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ABSTRACT

Von Willebrand disease (VWD) is one of the main inherited coagulation disorder. It
is caused by a deficiency and/or a dysfunction of the von Willebrand factor (VWF), a
fundamental multimeric glycoprotein involved in the hemostasis process. Correct detection
of the disease is not an easy task because the disease manifests itself in many variants and
a high intra-subject variability is observed. For these reasons, the diagnostic clinical trials
typically rely on a 24-hour sampling protocol, which makes the overall test long, stressful
and costly. Using a new pharmacokinetic model derived from Galvanin et al. (AIChE
Journal, 2014, 60, 1718-1727) this study aims at: i) assessing the theoretical possibility to
perform a shorter clinical test, ii) proposing a set of model-based diagnostic methods as a
support for the clinical team.
A preliminary information analysis is performed in order to understand which sampling
instants are more informative for model identification. This allowed us to propose a novel,
8-h diagnostic protocol which is still able to ensure model identifiability. Three alternative
diagnostic methods are then proposed based on this short-length clinical protocol. One of
them directly uses the pharmacokinetic model, whereas the other two are based on the
use of three indices (two pharmacokinetic indices, namely clearance, total VWF released
and as third index the basal multimer ratio) to formulate the diagnosis problem as a
classification one. The classification problem is then solved using K-nearest neighbors and
linear discriminant analysis. Results show the theoretical feasibility of a VWD diagnosis
based on a shorter protocol.

Keywords: von Willebrand disease, model identification, disease diagnosis, discriminant
analysis, nearest neighbors.

1

mailto:fabrizio.bezzo@unipd.it


INTRODUCTION

Von Willebrand disease (VWD) is the most widespread inherited bleeding disorder that
leads to coagulation problems. Epidemiological studies in Italy and in the USA estimate
the affected population in about 1%. [1;2] The disease is caused by a deficiency and/or
a dysfunction of the von Willebrand factor (VWF), a multimeric glycoprotein present
in the bloodstream. VWF acts as carrier and stabilizer for the coagulation factor FVIII
and shows its relevance during the hemostasis process since it promotes the adhesion,
activation and aggregation of platelets on the damaged endothelium site, leading to the
formation of the blood cloth. [3;4] The main clinical symptoms of VWD include nosebleeds,
bleeding from small lesion in skin, mucosa or the gastrointestinal tract, menorrhagia and
excessive bleeding after trauma, surgical interventions or childbirth. [5] In healthy people,
VWF level in blood strongly depends on the ABO group, in particular the O group has
lower VWF level with respect to non-O group. [6] VWD can be divided into three main
types, depending on the defect on the VWF: partial quantitative deficiency (Type 1),
qualitative dysfunction (Type 2), total qualitative deficiency (Type 3). A special case is
represented by Vicenza subtype, [7] that presents both quantitative and qualitative defect
on the multimers. Furthermore, Type 2 presents variants such as 2A, 2B, 2M and 2N. [8]

Classic diagnosis of the disease relies on the protocol that is based on the subcutaneous
injection of DDAVP (1-desamino-8-D-arginine vasopressin), which forces VWF release,
followed by the collection of 10 blood samples over a total time of 24 h (1440 min), which
is in fact an invasive and stressful situation for the patients, as well as expensive in
terms of nurse assistance. The test is complex and can be carried out only in specialized
clinical centers. Correct diagnosis is not an easy task due the variety of subtypes, poor
reproducibility of measurements, significant inter-individual variability, and strongly relies
on the experience and competence of medical doctors. For such reasons, a diagnosis
methodology based on a shorter clinical test and supported by tools for the identification
of the disease would be highly beneficial in terms of cost reduction and alleviation of a
subject’s stress.

This conceptual design study is meant to address the above issues. The approach relies
on a pharmacokinetic model derived from Galvanin et al. [9] simulating VWF behaviors in
the bloodstream after DDAVP administration, and aims at assessing:

• the possibility to reduce the total time of the current DDAVP test, by confining it
to 8 h (i.e., one shift);

• the feasibility of adopting such shorter test to assist the diagnosis of the disease.

