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The Bigger Picture

Self-assembly is a useful way of

organizing aromatic molecules for

light-driven applications such as

solar cells and photocatalytic H2

evolution. However, to be

effective, we need to control the

type of aggregates that are

formed when the molecules are

stacked. It is critical to be able to

line the molecules up in the most

effective way such that the

conductive pathways are optimal.
SUMMARY

Perylene bisimides (PBIs) are one example of useful p-conjugated molecules

that can be used in optoelectronic devices as n-typematerials with strong visible

light absorption. PBIs can self-assemble into a range of structures, but it is rare

to be able to control the packing such that the same PBI can form either H-type

or J-type aggregates. This is important because the conductivity pathways and

optoelectronic properties are directly affected by this packing. Here, we show

that we can control the packing of a single PBI functionalized with an amino

acid by a subtle change in pH. Under one set of conditions, H-type aggregates

form a gel when the pH is decreased. At a slightly different set of starting con-

ditions, J-type aggregates are formed, but they cannot form a gel when the pH

is lowered. We show that films formed from the self-assembled structures have

very different photoconductive properties.
This is normally difficult to control,

so it is often necessary to use

environmentally unfriendly

solvents or annealing steps to

drive toward the desired

structure. It is also possible to

change the molecular structure to

drive toward the desired type of

stacking. This, however, requires

exhaustive synthesis, and there

are often limited design rules.

Ideally, it would be possible to

direct the self-assembly down

multiple pathways by rational

design for a molecule with the

desired optoelectronic

properties. Here, we present such

an approach for a self-assembled

n-type organic semiconductor.
INTRODUCTION

Self-assembly of aromatic organic molecules can be used to prepare materials for a

range of optoelectronic and light-driven applications.1–4 There are many potential

advantages here, including the relatively low cost of the molecules and the potential

to fine-tune the properties of the materials by subtle variations in molecular structure

and assembly method. When used in a device, a key issue is that the device perfor-

mance will be driven by the type of aggregates formed. Thus, it is critical to be able

to control the aggregate size and shape, the molecular packing in the aggregate,

and the interactions between the aggregates. Self-assembly can be used as an effec-

tive approach to direct the aggregation, because small changes in the weak forces

holding the molecules together can have a profound effect on the aggregate struc-

ture. However, it is often difficult to predict, understand, and rationalize the outcome

of the self-assembly process.

For self-assembled aromatic molecules, the aggregation is driven by the p interactions

betweenmolecules, aswell as otherweak interactions built into themolecule. Generally,

one-dimensional aggregates such as fibers, wires, or tubes are desired, and hence inter-

actions that drive aggregation in one dimension are required. On aggregation, p-rich

systems generally form either H-type or J-type aggregates, defined by whether aggre-

gation leads to a blue or red shift in the absorption maximum of the UV-visible (UV-vis)

spectrum, respectively. These spectral differences arise from how the molecules are

packed, even if the link between spectra and packing motifs is sometimes more compli-

cated than suggested by the textbook model,5 which importantly links directly to their

expected efficiency in optoelectronic devices.
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Perylene bisimides (PBIs, also called perylene diimides or PDIs) are robust, versatile

dyes that can be functionalized with many different groups.6,7 These functional

groups can lead to PBIs with a variety of properties.8,9 One of these properties is

the aggregation state adopted by the relatively insoluble PBIs in solution, where

either H or J aggregates can be formed. In general, bulkier substituents on the

PBIs, especially in the bay position, are more likely to lead to J aggregation. Subtle

changes in the side groups can result in a PBI that prefers to assemble as an

H aggregate instead of a J aggregate.10–13 For example, Ghosh et al.10 have

described close structural analogs that prefer to stack as either H or J aggregates

depending on the substituents.

H and J aggregates are expected to strongly differ in their (photo)conducting prop-

erties.14,15 From a theoretical perspective, the charge carrier mobility and exciton

diffusion rate in self-assembled materials are expected to depend on the relative

orientation of the constituting molecules and hence the type of packing. This has

been verified experimentally. For example, previous work from the literature on

self-assembled PBI materials has found that J aggregates display facile exciton

transport,16,17 whereas the diffusion length in H aggregates is much shorter.18

Because improving both the exciton and charge carrier mobility is expected to in-

crease the photoconductivity of a material, controlling the self-assembly process ap-

pears to be a good strategy for developing better photoconductors.

However, as mentioned, in most cases, the assembly of a PBI leads to the formation

of a specific type of aggregate. Changes in the type of self-assembled morphology

are possible with changes in the solvent conditions, but this generally occurs on the

nanoscale, and the molecular packing is not significantly changed. Although there

are numerous examples where the morphology can be affected, changing the

type of molecular packing usually requires the synthesis of a new molecule, which

is clearly a time-consuming exercise. A significantly more attractive approach would

be to induce a single PBI to adopt different molecular packing.

