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The holographic complexity and fidelity susceptibility have been defined as new quantities dual to 
different volumes in AdS. In this paper, we will use these new proposals to calculate both of these 
quantities for a variety of interesting deformations of AdS. We obtain the holographic complexity and 
fidelity susceptibility for an AdS black hole, Janus solution, a solution with cylindrical symmetry, an 
inhomogeneous background and a hyperscaling violating background. It is observed that the holographic 
complexity depends on the size of the subsystem for all these solutions and the fidelity susceptibility 
does not have any such dependence.
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1. Introduction

The information theory deals with the ability of an observer to 
process relevant information, and it is important as studies done 
in different branches of physics seem to indicate that the laws of 
physics are informational theoretical processes [1,2]. It is important 
to know how much information is lost when an observer processes 
the relevant information, and it is also important to quantify this 
abstract concept relating to the loss of information in a process. 
The quantity which quantifies this concept relating to the loss of 
information is the entropy, and it is one of the most important 
quantities in information theory. As the laws of physics can be rep-
resented by informational theoretical processes, entropy has been 
used to analyze the behavior of physical systems ranging from con-
densed matter physics to gravitational physics. It may be noted 
that in Jacobson formalism, it is even possible to obtain the general 
relativity from thermodynamics [3,4]. Thus, it is possible that the 
geometry of spacetime is an emergent structure, and it emerges 
due to an information theoretical process. In the Jacobson formal-
ism it is important to assume a certain scaling behavior of entropy 

* Corresponding author.
E-mail addresses: najmemazhari86@gmail.com (N.S. Mazhari), 

davoodmomeni78@gmail.com (D. Momeni), sebastian.beltran.14@ucl.ac.uk
(S. Bahamonde), mirfaizalmir@googlemail.com (M. Faizal), rmyrzakulov@gmail.com
(R. Myrzakulov).
http://dx.doi.org/10.1016/j.physletb.2016.12.060
0370-2693/© 2017 The Authors. Published by Elsevier B.V. This is an open access article
SCOAP3.
to obtain general relativity, i.e., the maximum entropy of a region 
of space scales with its area, and this has been motivated from the 
physics of black holes. This is because the black holes are maxi-
mum entropy objects, and the entropy of a black hole scales with 
its area. The holographic principle is motivated from this observa-
tion that the maximum entropy of a region of space scales with 
its area [5,6]. The holographic principle states that the number of 
degrees of freedom in a region of space is equal to the number 
of degrees of freedom on the boundary surrounding that region 
of space. The AdS/CFT correspondence is of the most important 
realizations of the holographic principle [7], and it relates the su-
pergravity solutions in AdS spacetime to the superconformal field 
theory on the boundary of that AdS spacetime.

It is interesting to note that the holographic principle which 
was initially proposed due to the scaling behavior of entropy in 
black holes, may also lead to a solution of the black hole infor-
mation paradox. The black hole information paradox occurs due to 
the observation that classical information cannot get out of a black 
hole and black holes evaporate due to Hawking radiation. This is 
because it has been proposed that quantum entanglement can be 
used to analyze the microscopic picture of a black hole, and it is 
hoped that this may resolve the black hole information paradox 
[8,9]. The AdS/CFT correspondence, which is a concrete regulariza-
tion of the holographic principle, can be used to quantify quantum 
entanglement in terms of the holographic entanglement entropy. 
The holographic entanglement entropy of a CFT is dual to the area 
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of a minimal surface defined in the bulk of an asymptotical AdS 
spacetime. Now for a subsystem A (with its complement), γA can 
be defined as the (d − 1)-minimal surface extended into the AdS 
bulk with the boundary ∂ A. So, the holographic entanglement en-
tropy for this subsystem, can be written as [10,11]

S A = Area(γA)

4Gd+1
(1)

where G is the gravitational constant in the AdS spacetime.
It is important to know how much information is retained in 

a system, but it is also important to know, how easy is it for 
an observer to process this information. Just as entropy quanti-
fies the abstract idea of loss of information, complexity quantifies 
the abstract idea of the difficulty to process this information, and 
so just like entropy, complexity is a fundamental quantity relating 
to information theoretical processes. As the laws of physics can be 
represented in terms of informational theoretical processes, it is 
expected that complexity can be viewed as another fundamental 
physical quantity, and it is expected that laws of physics should 
be written in terms of complexity. It is interesting to note that 
complexity (like entropy) has been used to study condensed mat-
ter systems [12,13] and molecular physics [14]. In fact, complexity 
is also important in quantum computing [15]. Complexity is also 
important in analysis of the physics of black holes, as it has been 
recently proposed that the information may not be ideally lost in a 
black hole, but it may be lost for all practical purposes as it would 
be impossible to reconstruct it from the Hawking radiation [16]. 
However, unlike entropy, there is no universal definition of com-
plexity of a system, and there are different proposals to define the 
complexity of any systems. However, it is possible to define com-
plexity holographically. In fact, recently holographic complexity has 
been defined as a quantity dual to a volume of codimension one 
time slice in anti-de Sitter (AdS) [17–20],

Complexity = V

8π RGd+1
, (2)

where R and V are the radius of the curvature and the volume in 
the AdS bulk.

