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Abstract This study is conducted to examine the validity
of the generalized second law of thermodynamics (GSLT) in
flat FRW for modified teleparallel gravity involving coupling
between a scalar field with the torsion scalar T and the bound-
ary term B = 2∇μTμ. This theory is very useful, since it can
reproduce other important well-known scalar field theories
in suitable limits. The validity of the first and second law
of thermodynamics at the apparent horizon is discussed for
any coupling. As examples, we have also explored the valid-
ity of those thermodynamics laws in some new cosmological
solutions under the theory. Additionally, we have also consid-
ered the logarithmic entropy corrected relation and discuss
the GSLT at the apparent horizon.

1 Introduction

The rapid growth of observational measurements on expan-
sion history reveals the expanding paradigm of the universe.
This fact is based on accumulative observational evidence
mainly from Type Ia supernova and other renowned sources
[1–3]. The expanding phase implicates the presence of a
repulsive force which compensates the attractiveness prop-
erty of gravity on cosmological scales. This phenomenon
may be translated as the existence of exotic matter compo-
nents and most acceptable understanding for such enigma is
termed dark energy (DE); it has a large negative pressure. Var-
ious DE models and modified theories of gravity have been
proposed to incorporate the role of DE in cosmic expansion
history (for reviews see [4–6]).
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In contrast to Einstein’s relativity and its proposed mod-
ifications where the source of gravity is determined by cur-
vature scalar terms, another formulation has been presented
which comprises a torsional formulation as gravity source
[7–11]. This theory is labeled TEGR (teleparallel equivalent
of general relativity) and it is determined by a Lagrangian
density involving a zero curvature Weitzenböck connection
instead of a zero torsion Levi-Civita connection with the vier-
bein as a fundamental tool. The Weitzenböck connection
is a specific connection which characterizes a globally flat
space-time endowed with a non-zero torsion tensor. Using
that connection, one can construct an alternative and equiva-
lent theory of GR. The latter appears, since the scalar torsion
only differs by a boundary term B = 2

e ∂μ(eTμ) with the
scalar curvature by the relationship R = −T + B, making
the two variations of the Einstein–Hilbert and TEGR actions
the same. Thus, these two theories have the same field equa-
tions. However, these two theories have different geometri-
cal interpretations, since in TEGR the torsion acts as a force;
meanwhile in GR, the gravitational effects are understood
due to the curved space-time. TEGR is then further extended
to a generalized form by the inclusion of a f (T ) function in
the Lagrangian density (as f (R) is the extension of GR) and
it has been tested cosmologically by numerous researchers
[12–14]. It is important to mention that f (T ) and f (R) are
no longer equivalent theories, and in order to consider the
equivalent teleparallel theory of f (R), one needs to con-
sider a more generalized function f (T, B), incorporating the
boundary term in the action [15]. In [16], the authors studied
some cosmological features (reconstruction method, thermo-
dynamics and stability) within f (T, B) gravity and, in [17],
some cosmological solutions were found using the Noether
symmetry approach. Additionally, it has been proved that
when one considers Gauss–Bonnet higher order terms, an
additional boundary term BG (related to the contorsion ten-
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sor) needs to be introduced to find the equivalent teleparallel
modified Gauss–Bonnet f (R,G) theory [18].

Later, Harko et al. [19] proposed a comprehensive form
of this theory by involving a non-minimal torsion matter
interaction in the Lagrangian density. In Ref. [20], Zubair
and Waheed recently have investigated the validity of energy
constraints for some specific f (T ) models and discussed the
feasible bounds of involved arbitrary parameters. They also
discussed the validity of the generalized second law of ther-
modynamic in the cosmological constant regime [21].

Another very much studied approach in modified theo-
ries of gravity is to change the matter content of the universe
by adding a scalar field in the matter sector. These mod-
els have been considered several times in cosmology, using
different kinds of scalar fields such as quintessence, quin-
tom, k-essence, etc. (see [22–24]). Moreover, we can also
extend that idea by adding a coupling between the scalar field
and the gravitational sector (see [25–27]) where, cosmolog-
ically speaking, we can have new interesting results such as
the possibility of crossing the phantom barrier. Motivated by
these theories, other interesting modified theories of gravity
have also been discussed in the literature [28–30] on the cos-
mological landscape. Recently, Bahamonde and Wright [31]
presented a new model of teleparallel gravity by introducing
a scalar field non-minimally coupled to both the torsion T
and the boundary term B = 2∇μTμ. It is shown that such
a theory can describe the non-minimal coupling to torsion
and also the non-minimal coupling to scalar curvature under
certain limits.

Black hole thermodynamics suggests that there is a fun-
damental connection between gravitation and thermodynam-
ics [32]. Hawking radiation [33], the proportionality relation
between the temperature and surface gravity, and also the
connection between horizon entropy and the area of a black
hole [34] support this idea. Jacobson [35] was the first to
deduce the Einstein field equations from the Clausius rela-
tion, Thd Ŝh = δ Q̂, together with the fact that the entropy
is proportional to the horizon area. In the case of a general
spherically symmetric space-time, it was shown that the field
equations can be constituted as the first law of thermody-
namics (FLT) [36]. The relation between the FRW equations
and the FLT was shown in [37] for Th = 1/2πRA, Sh =
πR2

A/G. The investigation of the validity of thermodynami-
cal laws in GR as well as modified theories has been carried
out by numerous researchers in the literature [38–53].

In this work we focus on the validity of the thermody-
namical laws in a modified teleparallel gravity involving a
non-minimal coupling between both torsion scalar and the
boundary term with a scalar field.

