 GHz.
of users for wireless video content delivery through altoza the
cached content among the distributed edge servers; @Pap2Lache
the popularity based adaptive streaming caching systepopeal in
[20], where each edge server caches all bitrate repregergafor
a few top popular videos and only pre-fetches the highesatbi

B. Performance Comparison

In Table Il, we compare the performance of the different each
allocation algorithms in the two network topologies shownFig.
t (2), in terms of the theoretical computational complexeyerage
representations for some other less popular videos, dutjethe distortion reduction per user (achieved by the cached oonite
allocated cache storage capacifs comparison algorithms, pop- €d9€ Servers), approximation ratio with respect to theageedistor-
cache is selected as a non-cooperative caching scheme rilyat 40N reduction per user, and base station transmission Batsides
considers the video content popularity, while femto-caishehosen (e Proposedk-CB greedy algorithm, the simple greedy algorithm
as a cooperative caching scheme that considers both the edngent N Table Il stands for the)-simple greedy algorithm, where we
popularity and the cooperation among edge servers. Thendas €move the cost temfty,, - 1" in Egs. (15) and (16) and only
this selection is to show the caching performance gain aetiie 24d gtleach iteration an ?Em‘?nt maximizing the marginatfiten
by exploiting the cooperation through the comparison betweop- @A™ U {vf.m}) — Q(A™") in Algorithm 1. In addition, the
cache and femto-cache. In addition, as a comparison bettrgen OPtimal solution of thelLP in Eq. (8) obtained by the IBM ILOG
two cooperative caching schemes, the proposed algorithiewes CPLEX solver [35] using a branch and bound method with a very

. . . . : 2U-3F-3M 25\ ; i
additional caching performance gain compared to femtxeac high (i.e., exponential) time complexity(2 7 is given as
a performance upper bound. From the perspective of conipuoit

complexity, this optimal solution would become infeasibléh the
A. Simulation Settings increase of either the number of representations or the amktw

We consider a wireless network wheie= 40 users are randomly Scale. In contrast, in different network topologies, thepmsedk-
distributed in a cellular region formed by a disk of radiu® 10 with CB greedy algorithm achieves a good approximation perfanea
the base station located at the center. Four edge serSers4) are With the approximation ratio generally above 0.95 but witmach
distributed in the cellular region in two different ways. e8jfically, 'ower (i.e., polynomial) time complexityO((SEM)*T1U). The
the edge servers are either uniformly placed as shown iy, or COmMputational complexity of the proposédCB greedy algorithm
placed according to the user distribution as shown in Fib).2{he could be further reduced @&sdecreases, with the cost of only a slight
connectivity range (effective transmission range) of eadtye server reduction on the approximation ratio. Specifically, wher= 0, the
is set to75 m, which results in the network connectivity graphs showRroPosed algorithm achieves a linear time complexity whlthe
in Figs. 2(a) and 2(b). In accordance with the simulationirsgs in Same as the femto-cache and pop-cache algorithms.

[6], we assume that the base station operates on a 20 MHz kitimd w AS @ performance comparison, the average distortion rextuper
a spectral efficiency of 4 bits/s/Hz, while each edge serperates USer and the approximation ratio achieved by the propds&B
on a 20 MHz band with a spectral efficiency of 6 bits/s/Hz arel t9réedy algorithm generally outperforms the other two caispa
interference issue between the edge servers is negledtee. Girrent  @lgorithms - (femto-cache and pop-cache), while the basgossta
802.11 WiFi standards allow qperatipns on multiple 20 M.Hmdm SPlease note that this popularity distribution is chosen radllastrative
we further assume that the neighboring edge servers a_ratque.on example. The proposed algorithm can be applied to any otbpularity
the orthogonal bands and each edge server allocates isTiS8ion distribution, which is also experimentally justified in Tebill in Section
resource in a fair and uniform way between users. VI-D.



