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Abstract

Psychopathology  represents  a  leading  cause  of  disability  worldwide.  Effective

interventions need to target risk factors that are causally related to psychopathology. In order

to  distinguish  between  causal  and  spurious  risk  factors,  it  is  critical  to  account  for

environmental  and  genetic  confounding.  Mendelian  randomisation  studies  use  genetic

variants  that  are  independent  from  environmental  and  genetic  confounders  in  order  to

strengthen causal  inference.  We conducted a systematic  review of studies (N = 19) using

Mendelian  randomisation  to  examine  the  causal  role  of  putative  risk  factors  for

psychopathology-related  outcomes  including  depression,  anxiety,  psychological  distress,

schizophrenia,  substance  abuse/antisocial  behaviour,  and  smoking  initiation.  The  most

commonly  examined  risk  factors  in  the  reviewed  Mendelian  randomisation  studies  were

smoking,  alcohol  use  and  body  mass  index.  In  most  cases,  risk  factors  were  strongly

associated with psychopathology-related outcomes in conventional analyses but Mendelian

randomisation  indicated  that  these  associations  were  unlikely  to  be  causal.  However,

Mendelian  randomisation  analyses  showed  that  both  smoking  and  homocysteine  plasma

levels  may  be  causally  linked  with  schizophrenia.  We discuss  possible  reasons  for  these

diverging results  between conventional and Mendelian randomisation analyses and outline

future directions for progressing research in ways that maximise the potential for identifying

targets for intervention.

Keywords: psychopathology, risk factors, Mendelian randomization,  causality, smoking,

alcohol, body mass index, depression, anxiety, schizophrenia
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Introduction

   Psychopathology is a major public health concern and the leading contributor for years

lived with disability world-wide (Whiteford et al., 2013). Identifying modifiable 

environmental exposures that are causally related to psychopathology is crucial for designing 

effective evidence-based social policies and interventions. To date, however, establishing 

whether a correlation between an environmental exposure (e.g. smoking) and a 

psychopathology-related outcome (e.g. depression) reflects a truly causal relationship or a 

spurious association remains a major challenge. To address this issue, Mendelian 

Randomisation (MR) has been developed as a method using genetic information for 

strengthening causal inference about environmental risk factors in observational research 

(Davey Smith, 2010). The present systematic review examines MR studies that included 

psychopathology-related outcomes. In the introduction, we briefly elaborate on causal 

inference in psychopathology before explaining the principles, strengths and limitations of 

MR. 

Causal inference in psychopathology

A fundamental objective of epidemiological approaches to psychopathology is to identify 

modifiable environmental exposures that can be targeted in effective interventions. To this 

end, establishing causality is crucial: an intervention is extremely unlikely to succeed if the 

targeted environmental exposure is not causally related to the outcome, simply because if 

exposure A does not cause outcome B, then modifying A will not change B. 

Relying on observational studies to identify such potential targets for intervention is 

problematic. Observational studies suffer from limitations that prevent causal inference such 

as environmental and genetic confounding (Richmond, Al-Amin, Davey Smith, & Relton, 
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2014). For instance, smoking and depression are strongly associated in the general population:

heavy smokers are more likely than moderate or non-smokers to suffer from depression 

(Bjørngaard et al., 2013; Lewis et al., 2011). However, many confounding factors could drive 

this association. For instance, a third variable, such as socioeconomic adversity, which 

associates with both higher rates of depression (Melchior et al., 2013) and smoking (Pingault 

et al., 2013) could account for the association. An association between smoking and 

depression could also arise from partially overlapping genetic risk factors (Kendler et al., 

1993). If environmental and/or genetic confounding totally account for the observed 

association, the relationship between smoking and depression cannot be described as causal. 

Considerable effort has been directed at strengthening causal inferences in observational 

studies (Imai, King, & Stuart, 2008; Jaffee, Strait, & Odgers, 2012; Rutter, 2007; Rutter, 

Pickles, Murray, & Eaves, 2001), for instance by using statistical innovation such as matching

techniques to balance confounders between exposed or non-exposed groups (Ho, Imai, King, 

& Stuart, 2007; Stuart, 2010; Stuart & Green, 2008), or using cross-cohort comparison to 

better account for confounding (Lewis, Relton, Zammit, & Davey Smith, 2013). In addition to

these techniques, genetically informative designs have addressed the issue of genetic 

confounding. Family-based designs such as the discordant monozygotic twin or the in vitro 

fertilization designs account for genetic confounding using known genetic similarities 

between family members. Reviewing the many family-based designs is beyond the scope of 

this article and can be found elsewhere (D’Onofrio, Class, Lahey, & Larsson, 2014; Jaffee et 

al., 2012; Lewis et al., 2013). MR is a recently developed method also using genetic 

epidemiology to strengthen causal inference (Davey Smith & Ebrahim, 2005). However, 

unlike family-based designs, MR does not require family-based samples and uses direct 

genotyping instead of relying on genetic similarities between family members. 
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MR and other techniques for strengthening causal inference in observational research are 

essential for several reasons. First, experimental manipulations of presumed environmental 

risk factors to test whether they play a causal role are not always possible for ethical reasons 

(e.g. neglect or maternal smoking). Second, even when feasible, experimental manipulations 

such as randomised controlled trials suffer from their own limitations (e.g. highly selected 

volunteers, which may not be representative of the target population, see Imai et al., 2008; 

Jaffee & Price, 2012). In such cases, MR and other techniques offer unique strengths to test 

putative causal relations. Finally, many costly randomised controlled trials have failed to 

confirm associations reported in observational studies (Davey Smith & Hemani, 2014). 

Therefore, implementing techniques to strengthen causal inference in observational studies is 

an important step for guiding the choice of appropriate intervention targets before investing in

a randomised controlled trial. 

Modifiable environmental exposures and genetic instruments

The aim of MR is to test whether a potentially modifiable environmental exposure is 

causally related to an outcome of interest. The “potentially modifiable environmental 

exposure” can either be a modifiable behaviour such as smoking or an intermediate phenotype

such as cholesterol levels (Sheehan, Didelez, Burton, & Tobin, 2008). MR first involves the 

identification of a genetic variant that influences the exposure variable. The genetic variant 

must either alter the level of the exposure itself – e.g. increase in smoking – or mirror its 

biological effect – e.g. modify cholesterol levels (Bennett, 2010; Davey Smith et al., 2005; 

Gage, Davey Smith, Zammit, Hickman, & Munafò, 2013). Importantly, the focus of MR is 

not the genetic variant itself but rather the potential causal relationship between the 

environmental exposure and the outcome. As such, MR does not aim to identify genetic 

factors in order to target individuals on the basis of their genotype. Rather, it uses genetic 
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variants that are known to affect exposure to environmental risk, in order to test whether 

specific environmental exposures are causally related to the outcomes of interest (Sheehan et 

al., 2008). These genetic variants are called ‘genetic instruments’ because they are used in an 

instrumental fashion – as a mean to an end – to examine causality. 