In Sect. 1, we give a brief introduction of this theory and
then we derive the respective field equation for flat FRW
geometry with a perfect fluid as the matter contents. In Sects.
2 and 3, we formulate the first and second law of thermody-

namics at the apparent horizon for any coupling. Addition-
ally, as examples, we study the validity of the thermodynam-
ics laws using new cosmological solutions based on power-
law and exponential-law cosmology (see Appendix A). In
Sect. 4, we discuss the validity of GSLT for the entropy func-
tional with quantum corrections. In each case, suitable limits
of the parameters are chosen in order to visualize the validity
of GSLT in quintessence, scalar field non-minimally cou-
pled to torsion (known as teleparallel dark energy) and non-
minimally coupled to the scalar curvature theories. Finally,
in Sect. 5, a discussion of the work is presented.

In the following paper, the notation used is the same as in
[31], where the tetrad and the inverse of the tetrad fields are
denoted by a lower letter eaμ and a capital letter Eμ

a , respec-
tively, with the (+,−,−,−) metric signature.

2 Teleparallel quintessence with a non-minimal
coupling to a boundary term

In this study we consider the modified teleparallel model
which involves a scalar field non-minimally coupled to the
torsion T and a boundary term defined in terms of a diver-
gence of the torsion vector, B = 2

e ∂μ(eTμ), where e =
det(eaμ). The action of this theory is given by

S =
∫ [

1

2κ2 ( f (φ)T + g(φ)B)

+1

2
∂μφ∂μφ − V (φ) + Lm

]
e d4x, (1)

where Lm determines the matter contents, κ2 = 8πG, V (φ)

is the energy potential and f (φ) and g(φ) are coupling
functions. For simplicity, we will use the notation NMC-
(B+T) to refer to this theory ( f (φ) �= g(φ) �= 0). In Ref.
[31], the authors consider a special case of this action where
f (φ) = 1 + κ2ξφ2 and g(φ) = κ2χφ2. A non-minimally
coupled scalar field with the boundary term B (NMC-B) is
recovered if ξ = 0. Using dynamical system techniques, the
cosmology in NMC-B was studied in [31]. If χ = 0, we get
the same action as in [25], which is known as “teleparallel
dark-energy theory” (TDE). By choosing χ = −ξ we obtain
scalar field models non-minimally coupled to the Ricci scalar
that hereafter, for simplicity we will label as NMC-R [26].
In addition, the so-called “Minimally coupled quintessence”
theories arise when we take χ = ξ = 0 [27].

Variation of the action (1) with respect to the tetrad field
yields the following field equations:

2

κ2 f (φ)

[
e−1∂μ(eSa

μν) − Eλ
a T

ρ
μλSρ

νμ − 1

4
Eν
a T

]

− Eν
a

[
1

2
∂μφ∂μφ − V (φ)

]
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+ Eμ
a ∂νφ∂μφ + 1

κ2

[
2(∂μ f (φ) + ∂μg(φ))Eρ

a Sρ
μν

+ Eν
a�g(φ) − Eμ

a ∇ν∇μg(φ)
]

= T ν
a , (2)

where � = ∇α∇α; ∇α is the covariant derivative linked
with the Levi-Civita connection symbol and T ν

a is the matter-
energy momentum tensor.
If we vary the action (1) with respect to the scalar field, that
yields the following modified Klein–Gordon equation:

�φ + V ′(φ) = 1
2κ2

(
f ′(φ)T + g′(φ)B

)
. (3)

Throughout this paper, a prime denotes differentiation with
respect to φ. We will assume the homogeneous and isotropic
flat FRW metric in Euclidean coordinates defined by

ds2 = dt2 − a2(t)(dx2 + dy2 + dz2), (4)

where a(t) represents the scale factor and the corresponding
tetrad components are eiμ = (1, a(t), a(t), a(t)). It is impor-
tant to mention that despite f (T ) gravity not being invari-
ant under local Lorentz transformations, the latter tetrad is a
“good tetrad” to consider, since it does not constrain its field
equations [54]. Hence, this tetrad can be used safely within
this scalar field theory too.
The energy-momentum tensor of matter is defined as

Tμν = (ρm + pm)uμuν − pmgμν, (5)

where uμ is the four velocity of the fluid and ρm and pm
define the matter energy density and pressure, respectively.
Using the tetrad components for the flat FRW metric, the
field Eq. (2) leads to

3H2 f (φ) = κ2
(
ρm + V (φ) + 1

2
φ̇2

)
+ 3H φ̇g′(φ), (6)

3H2 f (φ) + 2Ḣ f (φ) = −κ2
(
pm − V (φ) + 1

2
φ̇2

)

− 2H φ̇ f ′(φ) + (g′′(φ)φ̇2 + g′(φ)φ̈). (7)

Here, H = ȧ(t)/a(t) is the Hubble parameter and dots and
primes denote differentiation with respect to the time coordi-
nate and the argument of the function, respectively. We can
also rewrite these equations in a fluid representation,

3H2 = κ2
effρeff, (8)

2Ḣ = −κ2
eff(ρeff + peff), (9)

where κ2
eff = κ2

f (φ)
, ρeff = ρm +ρφ is the total energy density

and peff = pm + pφ is the total pressure. The energy density
and the pressure of the scalar field ρφ and pφ are, respectively,
defined as follows:

ρφ = 1

2
φ̇2 + V (φ) + 3

κ2 H φ̇g′(φ),

pφ = 1

2
φ̇2 − V (φ)

+ 1

κ2

(
2H φ̇ f ′(φ) − (g′′(φ)φ̇2 + g′(φ)φ̈)