TABLE Il
COMPARISON ON COMPUTATIONAL COMPLEXITY AND ALGORITHM PERFGRMANCE
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Theoretical Network topology 1 Network topology 2
Algorithm computation Ave. distortion | Approx. | BS rate | Ave. distortion | Approx. | BS rate
complexity reduction ratio (Mbps) reduction ratio (Mbps)
Optimum O(22U3F3M 25 423.0 - 0 399.7 - 6.00
3-CB Greedy O((SFM)*U) 418.6 0.990 0 397.5 0.995 6.00
2-CB Greedy O((SFM)3U) 416.6 0.985 0 397.0 0.993 6.34
1-CB Greedy O((SFM)?U) 409.9 0.969 0 393.9 0.986 6.69
0-CB Greedy O(SFMU) 402.5 0.952 0 389.9 0.976 6.00
Simple Greedy O(SFMU) 344.4 0.814 17.98 356.9 0.893 14.72
Femto-Cache O(SFMU) 404.0 0.955 0 381.1 0.954 6.00
Pop-Cache O(SFM) 265.5 0.628 29.88 308.4 0.772 22.75
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Fig. 4. Average distortion reduction per user vs. cache isiz@) network Fig. 5.

topology 1, and (b) network topology 2; and base stationstrassion rate
vs. cache size in (c) network topology 1, and (d) network kogp 2; where
the simulation setting ig" = 4 video files, M = 3 representationsS = 4

edge servers, antd = 40 users.

transmission rate incurred by the proposed algorithm igliyskept at
a very low level. For example, pop-cache and femto-cacheritihgns
result in 0.772- and 0.954-approximation ratio of the opfisolution
in network topology 2, with the base station transmissioe 0622.75
Mbps and 6.00 Mbps, respectively. For the casé ef 0 andk = 1,

4
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Comparison between multiple representation cacleind single

representation caching: average distortion reductionuger vs. cache size
in (a) network topology 1, and (b) network topology 2; and ebasation
transmission rate vs. cache size in (c) network topologynd, @) network

topology 2; where the simulation setting I8 = 4 video files, M = 3
representations$ = 4 edge servers, antl = 40 users.

C. Impact of System Parameters

the proposedk-CB greedy algorithm advances the approximatioas in Section VI-A, unless stated otherwise.

ratio to 0.976 and 0.986, respectively. Wherbecomes large, e.g.

In this subsection, we evaluate and compare the algorithm pe
formance of different schemes under various simulatiotings, in
order to gain a further insight into the impact of differeystem
parameters. In this set of simulations, we still adopt threesaettings

1) Cache SizeB;: Fig. 4 illustrates the results measuring the

k = 3, the proposed algorithm can even achieve 0.995-approximat average distortion reduction per user and the additionsé Iséation
ratio, while the base station transmission rate is 6 Mbpsichvh transmission rate under two different network topologmsyarying
is the same as the optimal solution. The fundamental readon whe cache size of each edge servgr. In this simulation, all edge
the proposed algorithm outperforms the others is the fatigw servers have the same cache size, which is varied #&Hf = 40

In addition to the consideration of video file popularity atite
cooperation among different edge servers, the cachingsidacfor
the representations of different videos can be further tedat the

Mbits to 14RT

280 Mbits. The general observation for all
algorithms under different network topologies is that tkerage dis-
tortion reduction per user increases and the base statinanission

video content characteristias our algorithm. For videos with small rate decreases, as the cache size gradually increasesed$mnris
motion (e.g.,Tractor and Sunflowe), the proposed algorithm only that, the edge server can pre-fetch more video represemsaitn its

allocates the basic representation with the smallesttbiffaat each
edge server, while for videos with larger motion (e@rowd Runand
Riverbed, representations with larger bitra2& or 3R are allocated
at some edge servers to gain larger distortion reductiora Assult,
a better overall cache allocation performance can be asthiby the

proposed algorithm.

local cache with the increment of the cache size, which in tan
create more opportunities for the different edge servesetee more
user requests without the need to communicate with the hasers
For the comparison algorithms, when the cache size is smal,
B, = 2RT) such that a very limited number of representations could

be stored in the edge servers, the femto-cache algorithpedatms



the pop-cache algorithm with the achieved average distorgduc-
tion per user very close to the optimal solution. On the @wir
when the cache size is large (e.ds 12RT), the pop-cache
algorithm outperforms the femto-cache algorithm in ternfisthee
achieved average distortion reduction per user. Compaittdthese
two algorithms, the proposed-CB greedy algorithm can achieve
a better approximation performance in terms of the largestaae
distortion reduction per user (i.e., largest approxinratiatio), while
the additional base station transmission rate is very ctos¢he
optimal solution. The simple greedy algorithm stands for the O-
simple greedy algorithm that is obtained by removing thehtar
storage cost consideration (i.e., the tefin,,, - 7' in Egs. (15) and
(16)) in Algorithm 1 and settingc = 0. Therefore, the average
distortion reduction per user achieved by the simple gregggrithm

is comparable to the proposddCB greedy algorithm when the
caching storage resource is not limited (i.e., when the eaibe
Bs is large). In contrast, wherB, is small, the overall caching
performance of the simple greedy algorithm is even pooren th
femto-cache algorithm. In addition, for all different cackizesB,
and different network topologies, the average distortegtuction per
user will be improved with the increment of the initial setesk. It
can be seen in Fig. 4 that whénincreases to 3, all the performance
curves almost overlap with those of the optimal solution.