The different proposals for complexity could be related to the 
different possible ways to define this volume in the bulk. It is pos-
sible to define complexity as dual to the maximal volume in the 
AdS which ends on the time slice at the AdS boundary V = Vmax
[22], and it has been demonstrated that this proposal corresponds 
to the fidelity susceptibility of the boundary CFT. Hence, this quan-
tity is called fidelity susceptibility even in the bulk, and we will 
denote it by �χF . It is interesting to note that the fidelity sus-
ceptibility of the boundary theory can be used for analyzing the 
quantum phase transitions [23–25], and thus it is possible to study 
quantum phase transitions holographically. However, it is also pos-
sible to use a subsystem A with its complement, and define the 
volume as V = V (γ ). This volume is the volume enclosed by the 
minimal surface used to calculate the holographic entanglement 
entropy [21],and it can also be used to holographically define com-
plexity that we will denote by �C . As we want to differentiate it 
from the case, where the maximum volume has been used to cal-
culate the complexity of a system, we shall call it holographic com-
plexity (this terminology follows from [21], where such a quantity 
is called holographic complexity). Thus, in this paper, the maxi-
mum volume of a system V = Vmax will be used to calculate the 
fidelity susceptibility, and the V = V (γ ) will be used to calcu-
late the holographic complexity of such a system. As complexity 
is a new physical quantity and it is expected that laws of physics 
can be written in terms of complexity, we will use these recent 
proposals to calculate the holographic complexity and fidelity sus-
ceptibility for various deformed AdS solutions.
As it has been proposed that the holographic complexity and 
fidelity susceptibility of a boundary theory can be holographically 
calculated from a deformed AdS bulk solution, it would be interest-
ing to calculate such quantities for AdS bulk solutions which have 
interesting boundary dual solutions. These quantities calculated in 
the bulk could be used to understand the behavior of the boundary 
field theory dual to such geometries. This is the main motivation 
to study such quantities for an AdSd+2 black hole, Janus solution, 
cylindrical solution, inhomogeneous backgrounds, and hyperscal-
ing violating backgrounds. Most of these deformed AdS solutions 
have interesting boundary dual. In this paper, we will also mention 
some interesting field theories which are dual to these deforma-
tions of the AdS spacetime. Thus, it is important to analyze such 
quantities in the bulk to possibly understand their behavior in the 
boundary field theory dual to such a bulk. Furthermore, apart from 
having interesting boundary duals, these solutions are interesting 
geometric solutions. So, by calculating these quantities for these 
solutions, we will also try to understand certain universal features 
of holographic complexity and fidelity susceptibility for different 
deformations of the AdS geometry.

The organization of this paper is as follows: In Sec. 2, we will 
study the holographic quantities for an AdSd+2 black hole. In Sec. 3
and Sec. 4 we will examine the Janus and cylindrical solutions and 
we will show that the holographic complexity is different than the 
fidelity susceptibility, which is an opposite result as it was given 
in previous works. In Sec. 5 and Sec. 6, as two complementary and 
interesting examples, the holographic complexity and the fidelity 
susceptibility will be also studied for geometries with inhomoge-
neous and hyperscaling violating backgrounds respectively. Finally, 
we will conclude our main results in Sec. 7.

2. AdS black holes

In the holographic picture, an excited state in CFT on the 
boundary is dual to a deformation of AdS in the bulk. This de-
formed metric could be expressed asymptotically by an AdS ge-
ometry. Such AdS black hole can be used to holographically model 
superconductors [26,27]. It is important to understand the behav-
ior of fidelity susceptibility for superconductors. In fact, the fidelity 
susceptibility in topological superconductors has been obtained, 
and this was done by solving Bogoliubov–de Gennes equations 
[28]. As it is possible to holographically describe superconductors 
using AdS black holes, it will be possible to obtain the fidelity sus-
ceptibility for such field theories which are boundary dual to AdS 
black holes, by calculating the fidelity susceptibility for AdS black 
holes. So, we will calculate the fidelity susceptibility for a AdS 
black hole, and this will be dual to the maximum volume. How-
ever, we will also use a subsystem, and calculate the holographic 
complexity for such AdS black holes.

We will use a deformed Poincaré metric for AdSd+2 black hole 
to perform this calculation, and this metric can be written as

ds2 = R2

r2

(
−h(r)dt2 + dr2

h(r)
+ dρ2 + ρ2d�2

d−1

)
. (3)

By setting the metric function h(r) = 1, we can recover a pure AdS 
space-time. This metric function now gets deformed as h(r) = 1 −
mrd+1 where m is a constant. In analogy with the pure AdS back-
ground, subsystem in the bulk can be parametrized by ρ = f (r). 
However, in this case, the function f (r) does not have a closed 
simple form. The minimal hypersurface can be obtained by mini-
mizing the auxiliary functional,

Area = �d−1

∫
dr

( R

r

)d
f (r)d−1

√
f ′(r)2 + 1

h(r)
. (4)
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Here, prime denotes derivative with respect to the radial coordi-
nate r and �d−1 = 2πd/2/	(d/2). The appropriate boundary con-
ditions for this system are f (0) = rt and f ′(0) = 0, where rt de-
notes the classical turning point of f (r). The associated equation 
of motion obtained from this action can be expressed as

f ′′ + 1 − d

f

(
f ′(r)2 + 1

h(r)