Principles of Mendelian randomisation

MR is based on the following logical proposition: if an exposure A causes an outcome B, 

then any variable that influences A will also influence B (Davey Smith & Hemani, 2014). The

genetic instrument is chosen because it is known to influence A. If there is a causal 

relationship between A and B, then the genetic instrument that influences A should also 

influence B. If we observe that the genetic instrument indeed influences B, we can conclude 

that there is a causal relationship between A and B, provided all assumptions are met (see 

Figure 1). A critical assumption is that all the effect of the genetic instrument on the outcome 

B must happen through the exposure A (i.e. similar to full mediation). Provided this 

assumption is met, if the path from the genetic instrument to A is significant, and if the path 

from the genetic instrument to B is also significant, then we have all the information needed 

to estimate the relationship of interest, i.e. the path between exposure A and outcome B. 

Once the causal influence between A and B is established, it also follows from the same 

initial proposition that any other factor influencing A should influence B (additional 

considerations on this topic can be found in Burgess, Butterworth, Malarstig, & Thompson, 

2012). In particular, any intervention that would be successful in modifying the exposure A, 

should also be successful at modifying the outcome B. For instance, if MR provides evidence 

that a modifiable behaviour such as smoking is causally related to an outcome such as 

depression, then an efficient smoking cessation intervention should also have a positive 
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impact on depression. Similarly, if MR provides evidence that an intermediate phenotype such

as high BMI causes cardiovascular diseases, then a diet that successfully reduces BMI should 

also reduce cardiovascular diseases. Here, the notion of “intermediate phenotype” refers to 

any phenotype that lies on the causal pathway leading to the outcome of interest. Intermediate

phenotypes can therefore be influenced by genes (e.g. by a genetic instrument) or by the 

environment (e.g. by an intervention such as a diet). 

MR is an example of “instrumental variable”, an approach developed in economics to 

better account for confounding in observational research (Gage et al., 2013). 

An instrumental variable must meet the following assumptions represented in Figure 1 to 

enable adequate causal inference (Gage et al., 2013; Sheehan et al., 2008):

I) It must be associated with the exposure; 
II) It cannot be associated with the outcome of interest, except via its effect on the 

exposure. In other words, all the effect of the instrumental variable should be mediated

by the exposure (i.e. no direct effect remains and no effect is mediated via another 

exposure);
III) It must be independent of all variables (measured or not) that confound the 

relationship between exposure and outcome; and
IV) It must not introduce new confounders to the relationship.

As can be seen, the instrumental variable approach behind MR involves stringent 

assumptions. For instance, most measures of environmental risk are unlikely to fulfil these 

assumptions as they tend to cluster together and, consequently, cannot be independent of 

measured or unmeasured confounders (Davey Smith et al., 2007). Genetic variants retain 

critical advantages as instrumental variables. Based on Mendel’s first law of segregation, 

alleles segregate at conception independently of the environment. Following Mendel’s second

law of independent assortment, genetic variants are inherited independently of each other. 

Therefore, a genetic variant will generally not be associated with environmental or genetic 
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confounding factors that can bias observational studies (Brion, Benyamin, Visscher, & Davey 

Smith, 2014; Davey Smith, 2010).

We can use the association between smoking heaviness and depression as a brief concrete 

example of MR analysis. A genetic variant, the single nucleotide polymorphism (SNP) 

rs1051730 located in the nicotine acetylcholine receptor gene cluster (CHRNA5-A3-B4), has 

been used as a genetic instrument to examine this association. This SNP has been repeatedly 

associated with smoking, the T allele being associated with increased smoking. The first 

condition for MR analysis is therefore satisfied as the genetic instrument must be robustly 

associated with the exposure (Bjørngaard et al., 2013; Lewis et al., 2011; Taylor, Fluharty, et 

al., 2014). The final step is to test whether this genetic instrument is significantly associated 

with the outcome. Because the genetic instrument is supposed to have an effect on the 

outcome only via the exposure (see assumption II), this means that, in the absence of the 

exposure (i.e. among non-smokers), the genetic instrument should have no effect on the 

outcome. We therefore need to test whether smokers with the T allele are more depressed, 

while non-smokers with the T allele show no differences in depression status. If this is the 

case, then we can derive from the instrumental variable approach that increased smoking 

causally increases the risk of depression. Conversely, if no significant association is found 

between the genetic instrument and the outcome, this is interpreted as evidence against a 

causal association. The implementation of MR analysis is straightforward as it relies on a 

simple test of the association between the genetic instrument and the outcome. More 

sophisticated statistical techniques are also available, for instance to calculate the  size of the 

causal effect or to deal with several genetic instruments (Davey Smith & Hemani, 2014).



              Running head: MENDELIAN RANDOMISATION and PSYCHOPATHOLOGY

11

------------------------------------------------------------------------

Box1: Analogy between MR and Randomised Controlled Trials (RCT)
The analogy between randomised controlled trials and MR can help to illustrate the 

principles of the design (see Figure 2). We take the basic example of a trial aiming to assess 
the role of a smoking cessation intervention (the treatment) on depression (the outcome). The 
treatment is allocated at random creating two groups, the treatment group and the control 
group. When comparing outcomes between treatment and control groups, all measured and 
unmeasured confounders are accounted for by the randomisation – i.e. there should be no 
significant difference in means of potential confounders between the two groups. As a result, 
the only possible differences between the two groups are due to the causal effect of the 
intervention on some modifiable behaviour, here fewer cigarettes per day for instance. In an 
intent-to-treat analysis, which compares the treatment vs. the control groups independently of 
compliance to the treatment, the randomly allocated smoking cessation intervention is used as
a predictor of depression. Any significant difference in outcome between the two groups is 
interpreted as reflecting the causal effect of the intervention on the outcome. By corollary, the 
effect is interpreted as evidence that fewer cigarettes per day lead to less depression, i.e. that 
the modifiable behaviour and the outcome are causally related. It is important to note, 
however, that this last causal inference relies on several assumptions, including that the effect 
of the treatment is mediated only by the exposure. Instead, it is possible that this effect on 
derpression has nothing to do with less smoking but is due to, for example, an improved 
social network following the intervention. This is analogous to the second assumption for 
instrumental variables: the effects of both the intervention (random allocation) and the genetic
instrument (‘genetic allocation’) should be fully mediated by the exposure. 

Finally, the random treatment allocation in RCTs and the “genetic allocation” in MR both 
affect the exposure (e.g. smoking), and are used to infer the causal effect of the exposure on 
the outcome (e.g. smoking on depression). This is because the genetic allocation also creates a
situation where carriers versus non-carriers of a given allele only differ on the level of the 
exposure of interest (e.g. smoking), as environmental and genetic confounders are balanced. 
Further comments on the analogy between randomised controlled trials and MR can be found 
elsewhere (Bennett, 2010; Davey Smith & Hemani, 2014; Nitsch et al., 2006).  