For the same setting as in Fig. 4, we further show in Fig. £
the additional caching performance gain introduced by twap
streaming with multiple representations for each video,térms
of both the average distortion reduction per user and the bas
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the optimal solution to thdLP in Eq. (8), where each video is
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encoded to three representations with encoding rate kgikipps, 50 100
4 Mbps and2 Mbps, respectively. In comparison, single rep. (€2g., e B e
20 40 60 80 100 120 20 40 60 80 100 120

Mbps) method represents the optimal solution tolttfe in Eq. (8), Number of users Nurmber of users
where only single representation is encoded for each vidigo av (e) )
specific encoding rate (e.@,Mbps). It can be demonstrated that for S _ ‘ o
both network topologies and different caching sizes, aérgiverage Ir:altge 6eincj(a()e?vaelggr(iaﬂ?rﬁt?;tr;?w?n?Ciilﬁgoxr;sper:uuriigr(cg fbli’:?:‘ &?mrfhrgsg;gg
distortion reducFlon per user gnd a Iqwer base_ station mamnn Bs = 6RT = 120 Mbits; and(b) average distortion reduction per user, (d)
rate can be achieved through introducing adaptive streamio the pase station transmission rate and (f) algorithm runninge tiss. number of
caching system, compared to any of the three single refmi®n users when cache sizB; = 10RT = 200 Mbits; where the simulation
caching cases. is conducted in network topology 1 with" 4 video files, M = 3

2) Number of UsersU: From the result shown in Table || fePresentations, anfi =4 edge servers.
and Figs. 4 and 5, it is justified that the performance corspari
among different algorithms is similar for both network taggy 1 with the highest bitrate as possible to each edge serverewhé
and network topology 2, i.e., independent of the specifievagt caching priority of each representation is in a decreasidgroof the
topology. Therefore, we select network topology 1 shown ig. F popularity. ForU=40, the average user throughput in the network
2(a) as the representative network in the following suligest and allows the edge server to pre-fetch the highest bitrateesgmtation
studied the impact of other parametéige vary the number of users, of 6 Mbps. WherlJ increases to 60, the highest bitrate representation
and accordingly shown in Fig. 6 the average distortion rédoc allowed to be cached in the edge server reduces to 4 Mbps due
per user, base station transmission rate and algorithmingriime  to the reduction of the average user throughput. Thereforare
achieved by different algorithms under two cache size regti representations of different videos with lower bitrates be cached
namely B, = 6RT = 120 Mbits and B, = 10RT = 200 Mbits, in each edge server, which in turn results in a higher distort
respectively. Figs. 6(a) and 6(b) show that the averageortizh reduction for each user. It can also be noted that when theecsize
reduction per user generally decreases as the number of usedarge enough (th&, = 10RT case) to pre-fetch a large number of
increases. The reason is that the base station and all tieesetigers representations, the simple greedy algorithm could aehilee same
allocate their transmission resources fairly to all thenemted users. average distortion reduction per user as the optimal swiutFigs.
When more users join the network and connect to the baserstatb(c) and 6(d) show that the base station rate achieved byrtipeged
and edge servers, they will compete for the shared transmissk-CB greedy algorithm is the same as the optimal solutiongchvis
resources, which indicates a higher probability of commaton O for different number of users.
link interference and lowers the average user throughpug. major The algorithm running time is another performance metriéctvh
exception occurs when the number of usérss small for the pop- has the same as the average distortion reduction per usgégdn6(e)
cache algorithm. For example, instead of the expected dsiog and 6(f), we compare the actual running time of differenbatgms,
behavior, the average distortion reduction per user aeli®dy pop- and show the impact of the number of uséron the running time.
cache algorithm would increase whén increases from 40 to 60 Through the curves in Figs. 6(e) and 6(f), the previous tigwal
in Fig. 6(a). This can be explained as follows. When the loeghe analysis of the computational complexity is well justifiethat is,

size is limited, pop-cache algorithm allocates as manyesprtations
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user, (d) base station transmission rate and (f) algoritarming time vs.
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the simulation is conducted in network topology 1 with= 4 video files,
M = 3 representations, and = 40 users.
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and (e) approximation ratio vs. number of edge servers, ahdlgorithm

a Zipf distribution with parameter 0.8.