)
+ f ′

2

h′

h
= 0 . (5)

For a sufficiently small parameter m, we can write the solution to 
this equation up to first order in m as an expansion of f (r) as 
follows

f (r) = f0(r) + mf1(r) +O(m2) , (6)

where f (r) is the exact solution of Eq. (5). For h(r) ≈ 1, the initial 
conditions are given by

f0(r) = rt , f ′
0(r = 0) = 0 , (7)

and hence we obtain

f0(r) =
√

r2
t − r2 . (8)

The profile of the minimal surface at leading order in m can be 
written as

m
d+1 � 1 . (9)

Thus, we can write the metric function as [38]

f (r) =
√

r2
t − r2

(
1 + 2rd+3

t − rd+1(r2
t + r2)

2(d + 2)(r2
t − r2)

m

)
+O(m2) , (10)

where we assumed a regularity at r = rt . The parameter rt is a free 
positive constant which is related to the radius 
 of the subsystem 
by


 = 2

rt∫
0

dr
( r

rt

)d
√√√√ 1

h(r)
(
1 − ( r

rt

)2d) . (11)

The length of the entangled system is fixed, so that we can com-
pute the turning point rt to leading order in m, yielding

rt = 


(
1 − m
d+1

d + 1
+O

(
(m
d+1)2

))
. (12)

The volume of codimension one spacetime enclosed by the mini-
mal area is defined by the following integral,

V (γ ) = �d−1 Rd+1

d

rt∫
ε

dr
f (r)d

rd+1
√

h(r)
. (13)

Here ε denotes a UV cut-off. By substituting Eq. (10) into the above 
equation and then by evaluating the integral, we obtain

�V = V B H − V AdSd+1 = 4ad Rd+1�d−1

(d + 2)d

(
m
d+1

)
, (14)

where the coefficients ad are defined as

ad =
{

A d = 2n,n ∈ Z,

B d = 2n + 1,n ∈ Z ,
(15)

and
A =
d
2∑

p=0

d
2 −1∑
q=0

( d
2
p

)( d
2 − 1

q

)[
(d + 2)(q + 3

2
)(q − d/2)(q + 1

2
)(−1)p

+ (p + 1

2
)((q + 1)d + 2q + 3

2
)d(−1)q

]
×

[
(2p + 1)(2q − d)(2q + 3)(2q + 1)

]−1
, (16)

B =
∞∑

p=0

∞∑
q=0

( d
2
p

)( d
2 − 1

q

)[
(d + 2)(q + 3

2
)(q − d/2)(q + 1

2
)(−1)p

+ (p + 1

2
)((q + 1)d + 2q + 3

2
)d(−1)q

]
×

[
(2p + 1)(2q − d)(2q + 3)(2q + 1)

]−1
, (17)

where 
( d

2
p

)
denotes the binomial coefficient. Now, by using Eqs. (14)

and (2) we can obtain the holographic complexity, which is

�C = 4ad Rd�d−1

8πG (d + 2)d

(
m
d+1

)
. (18)

It may be noted that this expression for �C is different from the 
holographic complexity calculated in [21], which was given by

�C = cd Rd�d−1

8πGd
(m
d+1)2 . (19)

Therefore, �C ∝ m
d+1, and not (m
d+1)2 as was proposed in [21].
Now, we will calculate the fidelity susceptibility for a deformed 

AdS state with metric (3). To do this, we need to evaluate the 
Vol(max) for the metric given by Eq. (3). Therefore, we can set 
t = 0 and consider the codimension one hypersurface. In order to 
compute the volume integral, we can use the expression (13) with 
different integral limits, i.e., change rt by the horizon r+ given by 
h(r+) = 0, and r+ = m− 1

d+1 . Thus, the volume term can be ex-
pressed as [22],

�Vol(Vmax) = bd Rd+1 Vd

d
(md/(d+1)) , (20)

where Vd = Vol{Vd : dρ2 + ρ2d�d−1}. The fidelity susceptibility 
can be written as

�χF (λ) = nd
bd Vd

d
(md/(d+1)) . (21)

This fidelity susceptibility can be used to obtain the fidelity sus-
ceptibility for the holographic superconductors. However, we have 
also demonstrated that it is also possible to derive other quantities 
dual to the volume in the bulk, and this is the holographic com-
plexity. It may be noted that the holographic complexity depends 
on the size of the subsystem 
 and as the fidelity susceptibility 
was calculated for the full system, no such dependence has been 
observed. Furthermore, as holographic entanglement entropy has 
been calculated for AdS black holes [29,30], and the holographic 
complexity is calculated using the same surface as entanglement 
entropy. Hence we have calculated both holographic complexity 
and fidelity susceptibility for AdS black holes.