------------------------------------------------------------------------

Limitations of Mendelian randomisation

Here, we briefly review the main limitations of MR (see Davey Smith & Hemani, 2014 for 

a more extensive review). First, the application of the method is currently limited because: (a) 

the number of exposure variables for which an adequate genetic instrument is available is 



              Running head: MENDELIAN RANDOMISATION and PSYCHOPATHOLOGY

12

small, and (b) large samples are needed to achieve sufficient power to detect causal effects 

(Brion, Shakhbazov, & Visscher, 2013). Identifying new genetic instruments and increasing 

sample sizes will partly mitigate this issue. Second, the assumptions of MR may be violated, 

which can lead to incorrect causal inference. Main sources of concern are population 

stratification, linkage disequilibrium and pleiotropy. Population stratification is essentially a 

problem of the genetic instrument being associated with an ethnicity confounder. When 

subgroups in the population differ both in disease rates and allele frequencies for the genetic 

instrument, population stratification becomes a common cause of both and generates a 

spurious association between the two (Brion et al., 2014; Davey Smith & Hemani, 2014; 

Gage et al., 2013). Linkage disequilibrium describes instances where genetic variants are 

correlated with each other more than would be expected by chance (i.e. an exception to the 

Mendel’s law of independent assortment). If the genetic instrument is in linkage 

disequilibrium with another genetic variant that causes the outcome via another exposure 

variable, then the causal inference in an MR study may be invalid (Gage et al., 2013; Sheehan

et al., 2008). The use of several independent genetic variants to examine the effect of a single 

exposure can mitigate this issue. Pleiotropy refers to cases where the genetic instrument has 

an effect on the outcome via multiple intermediate phenotypes, i.e. the second assumption of 

instrumental variables is violated (although not all types of pleiotropic effects are problematic,

see Davey Smith & Hemani, 2014). Several sensitivity analyses can be used to test whether 

pleiotropy may be an issue. For example, when using MR to study the effects of smoking 

severity on depression, one can test to confirm that the genetic instrument is associated with 

the outcome only in smokers and not in non-smokers (Gage et al., 2013). Further comments 

on pleiotropy can be found in the discussion.
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We now review studies that have applied Mendelian randomisation analysis to assess the 

effects of exposures on psychopathology-related outcomes. We expect to provide insights 

regarding the usefulness and limits of MR in psychopathology research as well as to delineate

potential research avenues.

Method

Inclusion criteria

The present systematic review aimed to include all studies that applied MR to one or 

several psychopathology-related outcomes. Given that the MR method was developed 

relatively recently, all types of psychopathology-related outcomes were considered (e.g. 

schizophrenia, depression, psychological distress, addictions). In addition, no restriction was 

applied regarding the operationalisation of psychopathology constructs (i.e. diagnosis or 

symptoms) and the type of sample (e.g. clinical or population sample). 

  

Search strategy

PubMed and PsycINFO were searched for MR studies. In PubMed, the pre-existing key 

word "Mendelian Randomisation Analysis"[Mesh] was used as well as the free search – 

"Mendelian randomization" or "Mendelian randomisation" – to account for American versus 

British spelling. In PsycINFO, no pre-existing key word was found so the same free search 

was conducted. Only studies published in English were considered.  The last search was 

performed on the 31st of July 2015. 
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Study selection

The search in the two databases yielded 838 records, with 591 remaining after filtering for 

duplicates. Titles and abstracts were then screened and a vast majority of these 591 reports 

were excluded as they used MR but did not include psychopathology-related outcomes. 

Empirical studies not using MR and non-empirical reports (e.g. reviews or comments) were 

also excluded. If in doubt, the records were retained for the next step. A total of 21 records 

were selected at this stage. The 21 full-text articles were then assessed for eligibility and 3 

were removed (one editorial comment, and two studies that did not directly assess genetic 

variants). In addition, 1 additional relevant study (Almeida et al., 2009) was found in the 

references of an included article. The systematic review therefore included 19 studies.  

Results

Table 1 presents a synopsis of studies included in the systematic review. Among the 19 

studies included, 14 examined one or a combination of outcomes related to anxiety, 

depression and psychological distress. We first examine these studies before turning to the 

others, which were on schizophrenia, substance use/antisocial personality disorder and 

smoking initiation. 

Studies on anxiety, depression and psychological distress 

The exposure variables examined in these 14 studies were smoking (n = 4), alcohol intake 

(n = 2), body mass index (n = 5), fatty acids (n = 1) and C-reactive protein (n = 2). 

 Smoking. The single nucleotide polymorphism (SNP) located in the nicotine acetylcholine 

receptor gene cluster (CHRNA5-A3-B4) was used to study effects of smoking in four MR 

studies (Bjørngaard et al., 2013; Lewis et al., 2011; Taylor, Fluharty, et al., 2014; Wium-
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Andersen, Ørsted, & Nordestgaard, 2015). It is worth noting that not all these studies are 

independent as two (Bjørngaard et al., 2013; Lewis et al., 2011) were included in the 

consortium analysis (Taylor, Fluharty, et al., 2014). As expected, all four studies using this 

SNP found that that the risk allele was associated with increased smoking heaviness as 

measured by the number of cigarettes smoked. All four studies also reported that increased 

smoking was substantially associated with higher levels of anxiety, depression or 

psychological distress in conventional analyses adjusting for covariates. However, MR 

analyses showed that the risk allele did not predict higher levels of depression, anxiety or 

psychological distress in smokers. As laid out in the introduction, the absence of a significant 

relationship between the genetic instrument (that predicts environmental exposure) and the 

outcome is interpreted as evidence against the existence of a causal association. Therefore, the

findings of these studies do not support the notion that smoking heaviness causes any of these 

outcomes. In one study (Lewis et al., 2011), among women who smoked pre-pregnancy, those

with the risk allele smoked more during pregnancy but were less likely to report high levels of

depressed mood at 18 weeks of pregnancy. These results are consistent with a self-medication 

hypothesis, whereby smoking is used to alleviate symptoms of depression. One of these four 

studies (Wium-Andersen, Ørsted, & Nordestgaard, 2015) included several other 

psychopathology-related outcomes (i.e. antidepressant medication use, schizophrenia and 

antipsychotic medication use) and compared the results with those for chronic obstructive 

pulmonary disease. Results for antidepressant medication use were similar to those found for 

depression, i.e. no evidence of a causal association. As expected, MR analysis indicated a 

causal role of smoking on chronic obstructive pulmonary disease. Results for schizophrenia 

and antipsychotic medication are discussed below together with other studies on 

schizophrenia.



              Running head: MENDELIAN RANDOMISATION and PSYCHOPATHOLOGY

16

Alcohol. One study examined the relationship between alcohol use and depression in men 

aged over 65 years (Almeida, Hankey, Yeap, Golledge, & Flicker, 2014). A variant of the 

alcohol dehydrogenase 1B (ADH1B) gene, which reduces the ability to oxidize ethanol, was 

used as a genetic instrument. Faster metabolizers tend to consume more alcohol. The average 

number of drinks per day was related to depression in standard regression analyses adjusting 

for covariates. However, in the MR analyses, the genetic instrument was not associated with 

depression and therefore provided evidence against causality. The other study (Wium-

Andersen, Ørsted, Tolstrup, & Nordestgaard, 2015) examined alcohol use in relation to 

depression and psychological distress. In analyses with adjustment for covariates, alcohol use 

was not related with prescription of antidepressants or hospitalization/death with depression 

but was related with self-reported antidepressant use and items assessing psychological 

distress. However, the genetic variants were not related to any outcome, thus providing 

evidence against the notion that alcohol use is causally related to any of these outcomes. 