running time, (d) average distortion reduction per used, @nhapproximation
ratio vs. number of video files, where the video popularistributions follow

achieved by the proposédCB greedy algorithm is the same as the

optimal solution.

the proposed:-CB greedy algorithm and simple greedy algorithm, Figs. 7(e) and 7(f) illustrate the comparison of the aldwnit
running time versus the number of edge servgrachieved by the
different algorithms. These actual running time curve® gistify

that the computational complexity of all the algorithms éabhe

polynomial computational complexity as shown in Table II.

as well as the other two comparison algorithm, have the pohal
computational complexity as shown in Table Il. Specifigaliye
computational complexity of all the algorithms (excluditiee pop-
cache algorithm) is linear with respectg while the computational
complexity of the pop-cache algorithm is not affectedlby

3) Number of Edge Server§: We still consider a network
organization as in the network topology 1 shown in Fig. 20aj},vary
the number of edge servers that are uniformly placed in thelae
region. We then show in Fig. 7 the average distortion reduacti
per user, base station transmission rate and algorithmingrime
achieved by different algorithms under two cache sizerggtB, =
6RT = 120 Mbits and Bs = 10RT = 200 Mbits, respectively.
Figs. 7(a) and 7(b) show that the average distortion reoigber
user generally increases as we place more edge serversaalliar
region. The reason is that when the number of edge serverases,
each edge server serves a smaller number of users, whickadesr
the probability of communication link interference amorggers and
thus increases the average user throughput. In additiorenaed
deployment of the edge servers within the same cellulaoregieates
more opportunities for the coordination between edge seteecache
different representations and better support the usegsiess by the
cached content. Figs. 7(c) and 7(d) show that the base rsteite

D. Performance Evaluation for Larger System Settings

Finally, we conduct simulations for larger scale settirigstotal,
F = 15 test videos with 1080p resolutiond20 x 1080) °, available
at [43], are selected as the video files to be cached in thessigers
and requested by the users. They correspond to differentomot
and video types (such as, sports, documentary, cartoon ang)n
For the video popularity, we investigate three differenpylarity
distributions, i.e., the Zipf distribution with paramet@/8 and 0.56,
and the uniform distribution. We also consider a larger less
network withU = 200 users randomly distributed in a cellular region
formed by a disk of radius 200 m, aisti= 16 edge servers uniformly
placed in this cellular region. The storage capacity of eside server
is set toB; = 18 RT = 360 Mbits, and all the other parameters are

6These videos aréAspen Blue Sky Controlled Burn Crowd Run Dinner,
Ducks Take Off Riverbed In To Tree Life, Old Town Cross Station2
Sunflower Touchdown PassTractor, and Park Joy



13

TABLE Il
COMPARISON OF AVERAGE DISTORTION REDUCTION PER USER AND BASETATION TRANSMISSION RATE UNDER DIFFERENT POPULARITY
DISTRIBUTIONS.

Algorithm Zipf distribution, parameter 0.8 Zipf distribution, parameter 0.56 Uniform distribution
Ave. distortion reduction] BS rate (Mbps)| Ave. distortion reduction] BS rate (Mbps)| Ave. distortion reduction] BS rate (Mbps)
Optimum 459.2 1.63 455.2 0.45 449.4 0
2-CB Greedy 454.4 1.34 450.1 1.77 443.0 2.4
1-CB Greedy 454.2 1.34 449.9 1.77 442.6 2.4
0-CB Greedy 453.6 1.34 449.4 1.77 442.0 2.4
Simple Greedy 408.4 52.69 394.1 62.35 371.7 76.67
Femto-Cache 442.2 1.31 436.3 1.65 426.9 2.4
Pop-Cache 379.2 75.41 350.7 97.22 284.2 150.27
Smaller BS Larger BS