However, only a very small number of examples have been described where a single

PBI can adopt either aggregation state in solution, for example, by changing the sol-

vent polarity19 or by adding a binding ligand.20 Changes in the color of thin films of a

PBI on exposure to warm solvent vapor, indicative in a shift from H to J aggregation,

have been reported.21 Thermal annealing can also be used to switch between H and

J aggregates in a thin film.22 Overall, switching between aggregation states for a sin-

gle molecule (i.e., without a chemical change) is thus rare.

Here, we show that we can use subtle changes in solution pH as a means of adjusting

the molecular packing of a PBI functionalized at the imide positions with L-DOPA

(L-3,4-dihydroxyphenylalanine; Figure 1A). This PBI-DOPA has been described pre-

viously and self-assembled by initial dissolution in DMSO followed by dilution with

water.23 Changes in fluorescence were observed on addition of different metal salts

or surfactants. We have found that different types of aggregate can be formed from

this PBI depending on the pH of the solution (and hence the degree of deprotona-

tion, A1 and A2; Figure 1A). The two aggregate types have significantly different

behavior.
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RESULTS AND DISCUSSION

A range of PBIs that are functionalized at the imide position with an amino acid have

been prepared.24–32 We have shown that a number of these form viscous solutions at
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Figure 1. The Perylene Bisimide Used in This Study and Its Behavior at Different pH

(A) Chemical structure of PBI-DOPA at different degrees of deprotonation A1 and A2.

(B) Photographs of A2 formed at pH 8.2 (left) and of A1 formed at pH 6.7 (right).

(C) Photographs of the solution of A2 upon a decrease in pH to 3.3 (left) and of the solution of A1

upon a decrease in pH to 3.3 (right). The scale bar represents 1.5 cm.
elevated pH, where the C terminus is deprotonated; gels form as the pH is

decreased. The PBI-DOPA used here was prepared as described previously.23

This PBI has two apparent pKa values, as determined by a titration with HCl from

high pH. pH 6.7 is the pH of the highest apparent pKa (we refer to these as apparent

pKa values on the basis of work on related systems, where it has been shown that this

is most likely the pKa of an aggregate and not the molecule33–35). On the addition of

1 molar equiv of sodium hydroxide to a suspension of this PBI at a concentration of

5 mg/mL in water, a dark purple solution at pH 6.7 was formed (A1; Figures 1A and

1B). A pink solution at pH 8.2 was formed when 2 molar equiv of base were added

(A2; Figures 1A and 1B).

A1 andA2 were characterized on the basis of their UV-vis absorption and fluorescence

spectra. It is clear from these data that solutions ofA1 andA2 contain different types of

aggregate. In agreement with the previous reports on PBI-DOPA,23 A2 showed a

UV-vis spectrum that had absorption maxima at 510 and 550 nm, which is very similar

to the UV-vis absorption spectrum reported for solutions of PBI substituted with simple

amino acids.24 In contrast, the UV-vis absorption spectrum of A1 showed the presence

of an extra peak at 620 nm (Figure 2A), not normally seen for amino-acid-substituted
718 Chem 2, 716–731, May 11, 2017
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Figure 2. UV-Vis and Fluorescence Data for A1 and A2

(A) UV-vis absorption spectra for the solution of A2 (red data) and the solution of A1 (blue data) at a concentration of 0.039 mg/mL.

(B) Emission fluorescence spectra excited at 385 nm for solutions of A1 (blue data) and A2 (red data) at a concentration of 0.039 mg/mL.

(C) UV-vis absorption spectra at 5 mg/mL of A1 after the addition of 1 equiv of NaOH (solid line), 1 equiv HCl after 20 hr (dashed line), and 1 equiv HCl

after 24 hr (dotted line).

(D) Solid-state UV-vis absorption spectra of thin films formed from a solution of A2 (red data) and from a solution of A1 (blue data). More UV-vis

absorption spectra can be found in Figures S2–S4 and S10.
PBIs. It is tempting to label the spectra of A1 and A2 as the result of H and J aggre-

gation, respectively. The peak at 620 nm is, for example, normally assigned to the

formation of a J aggregate in PBI-based organogels.10,11,19,36 However, the relative

intensity of the peak at 620 nm in comparison with the peaks at 510 and 550 nm is

lower than for some examples in the literature.10 The solution of A1 is also much

less fluorescent than that of A2; at least the simplest model of H and J aggregates

would suggest that J aggregates should be more fluorescent than H aggregates.