Interestingly, this study also included the outcome hospitalization/death with alcoholism. 

Contrary to what was observed for depression, the MR analysis supported a causal 

relationship between alcohol use and hospitalization/death with alcoholism.    

 Body Mass Index (BMI). Five studies used BMI as an intermediate phenotype that can be 

modified by an environmental intervention. The aim was to assess whether BMI was causally 

related with various measures of anxiety, depression and psychological distress. Four studies 

used a variant in the FaT mass and Obesity-associated (FTO) gene (Hung et al., 2014; 

Kivimäki, Jokela, Hamer, et al., 2011; Lawlor et al., 2011; Walter et al., 2015) and 3 used a 

polygenic risk score (Hung et al., 2014; Jokela et al., 2012; Walter et al., 2015). All studies 

found that, in conventional analyses adjusting for covariates, higher BMI was associated with 

higher levels of their respective measures of anxiety, depression and psychological distress. 
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However, MR findings were somewhat contradictory between the five studies. No evidence 

for a causal effect of  BMI was detected in one study of major depression (Hung et al., 2014) 

and another using a standardized depression scale (Walter et al., 2015). A third study reported 

evidence that higher BMI was causally related to more self-reported depression and anxiety 

symptoms only in men (Kivimäki, Jokela, Hamer, et al., 2011). A fourth study using a 

polygenic risk score as a genetic instrument provided evidence that higher BMI increased the 

risk of depressive symptoms, in particular in adolescents (Jokela et al., 2012). Finally, MR 

analyses in the largest study suggested that the association was in the opposite direction, with 

higher BMI being related to less psychological distress (Lawlor et al., 2011). This latter 

finding supports the “fat-jolly” versus the “fat-sad” hypothesis (Kivimäki, Jokela, & Batty, 

2011). These contradictory findings in MR analyses may be explained in various ways. First, 

both the constructs and the assessment methods varied widely, from a clinical assessment of 

depression to a 4-item measure of psychological distress. Second, the MR assumption that the

effect of the genetic instrument should be entirely mediated by the intermediate phenotype – 

here BMI – was not always met (Kivimäki, Jokela, Hamer, et al., 2011; Walter et al., 2015), 

casting doubt on the validity of the analyses. Overall, the MR analyses showed that results 

from conventional analyses adjusting for covariates, which favour the “fat-sad” hypothesis, 

should be considered carefully until additional evidence is gathered. 

Omega-3. One study (Sallis, Steer, Paternoster, Davey Smith, & Evans, 2014) examined  

the association between two omega-3 Fatty Acids - docosahexaenoic acid (DHA) and 

eicosapentaenoic acid (EPA) – and depression-related outcomes, including perinatal-onset 

depression, antenatal depression and postnatal depression. Omega-3 fatty acids might affect 

brain function and behaviour and observational studies report an inverse relationship between 

fish consumption (a major source of omega-3) and depression. To test the likelihood of a 
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protective causal effect of fatty acids on depression, the authors used polygenic risk scores 

predicting DHA and EPA. However, only the polygenic score predicting DHA was significant 

in the study sample so that no MR analysis using EPA was conducted. Finally, the evidence 

for an association between fatty acids and depression was weak in conventional analyses 

adjusting for covariates and null in MR analysis. 

C-reactive protein. A study of men aged over 65 years examined whether the inflammatory

biomarker C-reactive protein, which rises after tissue injury or bacterial infection, was 

causally linked to depression, using 2 SNPs in the C-reactive protein (CRP) gene (Almeida et 

al., 2009). A higher level of C-reactive protein was linked to higher depression in bivariate 

analyses but this was no longer the case in analyses adjusting for covariates. MR analyses also

suggested that this relationship was unlikely to be causal. One allele associated with lower C-

reactive protein levels was actually associated with higher depression, suggesting a causal 

association in the opposite direction. However, a large population-based study did not confirm

this finding when examining the association between C-reactive protein, depression, 

psychological distress and major somatic diseases (Wium-Andersen, Ørsted, & Nordestgaard, 

2014a). In this study, conventional analyses showed significant relations between C-reactive 

protein and all outcomes including hospitalization with depression, anti-depressant use, 

psychological distress and several somatic diseases (e.g. cancer, ischemic heart disease, all-

cause mortality). However, none of these associations were significant in MR analyses and, in

some cases, the MR estimates were significantly lower than the conventional estimates, 

suggesting that conventional analyses are biased by confounding variables even after 

adjustment for covariates.

Studies of schizophrenia.
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 C-reactive protein. The relationship between C-reactive protein and schizophrenia was 

investigated in the same sample as above as it has been suggested that inflammation could be 

involved in the pathogenesis of schizophrenia (Wium-Andersen, Ørsted, & Nordestgaard, 

2014b). In conventional analyses, elevated plasma levels of C-reactive protein were 

associated with late-onset schizophrenia. The corresponding effect size was similar in MR 

analyses but it was not significant. Because the effect sizes were similar in the two methods, 

the authors concluded that a causal relationship between C-reactive protein and schizophrenia 

could not be excluded. 

Smoking. In addition to depression-related outcomes, Wium-Andersen et al. (2015) 

also investigated the effects of smoking on two separate schizophrenia-related outcomes 

based on Danish national registries: schizophrenia (i.e. ever being diagnosed with 

schizophrenia) and antipsychotic medication use (i.e. ever being prescribed antipsychotic 

medication). The genetic instrument for smoking was significantly associated with 

antipsychotic medication use in ever smoker but not in never-smokers, suggesting a causal 

effect of smoking on antipsychotic medication use (i.e. increased smoking leading to 

increased medication use). The direction of effect was similar for diagnosed schizophrenia but

failed to reach significance. The authors then used summary data from the Psychiatric 

Genomics Consortium to verify whether the genetic instrument for smoking was significantly 

predictive of diagnosed schizophrenia, which was indeed the case. However, they were not 

able to distinguish between smokers and non-smokers in this analysis, which would have 

provided additional evidence that the effect of the genetic instrument was indeed mediated by 

smoking. These results tentatively indicate that higher smoking levels might causally lead to a

higher risk of schizophrenia, contrary to findings on smoking and depression. 
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Homocysteine. Homocysteine is an amino acid found in blood plasma that, in excess, 

is associated with cardiovascular diseases and mental retardation. Two meta-analyses 

conducted by the same research group investigated the potential causal role of homocysteine 

in schizophrenia. The second meta-analysis (Numata et al., 2015) is an extension of the first 

one (Nishi et al., 2014) and included the same and additional studies producing a total of 36 

case-control studies. The genetic instrument, Methylenetetrahydrofolate reductase (MTHFR), 

significantly lowered plasma levels of homocysteine. It was also significantly associated with 

schizophrenia risk, suggesting that higher levels of homocysteine are causally related to a 

higher risk of schizophrenia.