3. Janus solution

It is possible to obtain a nonsupersymmetric dilatonic defor-
mation of AdS geometry as an exact nonsingular solution of the 
type IIB supergravity [31]. The gauge theory dual to this solu-
tion has a different Yang–Mills coupling in each of the two halves 
of the boundary spacetime divided by a codimension one defect. 
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The structure of the boundary and the string configurations corre-
sponding to Wilson loops for this solution have been studied [31]. 
This solution is called the Janus solution, and it has also been pos-
sible to study the supersymmetric Janus solution [32]. It has been 
demonstrated that the Janus solution has quantum level confor-
mal symmetry, and this was done by using conformal perturbation 
theory to study various correlation functions [33]. The holographic 
entanglement entropy in the presence of a conformal interface has 
been recently calculated, and it was observed that for the super-
symmetric Janus solution, the holographic entanglement entropy 
calculated from the bulk was in exact agreement with the calcu-
lations done using a CFT [34]. As the holographic complexity is 
calculated using the same surface as the holographic entanglement 
entropy, we will calculate the holographic complexity for the Janus 
solution. We will also calculate the fidelity susceptibility for the 
Janus solution, and this can be used to understand the behavior of 
fidelity susceptibility for a system of consisting of different Yang–
Mills coupling in each of the two halves of the boundary.

It is possible to use the AdS2 slice of the deformed AdS3 to 
obtain the Janus solution. This solution is an exact solution defined 
using the following Euclidean bulk action,

S = − 1

16πG N

∫
d3x

√
gE

(
R − φ;μφ;μ + 2

R2

)
. (22)

Here, φ is the massless bulk scalar field. The metric of the Janus 
solution and the profile of the dilaton field, is given by the Eu-
clidean metric

ds2 = R2(dy2 + f (y)

z2
(dz2 + dx2)) , φ(y) = γ

y∫
−∞

dy

f (y)
+ φ1 ,

(23)

f (y) = 1

2

(
1 +

√
1 − 2γ 2 cosh(2y)

)
, γ ≤ 1

2
, φ1 = φ(−∞) .

(24)

For this geometry, the coupling constant for the ground state 
|Omega1〉 is dual to φ1. The fidelity susceptibility was computed 
in [22], and is given by

�χF (λ) = cV 1

12πε
, (25)

where V 1 is the volume of the AdS2 per unit radius and ε is a UV 
cutoff. Now, we will compute the holographic complexity for the 
Janus solution represented by the metric (23). The area functional 
for an entangled region A = {x ∈ [0, L], z = z(y)} will be given by

Area = R2L

y∞∫
−y∞

dy

√
f (y)

z2

(
1 + f (y)

z2
z′ 2

)
, z′ ≡ dz

dy
. (26)

Moreover, the entangled length and volume are


 = 2

yt∫
0

z′(y)dy , (27)

V (γ ) = R3L

y∞∫
−y∞

dyf (y)

z(y)∫
ε

dz

z2
, (28)

which could be simplified by subtraction of the pure AdS portion 
from the AdS black hole. Thus, we can write the finite part as

V (γ ) = −R3L

y∞∫
dy

f (y)

z(y)
. (29)
−y∞
Next, we need to find z(y) which minimizes the area functional 
(26) subject to the boundary conditions z(0) = zt and z′(0) = 0. 
We can expand z(y) = z0 + z1 y2 + z2 y4 in series to find its solution 
up to fourth order in y,

z (y) = zt − zt

2

(
1 + √

1 − 2γ 2
)

y2√
1 − 2γ 2 + 1 − γ 2

(30)

− zt

12

(
−9 − 9

√
1 − 2γ 2 + 17γ 2 + 8γ 2

√
1 − 2γ 2

)
y4

(√
1 − 2γ 2 + 1 − γ 2

)2

+O(y6) .

Using this solution which is valid near the Cauchy surface y = 0, 
we can evaluate the length 
. Now we obtain numerically that zt ≈

1/3 + O  

(
γ 2

)
. Finally, the holographic complexity is given by the 

following expression:

�CA = 1

8π RGd+1

(
9.114502677 zt

−1 + 16

9

y∞
zt

+O
(

y∞−1
)

+O(γ 2)
)

. (31)

It is remarkable to see that (25) and (31) are different even in the 
first orders. It can be noted that in the leading order of expansion,

�CA ≈ 
−1/3 . (32)

Thus, we have obtained an expression for the holographic com-
plexity and fidelity susceptibility for Janus solution. It may be 
noted that as the holographic complexity is calculated for a sub-
system, it depends on the size of the subsystem. However, the 
expression (25) is independent of the entangled length, as the fi-
delity susceptibility is calculated for the full system. Furthermore, 
the fidelity susceptibility for this solution can be used to under-
stand the behavior of fidelity susceptibility for a system described 
by two different Yang–Mills coupling in each of the two halves of 
the boundary.