The methodology may represent a first step towards the definition of a model-based
protocol supporting practitioners in the diagnosis of VWD and its classification.
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The article is structured as follows. First, it will be demonstrated through an infor-
mation analysis that a shorter clinical test can be envisaged. Then, we will exploit the
pharmacokinetic model to propose a procedure for diagnosis. Three methods will be
considered, one derived from the method proposed by Galvanin et al., [9] and two methods
relying on some widely known multivariate classification methods, namely the K-Nearest
Neighbors (KNN) and Linear Discriminant Analysis (LDA) methods. Finally, the results
obtained from simulated case studies will be discussed.

THE PROPOSED DDAVP CLINICAL TEST

In this section, after illustrating the available clinical data obtained from real patients
and the key features of the pharmacokinetic model, the possibility to propose a shorter
clinical test is assessed.

Available Data

Experiments were performed according to the Declaration of Helsinki for respecting
the human research ethics. Data are available for four classes of subjects: HO, HnonO, 2B
and Vicenza. While the first two classes refer to healthy subjects of different ABO group,
the latter two include subjects affected by different VWD subtypes. The protocol used
to obtain the data consists in DDAVP subcutaneous administration (0.3 µg/kg of body
weight), followed by 10 blood sampling at fixed times (0, 15, 30, 60, 120, 180, 240, 360,
480, 1440 min), for a total time of 24 h. [10] Two assays are performed on each sample: [8]

• von Willebrand factor antigen (VWF:Ag), which is an immunoassay that measures
the total concentration of VWF protein in the plasma.

• von Willebrand factor collagen binding (VWF:CB), which is an assay that measures
binding of VWF multimers on collagen of the vascular site. Since the assay is
size-dependent, only high molecular-weight multimers are measured by this test due
to their higher affinity.

The results of both assays are expressed as International Unit per deciliter (IU/dL).
In addition to VWF:Ag and VWF:CB data at fixed times, the body weight BW of

each patient is necessary. Most clinical data are the same as the ones used and validated
in Galvanin et al.; [9] additional data were incorporated after removing outliers that could
not be explained in terms of measurement errors.

In order to obtain a qualitative and quantitative profile for each measured response,
a fictitious “average” subject for each class was created: each historical average subject
represents the average value for each class at every sampling time among all available
subjects. The adoption of an historical subject allows one to obtain the class-dependent
data profile of Figure 1, where uncertainty is expressed as standard error (SE).
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Figure 1: Historical average subject data for each class for responses of (a) VWF:Ag and (b)
VWF:CB. Error bars represent SE of the mean.

The Pharmacokinetic Model

The availability of a reliable pharmacokinetic model is important for the correct
evaluation of a new experiment throughout in-silico analysis. After DDAVP administration,
three sequential events occur: release of VWF from endothelial cells, proteolysis of higher
multimers into lower multimers (thanks to the ADAMTS13 enzyme) and clearance from
blood streams. [11;12]

Galvanin et al. proposed a three-compartments model describing the three events
above. [9] However, its complexity makes model identification difficult if based on a limited
number of samples, as occurs in conventional clinical tests. [13]

For this reason, a new simplified model is used in this study, which describes only the
main chemical pathways involved. This model (Figure 2) is composed by two compartments
and relies on the following assumptions:

• at the basal state, only H (high molecular-weight) and L (low molecular-weight)
multimers are present;

• release of UL (ultra large molecular-weight) and of additional H multimers is a
consequence of DDAVP administration;

• elimination constant ke is considered independent from multimer size and it is the
same for both compartments; [14]

• VWF:Ag test measures the overall amount of UL, H and L multimers;

• VWF:CB test measures the amount of UL+H multimers.
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Figure 2: Structure of the new pharmacokinetic model, showing the compartments involved
and the available measurements.