We hypothesized that the 620 nm peak could have such a low intensity because this

solution contains both types of aggregates. However, by carrying out a slow titra-

tion, we found that although both aggregates had the same first apparent pKa,

the solution of A1 and A2 had different second apparent pKa values. The solution

of A2 had a second apparent pKa at 5.7, whereas the solution of A1 had a second

apparent pKa at 5.4 (Figure S1 and Supplemental Information). The perhaps
Chem 2, 716–731, May 11, 2017 719
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Figure 3. A Microscopic Picture of the Molecular Packing

(A) Illustration of the possible orientations of the molecular transition dipole moment vectors

(TDMVs) and the stacking vector (SV).

(B) Illustration of the main structural degrees of freedom in a packing: twist angle (TA), lateral shift

along the long axis of the PBI core (LLS), and lateral shift along the short axis (LSS).

(C) The DFT optimized structures of, from top to bottom, dimer models A and D (note that one PBI-

DOPA in each dimer has been colored orange for clarity).

(D) TD-DFT (wB97x) predicted spectra of the different dimer models.

(E) TD-DFT (wB97x) predicted spectra of deprotonated dimer model A in different deprotonation

states. The predicted TD-DFT spectra, as discussed in the Supplemental Information, include a

rigid red shift of 0.7 eV.
surprisingly high apparent pKa values have been attributed to the aggregation

state and correlates with the high pKa values that have been seen for related mole-

cules.33–35 The two distinct apparent pKa values for the different aggregates show

that a solution of A1 does not contain a mixture of aggregates of A1 and A2. This

was further confirmed by UV-vis absorption spectroscopy; dilutions of both solutions

showed that all the peaks decreased at a similar rate (Figure S2 and Supplemental

Information), again suggesting the presence of only one structure in each solution.

The two different solutions were also added to each other. The resulting UV-vis spec-

trum was found to be a simple addition of the two spectra from the solutions of A1

and A2 (Figure S3 and Supplemental Information). This shows that the two species

are self-sorted in solution when mixed.10

Interestingly, when 1 molar equiv of sodium hydroxide was added to the solution of

A1, the peak at 620 nm immediately disappeared from the UV-vis absorption spec-

trum, which became identical to that of the solution of A2 (Figure 3A). When the pH

was lowered again by the addition of 1molar equiv of HCl, initially the UV-vis absorp-

tion spectrum looked very similar to that ofA2. The peak at 620 nm reappeared after

approximately 20 hr and reached the original intensity of the solution of A1 after

7 days (Figure 3A). The same slow appearance of the peak at 620 nm occurred

when 1 molar equiv of HCl was added to a freshly prepared solution of A2 (Figure S4

and Supplemental Information). This suggests that although the formation of the

structure with the peak at 620 nm is the thermodynamic product when only one of

the carboxylic acids is deprotonated, time is needed for molecular re-orientation

to occur to allow the change from the other packing that does not give rise to this
720 Chem 2, 716–731, May 11, 2017



peak. We assume that the relatively fast kinetics of forming A2 and slow kinetics of

forming A1 are related to the anisotropy of A1 and a preferred relative orientation

of the deprotonated carboxylic acid groups in the agglomerate.

To explain the spectra described above, we need to understand the molecular pack-

ing in (solutions of) A1 and A2 to link the packing and spectra. Traditionally, when

molecular aggregates are discussed from a theoretical perspective, the focus is

generally on cases where the transition dipole moment vectors (TDMVs) of the indi-

vidual molecules (Figure 3A, in the case of PBIs orientated along the long axis of the

PBI core for the lowest-energy singlet excitation) all point in the same direction, and

the only degree of freedom is the orientation of these TDMVs in relation to the stack-

ing vector (SV; Figure 3A), the vector that connects the centers of mass of the mol-

ecules in the stack. If the TDMVs and SV point in the same direction, Kasha’s quasi-

classical exciton model37 predicts that a J aggregate is formed, with a red-shifted

absorption spectrum in relation to that of the non-aggregated molecule, and if

the TDMVs and SV are orthogonal, an H aggregate with a blue-shifted absorption

spectrum is formed. However, in addition to the fact that the coupling between mol-

ecules can be more complicated than assumed by Kasha,5 the molecules in a stack

also do not all need to be orientated in the same direction. As can be seen from Fig-

ure 3B, themolecules can be rotated or translated in relation to one another. Indeed,

previous computational work on unsubstituted PBIs terminated with N–H bonds38–40

(which are held together by p-p interactions alone) and PBIs substituted with simple

amino acids, such as valine, (which can also form hydrogen bonds between the car-

boxylic acid protons of the amino acids and carbonyl oxygen atoms of the PBI

cores)41 found that in the likely structures of the aggregates formed, each molecule

was rotated with respect to the molecule below and above it by �30�–35� (the twist

angle from Figure 3B), a rotated-stack aggregate. One of the implications of a non-

zero twist angle based on Kasha’s excitonmodel is that, instead of a bright excitation

due to the constructive addition of transition moments and a completely dark exci-

tation due to destructive addition, both of the aggregate excitations should have a

finite intensity.