4. Cylindrical symmetry

In order to examine the properties of the holographic complex-
ity and the fidelity susceptibility, it is important to study geome-
tries with different types of symmetries as for example, cylindrical 
ones. A very interesting cylindrically symmetric solution was pre-
sented in [35], where a massless scalar field minimally coupled to 
gravity with cosmological constant was obtained. This solution can 
be understood as a generalization of the Buchdahl’s solution with-
out cosmological constant and the Levi-Civita-� solution without 
a scalar field. Cosmologically speaking, it was also showed in [35]
that this solution can describe a Cyclic universe in a braneworld 
model. The Einstein–Rosen waves and the self-similarity hypothe-
sis have been studied using cylindrical symmetric solution [36]. It 
has been observed that such solutions are reduced to part of the 
Minkowski spacetime with a conically singular axis if the homo-
thetic vector is orthogonal to the cylinders of symmetry. A vortex 
line solution for Abelian Higgs field has also been analyzed using 
a cylindrical symmetric solution [37]. In this study, it was demon-
strated that the mass density of the string is uniform and dual to 
the discontinuity of a logarithmic derivative of correlation function 
of the boundary scalar operator. It would be interesting to ana-
lyze the fidelity susceptibility for a cylindrical symmetric solution, 
as this can be used to understand the behavior of fidelity suscep-
tibility for the Abelian Higgs field. So, now we will calculate the 
fidelity susceptibility for a cylindrical symmetric solution. We will 
also calculate the holographic complexity for such a solution.
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To calculate the holographic complexity and the fidelity sus-
ceptibility for a solution with cylindrical symmetry, we will use a 
cylindrical analog of the AdS4 [35]. This solution is obtained from 
the action of a massless scalar field φ in the presence of a cosmo-
logical constant, i.e., the action

S = − 1

16πG N

∫ √−gd4x
(

R − 2� + φ;μφ;μ)
. (33)

In Weyl cylindrical coordinates xμ = (t, r, ϕ, z), the field equation 
given by Rμν +�gμν = φ;μφ;ν has the following exact solution for 
the metric and the scalar field:

ds2 = dr2 + e
−2

√
−�

3 r
(ξ2e−2

√−3�r + 1)2/3(−dt2 + dϕ2 + dz2) ,

(34)

φ = ±2
√

6

3
tan−1(ξe−√−3�r) . (35)

Here, ξ is a scalar field parameter which determines the curvature 
strength of the scalar field. If this parameter is complex, this so-
lution has a naked singularity whereas if |ξ | > 1 it does not have 
any such singularity. This solution reduces to the cylindrical Levi-
Civita-Lambda solution when φ = 0, and it reduces to the Buchdahl 
solution (the solution of Einstein gravity with massless scalar field) 
when we set � = 0. Following the proposal of [22], to find the fi-
delity susceptibility, we need to evaluate the following integral

S(ξ) = R

4πG N
(2π L)

r∞∫
−r∞

dr(1 + ξ2e6r/
)2/3 , (36)

where we defined the AdS radius as 
2� = −3. The action (36)
evaluated at ξ = 0 is

S(0) = R

4πG N
(2π L)

r̂∞∫
−r̂∞

dr̂ , (37)

where r̂ is obtained from the asymptotic form of the metric in the 
pure AdS case when ξ = 0 given by (r → ∞)

ds2
pure ∼ dr̂2 + e−2 r̂


 (−dt2 + dϕ2 + dz2) . (38)

Here r∞ is the one obtained from the asymptotic form (r → ∞) of 
the metric in the massive AdS case when ξ �= 0, which reads

ds2
massive ∼ dr2 + ξ4/3e2r/
(−dt2 + dϕ2 + dz2). (39)

If we match these two metrics, we find that

ξ2/3er∞
 = e∓r̂∞
 , (40)

and then we need to consider two cases depending on the signs in 
the above equation.

Choosing the minus sign in Eq. (40), up to the second order of 
ξ , the difference of integrals (36) and (37) gives us

S(ξ) − S(0) = RL

G N

(
2r∞ − 
(1 − ξ2/3) +O(ξ2)

)
, (41)

and using this expression, we can find the fidelity susceptibility 
which is given by

| 〈�2|�1〉 | ≈ eS(ξ)−S(0) ≈ 1 − LR

G N

(
1 − ξ2/3 +O(ξ2)

)
. (42)

Choosing the plus sign in Eq. (40), following the same proce-
dure as before, we find that the difference of the integrals is
S(ξ) − S(0) = RL

G N

(
− 2


3
ln ξ + 
ξ2

9
sinh

(6r∞



) +O(ξ4)
)

, (43)

and then, the fidelity susceptibility becomes

| 〈�2|�1〉 | ≈ eS(ξ)−S(0) ≈ (
1 + RL

G N


ξ2

18
e

6r∞



)
e
− 2R
L

3GN
ln(ξ)

. (44)

Now, to compute the holographic complexity for the met-
ric (34), we will suppose that the entangled region is Ã = {r =
r(ϕ), 0 < z < L, t = 0, ϕ ∈ [0, ϕ∞]}, and so that the area functional 
is given by the following

Area = 2L

ϕ∞∫
0

dϕ

√
f ( f + r′ 2) , (45)

where f = e−2 r

 (ξ2e

6r

 + 1)2/3 and prime denotes differentiation 

with respect to ϕ . Since the functional is not a function of ϕ , the 
following first integral is a conserved quantity,

f 2√
f ( f + r′ 2)

= E . (46)

If we suppose that r(0) = rt and r′(0) = 0, then E = f (rt), and 
hence we obtain

r′ = ±
√

f
( f 2

f (rt)2
− 1

)
. (47)

Therefore, the integral of area is minimized as follows:

Area = 2L

rt∫
0

dr
f 2√

f ( f 2 − f (rt)2)
, (48)

where rt is obtained from


 = 2

rt∫
0

dr
f√

f ( f 2 − f (rt)2)
. (49)