The model is described by the following set of differential and algebraic equations:

dxUL+H

dt = k0De
−k0(t−tmax)−k1(xUL+H−xUL+H

b )−ke(xUL+H−xUL+H
b ) (1)

dxL

dt = k1(xUL+H−xUL+H
b )−ke(xL−xL

b ) (2)

xUL+H
b = yCB

b Vd (3)

xL
b = yAg

b Vd−xUL+H
b (4)

yAg = xUL+H +xL

Vd
(5)

yCB = xUL+H

Vd
(6)

yCB1 = kyCB y
Ag
b

yCB
b

= kyCB

1 + xL
b

xUL+H
b

 (7)

where xUL+H and xL represent respectively the number of UL+H and L multimer units
of VWF present in the bloodstream, the subscript b indicates each variable at their
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basal condition, whereas k0 and D are release parameters, tmax is the time of maximum
response (also called lag time), and k1 and ke are parameters related respectively to
proteolysis and clearance phases. Equation (7) is adopted to take into account the
different affinity observed by different VWD subtypes with respect to collagen binding
test. In the calculations of the basal multimers number (Equations (3) and (4)) and in the
conversion from multimer unit into concentrations (Equations (5) and (6)), the volume of
distribution is approximated using the body weight BW , following Menache et al.: [15]

Vd = 0.4BW . (8)

A reparametrisation was exploited in order to achieve model identifiability. [16] In this
study, the commercial software gPROMSR© (by Process Systems Enterprise, Ltd.) was
used for parameter estimation. The final parameters vector θ is:

θ= [k0 k1 ke D k yCB
b D/tmax] . (9)

In addition to the above equations, three indices can be calculated that can be used
to improve the understanding of the key events involving VWF in bloodstream:

CL= keVd (10)

Q= 1
BW

∫ τ

0
k0De

−k0(t−tmax)dt (11)

R = VWF:CBb
VWF:Agb

(12)

where τ is the test duration. CL [mL/kg/h] (clearance) is related to elimination of VWF
while Q [IU/kg] is total amount of VWF released; both of them are pharmacokinetic
indices derived from the model identification, whereas R [−] (the ratio of VWF:CB
and VWF:Ag at the basal state) is calculated directly from experimental data. These
class-dependent indices will be exploited with classification methods in order to assist the
diagnosis.

Parameter estimation

Parameter estimation was performed on each historical average subject data in a
similar way as in Galvanin et al., [17] in such a way as to predict class-dependent profiles.
The lack of fit test (LOF) is used to assess the fitting of the estimated responses and it is
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based on the sum of the squared weighted residuals:

χ2 =
Ny∑
i=1

[
(yi− ŷi)Σ−1

yi
(yi− ŷi)

]
(13)

where yi is the experimental data, ŷi is the predicted value, Σyi is the matrix of the
measurements errors, with all of three referred to the i−th response. This calculated
value is compared to the one taken as reference and retrieved from a χ2 distribution
with Nsp−Nθ (number of sampling points and number of parameters to be estimated,
respectively) degrees of freedom and with a confidence level of 95%. If the χ2 value
obtained at the end of the parameter estimation is lower than the reference one, then the
estimated model is a good representation of the clinical data.

Parameters estimation results for these subjects are reported in Table 1 and show
that, for all subjects a statistically satisfactory identification of the parameters is achieved
even if good fitting, through lack of fit test, is not always obtained. This is due to high
variability within the class, especially for healthy subjects.

These parameters values provide a representative predicted profile for each class. They
will be used later as initial guesses when a new identification exercise is carried out as a
step of the diagnosis procedure.

Table 1: Results of parameter estimation task for each historical average subject of the class.
The cases in which lack of fit test failed are highlighted in bold.

parameter HO HnonO 2B Vic

k0 0.0265 0.0287 0.0146 0.0403
k1 0.0004 0.0001 0.0034 0.0012
ke 0.0013 0.0007 0.0036 0.0099
D 141.2627 169.9747 183.7347 231.1436
k 0.9864 0.9688 0.1849 0.7307
yCB

b 49.9723 84.6426 24.5367 5.8837
D/tmax 1.2799 1.5594 0.8550 3.5216

χ2(χ2
Ref) 168.2 (26.3) 192.3 (26.3) 97.8 (26.3) 15.9 (26.3)

Developing a Shorter Protocol

We now describe the procedure used to propose a new shorter clinical test and the
assessment of its feasibility, with the aim of maintaining model identifiability.