PBIs functionalized with more complex amino acids, such as the PBI-DOPA studied

here, are capable of forming multiple hydrogen bonds, also involving the hydroxyl

groups on the substituents, and hence can potentially be directed to structures other

than those preferred on the basis of maximizing the p-p interaction and hydrogen

bonds involving the carboxylic acid protons alone. To investigate whether other

such structures are indeed likely to form and whether their existence would explain

the spectral features observed, we computationally explored the different ways PBI-

DOPA can pack. Similar to previous computational work,41–43 for reasons of compu-

tational tractability in this exploration, we focus on a dimer of PBI-DOPA. Such a

tentative exploration of the energy landscape of a PBI-DOPA dimer, consisting of

an initial conformer search using empirical potentials and subsequent dispersion-

corrected density functional theory (DFT) optimization of low-energy conformers us-

ing Grimme’s PBEh-3c approach42 (see Supplemental Information), shows that PBI-

DOPA, among other things, can indeed form rotated-stack aggregates with much

larger twist angles of 45�–70� and some degree of lateral shift, as well as structures

where the molecules lie parallel to one another but are stacked in a staircase-like

fashion. In line with our hypothesis, both classes of structures involve hydrogen

bonds between the L-DOPA hydroxyl groups. Moreover, this exploration of the en-

ergy landscape also suggests that both classes of structures lie low in energy and for

neutral PBI-DOPA are significantly more stable than dimer models of small-angle

rotated-stack agglomerates, analogous to the structures found with simpler amino
Chem 2, 716–731, May 11, 2017 721



acid substituents discussed above. Calculations on deprotonated structures, dis-

cussed in more detail in the Supplemental Information, suggest that this energetic

picture does not significantly change upon deprotonation, other than a destabiliza-

tion of the staircase structures. Although they are tentative and only consider PBI di-

mers, these calculations clearly suggest that the presence of hydroxyl groups on the

amino acid substituent facilitates the formation of molecular arrangements not seen

for simpler substituents.

To correctly describe charge-transfer excitations, spectra calculated with time-

dependent DFT and the long-range corrected wB97x43 and CAM-B3LYP44 func-

tionals on the optimized geometries of the dimer models of PBI-DOPA agglomer-

ates can be seen in Figures 3D and S14. The rotated stacks with a larger twist angle

(A and B) are predicted to have a red-shifted shoulder that is not present in the stair-

case-like stacking model (C) and the rotated stacks with a small twist angle (D). The

latter, however, has a low-intensity broad peak that is even further red-shifted but

that might be hard to observe experimentally. Figure 3E shows the predicted

spectra of A after deprotonation of one and two carboxylic acid groups per mole-

cule, modeling the conditions under which A1 and A2 were prepared. Clearly, de-

protonation is predicted to have only a minor effect on the spectra. Although the

dimer models are only approximations of the structures present in experiments

and although we neglect vibronic coupling, in line with suggestions from previous

model Hamiltonian calculations by Hestand et al.,5 it appears that the rotated-stack

structures with large twist angles can explain the presence of a J-like red-shifted

shoulder seen in the experimental solution (Figure 2A) and solid-state (Figure 2D)

UV-vis absorption spectra of A2, and why such features would not have been

observed for PBIs substituted with simpler amino acids. We see no evidence of

changes in the thermodynamically preferred structure or spectra upon deprotona-

tion in our calculations, suggesting that the experimentally observed switch with

pH explicitly involves either the hydrated sodium counter-ions or larger length

scales, both of which cannot be readily incorporated in our computational model.

Finally, as discussed in the introduction, it is clear that although we can assign aggre-

gates as either H-type or J-type on the basis of their UV-vis absorption spectra, this

does not mean that the underlying structure of such aggregates necessarily corre-

sponds to the archetypal textbook pictures. Dimer model D has approximately

orthogonal TDMVs and SVs, but because of the large twist angle, it still has a

J-like feature in the absorption spectrum. Moreover, although we have not per-

formed TD-DFT excited-state relaxation calculations to predict the fluorescence

spectra of the dimers, the fact that A2 is fluorescent and A1 is not also challenges

the classic picture of H and J aggregates.