the same as previously. The other simulation settings areséime 240

320

my my
[} %)
= A =
as in Section VI-A. € 50 e € 300 B =
. . . o} o /\ TT——
In Table 1ll, we compare the average distortion reductiom pe 2 ., 3 20—
. . . . g g
user and the base station transmission rate obtained bgrefiff < . £ 260
caching placement algorithms under the three differentulaoity 3 T~ S 200 -
dlstrl_butlons. Although the system settings scale \_Nlthge!gnumber 5 10 —o— Pop-Cache 5§ o Popcache
of videos, edge servers and users, it is again verified tlat, f g > Femto=Cache g 200 —=— Femto-Cache
. . . . . 5 120 —%— Simple Greedy S laot —4— Simple Greedy
all popularity distributions the proposed-CB greedy algorithm g 0-CB Greedy s 0-CB Greedy
outperforms the femto-cache and pop-cache algorithmschieses § 2 3 4 2790 2 3 4
a higher average distortion reduction per user, and corhjsamr indexof system seting fdex ofsystem seting
lower base station transmission rate. Specifically, forpalbularity @) (b)
distributions, the proposed-CB greedy algorithm ¥ = 0,1,2) Smaller B Larger B

improves the average distortion reduction per user by at I&4.4
(in MSE) compared to the femto-cache algorithm, and impsdye
at least 74.4 (in MSE) compared to the pop-cache algorithhis T
average video distortion reduction per user performanoalisabout
5 (in MSE) lower than the optimal solution, while the addiiéb base
station transmission rate is comparable with the optimhltsm. In

1 - B

—&— Pop-Cache
—=&— Femto—-Cache

—&— Pop-Cache
—&— Femto—-Cache

0.4

Average BS transmission rate per user (Mbps)
Average BS transmission rate per user (Mbps)

terms of the average additional base station transmisaienowver all 06 Dbt 02 Dl
the three popularity distributions, the difference betwte proposed 04, 5 : 4 o . . "
k-CB greedy algorithm and the optimal solution is only 1.1 &bp Index of system setting Index of system setting

In order to gain a further insight into the superiority of fheposed (© (d)

algorithm over the optimal ILP solution provided by the géme Fig. 9. (a) Average distortion per user and () average baators
solver IBM ILOG CPLEX [35], we compare the performance of thgansmission rate per user vs. system scale when cache Bizés set
proposed0-CB greedy algorithm, the simple greedy algorithm, aneéb 30RT = 12G bits, 60RT = 24G bits, 9ORT = 36G bits, and
the optimal solution in Fig. 8. Specifically, we show the pemiance 120RT = 48G bits, respectively, for the four system settings; and (b)
comparison of the algorithm running time, the average disto Average distortion per user and (d) average _base statiorsnirigsion rate
. . . . per user vs. system scale when cache dikeis set to60RT = 24G

reduction per user, and the approximation ratio versus treber .. o0p7 — 483G bits, 1SORT = 72G bits, and240RT — 96G bits,

of edge serversS in Figs. 8(a)-8(c), respectively. The same set lespectively, for the four system settings. The video payityl distributions
performance comparison versus the number of video Alésshown follow a Zipf distribution with parameter 0.8.

in Figs. 8(d)-8(f), respectively. We see that the previdusotetical

> X e VI - Here, we assume that each edge server operates on a 20 MHz band
analysis of the computational complexity is well justifiethat is,

> - g ! . with a spectral efficiency of 60 bits/s/Hz, and the length atle
the optimal solution needs a very high computational comifle \igeo clip is T = 200 s. The other simulation settings are the
which is exponential toS and ¥, while both the proposed-  game as in Section VI-A. For these large system settinggcibines
CB greedy algorithm and simple greedy algorithm achieveneali jyteasible for IBM ILOG CPLEX solver to get the optimal st
computational complexity. In addltlgn, th_e overall approation r{mo_ due to the exponential computation complexity issue. Tese we
of the proposed)-CB greedy algorithm is greater than 0.95 in Figeompare the caching performance (in terms of the averageriits
8(c) and greater than 0.9 in Fig. 8(f), respectively. Tf@ the roqyction per user and the average base station transmisgo per
performance of the propos€dCB greedy algorlth_m is very _close to user) of the propose@-CB greedy algorithm with the simple greedy,
the performance upper bound guided by the optimal solubonthe o ni6-cache and pop-cache algorithms in Fig. 9. It can ba test
actual running time is much shorter. In other words, the psepl g5iing up the system will not degrade the caching perfooman
algorithm has a much lower increasing rate of the runnin@tand ot 5| the different algorithms. In particular, the propdsé-CB
scales better than the optimal solution solved by the gersaiver 4 eeqy algorithm keeps a relatively stable caching perdmce and
IBM ILOG CPLEX [35]. Considering a practical wireless video, rejatively stable performance gain compared to otherritigos
caching system with a large number of videos, represengtiedge nqer il the different system settings, which indicateat ih can

servers and users, the long waiting time for the IBM ILOG CRLE 454 pe applied to VoD systems with larger settings than drte
solver to obtain the optimal solution makes it infeasiblepractice. system settings studied in this paper.