In-silico tests

The procedure used to obtain new in-silico data is outlined in Figure 3, and it is
composed by three main steps:

• at first, individual parameter identification is performed, using clinical data (VWF:Ag,
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Figure 3: Three-step procedure for in-silico experiment assessment.

Table 2: Values of σerr under the assumption of constant variance model for the generation
of errors, for each class of subjects. These values were calculated and rounded to the closest
integer, from the standard deviation of the data of the historical average subject with respect
to the predicted responses profiles.

HO HnonO 2B Vic
σerr (IU/dL) 4 5 2 2

VWF:CB and BW ) together with parameters available from the historical average
subject of the membership class as initial guesses;

• using the predicted profiles of the responses (obtained from the previous step) and
the assumed sampling schedule, an in-silico experiment is built adding the error
representing the variability of the measures of the subject. The error used to build
in-silico data is generated randomly following a Gaussian distribution with the
class-dependent standard deviation σerr reported in Table 2;

• the new in-silico experiment is used to carry out an additional parameter identifica-
tion exercise.

At the end of the procedure, statistics such χ2 are calculated, assessing the quality
of the parameter estimation for each subject. It should be pointed out that the use of a
correct error model impacts on the results of the estimation.In fact, the σerr reproduces
within a subject the average intra-variability of each class.

Selecting the sampling approach

The discrete form of the dynamic Fisher Information Matrix (FIM) Hθ, for a series of
Nsp samples, is exploited to assess the information carried by an experiment: [18]

H∗θ(θ,ϕ) =
Ny∑
i=1

Ny∑
j=1

sijQT
i Qj (14)

Hθ(θ,ϕ) =
Nsp∑
k=1

H∗θ(θ,ϕk) (15)
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Figure 4: Profiles of the trace of the information matrix over time, computed for each
historical average subject.

where

• Qi is the [Nsp×Nθ] matrix of dynamic sensitivity for the i-th measured response;

• sij is the i, j-th element of the inverse matrix of the Σy variance-covariance matrix
of the experimental measures;

• while ϕ is the global design vector, ϕk is the design vector involved in the construc-
tion of each sampling point.

The criterion adopted for the evaluation of the amount of information is the so called A-
optimal, [19] and was chosen because of its ease of implementation, based on the calculation
of the trace of the dynamic information matrix. The maximum value of the trace of the
information matrix corresponds to the maximum obtainable information. The profiles
of dynamic trace tr(H∗θ) for each historical average subject are shown in Figure 4: it is
therefore possible to identify the time interval within which samples provide the larger
amount of information. In particular, it is clear that the most informational time interval
is represented by the first 500 minutes of the test, within which the information peak for
each subject class is always located.

Equation (15) allows calculating the total information tr(Hθ) for a discrete sampling, as
would occur in a clinical test. Two sampling approaches based on 10 and 15 evenly spaced
samples are considered (15 is the maximum number of samples that seem viable considering
the time required for the analysis and typical nurse staff availability). Different durations
of the clinical test are assessed. As an example, Figure 5 shows the total information
that can be collected from the historical average subject of the HnonO class; results from
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Figure 5: Total amount of information for different sampling approaches, different number of
samples and different test duration. The results refer to the HnonO historical average subject.

other classes are qualitatively similar. It can be observed that the information peak is
reached for a test duration of 300 min (i.e., almost 5 times shorter than current practice);
a further time reduction would cut off a significant informative interval. Obviously the
more the sampling points, the more information can be collected.

From this preliminary analysis, it appears that the reduction of the duration of the
clinical test is theoretically possible, since the information amount can be improved by
sampling the system in more favorable time instants. A clinical test based on 15 evenly
spaced samples over 480 min (i.e., 3 times shorter than current practice) was eventually
considered. Although the amount of information that would be obtained from a 300 min
test is theoretically greater, the sampling frequency would be excessively high in practical
terms (on the other hand, reducing to 10 the number of samples would determine a
significant loss of information). It must be noted that 15 samples in 480 min represents a
slightly worse condition for the patient with respect to the current protocol; nevertheless,
the protocol remains feasible and represents a first attempt to identify a procedure that
could be carried out in a medical facility.