)
. (10)

In this theory the standard continuity equation reads

ρ̇eff + 3H(ρeff + peff) = 0 , (11)

ρ̇m + 3H(ρm + pm) = 0 . (12)

Hereafter, we will assume a standard equation of state for the
matter given by a barotropic equation pm = wρm , with w

being the state parameter. If we use the above equation, we
can directly find that the energy density becomes

ρm = ρ0a(t)−3(1+w), (13)

where ρ0 is an integration constant. It is proper to mention
that, for a flat FRW metric, the torsion scalar and the boundary
term are

T = −6H2 , (14)

B = −18H2 − 6Ḣ , (15)

and hence the Ricci scalar is recovered via R = −T + B =
−12H2 − 6Ḣ .
Finally, the equation for the scalar field, the so-called Klein–
Gordon equation, takes the form

φ̈ + 3H φ̇ − 1

2κ2

(
f ′(φ)T + g′(φ)B

)
+ V ′(φ) = 0. (16)

Note that the Klein–Gordon equation can also be obtained
directly from the field equations (6) and (7), so that it is not
an extra equation.

3 Thermodynamics in modified teleparallel theory

In this section we are interested to explore the general ther-
modynamic laws in the framework of the theory studied in
[31], where the authors considered a quintessence theory
non-minimally coupled between both a torsion scalar T and
the boundary term B with the scalar field (NMC-B+T). The
main aim of the next sections will be to formulate the first and
second laws of thermodynamics in this theory. The complete
and general thermodynamics law will be derived. After that,
we will use the cosmological solutions found in Appendix A
to study some interesting examples to visualize if they do or
do not satisfy the thermodynamic laws.

3.1 First law of thermodynamics

This section is devoted to an investigation of the validity
of the first law of thermodynamics in NMC-(B+T) at the
apparent horizon for a flat FRW universe.
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The condition hαβ∂αRA∂β RA = 0 gives the radius RA of
apparent horizon for flat FRW metric by

RA = 1

H
.

The associated temperature is Th = κsg/2π , where the sur-
face gravity κsg is given by [55]

κsg = 1

2
√−h

∂α(
√−hhαβ∂β RA) = − 1

RA

(
1 − ṘA

2HRA

)

= − RA

2
(2H2 + Ḣ). (17)

By using Eq. (9) and (III A) we easily get

f (φ)

G
dRA = 4πR3

AH(ρeff + peff)dt. (18)

Now, multiplying both sides of this equation by a factor
−2πRATh = 1 − ṘA/(2HRA), we can rewrite the above
equation as follows:

Thd
( A f (φ)

4G

)
= −(4πR3

AHdt − 2πR2
AdRA)

×(ρeff + peff) + π

G
R2
AThd f (φ), (19)

where we have used A = 4πR2
A. Thus, we can identify the

entropy as the quantity which is multiplied by Th , namely

Sh = A f (φ)

4G
. (20)

Now, we define energy of the universe within the appar-
ent horizon. The Misner–Sharp energy is defined as E =
RA/(2Geff), which can be written as

E = RA f (φ)

2G
. (21)

In terms of the volume V = 4πR3
A/3, we find that the energy

density is given by

Ē = 3H2 f (φ)

8πG
V ≡ ρeffV . (22)

Taking the differential of the energy relation, we get

dĒ = RA

2G
d f (φ)+4πρeffRA

2dRA−4πHRA
3(ρeff+peff)dt.

(23)

Combining Eqs. (19) and (23), it results in

ThdSh = dĒ − 2πRA
2(ρeff − peff)dRA

+ RA

2G
(2πRATh − 1)d f (φ). (24)

By defining the work density, we get

W̄ = −1

2

(
T (M)αβhαβ + T̄ (de)αβhαβ

)
= 1

2
(ρeff − peff).

(25)

Here T̄ (de)αβhαβ is the energy density of the dark compo-
nents. Using the above definition of the work density in Eq.
(24), we obtain

ThdSh = dĒ − W̄dV + RA

2G
(2πRATh − 1)d f (φ), (26)

which can be rewritten as

ThdSh + ThdSp = dĒ − W̄dV, (27)

where dSp = −(RA/(2GTh))(2πRATh − 1)d f (φ), which
is the first law of thermodynamics in this teleparallel the-
ory. The extra term dSp defined in Eq. (27) can be treated
as an entropy production term in non-equilibrium thermo-
dynamics. In gravitational theories such as Einstein, Gauss–
Bonnet and Lovelock gravities [56–58], the usual first law
of thermodynamics is satisfied by the respective field equa-
tions. In fact, these theories do not involve any surplus term
in universal form of the first law of thermodynamics, i.e.,
T dS = dE − WdV .

Initially Akbar and Cai used this approach to discuss ther-
modynamic laws in f (R) gravity [59]. It is shown that an
additional entropy term is produced, to be compared to other
modified theories. Later Bamba et al. [41,42,60,61] devel-
oped the first law of thermodynamics in Palatini f (R), f (T ),
f (R, φ, X) (where X = −1/2gμν∇μφ∇νφ is the kinetic
term of a scalar field φ) and f (R, φ, X,G) (whereG = R2−
4RμνRμν+Rμνρσ Rμνρσ is the Gauss–Bonnet invariant) the-
ories and formulated an additional entropy production term.
A similar approach is applied to discuss the thermodynamic
laws in f (R, T ), f (R, Lm) and f (R, T, RμνTμν) theories,
and one can see that the presence of non-equilibrium entropy
production terms is necessary in such theories [46,47,62].
Bamba et al. [41,42,60,61] have shown that one can manip-
ulate the FRW equations in order to redefine the entropy
relation, which results in an equilibrium description of ther-
modynamics so that the first law of thermodynamics takes
the form T dS = dE −WdV . Moreover, in all these theories
it has been the case that the usual form of the first law of ther-
modynamics, i.e., T dSeff = dE −WdV , can be obtained by
defining the general entropy relation as a sum of an horizon
entropy and an entropy production term.