Study of substance use and antisocial behaviour.

 A small study of 180 Asian adolescent adoptees tested the gateway hypothesis, i.e. that 

drinking behaviour in adolescence causes the misuse of other psychoactive substances, and 

antisocial personality disorder (Irons, McGue, Iacono, & Oetting, 2007). The aldehyde 

dehydrogenase 2 (ALDH2) gene was used as a genetic instrument in MR analysis: the 

deficient form of the corresponding enzyme, which is frequent in Asian populations, leads to 

decreased amount of ingested alcohol (because of unpleasant effects of drinking alcohol 

among people with this variant, such as facial flushing and nausea). Adolescent drinking 

behaviours varied significantly in the expected direction as a function of the genetic 

instrument. However, the genetic instrument was not significantly associated with any of the 

substance use and antisocial outcomes. Therefore, these findings do not support the 

hypothesis that alcohol use in adolescence causes the misuse of other psychoactive 

substances, and antisocial personality disorder.

Offspring smoking initiation.
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 The relationship between maternal smoking during and after pregnancy and offspring 

smoking initiation during adolescence (14-16 years) was investigated in a longitudinal study 

(Taylor, Howe, et al., 2014). A maternal SNP in the nicotine acetylcholine receptor gene 

cluster (CHRNA5-A3-B4) was used. Mendelian randomisation analyses did not show 

evidence that the relationship between maternal smoking was causally related to offspring 

smoking initiation and progression to regular smoking. 

 Discussion

In this systematic review, we examined studies using the MR design to assess whether a 

range of potentially modifiable environmental exposures were causally related to 

psychopathology-related outcomes. Conventional analyses adjusting for covariates showed 

significant associations between exposures and psychopathology-related outcomes in the 

expected directions in nearly all studies. However, in most cases, these relations were not 

supported in MR analyses, suggesting that the observed associations were not causal. Based 

on MR analyses, there was some evidence for a causal effect of BMI on depression, anxiety 

and psychological distress but the direction of the findings was not consistent. We first discuss

possible reasons for these null and contradictory findings. Encouragingly, recent MR studies 

suggested a possible causal effect of two exposures – smoking and homocysteine levels – on 

schizophrenia. We discuss these results together with future directions in MR analyses of 

psychopathology.

Reasons for null and contradictory findings

“Most research findings are false” (Ioannidis, 2005)
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Most evidence for relationships between exposures and psychopathology-related outcomes

comes from exploratory epidemiological studies. However, in such observational studies, 

even those that are well-powered and well conducted, most of the reported significant 

findings are likely to be false. This stems in part from the large number of associations tested 

and the threshold commonly used for significance testing (alpha = 0.05). Therefore, it may not

be surprising that studies trying to replicate these associations will fail in most cases. 

Furthermore, even consistent research findings may simply reflect accurate measures of bias 

in a given field (Ioannidis, 2005). This is particularly important here because the aim of MR is

precisely to remove bias due to confounding (i.e. conventional analyses cannot adjust 

adequately for confounding and therefore provide biased estimates of the true causal 

relationship). The fact that most included studies found a significant relationship between 

exposures and psychopathology in conventional analyses is not very conclusive because: (i) 

conventional regression techniques do not always reliably remove bias (Stuart, 2010); (ii) 

included studies controlled only for a limited number of observed confounding variables. A 

good example can be found in the study of C-reactive protein and depression, psychological 

distress and major somatic diseases (Wium-Andersen, Ørsted, & Nordestgaard, 2014a): C-

reactive protein was significantly related to most outcomes in conventional analyses but 

unrelated to any outcome in MR analyses. As pointed by the authors, the estimates from 

conventional and MR analyses were significantly different in several instances. This means 

that MR estimates were not only non-significant but also significantly smaller than estimates 

derived from conventional analysis, suggesting that conventional estimates were inflated by 

confounding. Therefore, because confounding is so widespread, a large proportion of 

significant associations identified using conventional analyses are not likely to be causal, as 

reflected in non-significant findings based on MR analyses. 
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Alternative causal explanations: reverse causation, timing and sub-populations

Although the majority of included MR studies suggested that exposures did not have 

causal effects on the psychopathology-related outcomes, this does not exclude other possible 

causal relationships between study variables. Reverse causation is a first possibility. For 

instance, increased smoking did not seem to cause depression, anxiety or psychological 

distress. However, it is still possible that depression causes increased smoking (Lewis et al., 

2011). Similarly, high levels of C-reactive protein (signalling inflammation) might be a 

consequence rather than a cause of a number of diseases (Brion et al., 2014). Second, effects 

may change in direction over time. For instance, increased BMI may be related to less 

psychological distress in the short-term given comforting effects of eating, but may lead to 

more psychological distress on the long-term as adverse physical and social consequences 

accumulate. Finally, causal associations may be stronger in sub-groups of the population (e.g. 

obesity and depression in adolescents, see Jokela et al., 2012), or exist only under challenging

circumstances (e.g. fatty acids and depression during pregnancy, see Sallis et al., 2014) 

Heterogeneity in sample size, measures and genetic instruments

Included studies were heterogeneous at several levels, in particular regarding sample size, 

quality of measures and genetic instruments. Sample size varied from a single study of 180 

participants (Irons et al., 2007) to a consortium analysis of over 127,000 participants (Taylor, 

Fluharty, et al., 2014). As such, lack of statistical power may explain some of the null 

findings. Although research regarding power in MR is emerging, some studies were clearly 

underpowered. For example, with a genetic instrument explaining 1% of the variance in the 

exposure, an observed correlation of 0.40 and a true causal correlation between the exposure 

and the outcome of 0.20, almost 20,000 participants are needed to achieve 80% power. Half 

of the reviewed studies included less than 5,000 participants. However, the larger studies had 
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power to detect even small causal effects. For example, the null findings regarding smoking 

and depression in very large samples make it unlikely that there is any substantial causal 

effect (see Brion et al., 2013 for power calculation). In addition, confidence intervals are 

typically larger in MR analyses compared to conventional analyses, which makes it harder to 

detect significant effects.  For instance, the effect sizes of the association between C-reactive 

protein and schizophrenia were similar in conventional and MR analysis, but not significant 

using MR despite the very large sample size (Wium-Andersen, Ørsted, & Nordestgaard, 

2014b). 

There was very considerable heterogeneity in how psychopathology-related outcomes were

measured, from single items assessing psychological distress to clinical diagnoses of 

depression. This adds to the notorious difficulty in the phenotypic characterization in 

psychopathology, as, for instance, patients with very little overlapping symptoms may be 

given the same diagnosis (Sallis et al., 2014; Wium-Andersen, Ørsted, & Nordestgaard, 

2014a). Such heterogeneity does not facilitate the discovery of reliable environmental 

exposures causally associated with psychopathology. Some heterogeneity was also observed 

in the genetic variants that were used. The SNP rs1051730 in the nicotine acetylcholine 

receptor gene cluster (CHRNA5-A3-B4), a gene cluster with a well-documented biological 

function was used in studies of smoking and depression. Conversely, two different SNPs with 

unclear biological function and/or polygenic risk scores with more than 30 SNPs were used to

assess the consequences of increased BMI (although a recent study shed a light on the 

function of rs1421085, a SNP in the FTO region used in Kivimäki, Jokela, Hamer, et al., 

2011, which seems to have pronounced effects on obesity through adipocyte thermogenesis 

regulation, see Claussnitzer et al., 2015).
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 Overall, the use of single variants versus polygenic scores or variants with known versus 

unclear biological functions affect the power to detect an association as well as whether the 

assumptions of MR are plausible. 