Time reduction results

The newly devised short protocol was applied in-silico to the historical average subjects,
and the model was found identifiable for all of them.

This allowed proposing some diagnostic methods, based on this reduced protocol. Once
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model identification for each individual subject to be diagnosed is performed, then the
pharmacokinetic indices CL and Q are calculated for each subject following Equations
(10) and (11). A multiple shooting technique is adopted to reduce the effect of local
optima in the parameter estimation algorithm: initial guesses for the parameters are taken
from each average subject in Table 1. Eventually, the best fitting (evaluated through
LOF) accross all shootings is considered. These two forenamed indices will be used in the
diagnostic techniques discussed in the next sections.

The three retrieved indices CL, Q and R are represented graphically using three 2D
plots in Figure 6, to best highlight the behavior of each class. These plots meet medical
findings, [8] e.g. R index for 2B class is known to be usually smaller than in healthy
subjects due to an increased proteolytic degradation of high molecular-weight multimers.
Also, CL is greater for classes 2B and Vic with respect to healthy subjects; namely Vic
subjects present a significantly higher clearance, whereas for 2B subjects the effect is still
present but less marked. From a visual point of view it appears that class separation can
be achieved quite neatly using two indices only (CL vs R; Figure 6(b)). However, since
the entire CL, Q and R triplet represents the individual behavior of a given subjects, all
three indices will be used, as discussed later with reference to the KNN method.

A PROCEDURE FOR DIAGNOSING VWD

Three diagnosis methodologies are now proposed and tested. In particular Method 1 is
derived from the methodology defined by Galvanin et al., [9] whereas Methods 2 and 3 are
based on well-known classification methods, namely KNN and LDA. The main objective
is to distinguish healthy subjects from VWD-affected ones, and in the latter case assess
the VWD subtype.

Method 1 is the more computationally demanding and is based on a classification
among HO, HnonO, 2B and Vic classes, for a better characterization of the uncertainty of
each class. The method capability of correctly classifying healthy O and nonO subjects is
not assessed here: as previously pointed out, the target is to distinguish between healthy
and VWD-affected subjects. Methods 2 and 3 are based on two classifications among HY,
2B and Vic classes (HY is obtained by merging HO and HnonO classes). In particular,
Method 2 is based on three indices (R, Q and CL). Method 3 relies on CL and R only;
hence, it represents the simplest strategy for diagnosis and allows for an intuitive graphical
classification. The general idea is that a combined use of all three methods can assist the
medical staff in the diagnosis (i.e., classification) job.

In the following, in-silico clinical tests are used to assess the diagnosis potential of the
three methods.
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Figure 6: Pairwise representation of the three indices Q, CL and R, characterizing a given
subject, for all subjects considered in this study. Subjects are grouped into three classes
thanks to medical examination: healthy (HY), 2B and Vic.
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Method 1: SSWR Diagnosis

The method proposed by Galvanin et al. is applied. [9] This procedure is based on
an individualized identification approach that couples two source of the VWF:Ag and
VWF:CB data: the individual subject, and the historical average subject of a class together
with its class variance. The identification task is therefore executed as many times as the
number of the classes, adopting in each case the corresponding historical average subject
and its class variance. The key difference with respect to the original study of Galvanin et
al. is that here a simplified pharmacokinetic model is used and that a shorter protocol for
the clinical test is applied. A heteroscedastic variance model calculated from experimental
data is adopted to calculate class variance:

σ2
e = ω2(y2)γ (16)

where the two variance parameters ω and γ are obtained from a least squares regression
from the average data (Table 3). Thanks to these class-dependent variance parameters,
the description of the class-dependent population uncertainty for VWF:Ag and VWF:CB
measured responses over time is possible. It must be noted that the so-built variance
changes significantly between classes, since it depends also from the measured responses,
as already seen in Figure 1.

Table 3: Heteroscedastic parameters for the four classes considered in classification Method
1. The parameters were obtained from regression on real data.