Here, we may define the effective entropy term being the
sum of horizon entropy and entropy production term as Seff =
Sh + Sp so that Eq. (27) can be rewritten as

ThdSeff = dĒ − W̄dV, (28)
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where Seff is the effective entropy related to the contributions
involving a scalar field non-minimally coupled to the torsion
T and a boundary term at the apparent horizon of FRW space-
time.

3.2 Generalized second law of thermodynamics

According to the generalized second law of thermodynamic
(GSLT), the entropy of matter and energy sources inside the
horizon plus the entropy associated with a boundary of the
horizon must be non-decreasing. In the previous section we
have shown that the usual first law of thermodynamics does
not hold in this theory. Therefore, to study GSLT, we would
use the modified first law of thermodynamics. In fact the
generalized entropy relation satisfies the condition

Ṡtot = Ṡh + Ṡp + Ṡin ≥ 0, (29)

where Ṡh represents the entropy associated with the horizon,
Ṡp represents the entropy production term and Ṡin is the sum
of all entropy components inside the horizon.
Let us proceed with the modified first law of thermodynam-
ics,

TidSi = dEi + pidV − TidSp, (30)

which can be represented as

Tin Ṡin = (ρi + pi )4πRh
2(Ṙh − HRh) + 4

3
πR3

hQi − Ti Ṡp,

(31)

where Rh represents the radius of the horizon, Tin denotes
the temperature for all the components inside the horizon and
Qi is an interaction term for the i th component. Summing
up the total entropy inside the horizon, we find

Tin Ṡin = (ρeff + peff)4πRh
2(Ṙh − HRh) − Tin Ṡp. (32)

Here,
∑
i

Qi = 0,
∑
i

(ρi + pi ) = ρeff + peff.

Now, let us study the validity of GSLT at the apparent hori-
zon. In de Sitter space-time RA = 1/H and the future event
horizon becomes the same as the Hubble horizon. The time
derivative of (20) results in

Ṡh = π

H2G
{φ̇ f ′(φ) − 2Ḣ

H
f (φ)}. (33)

Here, we set the thermal equilibrium with Tin = Th , so that
Eq. (32) implies

Ṡin + Ṡp = 1

Th
(ρeff + peff)4πRA

2(ṘA − HRA). (34)

After simplification, we get

Ṡin = 4π

G

Ḣ(Ḣ + H2)

(Ḣ + 2H2)H3
. (35)

Hence, Eq. (29) implies the relation of GSLT of the form

Ṡtot = π

GH2

(
4Ḣ(Ḣ + H2)

H(Ḣ + 2H2)
+ φ̇ f ′(φ) − 2Ḣ

H
f (φ)

)
≥ 0.

(36)

In the following sections we will see if the GSLT is satis-
fied for some interesting cosmological solutions that can be
constructed from our solutions found before (see Sects. A.1–
A.3).

3.2.1 Specific model: power-law solutions for
f (φ) = 1 + ξκ2φ2 and g(φ) = χκ2φ2

In this section we will analyze if the GSLT is valid for differ-
ent power-law models. In Sect. A.1, we found some specific
solutions to the specific coupling f (φ) = 1 + ξκ2φ2 and
g(φ) = χκ2φ2. Here, we will focus our study for quartic
(m = −1) and inverse potentials (m = 2/3). Additionally,
by setting the coupling constants ξ and χ , we will also focus
our study on different non-minimally coupled scalar–tensor
theories.

(a) Power-law potential with χ �= 1
4

For this case, the energy potential reads

V (φ) = 1

2
φ2−2/mφ

2/m
0

(
m2 + 12mnχ − 6n2ξ

)
,

χ �= 1

4
, m = 2n(2ξ+3χ)+2χ±

√
4(2nξ+(3n+1)χ)2+8nξ(1−4χ)

2(4χ−1)
.

In Fig. 1, we present the evolution of energy density ρ

and potential V (φ) for the power-law case. It can be seen
that V (φ) is a decreasing function of time, where we set
ξ ≤ 0.

Here, we set the validity condition for GSLT in terms of the
parameters m, ξ and χ . We choose m to show the particular
representation of potential.

(b) Case m = −1
This choice of m corresponds to a quartic potential, V (φ) ∝
φ4. Here, we find the relation for n of the form n = 1−6χ

6ξ+χ

and the constraint n > 1 results in the following condition:(
χ <

1

6
& − χ < ξ <

1

6
(1 − 12χ)

)

||
(

χ >
1

6
&

1

6
(1 − 12χ) < ξ < −χ

)
. (37)
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Fig. 1 For the power-law potentials, the energy density and the scalar potential are plotted against time. We chose φ0 = κ = 1, n = 2 (a(t) ∝ t2)
and ξ = 0.1

Fig. 2 Validity of GSLT for power-law potential with χ �= 1
4 . The figure on left (right) shows the validity for NMC-B(TDE) theory

Here, we discuss the specific cases NMC-B (ξ = 0) and
TDE (χ = 0). The validity of GSLT for a quartic potential
is shown in Fig. 2. For NMC-B theory, the GSLT is valid
in the range 0 < χ < 1

12 and in the case of TDE we need
0 < ξ < 1

6 . These constraints are set in accordance with the
condition of power-law solutions, n > 1.