In contrast, the proposed algorithm is suitable for the ydsknsitive
video applications since it is capable of achieving a ngxdintal ) )
solution within a short period of time. E. Discussion
Next, in Fig. 9, we proportionally scale up the system aciogydo In terms of the system design, the above observations shaty th
the settings in Table IV and show its impact on different @tpons. when the cache size of each edge server is large enough to pre-
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TABLE IV
SYSTEM SETTINGS INFIG. 9.

Index | No. of videosF' | No. of usersU | No. of edge server§ | Radius of cellular region| Smaller cache sizé3; | Larger cache sizé3
1 250 500 4 200 m 30RT = 12G bits 60RT = 24G bits
2 500 1000 8 280 m 60RT = 24G bits 120RT = 48G bits
3 750 1500 12 350 m 90RT = 36 bits 180RT = 72G bits
4 1000 2000 16 400 m 120RT = 48G bits 240RT = 96G bits

fetch a large number of representations, the proposed sigrgedy
algorithm could almost achieve the same average distoréidaction
per user as the optimal solution, with only a linear compoiet
complexity. For the proposed#-CB greedy algorithm, it generally
outperforms the other comparison algorithms for differg@ntulation
settings. In addition, we can seek the tradeoff between Itfeithm
performance and the computational complexity (algorithmning
time) by adapting the value of the initial set size A larger k
improves the algorithm’s performance, but at the cost of rgéo
execution time. In practice, to have a near optimal apprafion
solution with affordable algorithm running time, we coulet & to 0
or 1 for large scale networks.

In addition, these observations could further provide saiesign
guidelines for the edge servers to select the cached repatisms
with corresponding bitrates. That is, the caching placénseategy
for all the representations of all the videos is not only dejest
on the video popularity distribution, but also affected by video

content characteristic§.e., the R-D behavior). For the same videaQ ({vy, v, ..

type, straightforwardly, a larger amount of representetiwith higher

bitrates needs to be cached by the edge servers for moreapop

videos. While for different video types, a larger amount efresen-
tations with higher bitrates need to be cached by the edgerser
for videos with larger motion of the objects, or videos witlona
complex content (e.g., dense objects, camera movementza@ord
effect). Overall, the proposed algorithm complies well hwthese
design guidelines and scales well with the size of the sys&inte
it could further strike the tradeoff between the algoritherfprmance
and the computational complexity (algorithm running timg)is
therefore useful for the practical system design.

VIl. CONCLUSION

This paper studied a QoE-driven mobile edge caching pIanemeQ(AO* UY U {w}) — Q(AO* uy)

t optimization problem for adaptive streaming systems. Vsgeh

provided an ILP formulation to achieve the performance uppe

bound, and an equivalent constrained submodular maxiioiz#hat
is used to develop an approximate algorithm with polynortiiale
complexity. Simulation results have justified that the msgd cost
benefit greedy algorithm could achieve a near-optimal perémce
without introducing a long additional computation delayhigh is
therefore suitable for delay sensitive applications sushadaptive
streaming. These results also demonstrated that by irtiegladap-
tive streaming to allow caching multiple representatioos the
same video, the proposed caching placement optimizateondwork
could achieve an additional caching performance gain (imgeof
higher average distortion reduction per user and lower Isget#on
transmission rate) over the single-representation cgadthemes. We
also found that the performance of the caching placementeiatly
affected by the R-D properties of different video conteimtsaddition

of representations with higher bitrates needed to be cablgethe
edge servers for videos with larger motion of the objectsyideos
with more complex content. For future work, we plan to foripal
extend the proposed mobile edge caching placement polifytuce
network architectures, such as information-centric neta/ICNs)
and software-defined networks (SDNSs).