The change in molecular packing has a profound effect on the self-assembly. Viscos-

ity measurements for the two solutions suggest that the solution of A1 contains

worm-like micelles, as shown by shear-thinning behavior. The solution of A2 has

the same viscosity as water; this could indicate the presence of spherical structures

or that the aggregates are simply very small (Figure S5 and Supplemental Informa-

tion). To probe this further, we used small-angle neutron scattering (SANS). The data

and fits are shown in Figure 4. It is clear immediately that the solution of A1 scatters

more strongly than that of A2. The higher degree of charge on A2, resulting in

increased solubility and hence a higher on-off rate from the self-assembled struc-

tures means the structures are less persistent. The data for the solution of A2 can

be fitted well to an absolute power law with a gradient of 2.83 G 0.01. We interpret

this as above; structures are present, but there is a low residence time for the
722 Chem 2, 716–731, May 11, 2017



Figure 4. SANS Data and Fits for A1 and A2

Green data are for a solution of A1. Blue data are

for the suspension of A1 at low pH. Black data

are for a solution of A2. Red data are for a gel of

A2 at low pH. In all cases, the black lines are the

fits to the data as described in the text.
molecules in the self-assembled aggregate. The data for the solution for A1

were fitted best to a flexible cylinder model combined with a power law component;

the low Q region is sensitive to the fractal scattering from the network structure. We

fit the data by fixing the Kuhn length to a number of different values and minimizing

the residuals. The best fit was found to be a cylinder of radius 5.65G 0.46 nm, a Kuhn

length of 5.3 G 2.7 nm, and a length of over 920.5 G 73 nm. The power law was

2.11 G 0.01. These data agree with the viscosity data above, implying that long,

worm-like structures are present in solutions of A1.

The solutions of A1 and A2 also show different gelation abilities. When the pH was

lowered to 3.3 with glucono-d-lactone (GdL), which hydrolyzes slowly in water to glu-

conic acid,45,46 the solution of A2 formed a self-supporting gel (Figure 1C) with a

storage modulus (G0) of �380 Pa and G00 of �35 Pa (Figure S6A and Supplemental

Information), which broke at a strain of 8% (Figure S6B and Supplemental Informa-

tion). These data are typical for low-molecular-weight gels formed from PBIs func-

tionalized with amino acids.24 Indeed, scanning electron microscopy (SEM) shows

that the sample contains a fibrous network at this point (Figure S7 and Supplemental

Information). The SANS data are also consistent with a fibrous network; the scat-

tering increases significantly from that of the solution of A2 and changes shape (Fig-

ure 4). The data are now best fitted to the flexible cylinder combined with an abso-

lute power law. Here, the data fit to a cylinder with a radius of 2.53G 0.14 nm, a Kuhn

length of 26.97 G 2.09 nm, and a length of 269.3 G 74.1 nm. The power law was

found to fit to 3.19 G 0.07. These data are consistent with a cross-linked network

of thin fibers. However, decreasing the pH of a solution of A1 to 3.3 with GdL re-

sulted instead in precipitation rather than gelation. The scattering data could still

be fitted well to a flexible cylinder combined with an absolute power law. Again,

we achieved the fit by fixing the Kuhn length to a number of values and optimizing

on the basis of the residuals. A power law of 2.29 G 0.04 was found, very

similar to that for A1 at higher pH. The radius was also found to be very similar

(5.81 G 0.26 nm). The Kuhn length and length could be fitted well across a number

of values strongly affecting the radius or power law, and the best fit was for a length

of 538.9 G 30.2 nm and a Kuhn length of 10.0 G 0.79 nm. This fit implies that long

anisotropic structures are present in solution. Large irregular aggregates can be

seen on SEM (Figure S8 and Supplemental Information), which can be an effect of

drying or could imply that the scattering data are sensitive only to the primary

assembled structures. Decreasing the pH of A2 with 1 equiv of HCl to that of a solu-

tion of A1 and then immediately adding GdL still resulted in the formation of a gel,

showing that the different gelation results are not simply an effect of the initial

pH before GdL addition. However, allowing this solution to stand for a week after

the addition of HCl (and hence allowing the packing to change to that shown by

A1; see discussion above) and then adding GdL resulted in a precipitate. This
Chem 2, 716–731, May 11, 2017 723
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Figure 5. Photoconductivity Measurements

(A) Current-voltage curve of the thin films during irradiation with 400 nm LED. Red data are for the

dried film formed from A2, blue data are for A1, and black data are for the corresponding dark

measurements.

(B) Normalized photoresponse of the thin films at 4 V at different wavelengths of light. Blue data are

for A1, and red data are for A2. The data for A1 and A2 at 400 nm overlap are normalized at this

wavelength. Non-normalized data are shown in Figure S12A.
slow evolution between the structures initially adopted by A2 and that of A1 is in

agreement with our UV-vis data described above.

As discussed above, changes in the type of molecular aggregation should give rise

to differences in photoconductivity. We have previously shown that a number of PBIs

functionalized at the imide position with an amino acid can be used to form photo-

conductive films.24,47 We prepared the films by drying solutions of the self-assem-

bled PBIs in air. The conductivity arises from the formation of the radical anion

when the films are irradiated with a 365 nm LED, which is surprisingly stable in

air.24,41,47–49 In these papers, we proved the formation of the radical anion by elec-

tron paramagnetic resonance and spectroelectrochemistry and also postulated that

the amino acid substituent can act as an electron donor, although the amount of

decomposition was below the detectable limit of analytical tools such as nuclear

magnetic resonance.