We also the evolution of GSLT in Fig. 3, where we set
n = 2 and choose the particular values for χ and ξ . The
black curve corresponds to NMC-B with χ = 1

18 and the
blue curve represents the plot of GSLT for TDE with ξ = 1

18 .

(c) Case m = 2/3
In this case one can recover the inverse potential i.e., V (φ) ∝
φ−1. Here, we show the validity of GSLT in Figs. 4 and 5.
In Fig. 4, the left plot corresponds to NMC-B, which shows
the validity in the range − 1

8 < χ < 0 and the right plot
corresponds to TDE with − 2

3 < ξ < 0. It can be seen that

Fig. 3 Validity of GSLT for power-law potential with n = 2

GSLT is violated in case of TDE, whereas it is valid in both
NMC-B and NMC-R.
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Fig. 4 Validity of GSLT for power-law potential for m = 2/3 in NMCB and TDE theories

Fig. 5 Left plot shows the validity of GSLT in NMC-R for 0 < ξ < 2
13 and right plot sums up the validity in the case of inverse potential. The

curves for NMC-B (χ = −1
17 ), TDE (ξ = −1

3 ) and NMC-R (ξ = 1
14 ) are represented by solid, dashed and dotted lines, respectively

(d) Power-law potential with χ = 1
4

For this case the potential takes the following form:

V (φ) = n2ξ(8ξ + 3)
(
3n2(8ξ + 3) − 1

)
φ

− 3n+1
2nξ

−2
φ

3n+1
2nξ

+4

0

(n(8ξ + 3) + 1)2 ,

χ = 1

4
, m = 4nξ

8ξn + 3n + 1
, n �= − 1

8ξ + 3
.

For this model, we have a fixed value of χ , so we cannot
discuss the TDE and NMC-B theories. In the case of NMC-
R (χ = −ξ ), we find that this representation does not show
realistic results as we need to fix n < 0 for inverse and
quadratic potentials.

Moreover, in the case of NMC-(B+R), we explore the
validity for quartic potential, where we need to set ξ =

−(3n+1)
12n . Finally, we have GSLT dependence on n, and valid-

ity is shown in Fig. 6.

3.2.2 Specific model: exponential solutions for
f (φ) = 1 + κ2αemφ and g(φ) = κ2βekφ

This section is devoted to an analysis of the question if the
GSLT is satisfied for some exponential solutions found in
Sect. A.3. Since mostly all the solutions are similar, we will
only analyze the case where w = 2−φ0

3n −1 (see Sect. A.3.2).
In this case, the energy potential contains three exponentials
that can represent different kind of potentials. For example,

by taking m =
√

3κφ0√
2(φ0−1)

, we find

123
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Fig. 6 Here, we show the validity for NMC-(B+R) theory with quartic potential. In this case we find that GSLT can be met for n > 0.5. In the left
plot we show the validity region, and its behavior for particular choices is shown on the right side. Black and blue curves correspond to n = 1, 20

Fig. 7 For the exponential-law model, the energy density and the scalar potential are plotted against time. We chose φ0 = 1.5, κ = 1, m = 1 and
a0 = 1

V (φ) = (φ0 − 2)(φ0 − 1)e
−

√
6κφ√
φ0−1

3κ2

− (φ0 − 1)φ0(α(φ0 − 1) + 3β(φ0 − 2))e

√
3
2 κφ(φ0−2)√

φ0−1

3(φ0 − 2)
,

(38)

which is known as a double exponential potential. This kind
of potential has been widely studied in the literature. From
Fig. 7, it is observed that the scalar potential increases as the
field increases. Thus the cosmic acceleration will be driven
by the potential energy of the scalar field.
Another interesting example that can be constructed is by tak-
ing φ0 = 4 and α = 24κ2−m2

48κ4 , which gives us the following
potential:

V (φ) =
16

(
m2 − 24κ2

)
sinh

(
mφ
2

)

m4

− 24βκ2
(
24κ2 + m2

)
e

6κ2φ
m −mφ

4

m4 , (39)

which is an interesting kind of potential studied in the litera-
ture (see [63,64]). The exponential function models generally
lead to an accelerating expansion behavior of the universe.

Let us now study the GSLT for this kind of potential. In
this model, Eq. (36) becomes

Ṡtot =
π t

(
2

2n−1 + α(φ0 + 2)tφ0

)

n2 ≥ 0, φ0 �= 2, (40)

where for simplicity we took κ = G = 1. Clearly, the above
inequality will hold depending on the values of the param-
eters φ0, n and α. Since n > 1, if φ0 ≥ −2 and α > 0,
GSLT will be valid at any time. Additionally, if φ0 ≤ −2
and α < 0, the GSLT will be always true. For all the other
cases, the validity of GSLT will depend on time. Figures 8
and 9 show the behavior of the GSLT inequality for different
values of the parameters. For φ0 > 0 and α < 0, the inequal-

123
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Fig. 8 Validity of GSLT for exponential coupling for α = −0.1. The figure on the right (left) shows the case where φ0 = 10 (φ0 = 0.1)

Fig. 9 Validity of GSLT for exponential coupling for φ0 = −1.4. The figure on the right (left) shows the case where α = −100 (α = −0.1)

ity will be more constrained for bigger |φ0|. Additionally, it
can be seen that GSLT will be always true at very late times
for −2 < φ0 < 0.