In order to obtain the Holographic entanglement entropy, we need 
to solve (49) to find rt and then replace it in (48). For the holo-
graphic complexity, we need to evaluate the following integral

V (γ ) = 2L

ϕ∞∫
0

dϕ

r(ϕ)∫
rt

f dr . (50)

The minimal surface near the AdS horizon is given approximately 
by the following series expression:

r (ϕ) = rt −
(

e−2 rt

 − ξ2e4 rt




)
ϕ2 1

3
√

1 + ξ2e6 rt




−1 (51)

− 2/3
(

e−2 rt

 − ξ2e4 rt




)
×

(
2 e−2 rt


 + ξ2e4 rt

 + e10 rt


 ξ4 + 2 ξ6e16 rt



)
× ϕ4

(
1 + ξ2e6 rt




)−8/3

−3

+O
(
ϕ6

)
. (52)

We can compute 
 using Eq. (49) and then we can find rt from 
it. Finally, we evaluate the volume, and we get the following holo-
graphic complexity for entangled cylinder:
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�CA = −2 L

16πGd+1

[⎛
⎝ φ∞∫

0

(
−1 + e

2/3
φ2

(
3 
2+4 φ2

)

4

)
dφ

⎞
⎠ +O(ξ2)

]
.

(53)

It may be noted that the holographic complexity for the entan-
gled cylinder again depends on the size of the system. However, 
the fidelity susceptibility does not have such a dependence, as it 
is calculated for the full system. It will be interesting to use this 
result to understand the behavior of the fidelity susceptibility for 
an Abelian Higgs field, as the Abelian Higgs field is dual to such 
solutions.

5. Inhomogeneous backgrounds

Another interesting way to study these holographic quantities is 
for example, to consider metric with different kind of background 
as those with inhomogeneous [38]. In fact, it has been demon-
strated using this solution that the entanglement entropy for a 
very small subsystem obeys a property which is analogous to the 
first law of thermodynamics when the system is excited. It has 
also been demonstrated that the AdS plane waves describe sim-
ple backgrounds which are dual to anisotropically excited systems 
with energy fluxes [39]. An inhomogeneous background has been 
used to holographically calculate conductivity [40]. It has been 
demonstrated that the Drude-like peak and a delta function with 
a negative weight occur for the real part of this conductivity. Thus, 
it will be interesting to analyze the fidelity susceptibility and holo-
graphic complexity for such a solution, and use it to understand 
the behavior of such systems.

Thus, we will use the inhomogeneous backgrounds, and the 
metric for such a background can be written as follows [38]

ds2 = R2

z2

[
− f (z)dt2 + g(r, z)dz2 + dr2 + r2d�d−1

]
, (54)

here g(r, z) = 1 + m(1 + ar + br2)zd with m � 1. This geometry is 
dual to CFTd . The entangled region is a round sphere of radius r =

. We parametrize the region by A = {t = 0, z = z(r)} and hence 
the area functional becomes

Area = �d−1 Rd
∫ ( rd−1

zd

)[
g(r, z)z′ 2 + 1

]1/2
dr , (55)

where primes denote derivatives with respect to r. The Euler–
Lagrange equation for the above area functional is given by

2rzz′′ = ( − 2 dz
(
r
) − 2 zdm a d r z

(
r
) + 2 z

(
r
)

− 2 r2mzdbdz
(
r
) − 2 dzdmz

(
r
) + zdmarz

(
r
))

z′3

+ (
2 zdmz

(
r
))

z′3 − 2 dz′2r + (
2 z

(
r
)

− 4 r2mzdbz
(
r
) − 2 zdm a r z

(
r
) − 2 dz

(
r
))

z′

− 2 dr + 2 r2dzdma + 2 dzdmr + 2 r3dzdmb . (56)

Here, in order to obtain a series solution for z(r), we can suppose 
that m � 1. In addition, we can suppose the boundary conditions 
are z(0) = zt and z′(0) = 0, giving us

z (r) = zt +
(
mzn

t − 1
)

r2

2zt
− mzt

na
(
mzt

n − n − 1
)

r3

3zt (n + 1)
+O(r4) .

(57)

The volume functions read as follows

V = �d−1 Rd+1

rt∫
rd−1dr

z(r)∫ √
g(r, z)

zd+1
dz. (58)
0 0
Using the solution (57) and the approximation m � 1, the finite 
part of the volume functional which is obtained by subtracting the 
pure AdSd+2 part from the massive one will be

V = −mzt�d−1 Rd+1

3

rt∫
0

∑
cnrn(r2 − 2z2

t )k(n)− 1
2 dr . (59)

The fidelity susceptibility is proportional to the finite part of the 
following integral,

Vmax = �d−1 Rd+1

r∞∫
0

rd−1dr

z∞∫
0

√
g(r, z)

zd+1
dz

≈ mb�d−1 Rd+1

2(d + 2)
rd+2∞ ln(z∞) . (60)

Here z∞ and r∞ are UV cutoff values. It is important to mention 
that these two volumes (59) and (60) are different. Furthermore, 
the fidelity susceptibility does not scale with the size of the sub-
system, as it is calculated for the whole system. It can be used to 
understand the behavior of fidelity susceptibility a certain CFTd , 
which is dual to such a solution [38]. We have also calculated 
the holographic complexity of this solution, and this was done by 
using the same surface, which would be used to calculate the holo-
graphic entanglement entropy of this system.