Response Param. HO HnonO 2B Vic

VWF:AG ω 7.917 20.589 4.418 1.252
γ 0.325 0.210 0.397 0.762

VWF:CB ω 2.436 17.090 0.128 2.028
γ 0.578 0.258 1.533 0.653

Following the approach described in Galvanin et al., [9] the diagnosis is obtained
via SSWR index (sum of squared weighted residuals) calculated after each parameter
estimation task. SSWR represents the closeness of the subject to a specific class, using
the following equations:

SSWR = SSWRsubj +SSWRHAS (17)

SSWRsubj =
Ny∑Nsp∑ (y− ŷ)2

σ2 (18)
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SSWRHAS =
Ny∑Nsp∑ (ȳ− ŷ)2

σ2
e

(19)

where y is the experimental data of the unknown subject, ŷ is the predicted value of the
response, ȳ is the predicted response of historical average subject for each class. It must
be pointed out that:

• SSWRsubj represents the similarity between the experimental points and the pre-
dicted profiles of the subject, weighted with the standard deviation of the measure
(fixed at σ = 2 IU/dL);

• SSWRHAS represents the similarity between each historical average subject and the
predicted profiles, weighted with the heteroscedastic variance model σe.

The subject is assigned to the class for which the smaller value of SSWR is found (i.e.,
the class that is more similar to the response of the subject).

Method 2: K-Nearest Neighbors Diagnosis

Classification through KNN is one of the most used and simple classification techniques
in multi-variables problems, and has been successfully used in a variety of medical
applications, including cancer detection. [20]

KNN allows classifying an unknown subject according to the K known subjects who
are closest to him/her. From a computational point of view, the distance from each
training (known) subject is calculated, then subjects are ordered in ascending order of
distance and the K closest subjects are selected. [21] Distances of all training subjects are
then weighted to give more importance to closest neighbors. [22] Eventually, weights are
normalized by class so their sum is equal to the prior probability (assumed uniform in
this study), for each class.

In this study the distance between two subjects is calculated following the cosine
distance as defined in Equation (20), and it is weighted by a squared inverse law:

dcos = 1− uv√
(uv′)(vv′)

. (20)

where u is the unknown subject vector and v is a training vector, both containing the
indices CL, Q and R used as predictors.

A critical step in this method is assigning the optimal value of K, especially if classes
are not of the same size. [23] In this study, K = 3 was selected by a trial and error, and
taking into account the small number of available VWD subjects. The healthy O and
healthy non-O subjects were merged into a single class (denoted by HY), and therefore
only three classes were considered when applying this method (namely HY, 2B and Vic).
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The classification task acts in minimizing the expected classification cost, obtaining
the predicted class l̂:

l̂ = arg min
l=1,...,NG

G∑
Ng=1

P̂ (g|u)C(l|g) (21)

where NG is the number of classes and P̂ (g|u) is the posterior probability for subject u of
belonging to class g. The posterior probability is calculated among the subjects included
in the K nearest neighbors, as:

P̂ (g|u) =

∑
i∈K

W (i)Υ(i)∑
i∈K

W (i) (22)

where W (i) is the normalized weight of the subject i and Υ(i) is a factor that is equal
to one if subject i belongs to class g, and zero otherwise. In order to achieve the best
separation between healthy and non-healthy classes, a misclassification cost C(l|g) was
used in Equation (21), representing the ability to avoid subject misclassification to class l
while its true class is g. [24] For every couple of classes, the misclassification cost is assigned
a-priori and C(l|g) could be different with respect to C(g|l). Trivially, the misclassification
cost for a class with respect to the same class is zero, since there is no misclassification.
The default value for the misclassification cost is 1, meaning that no cost is assigned: this
case is taken as base case to assess the method performance. The misclassification costs
C(HY|2B) and C(HY|Vic) are here tuned up with a trial and error procedure to avoid
false negative (e.g., a 2B or Vic subject assigned erroneously to HY class), thus making
the model more sensitive to VWD detection.