4 Generalized second law of thermodynamics with
logarithmic entropy corrections

The entropy–area relation involving quantum corrections
leads to curvature corrections in the Einstein–Hilbert action
[65,66]. The logarithmic corrected entropy is defined
through the relation [67–70]

S = A f (φ)

4G
+ α ln

A f (φ)

4G
+ β

4G

Af (φ)
+ γ, (41)

where α, β and γ are dimensionless constants; however, the
exact values of these constants are yet to be determined.
These corrections arise in black hole entropy in loop quantum
gravity due to thermal equilibrium fluctuations and quantum

fluctuations [71,72]. In [70] Sadjadi and Jamil investigated
the validity of GSLT for FRW space-time with logarithmic
correction. They found that in a (super-) accelerated universe
the GSL is valid whenever α(<) > 0, leading to a (nega-
tive) positive contribution from logarithmic correction to the
entropy. In the following section, we will present the valid-
ity of the GSLT with modified entropy relations involving
logarithmic corrections.

First note that the time derivative of Eq. (41) yields

Ṡ =
(
Ȧ

A
+ f ′

f
φ̇

)
A f

4G

[
1 + α

(
4G

Af

)
− β

(
4G

Af

)2
]

. (42)

In the case of the apparent horizon, Eq. (41) implies

ṠA=
(−2Ḣ

H
+ f ′

f
φ̇

)
π f

GH2

⎡
⎣1+α

(
GH2

f π

)
− β

(
GH2

f π

)2
⎤
⎦ .

(43)
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Here, we used the fact that the Hubble horizon is RA = 1/H .
Now, by using Eqs. (35) and (43), we get

Ṡtot =
(−2Ḣ

H
+ f ′

f
φ̇

)
π f

GH2

×
[

1+α

(
GH2

f π

)
−β

(
GH2

f π

)2
]

+ 4π

G

Ḣ(Ḣ + H2)

(Ḣ + 2H2)H3
, (44)

which can be represented in terms of effective components
as follows:

Ṡtot =
(

κ(weff + 1)

√
3ρeff

f (φ(t))
+ f ′

f
φ̇

)
3π f (φ(t))2

Gκ2ρeff

×
[

1 + α

(
Gκ2ρeff

3π f (φ(t))2

)
− β

(
Gκ2ρeff

3π f (φ(t))2

)2
]

+ 6π(weff + 1)(3weff + 1)

Gκ(1 − 3weff)

√
3 f (φ(t))

ρeff
≥ 0. (45)

The GSL with quantum corrections have natural implica-
tions in the studies of the very early universe since quantum
corrections are directly linked with high energy and short
distance scales.

5 Conclusions

The non-minimally coupling models in cosmology are fre-
quently used to study guaranteed late time acceleration, phan-
tom crossing and the existence of finite time future singu-
larity. In this paper, the thermodynamic study is executed
in modified teleparallel theory which involves scalar field
non-minimally coupled to both the torsion and a bound-
ary term [31]. One interesting factor in this theory is that
in a suitable limit, one can recover very well-known theo-
ries of gravity such as quintessence, teleparallel dark energy
and non-minimally coupled scalar field with the Ricci scalar
R.

In this paper, we investigated the GSLT for an expand-
ing universe with apparent horizon. The laws of thermo-
dynamics are universally valid and hence they must apply
in a modified form to the whole universe. The existence of
an apparent horizon in a space-time provides the opportu-
nity to formulate the first law and the generalized second
law of thermodynamics. According to the laws of thermo-
dynamics, the first law must always be true for a physical
system (provided it is non-dissipative); however, the GSLT
holds exactly using the apparent horizon. We obtained these
laws in the non-minimal coupled teleparallel theory with

a boundary term and a scalar field. Our results generalize
many previous GSLT studies, while extending them to the
logarithmic corrected entropy–area law. Moreover, GSLT
with quantum corrections have natural implications in the
studies of the very early universe, since quantum correc-
tions are directly linked with high energy and short distance
scales.

We explored the existence of power-law solutions for
two different choices of Lagrangian coefficients, which are
functions of the scalar field, f (φ) and g(φ). In the first
case we set f (φ) = 1 + κ2ξφ2 and g(φ) = κ2χφ2

and choose the power-law forms of scale factor and scalar
field to discuss possible forms of the power-law potential
V (φ) (see [28]). Here, one can recover the quadratic, quar-
tic, inverse and Ratra–Peebles potentials. We also discuss
the Brans–Dicke theory as a particular case in power-law
cosmology. Moreover, we also discuss the power-law solu-
tions for the choice of f (φ) = 1 + κ2αemφ and g(φ) =
κ2βekφ with φ(t) = φ0

m log(t). Here, we explored different
forms of V (φ) depending on the equation of state parame-
ter.

We showed the behavior of matter density ρ and poten-
tial V (φ) for the power-law potential; it can be seen that
both are decreasing functions of time as shown in Fig. 1. In
our discussion of the validity of GSLT, we considered the
quartic and inverse potentials in all the viable special cases
like TDE, NMC-B, NMC-R and NMC-(B+R) and presented
results in Figs. 2, 3, 4, 5 and 6. In Figs. 2 and 3, we found that
GSLT is true for NMC-B (with 0 < ξ < 1

6 ) and TDE (with
0 < χ < 1

12 ). For the inverse potential, we find that GSLT
is valid for NMC-B (with −1

8 < χ < 0) and TDE (with
− 2

3 < ξ < 0), whereas it is violated for TDE, as shown in
Figs. 4 and 5. For the choice of χ = 1

4 , we found the validity
region only in the case of NMC-(B+R) with n > 1

2 as shown
in Fig. 6. For the exponential forms of the Lagrangian coef-
ficients, we found that GSLT is always true for (φ0 ≤ −2 &
α < 0) and (φ0 ≥ −2 & α > 0), whereas for other choices
of the parameters the validity of GSLT is time dependent.
Finally, we also formulated the GSLT for logarithmic entropy
corrections.