6. Hyperscaling violating backgrounds

A hyperscaling geometry occurs in theories with an entropy–
temperature relationship given by S ∼ T d/z , where d is the di-
mension of the space-time and z is known as a dynamical critical 
exponent. In other words, these theories have free energy scales 
determined by three dimensions [41–43]. The scaling behaviors 
of the mutual information during a process of thermalization of 
such solution has been studied [44]. It was demonstrated in this 
study that during the thermalization process, the dynamical ex-
ponent can be used to obtain the general time scaling behavior 
of mutual information. Furthermore, it was demonstrated that the 
scaling violating parameter can be employed to define an effective 
dimension. The DC and Hall conductivity for strange metal has also 
been studied holographically using such backgrounds [45]. This is 
because such solutions can be used to obtain linear-T resistivity 
and quadratic-T inverse Hall angle. Now we will analyze fidelity 
susceptibility for a hyperscaling violating background, and it will 
be important to understand the behavior of fidelity susceptibility 
for strange metals. We will also use a different volume to also cal-
culate the holographic complexity for such systems.

Thus, we can start from a non-relativistic hyperscaling violating 
geometry, and this geometry can be described using the following 
metric [41–43]

ds2 = R2

r2

[
− r

−2(d−1)(z−1)
d−1−θ dt2 + r

2θ
d−1−θ dr2 + dx2

i

]
. (61)

Here, the index i = 1, 2, . . . , d denotes the coordinates for the 
flat spatial part of the metric and z and θ are the dynami-
cal and hyperscaling violating exponents respectively. Moreover, 
θ can be interpreted as the dimension of a zero-energy exci-
tations momentum-space surface. Clearly, Lifshitz theories arise
when we take θ = 0 and z �= 1, whereas CFT are recovered with 
θ = 0 and z = 1. For this space-time, the entangled region can be 
parametrized to A = {x1 = x1(r), x2,3,...,d = L}, and then the area 
functional is given by

Area = Ld−1
∫ ( R )d

rd
[

r
2θ

d−1−θ + (x1)
′ 2

]1/2
dr (62)
r



100 N.S. Mazhari et al. / Physics Letters B 766 (2017) 94–101
where primes denote differentiation with respect to r. The func-
tional (62) does not depend on x1, so that the first integral exists,

x′
1[

r
2θ

d−1−θ + (x1)′ 2
]1/2

=
( r

r∗

)d
, (63)

where x′
1(r∗) = ∞. The volume can be obtained by

V = Ld−1 Rd+1

r∗∫
0

r
θ

d−1−θ
−(d+1)x1(r)dr , (64)

where r∗ can be found from the total length of the entangled re-
gion, which is


 = 2r
d−1

d−1−θ∗
1∫

0

ξ
d+ θ

d−1−θ√
1 − ξ2d

dξ , ξ = r

r∗
. (65)

From (63), we can find the following solution

x1(r) = 2r
d−1

d−1−θ∗
(d − 1 − θ) (d (d − 1) − θ (d − 1) + d − 1 − θ)

×
(

r

r∗

)2dB

2F1

(
A, B; C; D

)
, (66)

where

A = 1

2
,

B = 1

2

d (d − 1) − θ (d − 1) + d − 1 − θ

(d − 1 − θ)d
,

C = 1

2

2 d2 − d − 2 dθ + d (d − 1) − θ (d − 1) − 1 − θ

(d − 1 − θ)d
,

D = −
(

r

r∗

)2 d

. (67)

where 2 F1(A, B; C; D) denotes the first hypergeometric function. 
By replacing (66) in (64), we find that the volume is

V = Ld−1 Rd+1r
θ+d−1
d−1−θ

−(d+1)

∗
1∫

0

ξ
θ

d−1−θ
−(d+1)x1(ξ)dξ , (68)

which can be simplified to the form

V = Ld−1 Rd+1r
θ+d−1
d−1−θ

−(d+1)

∗ N(d, θ) . (69)

This quantity is a number since 
 ∼ r
d−1

d−1−θ∗ . Thus, holographic com-
plexity becomes

C = Ld−1 Rd
(θ−(d+1)(d−1−θ))(d−1)N(d, θ)

8πG
. (70)

Finally, the fidelity susceptibility is proportional to the finite part 
of the following integral

Vmax = Rd+1Ld

r∞∫
ε

r
θ

d−1−θ
−(d+1)dr

≈
( Rd+1Ld

θ
d−1−θ

− d

)
r

θ
d−1−θ

−d
∞ . (71)

Here, we can see that θ �= d(d−1)
d+1 and then the above volume ex-

pression is totally different than Eq. (69). It may be noted that no 
trace of Lifshitz exponent z appears in the volumes. Thus, both the 
fidelity susceptibility and holographic complexity will not depend 
on the Lifshitz exponent z. Furthermore, the holographic complex-
ity also depends on the size of the subsystem, even for these 
backgrounds. However, no such dependence is observed in the fi-
delity susceptibility, as it is calculated for the full system.