Applying KNN classification, a leave-one-out procedure was used to check the predictive
capability of the method. Practically, an item is cyclically removed from the calibration
of the model and then the same item is predicted. At each loop the model is calibrated
again. At the end of the loops, when all subjects are classified, performances indices can
be calculated.

Assessing performance of the classification

The classification performances are assessed with some a posteriori indices. At the basis
of the performance evaluation there is the confusion matrix, a square matrix [NG×NG],
in which each ngk element is the number of subjects belonging to class g assigned in class
k (note that diagonal elements ngg represent correctly assigned subjects). The following
performances indices are used: [23]
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• Error rate ER represents the percentage of wrongly assigned subjects:

ER = 1−

G∑
g=1

ngg

n
. (23)

where n is the total number of subjects.

• Sensitivity Sng is the ability to recognize correctly subjects belonging to g−th class:

Sng = ngg
n
. (24)

• Specificity Spg represents the ability of g−th class to reject subjects from other
classes:

Spg =

G∑
g=1

(n′k−ngk)

n−ng
for k 6= g (25)

n′k =
G∑
g=1

ngk (26)

where n′k is the total number of subjects assigned to k−th class.

• Precision Prg is the ability not to include subjects from other classes, as the ratio
between correctly assigned subjects and total subjects assigned to that class:

Prg = ngg
n′g

. (27)

For ER the best value is 0, whereas for the others the best value is 1.

Method 3: Linear Discriminant Analysis Diagnosis

Discriminant analysis is also a widely adopted classification method. It has been used,
e.g., as diagnostic method in Parkinson detection, [25] or for genetic classification using
FVIII clinical tests in VWD. [26] Its objective is to find a direction in the data space
that allows the maximization of the between-class variance and the minimization of the
within-class variance; [27] these directions are called discriminant functions.

In particular, Linear Discriminant Analysis (LDA) relies on the hypothesis that all
the g classes generate data with a Gaussian density function fg(x) (where x is the generic
variable), with the same covariance matrix Σ but different means µg. With this assumption,
P̂ (g|u) is the posterior probability that a subject u belongs to class g, which is calculated
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knowing the prior probability πg (assumed as uniform) and a normalization factor:

fg(u) = 1
(2π)1/2|Σ|1/2

exp
[
−1

2(u−µg)TΣ−1(u−µg)
]

(28)

P̂ (g|u) = fg(u)πg
G∑
l=1

fl(u)πl
(29)

The boundary between two classes is defined setting the log-ratio among the two
posterior probabilities equal to zero (this defines the locus where posterior probability
for two classes is the same): this leads to a linear function in x (Equation (30)), whose
coefficient can be easily retrieved, in this case a0 is the prior probability and b0 is the
constant part of the Gaussian distribution ratio and the priors ratio. [28]

log
(
P̂ (g|x)
P̂ (l|x)

)
= log πg

πl
− 1

2(µg +µl)TΣ−1(µg−µl) + xTΣ−1(µg−µl) = 0

= a0 + b0 + b1x1 + b2x2 = 0 (30)

The class prediction is based on the minimization of the expected classification cost in
the same way as in Equation (21), but with the posterior probability assumptions as in
Equation (29). In LDA, the effect of the misclassification cost C(l|g) on the boundary
between two classes is clear, since it affects only the constant term of the linear function
in Equation (30) shifting the involved boundary towards unwanted class, e.g. a C(l|g)> 1
shifts the boundary towards class l. [24] In fact, among two generic classes I and II, the
decision rule assigns subject u to class I if P̂ (II|u)C(I|II)< P̂ (I|u)C(II|I). Thus, from
a graphical point of view, the subject u belongs to class I if the following is true:

b0 + b1u1 + b2u2 > log πIIC(I|II)
πIC(II|I) (31)

in which the constant part is derived from the Gaussian density distribution. Subject is
assigned to class II in the opposite situation.

Analogously to KNN, LDA was carried out dividing the available subjects into three
classes (HY, 2B and Vic), with the intent of the recognition of unhealthy subjects.
Following the same steps as KNN, an optimal misclassification cost was used in order
not to misclassify subjects affected by VWD. This value is found again with a trial and
error procedure, to meet the right trade-off between error rate and unhealthy subjects
detection, increasing it from the default unitary value.