Here, when a solution of either A1 or A2 was dried to form a thin film, both kept their

J-type or H-type aggregate character, as shown by the solid UV-vis absorption spectra

(Figure 2B). Powder X-ray diffraction (pXRD) data on the two dried films show that the

two samples are essentially amorphous (Figure S9 and Supplemental Information).

The dried films of both A1 and A2 show the presence of the radical anion when irra-

diated with UV light, as shown by the formation of new peaks in the UV-vis absorption

spectra at 730 nm (Figures S10A and S10B; Supplemental Information).50

The photoconductivity under illumination for films formed from either A1 or A2 was

measured and compared. Although films of both aggregates were photoconduc-

tive, the film formed from A1 was considerably more photoresponsive than that

formed from the solution of A2 (Figure 5A). We stress that this is based on many

repeat films and not an isolated example. The absolute thicknesses of the films

were very similar (typically 2.4 mm for A1 and 2.9 mm for A2), and the films were

continuous (Figure S11 and Supplemental Information). Because the absolute con-

ductivity depends on the intensity of the irradiation source and the degree of align-

ment of structures in the film, we do not directly compare the magnitude of the

response to that in previous work.24,47,51,52 Instead, we focus on the wavelength
724 Chem 2, 716–731, May 11, 2017



response. Interestingly, both samples were most responsive when illuminated at

400 nm with some response at 450 nm. This is unlike similar materials that

were most responsive at 365 nm (Figure 5B).24 We hypothesize that this shift

in the response into the visible region is due to the self-doping nature of the

L-DOPA.48,53,54 To prove that it is not simply an effect of morphology (i.e., the pres-

ence of worm-like micelles that give rise to the higher photoconductivity for the

dried solution of A1), the pH of a solution of A2 was lowered to 6.5. As expected

from the discussion above, the UV-vis absorption spectrum remained similar to

that of A2. However, viscosity data indicated that worm-like micelles were now

present in solution as a result of the lower pH (Figure S12A and Supplemental Infor-

mation). This shows that the morphology of the self-assembled aggregate can be

independent of the molecular packing. An aliquot of this solution was then allowed

to dry. The UV-vis absorption spectrum for this dried film was consistent with that of

the solution, showing that the packing was not changed on drying. The wavelength

dependence measurements on this film were only very weakly photoresponsive

at all wavelengths (Figure S12B and Supplemental Information). This shows that

the photoconductivity is dependent on molecular-level packing rather than the

morphology of the self-assembled structure.

Overall, it is clear from the calculations that, as hypothesized above, the use of these

more complicated substituents, which allow for additional intermolecular interac-

tions, leads to new packing motives not seen for simpler substituents and the

appearance of new J-like spectral features, in line with those observed experimen-

tally. These features arise from differences in the degree of twisting of the PBIs in

relation to one another, and these differences in the twist can lead to profound dif-

ferences in the photoconductivity. The packing suggested by the dimers for A1 (Fig-

ure 3) is clearly much more effective than that for A2.

To conclude, we have shown here a rare example of a PBI that is able to reversibly

switch between aggregation types after a subtle change in pH. The two aggregates

show different properties, such that the J-like aggregate is significantly more photo-

responsive than the H-like aggregate. The H-like aggregate is able to form gels

when the pH is decreased, whereas the J-like aggregate cannot. These data again

illustrate that the process by which gelling is carried out is critical.55 In addition,

our data show that the presence of the hydroxyl groups on the substituents at the

imide position on the PBI opens up the possibility of hydrogen bonding with the

carbonyl groups, and therefore there is the potential to form extra supramolecular

interactions. These interactions mean that, compared with PBIs substituted with

simpler groups, the PBIs reported here enable different molecular packing. Impor-

tantly, these new packing possibilities lie at lower energies than conventional stacks.

Interpretation of the packing with simple models based on classic pictures of H- and

J-type packing is difficult.

Systems such as those described here are often under non-equilibrium conditions. This

implies that the self-assembly should be highly dependent on how aggregation is

induced, and hence it shouldbepossible for a singlemolecule to adopt differentmolec-

ular packing by subtle changes in the assembly process. This should then allow very

different material properties to be adopted from a single molecule, provided that one

can robustly control the self-assembly. In line with this hypothesis, we have shown

here that it is possible to adjust the packing such that the macroscopic photoconduc-

tivity can be controlled by careful control of the initial solution pH. This work opens

up new opportunities for photoconductive materials and shows the potential of

includingmore complex substituents at the imideposition to controlmolecular packing.
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EXPERIMENTAL PROCEDURES

Synthesis of PBI-DOPA

PBI-DOPA was synthesized as previously reported.23 All materials used for synthesis

were purchased from Sigma-Aldrich and used as received. Distilled water was used

throughout.