APPENDIXA
PROOF OFTHEOREM 1

If the cardinality of the optimal solution to the probleUB in
Eqg. (12) is not greater than two, then such a solution can tedfdy
Algorithm 1 through enumerating all possible sets with caatity
of two or less. In the following, we only consider the casettha
the optimal solution to probler8UB has a cardinality greater than
two. Specifically, denoted™ as the optimal solution, which is further
ordered such that:

L)) = Q{v1,v2,...,v—1}U{v}).
| (18)
 other words,v; is an element of the optimal solution set*
that has the largest value of the objective function, andis an
element that achieves the largest marginal increase inalue wf the
objective function if it is added to the s¢b:}, and so on. Denote
A% = {v1,v2} as the set comprising the first two elements of the
optimal solution setd*. For any element, € A*\ .A°* and any set

Y C Y, following from the submodularity and the ordering propert

of the optimal solution sel*, we have the following inequalities:

QA UYU{u}) — QA UY) < Q({w}) — QD)  (19)
< QU{w}) < Q({um}),

Q{vi} U{ve}) — Q{w})
(20)

Q{vr,v2}) — Q({v1}).
By summing up Egs. (19) and (20), we have:
QA" UY U {u}) = QA" LY)] < Q(A™).

Since the proposed cost-benefit greedy algorithm enunserate
possible choices of the starting set with cardinality of jtwee
consider a specific greedy procedure within Algorithm 1 wehtire
set A% is selected as the starting set, i.d% = A°*. Next, we will
prove that the objective function value of the solution Setamed
by this greedy procedure guarantees at least a éa(tlof 1/e) to
the value achieved by the optimal solution sEt.

Define a new set functiog(A) = Q(A) — Q(A), and its
monotone submodularity can be directly obtained siGgeAd) is
a monotone submodular function as shown in Proposition 1 and

max
vEA*\{v1,v2,...,v¢_1}

IN

IN

(21)

to the common considerations (such as video content pogularQ(.A°*) has a constant value. For any stepve have:

distribution and network conditions) of existing cachirdhemes on
adaptive streaming. Based on the analysis and simulatgritse we
further provided some design guidelines for the cachingpues
allocation of the edge servers among multiple bitrate iEprEtions.

For the same video type, a larger amount of representatiotis w
higher bitrates needed to be cached by the edge servers fia mo

popular videos. While for different video types, a largeroamt

gA) < g(ATUAT) = g(A"U A"\ AY) (22a)

< gAY+ D [g(A"U{vER)) —g(AY)] (22b)
v;meGA*\At

= gAY+ > [QA"U{via}) — Q(AY)], (220)
v?’mGA*\Af
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where, Egs. (22a) and (22b) follow from the monotonicity andie havet™ 7, and

submodularity of the set functiog(.A), respectively; and Eq. (22c)
is obtained by applying the definition gf.A).

Lett™ be the last step at which the greedy procedure can add a new= QA" U {vge41}) —
the greedy procedure cannot add
any new element tod" due to the capacity constraint in Eq. (17). In

element toA' !, i.e., fort > t*,
this case, the approximate solution is obtained4és. If A" = A*,

then such an approximate solution achieves the optimabpaénce,
otherwise, there must exist an elemept,; € A" which is obtained
from Eq. (16) at steg’ but cannot be added to the sdf since

th/+1mt/+1 T+Ef€fzm 11| Atlﬁvbt/+1) Rf, T >
B, .- Without loss of generality, We further assume tHat 1, i =
1,2,3,..., N;: denotes the ordered steps for a,,llrrl € A" but not
added taAt until time ¢. Then, for allt = 0, 1,2, ...,t*, according
to Eq. (22), we have the following inequality:
g(A") < g(A") + Z Rpm T 041
V3 EATNUL {vg 4 JUAY)
+ D> BRpmTo0up (232)
V3 m €U (s 41}
< g(A) + (ZBS - > Rim 'T)9z+1
SES V%, EA nAt
+ > Rpm T 041 (23b)
V3 m €U (o 41}
< g(A) + (ZBS - > Rm 'T)9z+1

sES v; mEAO*

+ (23c)

>

vé EU7 1{1r1 +1}

Rpm T 0y 41.