Assumption violations

The possibility must also be considered that results from conventional and MR analyses 

differed because assumptions of MR analyses were not fulfilled in some studies. As detailed 

in the introduction, a number of assumptions must be met for MR to yield unbiased estimates 

of a causal effect. Included studies often presented the associations between the genetic 

instruments and potential confounders, which, apart from rare exceptions, were all non-

significant. This shows that genetic instruments seemed largely free from bias due to 

confounding, whilst still strongly predicting the exposure of interest. Therefore, MR analysis 

did seem to have successfully removed bias due to confounding. However, another 

assumption is that the effect of the genetic variant on the outcome is entirely mediated by its 

effect on the exposure. This assumption was not always met. In particular, some associations 

between the genetic instruments used for BMI and outcomes remained largely unchanged 

when controlling for BMI (Lawlor et al., 2011). This means that these genetic variants might 

affect the outcome by pathways other than BMI, violating this assumption and biasing causal 

inference. Such violations of the assumptions may explain some of the aforementioned 

contradictory findings regarding the effects of BMI.  

Future directions: Increasing the scope of MR studies

At this stage, it is important to note that MR analyses have uncovered many likely causal 

associations outside the field of psychopathology, for instance between alcohol intake and 

oesophageal cancer, and tobacco smoking and BMI (Brion et al., 2014). Therefore, the 
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numerous null findings in the present review may simply stem from the fact that, in most 

cases, there were simply no true causal relations between the exposures examined and the 

psychopathology-related outcomes under scrutiny. However, three recent reports suggested a 

potential causal effect of two exposures – i.e. homocysteine and smoking – on schizophrenia. 

Although replication is warranted, these findings are encouraging with regard to the potential 

of MR studies to further our understanding of psychopathology. The application of MR to 

psychopathology is recent. In the next decade, the scope of applications of MR in the field 

should increase rapidly with new research questions being asked and new technical and 

methodological innovations being implemented. 

The vast majority of studies included in this review examined outcomes related to 

depression, anxiety and psychological distress. There seems to be no valid reason why the 

scope of psychopathology-related outcomes examined in MR studies should remained so 

restrictive. For instance, replications of the study on substance use and antisocial behaviour 

(Irons et al., 2007) in larger samples are warranted. Other relevant questions would also 

benefit from an MR approach, such as further elucidating the nature of the relationship 

between smoking and Attention Deficit and Hyperactivity Disorder (McClernon & Kollins, 

2008; Pingault et al., 2013).

Genome-wide information is increasingly available on large datasets, which will 

increase the scope of MR in two ways. First, with more data available, it will become easier to

have adequate sample size to examine new research questions (see Taylor, Fluharty, et al., 

2014 for an example of consortium analysis). MR analysis can often be implemented using 

only summary data from genome-wide association studies (GWAS), which enables the 

hypothesis-free examination of relationships between a large number of genetic instruments 

and outcomes (Evans & Davey Smith, 2015). Second, GWAS are identifying an increasing 
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number of genetic variants associated with psychopathology risk factors and disorders. With 

these additional instruments, it will be possible to address new questions using MR. For 

example, discovering a genetic instrument for cannabis use would provide new insights in the 

long-standing dispute over the putative causal role of cannabis in the onset of schizophrenia. 

A promising avenue to generate new genetic instruments is the use of polygenic risk 

scores or the simultaneous use of multiple SNPs (Burgess & Thompson, 2013; Davies et al., 

2015). Using multiple SNPs has several advantages. First, combining SNPs increases the 

variance explained by the instrument, which is a critical parameter if we are to achieve 

sufficient power in MR analysis. Second, the use of multiple SNPs opens new research 

avenues in case no single SNP instrument is available, which will be particularly useful in the 

case of psychopathology. Indeed, GWAS on psychopathology phenotypes have clearly shown 

that finding any common genetic variant with a large effect is unlikely. Instead, many SNPs 

with small effects have been found for some disorders (Schizophrenia Working Group of the 

Psychiatric Genomics Consortium, 2014) or are yet to be found for others (Major Depressive 

Disorder Working Group of the Psychiatric GWAS Consortium et al., 2013). 

Particularly promising is the possibility of using multiple SNPs in a two-way MR design to 

test reciprocal causal influences. For instance, the studies included in this review indicated 

that heavier smoking does not seem to cause increased depression. However, reverse 

causation is possible as depression may lead to increased smoking. If GWAS successfully 

identify multiple genetic variants that are associated with depression and fulfil the criteria for 

genetic instruments, it then becomes possible to examine this reverse causation hypothesis. 

Similarly, one study included in this  review (Wium-Andersen, Ørsted, & Nordestgaard, 2015)

suggested a causal pathway from smoking to schizophrenia. More than a hundred of genome-

wide significant SNPs associated with schizophrenia have been uncovered in the latest GWAS
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(Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014) and can be 

used to investigate the reciprocal potential causal pathway from schizophrenia to smoking.

Although promising, the use of multiple SNPs has its own drawbacks. A major one is 

horizontal pleiotropy, which happens when a genetic variant has a direct effect on both the 

exposure and the outcome. Horizontal pleiotropy violates the second MR assumption (i.e. that

all the effect of the genetic instrument on the outcome must be mediated by the exposure). 

When using multiple SNPs, the likelihood is high that horizontal pleiotropy will be present 

for some of these SNPs. This is a real concern as pleiotropy is widely spread throughout the 

phenome, including for psychopathology-related outcomes (Evans et al., 2013; Krapohl et al.,

In Press).  Accounting for this potential bias induced by the use of multiple SNPs is an active 

area of research. In particular, a recent method derived from meta-analytic techniques, the 

Egger regression, can be used to estimate pleiotropic effects and generate a causal estimate 

corrected for pleiotropy (Bowden, Davey Smith, & Burgess, 2015).

The number of exposures relevant to psychopathology, which are possible to examine 

using MR, will likely substantially increase due to the discoveries of new single SNP 

instruments and advanced methods for using multiple SNPs. MR studies using few genetic 

variants related to intermediate phenotypes through clear biological pathways (e.g. C-reactive 

protein or uric acid) offer the highest degree of causal evidence (Burgess, Timpson, Ebrahim, 

& Davey Smith, 2015). These studies can be used to validate or invalidate potential targets for

drug development. For instance, drugs targeting C-reactive protein were not further developed

by pharmaceutical companies after MR studies showed no evidence of its causal role in 

cardiovascular diseases (Burgess et al., 2015). This example demonstrates the utility of null 

MR findings in reducing the number of potential intervention targets, and therefore the costs 

of drug development. The same should soon be possible with psychopathology-related 
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outcomes. For instance, studies included in this review point towards homocysteine as a 

relevant target for drug development in schizophrenia. In the case of complex intermediate 

phenotypes influenced by many genetic variants of small effects (e.g. BMI and depression), 

additional caution in the interpretation is warranted given the increased likelihood of 

horizontal pleiotropy and biological pathways that are not well understood. In this case, MR 

studies can be used to probe the plausibility of a causal relationship and investigate potential 

causal pathways (Burgess et al., 2015).