Preparation of H- and J-type Aggregates of PBI-DOPA

All solutions were prepared at 5 mg/mL of gelator in water. For the solutions of

A2, the sample was dissolved with 2 molar equiv of aqueous sodium hydroxide

(NaOH, 0.1 M) and then brought up to 5 mg/mL with distilled water. For prep-

aration of the solutions of A1, PBI-DOPA was dissolved with 1 molar equiv of

aqueous NaOH (0.1 M), and distilled water was added until the solutions reached

5 mg/mL.

Gelation of PBI-DOPA

Testing the gelation of the two solutions involved lowering the pH with 5 mg/mL

GdL. GdL was added to the solution in 7mL Sterlin cups. Samples were left overnight

to gel. A simple vial inversion test was initially performed to indicate whether a gel

had formed. If the sample was stable to inversion, then rheological studies were car-

ried out.

Switching from H to J Aggregates

A solution ofA2was converted to a solution ofA1 via the addition of 1molar equiv of

HCl (0.1M). UV-vis absorption spectroscopy was then used to follow the formation of

the aggregates of A1. This solution of A1 could then be converted back to a solution

of A2 by the addition of 1 molar equiv of NaOH (0.1 M). Again, this was followed by

UV-vis absorption spectroscopy.

Preparation of Samples on Glass Slides for Photoconductivity Measurements

and Solid UV-Vis Measurements

Sample preparation involved dropping 10 mL of the required solution onto a

glass microscope slide inside a 3 3 3 mm mask and then leaving the samples over-

night to air dry. When the samples had dried, the mask could be removed, leaving

a 3 3 3 mm square. Xerogel samples were prepared via the formation of gels as

described above with GdL inside a 1 mL mold. Once gelation had occurred, the

gel was then removed from the mold, and approximately 0.05 mL of the gel

was removed with a scalpel, placed onto a glass microscope slide (again with a

3 3 3 mm mask), and allowed to air dry overnight. When the sample was dried,

the mask could be removed, and two silver electrodes spaced 3 mm apart were

then added. The silver electrodes were made with silver paste, which attached

copper wires to the glass slide. Epoxy resin glue was placed over the silver elec-

trodes. Again, this was left to dry overnight before measurements were

performed.

Apparent pKa Determination

For determining the apparent pKa of each aggregate, a titration was performed. The

pH of the two different solutions was measured, and the pH was slowly lowered by

the addition of 5 mL of 0.1 HCl. An FC200 pH probe (HANNA instruments) with a 63

10 mm conical tip was used for pH measurements. The stated accuracy of the pH

measurements isG0.1. The temperature was maintained at 25�C during the titration

with a circulating water bath. For apparent pKa measurements, pH was recorded

after each addition of HCl and a stable value was reached. For preventing the forma-

tion of a gel, the solutions were gently stirred with a stirrer bar so they would remain
726 Chem 2, 716–731, May 11, 2017



liquid during the titration process. The plateaus of the pH indicate the two pKa values

of this gelator.

UV-Vis Absorption Spectroscopy

Solid and concentrated solution UV-vis absorption data were obtained with a Shi-

madzu UV-2550 UV-vis spectrophotometer running UV Probe software version

2.34. Solid samples were prepared as previously mentioned with GdL. This gel

was then transferred onto a glass slide and allowed to air dry overnight to form a xe-

rogel thin film. For solution UV-vis, the samples were prepared and transferred into a

0.1 mm quartz cuvette and allowed to gel overnight.

Dilution UV-vis absorption data were obtained with a Thermo Scientific Nanodrop

2000/2000c spectrophotometer. This was used in cuvette mode, and samples

were prepared in 1 cm path length poly(methyl methacrylate) (PMMA) plastic cu-

vettes. Samples were diluted from 5mg/mL with water at the same pH as the original

samples.

SEM

SEM images were obtained with a Hitachi S-4800 FE-SEM. Gels and solutions at high

pH were deposited onto glass coverslips, which were stuck onto aluminum SEM

stubs by sticky carbon tabs and left to dry for 24 hr. Samples weremeasured in decel-

eration mode with an acceleration voltage between 1 and 3 kV at 3 mm.

Photoresponse Measurements

Photoresponse measurements were performed with an Autolab Potentiostat oper-

ating in a two-electrode configuration in the absence of a supporting electrolyte.

Light supply was provided by 365, 400, 450, 470, 528, 590, and 628 nm LEDs

(LZ1-10U600, LedEngin) with a light source powered by a TTi QL564P power supply

operating at 3.9 V. Dark experiments were performed in an enclosure in air. Linear

sweep measurements were recorded from �4 to 4 V at a scan rate of 0.05 V/s and

a preconditioning step at 0.002 V for 2 s. The current recorded at 4 V was then

used as the photoresponse value at each wavelength.