In Eq. (23a), we divide the set* \ A" into [\ y{ver 41} (the subset
of nodes that are ind* but not added |ntQAt) and (A*\ AN\

Uz {ve 1} = A\ (U {vir 11 }UA"). Based on the update and

determination procedure in Lines 8-12 in Algorithm 1, wedad™\
Ui {vrg1}) € V" and thusA™ \ (U {vy 11} UAT) C VLAY
From Eq. (15), we then hav@(A* u{vf"m}) — QA" < Ry T

9t+1,wf‘ m € AN\ (UX H{ow +1}UAY). Next, we consider the nodes From

in UN, {ve r+1}. Since each node; ., is obtarned based on Egs.
(15) and (16) at step;, we haveQ( Ai U {v f, . ,}) QA =
Rff,,mt “T-0y 4, Sincet;+1 <t and.A% C At we haveQ(A'U

{v ft“ y N -Q(AY < th, e “T -6, from the submodularity.
Therefore, the inequality in Eq (23a) holds; Eq. (23b)dats from
the fact that4” is a feasible set and thds’ . v EA" Rim - T <

> .es Bs, Ed. (23c) is obtained sincd’* C Al

Denote 7; as the set of time steps at which the eleme
5 ., Obtained by Eq. (16) can be added int~'. Let W; =

%t,mf

Tt Rfﬂmf -T"andW, = 0. By the definition of the element;-,

we denotelV’ = W, “41 =W+ R, | imy ., - T and havel’ >
ESESB — Evb €A Rfm -T =W" Forj = 1,2,...,W/,
we define an auxrlrar variablg; = 6, if j = W,_1+1,... . W,.

Therefore, we have the following relatlonshlp betwe;gnand Ws.
For anyt € T,Z] W, 1+1p7 = (Wy=Wi—1)-0r = Ry, m, T 04,
for anyt ¢ T;, we havezj W,y 1 Pi = 0sinceW, = W;_1. The
definition of 7; is the set of time steps at which the eIeme;ﬁ -
obtained by Eq. (16) can be added intd~'. Sincet* is the last
step at which the greedy procedure can add a new elemetit o',

g(A” U fve 1)) (24a)
= QA" U {vp 1)) — Q(A"™) (24b)
QAT ) + QAT T U {up ) — Q(A”)  (240)
= QA" U{vp 1) — QAT ) + 3T QAT U {ur}) — QAT
T f’*
<7 (24d)
=Ry mpnyy T 01 + > Rppm, T 0r (24e)
reTt*
= (Wergr = Wer) -0 1+ > (We = Weia) - 07 (249
TETf’*
Wys 11 Wy w!
= D> ety ri=>pi (249)
J=1+Wix j=1 j=1

Similarly, gAY = Y Ry, - T - 0. = YV pj vt =
DenoteG as the solution set obtained by tBesimple

reedy algorlthm with initial se®* = {v1,v2}, then, based on Eq.
? 23), we have:

g(A"” U {v1}) +9(9)

g(A*)
W/
Z P +9(9)
Z 1"
i oA +w 9t+1} + > Rfm - T-0y 4
= s Ny ‘
vEm SUi=1{vy g}
(25a)
W/
> pi+9(9)
= -
N DO, W”"Wt“} X R T
=t el MRS
(25h)
Z pi +9(9)
- k—1
kflglin W’{Z pi + W”pk} + Z Rf,m ST Gt;+1
e j=1 s N
/”fameurzl{”t,’i+1}
(25c¢)

[44], we have E] 1 /)7/rn1n/1C 1.2,.. W’{Z] Lpi o+
W"pr} > 1—e W'/ > 1/e. On the other hand, based on the
maximal marginal benefit criterion of the simple greedy Sohuset

G and Eq. (18), we havg(g) > > . Ny Rpm-T-0y 1.
vf meUizl{”t;grl} i
Therefore, we can obtain:
g('At* U{Ui*+1})+g(g) > 1—1/6. (26)

g(A*)
From* the inequality above we have that at least one of theesalu
(A U {vt*+1}) andg(g) is greater than or equal (1 — l/e)

n(l{ If g 1(1—1/e)- g(A*), then we have)(G) > 1(1—
other\lee based on the definition of the set function

g(A) = Q(A) Q(A) and Eg. (21), we have:

QA = Q(A™) +g(A") @72)

= QA”) + g(A” U {ves 1)) — [9(A" U {vpi1}) — g(A)] (27D)

= QA™) +g(A” U {wpr 1)) — [QAT U {vpe 1)) — QAT (27¢)

> QA™) + S (1= 1/) - g(A") = S QA™) @ra)

> (1-1/e) - QA (27¢)

2

Therefore, the larger value @@(A*") and Q(G) is greater than or



equal toi (1 —1/e) - Q(A"), and the theorem is proved.
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