Finally, it is worth noting that adequate genetic instruments may never be found for a 

number of important risk factors for psychopathology, for instance neighbourhood or 

parenting characteristics, in which case alternative methods to strengthen causal inference 

(e.g. discordant monozygotic twin design) may be used.  

 ------------------------------------------------------------------------

Box 2: MR in the “omics era”: understanding developmental mechanisms
The scope of MR will also increase with the availability of “omics” data such as proteomic

data or epigenetic data (Brion et al., 2014). Here, we focus on epigenetics as a potential 
‘missing link’ in the aetiology of complex disorders. Epigenetic mechanisms, such as DNA 
methylation, influence dynamic changes in transcription independently of genomic sequence 
(Jaenisch & Bird, 2003). Altered DNA methylation patterns have been shown to associate 
with both environmental risk exposure such as prenatal diet or childhood maltreatment (Lutz 
& Turecki, 2014; Tobi et al., 2014) as well as a range of psychopathology-related outcomes, 
for instance major depression, posttraumatic stress and schizophrenia (Fuchikami et al., 2011; 
Klengel, Pape, Binder, & Mehta, 2014; Wockner et al., 2014). Together, these findings have 
provided initial support for the role of epigenetic processes as a mediator in the link between 
environmental influences and psychopathology-related outcomes. However, establishing the 
causality of epigenetic associations has been challenging, not least because epigenetic 
markers are equally as susceptible to confounding, measurement error and reverse causation 
as the environmental exposures themselves (Relton & Davey Smith, 2012a). For example, it 
is presently unclear whether altered DNA methylation patterns are truly a risk factor for – or a
consequence of – psychopathology-related outcomes. Consequently, epigenetic epidemiology 
needs to integrate causal inference methods.

In response to this need, a two-step epigenetic extension to MR has recently been proposed
to test causal mediation (Relton & Davey Smith, 2012b). While the method was originally 
developed with epigenetics in mind, it may be applied to other mediating variables as well 
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(Brion et al., 2014). In two-step MR, the first step assesses the causal association between the 
independent variable (e.g. modifiable environmental exposure) and the mediator (e.g. DNA 
methylation), while the second step assesses the causal association between the mediator and 
the dependent variable (e.g. psychopathology-related outcome). Each step can also be 
performed in isolation. In Step 1, a genetic variant is used as a proxy for an environmental 
exposure. As with standard MR, causality is supported only if the genetic proxy is associated 
with the epigenetic marker exclusively through its association with the environmental 
exposure. With regards to the mediator, several strategies have been proposed for identifying 
appropriate DNA methylation markers, including the application of epigenome-wide and 
candidate gene strategies (Relton & Davey Smith, 2012a). In Step 2, a genetic proxy for DNA
methylation – specifically, a local genotype (cis- SNP) – is used to obtain an unbiased 
estimate for the effect of DNA methylation on the psychopathology-related outcome. In 
conjunction, these steps can clarify whether epigenetic processes mediate environmental 
effects on a psychopathology-related outcome. 

Although two-step MR shows promise as a method for testing causal mediation, it is 
still in its infancy and currently lacks empirical investigation, particularly with regards to 
psychiatric phenotypes (Kirkbride et al., 2012). Furthermore, epigenetic MR faces a number 
of additional challenges on top of those previously described in relation to standard MR (e.g. 
population stratification, LD and pleiotropy).  First, epigenetic associations are usually only 
modest in size (Brion et al., 2014). Second, because of low statistical power, the MR design 
requires a much larger sample size than what is typically available for epigenetic studies. This
is particularly true for studies that examine methylation in central, as opposed to peripheral 
(e.g. blood, saliva) tissues. Third, in contrast to genomic sequence which remains fixed, 
epigenetic markers have been shown to vary both across tissues and across time (Mill & 
Heijmans, 2013). Such sources of variability may greatly influence the associations under 
investigations, as epigenetic effects may be limited to specific tissues or developmental 
periods. Despite the above challenges, the application of two-step MR may offer novel 
insights into causal developmental pathways, as well as elucidating whether environmental 
exposures ‘get under the skin’ to influence psychopathology-related outcomes via epigenetic 
processes.

------------------------------------------------------------------------ 

Limitations

The main limitation of the present systematic review is that we did not conduct meta-

analyses. Meta-analyses are particularly interesting in MR as they increase the power to detect

any causal association. Several reports included in this review used meta-analyses (Numata et 

al., 2015; Taylor, Fluharty, et al., 2014). However, meta-analyses seem premature for most 

pairs of exposure-outcome variables at this stage as few studies were available and, for each 
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of these pairs, the heterogeneity in outcome definition and genetic instruments was 

considerable.

Conclusions

We systematically reviewed studies that applied the MR design to psychopathology-related

outcomes. In conventional analyses, associations between exposures and outcomes were 

generally significant and in the expected directions. However, MR analyses often contradicted

these results by providing very little consistent evidence that any of these associations were 

causal. These findings highlight the potentially strong bias in conventional analyses of risk 

factors in psychopathology. The implications are far reaching in that even replicated findings 

based on conventional designs and analyses may not be reliable enough to meaningfully 

inform drug development as well as preventive interventions and policies. Most recent studies

and methodological innovations highlight the potential of well-designed and well-powered 

MR studies to contribute to a better identification of relevant causal risk factors in 

psychopathology.
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Table 1: Characteristics of the studies included in the systematic review

Reference Sample N Exposure Outcome Genetic instrument Findings

(Lewis et al., 
2011)

ALSPAC, UK 6294 Smoking Antenatal depression Nicotine acetylcholine 
receptor gene cluster 
(CHRNA5-A3-B4), 1 SNP

Smoking does not cause 
increased depression. 
Conversely, findings are 
consistent with a self-
medication hypothesis, 
whereby depressed women 
smoke to alleviate their 
symptoms.