Rheological Measurements

Dynamic rheological and viscosity measurements were performed with an Anton

Paar Physica MCR101 and MCR301 rheometer. A cup-and-vane measuring system

was used for frequency and strain sweeps. A cone-and-plate measuring system

was used for viscosity measurements and gelling under shear. A parallel-plate

measuring system was used for time sweeps. For frequency and strain tests, 2 mL

of the gels was prepared in 7 mL Sterilin vials and left for 24 hr at room temperature

before the measurements were performed. For viscosity measurements, samples

were prepared at high pH as previously mentioned. All experiments were performed

at 25�C.

Frequency Sweep

Frequency scans were performed from 1 rad/s to 100 rad/s under a strain of 0.5%.

The shear moduli (storage modulus [G0] and loss modulus [G00]) were read at 10

rad/s. These measurements were done within the viscoelastic region at which G0

and G00 were independent of strain amplitude.

Strain Sweep

Strain scans were performed from 0.1% to 1,000% with a frequency of 10 rad/s. The

critical strain was quoted as the point at which G0 started to deviate for linearity and
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ultimately crossed over the G00, resulting in gel breakdown. From these data, a strain

of 0.5% used for measuring the frequency sweep was in the viscoelastic region.

Viscosity Measurements

Viscosity measurements were performed with a 50 mm cone and plate between 1

and 100 s�1.

Fluorescence

Fluorescence spectra were recorded on a PerkinElmer Fluorescence Spectrometer

LS55. Emission spectra were collected in 1.0 cm PMMA cuvettes. Samples were

excited at 385 nm with a slit width of 5 nm at 100 nm/min. Samples were at a concen-

tration of 0.05 mg/mL because this was the concentration at which both samples

could be measured.

pXRD

Measurements were carried out on a Panalytical X’pert Pro multipurpose diffractom-

eter with a Co Ka source (l = 1.78 Å). Patterns were measured between 20 and 120�

2q for 2 hr (step size 0.033�, time per step 295.3 s, and scan speed 0.014�/s).

Film Thickness

Film thickness was measured by atomic force microscopy. The tip was lowered until

the slide was contacted, and the height was recorded. The tip was then lowered onto

the sample, and the height was recorded once again. The difference in height was

taken as the thickness of the sample. At least three measurements were carried

out on each sample.

SANS

The solutions were prepared as described above but the H2O and NaOH were re-

placed with D2O and NaOD, respectively. The gels were prepared in UV-spectro-

photometer-grade quartz cuvettes (Hellma) with a 2 mm path length. These were

housed in a temperature-controlled sample rack during the measurements. SANS

measurements were performed with the D11 instrument (Institut Laue-Langevin).

A neutron beam with a fixed wavelength of 10 Å and divergence of Dl/l = 9% al-

lowed measurements over a large range for Q (Q = 4psin(q/2)/l) of 0.001–0.3 Å�1

by using three sample-detector distances of 1.4, 8, and 39 m.

The data were reduced to one-dimensional scattering curves of intensity versus Q

with the software provided. The electronic background was subtracted, the full de-

tector images for all data were normalized, and scattering from the empty cell was

subtracted. The scattering from D2O was also measured and subtracted from the

data. Most of the data were radially averaged to produce the one-dimensional

curves for each detector position. However, a number of the solutions at high pH,

which were rich in 2NapFF, exhibited shear alignment on being pipetted into the

cells. Hence, the data for these were split into sectors. The instrument-independent

data were then fitted to the models discussed in the text with the SasView software

package (http://sasview.org).

Time-Dependent DFT Calculations

The geometries of the different dimer models were optimized by dispersion-corrected

DFTaccording toGrimme’sPBEh-3capproach,42 as implemented inTurbomole7.01.56

The vertical excitation spectra of the optimizeddimermodels were subsequently calcu-

lated with the long-range corrected wB97x43 and CAM-B3LYP functionals44 in Gau-

sian0957 and GAMESS-US.58 In both sets of calculations, the effect of the aqueous
728 Chem 2, 716–731, May 11, 2017
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environment in which the dimers and extended stacks reside was modeled with a

dielectric screeningmodel: the COSMO solvationmodel59 and the PCM/SMD60,61 sol-

vation model, respectively. For more details, see the Supplemental Information.

SUPPLEMENTAL INFORMATION

Supplemental Information includes 14 figures, 3 tables, calculations, and DFT-opti-

mized structures and excitation energies of the PDI-DOPA dimers and can be found

with this article online at http://dx.doi.org/10.1016/j.chempr.2017.03.022.
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