Acknowledgements S.B. is supported by the Comisión Nacional de
Investigación Científica y Tecnológica (Becas Chile Grant No. 72150066).
The authors would like to thank the anonymous referee for the interest-
ing feedback and useful comments on the paper.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.
Funded by SCOAP3.

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


Eur. Phys. J. C   (2017) 77:472 Page 11 of 14  472 

A New cosmological solutions

A.1 Power-law solutions for f (φ) = 1 + κ2ξφ2 and
g(φ) = κ2χφ2

In this section we are going to find analytical power-law solu-
tions for the NMC-(B+T) case where the coupling functions
are

f (φ) = 1 + κ2ξφ2, (A1)

g(φ) = κ2χφ2, (A2)

where ξ and χ are coupling constants. As we discussed
before, for this specific choice we can recover NMC-B
(ξ = 0), TDE (χ = 0), NMC-R (ξ = −χ ) and quintessence
theories (χ = ξ = 0). Let us now study power-law cos-
mology where the scale function and the scalar field take a
power-law form

a(t) = a0t
n, n > 1, (A3)

φ(t) = φ0t
m, (A4)

where a0, φ0, m and n are constants. Under these ansatzes,
from (6) we directly find that the energy potential becomes

V (φ) = −ρ0a
−3(w+1)
0 φ

2−3n(w+1)
m − 2

m φ
3n(w+1)

m
0

− 1

2
φ2− 2

m φ
2/m
0

(
m2 + 12mnχ − 6n2ξ

)

+ 3n2φ−2/mφ
2/m
0

κ2 . (A5)

Now, by replacing the above expression in (7) we find that
the parameters need to satisfy

κ2φ
2/m
0 φ2−2/m

[
m2(4χ − 1) − 2m(2nξ + 3nχ + χ) + 2nξ

]

= κ2ρ0(w + 1)a−3(w+1)
0 φ

3n(w+1)
m

0 φ− 3n(w+1)
m + 2nφ

2/m
0 φ−2/m .

(A6)

Since n �= 0, the exponents of the scalar field of the first and
second terms on the r.h.s. must match otherwise the above
equation will not hold. Therefore, the state parameter needs
to be

w = 2

3n
− 1. (A7)

Using this condition, Eq. (A6) becomes

2φ
2/m
0 φ−2/m

(
κ2ρ0a

−2/n
0 − 3n2

)

3n

= κ2φ
2/m
0 φ2−2/m(m2(4χ − 1) − 2m(2nξ

+ 3nχ + χ) + 2nξ). (A8)

This condition will be true for different choices of the param-
eters. For simplicity, we will assume the case that a0 = 1,
which gives

ρ0 = 3n2

κ2 , (A9)

m =

⎧⎪⎪⎨
⎪⎪⎩

2n(2ξ + 3χ) + 2χ ± √
4(2nξ + (3n + 1)χ)2 + 8nξ(1 − 4χ)

2(4χ − 1)
, χ �= 1

4
,

4nξ

8ξn + 3n + 1
, χ = 1

4
, n �= − 1

8ξ + 3
.

(A10)

Thus, the energy potential (A5) and the energy density are
simplified to

ρm(t) = 3n2

κ2 t−2 , (A11)

V (φ) =

⎧⎪⎪⎨
⎪⎪⎩

1

2
φ2−2/mφ

2/m
0

(
m2 + 12mnχ − 6n2ξ

)
, χ �= 1

4
,m = 2n(2ξ+3χ)+2χ±

√
4(2nξ+(3n+1)χ)2+8nξ(1−4χ)

2(4χ−1)
,

n2ξ(8ξ + 3)
(
3n2(8ξ + 3) − 1

)
φ

− 3n+1
2nξ

−2
φ

3n+1
2nξ

+4

0

(n(8ξ + 3) + 1)2 , χ = 1

4
,m = 4nξ

8ξn + 3n + 1
, n �= − 1

8ξ + 3
.

(A12)

For the first potential (χ �= 1/4), we can recover a self-
interacting scalar field case V (φ) ∝ φ4 if m = −1,
which is the case where the coupling parameters satisfied
ξ = −6nχ−6χ+1

6n . It corresponds to the inverse potential if

m = 2/3 with the additional constraint ξ = − 2(1−χ+9nχ)
3n

and the Ratra–Peebles potential is recovered by choosing
0 < m < 1.

A.2 Power-law solutions for Brans–Dicke: f (φ) = κ2ξφ2

and g(φ) = κ2χφ2

It is easy to see that if we choose

f (φ) = κ2ξφ2, (A13)

g(φ) = κ2χφ2, (A14)
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our action becomes a Brans–Dicke one in a canonical form
with the Brans–Dicke parameter being wBD = 1. The latter
theory has been widely studied in the literature, so that it is
an important coupling to consider.

To find solutions, we will follow the same approach as
the previous section. Moreover, since the equations are so
similar, we will not state all the steps. It is easy to see that if
w = −1 + 2(1−m)

3n �= −1 we obtain the following solutions:

ρm(t) =
⎧⎨
⎩

3nφ2
0 t

2m−2
(
m2(1−4χ)+2m(2nξ+3nχ+χ)−2nξ

)
2(m−1)

ρ0 = 3nφ2
0a

2
n − 2m

n
0

(−4m2χ+m2+4mnξ+6mnχ+2mχ−2nξ
)

2(m−1)
,

ρ0 n = 2χ−1
2(ξ+3χ)

, m = 1.