(Bjørngaard et
al., 2013)

Norwegian HUNT 
study

53601 Smoking Anxiety and 
Depression 

Nicotine acetylcholine 
receptor gene cluster 
(CHRNA5-A3-B4), 1 SNP

Smoking is not a cause of 
anxiety or depression

(Taylor, 
Fluharty, et 
al., 2014)

Carta Consortium 127632 Smoking Depression, anxiety 
and psychological 
distress

Nicotine acetylcholine 
receptor gene cluster 
(CHRNA5-A3-B4), 2 SNPs

No evidence for a causal role of
smoking heaviness in the 
development of depression or 
anxiety

(Wium-
Andersen, 
Ørsted, & 
Nordestgaard, 
2015)

Copenhagen 
General 
Population Study 
and Copenhagen 
City Heart Study

63296 Smoking Depression & 
Schizophrenia and 
respective 
medications

Nicotine acetylcholine 
receptor gene cluster 
(CHRNA5-CHRNA3-
CHRNB4), 1 SNP

Smoking does not cause 
Depression but some evidence 
that it does for Schizophrenia

(Almeida et 
al., 2014)

Health In Men 
Study, Australia

3873 Alcohol Depression Alcohol dehydrogenase 1B 
(ADH1B), 1 SNP

Alcohol does not cause 
depression

(Wium-
Andersen, 
Ørsted, 
Tolstrup, et 
al., 2015)

Copenhagen 
General 
Population Study 
and Copenhagen 
City Heart Study

78154 Alcohol Depression, 
psychological 
distress, and 
alcoholism

Alcohol dehydrogenase 1B 
(ADH1B) and ADH1C, 2 
SNPs

Alcohol does not cause 
depression but is causally 
linked with 
hospitalization/death with 
alcoholism

(Hung et al., RADIANT 3222 BMI Major depression Fat mass and obesity- No evidence for a causal 
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2014) associated (FTO) gene, 1 
SNP, and genetic risk score 
based on 32 SNPs

relationship between BMI and 
major depression

(Kivimäki, 
Jokela, 
Hamer, et al., 
2011)

Whitehall II study 4145 BMI Common mental 
disorder (anxiety and
depression)

Fat mass and obesity-
associated (FTO) gene, 1 
SNP 

MR analysis shows that BMI 
increases the risk of common 
mental disorder in men only

(Jokela et al., 
2012)

Young Finns 1731 BMI Depression Genetic risk score, 31 SNPs MR analysis supports a causal 
association between excessive 
BMI and increased risk of 
depressive symptoms

(Lawlor et al., 
2011)

Copenhagen 
General 
Population Study 
and Copenhagen 
City Heart Study

53221 BMI  Psychological 
distress 

Fat mass and obesity-
associated (FTO) gene, 1 
SNP and Melanocortin 
receptor 4 (MC4R), 1 SNP 

MR analysis shows that higher 
BMI and WHR is associated 
with less psychological distress.

(Walter et al., 
2015)

Female Nurse’s 
Health Study

6989 BMI Depression Fat mass and obesity-
associated (FTO) gene, 1 
SNP and melanocortin 
receptor 4 (MC4R), 1 SNP, 
as well as a polygenic risk 
score based on 32 SNPs

No evidence for a causal role of
BMI on depression

(Sallis et al., 
2014)

ALSPAC, UK 3397 Docosahex
aenoicacid
(DHA) 
and 
eicosapent
aenoicacid
(EPA)

Perinatal, antenatal 
and postnatal 
depression  

Polygenic risk scores, EPA, 
23 SNPs and DHA, 4 SNPs

No evidence that fatty acids are
causally related to depression 
outcomes

(Almeida et 
al., 2009)

Health In Men 
Study, Australia

3700 C-reactive 
protein 

Depression CRP gene, 2 SNPs Depressive symptoms in later 
life are unlikely caused by an 
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(CRP) increase in the plasma level of 
CRP

(Wium-
Andersen, 
Ørsted, & 
Nordestgaard, 
2014a)

Copenhagen 
General 
Population Study 
and Copenhagen 
City HearStudy

78,809 C-reactive 
protein 
(CRP)

Depression, 
psychological 
distress and major 
somatic diseases

CRP gene, 4 SNPs No evidence that increased C-
reactive protein levels cause 
depression

(Wium-
Andersen, 
Ørsted, & 
Nordestgaard, 
2014b)

Copenhagen 
General 
Population Study 
and Copenhagen 
City HearStudy

78810 C-reactive 
protein 
(CRP)

Schizophrenia CRP gene, 4 SNPs No significant evidence that 
elevated C-reactive protein is 
causally related to 
schizophrenia, although a 
causal relationship cannot be 
excluded

(Nishi et al., 
2014) 

Meta-analysis of 6 
Japanese studies

10,378 homocyste
ine

Schizophrenia Methylenetetrahydrofolate 
reductase (MTHFR), 1 SNP

Evidence of causal relationship 
between higher homocysteine 
levels and higher risk of 
schizophrenia

(Numata et 
al., 2015)

Meta-analysis of 
36 case control 
studies

25,599 homocyste
ine

Schizophrenia Methylenetetrahydrofolate 
reductase (MTHFR), 1 SNP

Evidence of causal relationship 
from higher homocysteine 
levels to higher risk of 
schizophrenia

(Irons et al., 
2007)

Sibling Interaction 
and  behaviour 
Study

180 Alcohol  Nicotine 
dependence, drug 
abuse and 
dependence, 
antisocial personality
disorder

Aldehyde dehydrogenase 2 
(ALDH2), 1 SNP

Evidence of causal relationship 
from higher homocysteine 
levels to higher risk of 
schizophrenia

(Taylor, 
Howe, et al., 
2014)

ALSPAC, UK 1020 Maternal 
smoking

Offspring smoking 
initiation  

Nicotine acetylcholine 
receptor gene cluster 
(CHRNA5-A3-B4), 1 SNP

No evidence that maternal 
smoking is causally related to 
offspring smoking initiation in 
adolescence
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Figure 1: Representation of Mendelian randomisation 
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Figure Legend: Mendelian randomisation uses a genetic instrument associated with an exposure in order to test whether the association 

between the exposure A and an outcome B (path 3) is causal. An adequate genetic instrument must be robustly associated with the exposure 

(solid path 1), but not be associated with the confounders (dashed path 4). The latter condition is key so that MR estimation is not affected by 

variables that confound the association between the exposure and the outcome in conventional observational research (5 & 6). Following the 

principles of instrumental variables, a significant association between the genetic instrument and the outcome is interpreted as evidence of the 

causal relationship between the exposure and the outcome. Importantly, all the effect of the genetic instrument on the outcome should happen 

through the exposure. Therefore, no direct effect must remain once the exposure is taken into account. This is why path (2) is dashed in the 

Figure, which includes the exposure. However, it is important to note that the observed value of path (2) is expected to be significant, which is 

how we assess if there is a causal relationship between A and B. This is similar to a full mediation analysis where the direct path between a 

predictor X and an outcome Y (path often labelled c) is not significant when the effect of the mediator M is taken into account (i.e. the new path, 

labelled c’, is not significant). Finally, the causal estimate of path (3) can be estimated based on the observed values of path (1) and (2). 
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Figure 2. Analogy between Mendelian Randomisation and Randomised Controlled Trials (adapted from Davey Smith & Ebrahim, 2005)


	Introduction
	Causal inference in psychopathology
	Modifiable environmental exposures and genetic instruments
	Principles of Mendelian randomisation
	Limitations of Mendelian randomisation
	Method
	Inclusion criteria
	Search strategy
	Study selection

	Results
	Discussion
	Reasons for null and contradictory findings
	Future directions: Increasing the scope of MR studies

	Limitations
	Conclusions
	References