7. Conclusion

The laws of physics can be represented in terms of the abil-
ity of an observer to process relevant information. The information 
theory deals with the ability of an observer to process informa-
tion. It is important to know how much information is lost during 
such a process, and how difficult it is for an observer to process 
the relevant information during such a process. Just as the entropy 
quantifies the abstract idea of the loss of information, complexity 
quantifies the idea of the difficulty to process that information. It 
is possible to use the AdS/CFT correspondence to calculate the en-
tanglement entropy of a field theory holographically from the bulk 
geometry dual to such a field theory. This is done by calculating 
the area in the bulk, as the area in the bulk geometry is dual to 
the holographic entanglement entropy of the boundary theory. Re-
cently, it has been proposed that it is also possible to calculate the 
complexity of a system holographic, as it is dual to a volume in 
the bulk. As there are many ways to define a volume in the bulk, 
many different proposals for the complexity have been proposed. If 
the maximum volume is used, then we obtain the fidelity suscep-
tibility �χF . However, if we use the same surface used to calculate 
the entanglement entropy, then we obtain a new quantity which is 
called the holographic complexity �C . In this paper, we calculate 
both these quantities for a variety of deformed AdS solutions.

We calculate it for an AdS black hole, Janus solution, a solu-
tion with cylindrical symmetry, inhomogeneous backgrounds and 
hyperscaling violating backgrounds. It was observed that most of 
these geometries are dual to interesting field theories. Thus, it was 
important to calculate and analyze the behavior of holographic 
complexity and fidelity susceptibility for such bulk geometries, as 
these results can be used to understand the behavior of the bound-
ary field theory. Furthermore, these geometries where interesting 
deformations of AdS spacetime, and certain universal features were 
observed to occur in all these different geometries. It was observed 
that as the holographic complexity depended on the size of the 
subsystem, and the fidelity susceptibility did not depend on any 
such size. These observations did not depend on the kind of de-
formation of the AdS spacetime, and thus seem to be a universal 
feature of all such deformations. It is also expected to occur as 
the holographic complexity was calculated for a subsystem, so it 
depended on the size of the subsystem. However, as the fidelity 
susceptibility was calculated for the full system, it did not depend 
on the size of the subsystem.

It may be noted that these deformed AdS backgrounds are dual 
to interesting field theories, and many of these field theories have 
important condensed matter applications. Thus, we can use the re-
sults of this paper, to obtain the fidelity susceptibility for those 
field theories. In fact, many of those theories can be represented 
by a many-body system. The quantum mechanical Hamiltonian for 
such a system, can be written as H(λ) = H0 + λH I , where λ is an 
external excitation parameter [23–25]. It is possible to diagonalize 
this Hamiltonian by an appropriate set of orthonormal eigenstates 
|n〉 and eigenvalues Em(λ), H(λ) |n(λ)〉 = En(λ) |n(λ)〉. Furthermore, 
for any two states λ and λ′ = λ + δλ (which are close to each 
other), it is also possible to define F (λ, λ + δλ) = 1 − δλ2

2 χF (λ) +
O(δλ4). Now the fidelity susceptibility of this system is denoted 
by χF (λ) [23–25]. It is possible to estimate this quantity χF (λ)

holographically as χF (λ) = complexity when V = Vmax [22].
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We have calculated fidelity susceptibility for various bulk so-
lutions, and these bulk solutions are dual to interesting boundary 
theories. Hence, the results of the paper can be used to understand 
the behavior of the fidelity susceptibility for those boundary theo-
ries, which are dual to the bulk solution analyzed in this paper. We 
would also like to comment, that at present it is not clear what 
quantity does holographic complexity represent in the boundary 
theory. It may be a new quantity, which might be closely related 
to the holographic entanglement entropy, as it is calculated us-
ing the same surface which is used to calculate the holographic 
entanglement entropy. It will be interesting to analyze the rela-
tion between the holographic complexity and holographic entan-
glement entropy, to understand the implications of the holographic 
complexity for the boundary theory. We have analyzed both holo-
graphic complexity and fidelity susceptibility for various solutions
in this paper, and it would also be interesting to understand the 
relation between the holographic complexity and fidelity suscep-
tibility. The latter might also lead to some understanding of the 
use of holographic complexity for the boundary theory. However, 
as both these proposals have only been recently made, it was im-
portant to apply them to various different deformed AdS solutions, 
and this is what we have done in this paper.

A connection has been established between the holographic 
entanglement entropy and the quantum phase transition in a 
lattice-deformed Einstein–Maxwell-Dilaton theory [46]. In fact, in 
this study backgrounds exhibiting metal–insulator transitions have 
been constructed. Furthermore, it has been demonstrated that for 
these backgrounds both metallic phase and insulating phase have 
vanishing entropy density, in zero temperature limit. It would be 
interesting to analyze holographic complexity and fidelity suscepti-
bility for such backgrounds, and thus use them to study the behav-
ior of metal–insulator transition. The holographic phase transition 
with dark matter sector in the AdS black hole background has also 
been studied [47]. It was observed that the properties of different 
phases of this system can be obtained from the holographic entan-
glement entropy for this system. It would be interesting to analyze
the holographic complexity and fidelity susceptibility for such a 
system.
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