,

V (φ) =

⎧⎪⎨
⎪⎩

−mφ2− 2
m φ

2/m
0

(
m2+m(3n−1)+6n(n(ξ+3χ)−χ)

)
2(m−1)

, ρ0 = 3nφ2
0a

2
n − 2m

n
0

(−4m2χ+m2+4mnξ+6mnχ+2mχ−2nξ
)

2(m−1)
,

−2ξ2
(
2ρ0+φ02

)−3ξ
(
8ρ0χ+(

4χ2+4χ−1
)
φ2

0

)+18χ2
(
(1−4χ)φ2

0−2ρ0
)

4(ξ+3χ)2 , n = 2χ−1
2(ξ+3χ)

, m = 1.

.

A.3 Exponential solutions for f (φ) = 1 + κ2αemφ and
g(φ) = κ2βekφ

In this section, we will assume that the coupling functions
are exponential:

f (φ) = 1 + κ2αemφ, (A15)

g(φ) = κ2βekφ, (A16)

where α, β, m and k are parameters. The cosmology for the
specific case where β = −α and k = m was studied in [73].
Additionally, we assume that the scale factor and the scalar
field behave as

a(t) = a0t
n, n > 1, (A17)

φ(t) = φ0

m
log(t), (A18)

where n,m, φ0 and a0 are constants. By using (6), we find
that the energy potential becomes

V (φ) = −ρ0a
−3(w+1)
0 e

− 3mn(w+1)φ
φ0 − e

− 2mφ
φ0

×
(

3βknφ0ekφ

m
+ φ2

0

2m2 − 3n2

κ2

)
+ 3αn2e

mφ(φ0−2)

φ0 .

(A19)

Now, if we replace this equation in (7), we find that

2ακ2m2n(φ0 − 1)a3w+3
0 e

mφ(3n(w+1)+φ0)

φ0

+a3w+3
0

(
κ2φ2

0 − 2m2n
)
e

3mn(w+1)φ
φ0

= βκ2kφ0a
3w+3
0 (kφ0 − m(3n + 1))e

φ
(
k+ 3mn(w+1)

φ0

)

−κ2m2ρ0(w + 1)e
2mφ
φ0 (A20)

needs to hold. For the specific case where ρ0 �= 0, we have
three possibles cases for the state parameter,

w =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2m − kφ0

3mn
− 1,

2 − φ0

3n
− 1,

−1.

(A21)

Now, we will explore all the possible solutions under these
state parameters. In general, all the solutions are very similar
but they are not exactly the same.

A.3.1 Case 1: w = 2m−kφ0
3mn − 1

For this special case, from (A20) the other parameters must
satisfy (k �= 2m)

ρ0 = −3βκ2k
(
3κ2 − 2km + 2m2

)
a

2m(2m−k)
κ2

0

4m4(2m − k)
,

φ0 = 1, n = κ2

2m2 . (A22)

Note that for the case k = 2m we find that n = 1/3, which
is not allowed. Hence, if k �= 2m we find that the energy
density and energy potential for the first state parameter, w1,
are given by

ρm(t) = βk
(−3κ2+2km−2m2

) (
3κ2+2km−4m2

)
t
k
m −2

4m4(k − 2m)
,

(A23)

V (φ) = 3βk
(
2κ2m2 − 3κ4

)
ekφ−2mφ

4m4(k − 2m)

+ 3ακ4e−mφ

4m4 +
(
3κ2 − 2m2

)
e−2mφ

4m4 . (A24)

The special case of non-minimal coupling with the Ricci
scalar can be obtained by taking k = m and β = −α, which
makes the potential become

V (φ) = 3βκ2
(
κ2 − m2

)
e−mφ

2m4 +
(
3κ2 − 2m2

)
e−2mφ

4m4 .

(A25)

123



Eur. Phys. J. C   (2017) 77:472 Page 13 of 14  472 

A.3.2 Case 2: w = 2−φ0
3n − 1

For this case, we need to have φ0 �= 2 and also from (A20)
the parameters must obey

ρ0 = 3ακ4(φ0 − 1)φ4
0a

4m2

κ2φ2
0
− 2m2

κ2φ0

0

2m4(φ0 − 2)
,

k = 3mn + m

φ0
, n = κ2φ2

0

2m2 , (A26)

and hence the energy density and the potential take the fol-
lowing form:

ρm(t) = 3ακ4(φ0 − 1)φ4
0 t

φ0−2

2m4(φ0 − 2)
, (A27)

V (φ) = −3ακ4φ5
0e

mφ− 2mφ
φ0

4m4(φ0 − 2)

−3β
(
3κ4φ4

0 + 2κ2m2φ2
0

)
e

3κ2φφ0
2m −mφ

φ0

4m4

+
(
3κ2φ4

0 − 2m2φ2
0

)
e
− 2mφ

φ0

4m4 . (A28)

A.3.3 Case 3: w = −1 (dark-energy fluid)

For a dark-energy fluid with w = −1, from (A20) the param-
eters need to be

φ0 = 1, k = 3mn + m, n = κ2

2m2 , (A29)

and therefore the energy density is a constant ρ0 and the
potential becomes

V (φ) = 3ακ4e−mφ

4m4 − 3β
(
3κ4 + 2κ2m2

)
e
φ
(

3κ2
2m +m

)
−2mφ

4m4

+
(
3κ2 − 2m2

)
e−2mφ

4m4 − ρ0. (A30)
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