For the specific case of this work, only CL and R are used as predictors to simplify
the graphical representation, thanks to the narrower overlapping area between classes
observed in Figure 6(b), with respect to the other two plots.
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Classification performances of LDA are assessed following a leave-one-out procedure,
and by adopting the same performances indices as in Method 2.

RESULTS

Method 1 Results: SSWR Diagnosis

Similarly to the original reference, [9] the method was tested on a limited number (four)
of (supposed to be) unknown subjects. In order not to bias the method, the four randomly
selected subjects were not included in the calculation of the historical average subjects
and in the calculation of the heteroscedastic variance parameters.

Results are reported in Table 4, showing that Method 1 allows a clear identification
between healthy and ill subjects. Also the diagnosis of the two subjects affected by VWD
is achieved correctly. Some issues appear in the distinction between O and non-O healthy
subjects, but as discussed earlier this is a minor issue in this work. Furthermore the
SSWR values obtained for healthy subject coupled with VWD classes is much more higher
than the values obtained from the unhealthy subjects when coupled with healthy classes,
this is another factor that will help practitioners in the correct class assignment.

In conclusion, Method 1 is capable of producing a good classification performance,
even when it is based on a simpler pharmacokinetic model. Furthermore, the approach
appears to be compatible with a shorter (8 h) clinical test.

Table 4: Results of model-based diagnosis in terms of SSWR on four unknown subjects.
Between parenthesis the real membership class, in boldface the lowest value suggesting the
diagnosis.

Unknown subject (real class) HO HnonO 2B Vic

I (HO) 116.3 185.4 1434.6 1366.0
II (HnonO) 187.5 241.8 5012.1 4425.4
III (2B) 183.0 235.9 162.1 682.1
IV (Vic) 295.5 315.8 221.1 36.1

Method 2 Results: K-Nearest-Neighbors Diagnosis

With regards to the misclassification cost, after a trial and error procedure a misclassi-
fication cost C(HY|2B) = C(HY|Vic) = 5 was selected.

The results of this classification analysis are displayed in Table 5, where a reference case
with C(HY|2B) = C(HY|Vic) = 1 is used to clarify the influence of the cost parameter.
In general, the classification correctly assesses over the 95% of the subjects (all the
unknown subjects used in the Method 1 are correctly classified with KNN). Note that
in the base case a Vic subject is classified as healthy (resulting in a SnVic<1) and a
healthy subject is classified as 2B (observable from the Sp2B and Sp2B both less than 1).
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After increasing the misclassification cost up to 5, ER decreases and no false negative
classification is observed anymore, thus improving the predictive capability of Method
2 to detect unhealthy subjects and leading to a satisfactory classification performance
where all unhealthy subjects are correctly identified (Sn2B and SnVic are both equal to
one). One healthy subject is still misclassified as 2B and in fact, Sp2B and Pr2B indices
are equal to the reference case.

Table 5: KNN classification. Results in terms of performance indices in the cases of no
misclassification cost (C(HY|2B) = C(HY|Vic) = 1)) and with a value of 5.

C(HY|2B) = C(HY|Vic) ER Sensitivity (Sn) Specificity (Sp) Precision (Pr)

HY 2B Vic HY 2B Vic HY 2B Vic

1 0.04 0.97 1.00 0.86 0.93 0.98 1.00 0.97 0.89 1.00
5 0.02 0.97 1.00 1.00 1.00 0.98 1.00 1.00 0.89 1.00

Method 3 Results: Linear Discriminant Analysis Diagnosis

After a trial and error procedure, a misclassification cost equal to C(HY|2B) =
C(H|Vic) = 10 was selected, from the default value of 1. The results for LDA in terms of
separation zones in the CL-R plot are displayed in Figure 7, where also the effect of the
misclassification cost is evident. Since misclassification costs as defined above act only
between HY/2B and HY/Vic classes, only those boundaries are shifted from the base case.
Consistently to the intent of making the Method more sensitive to VWD detection, the
effect of higher misclassification costs is that of increasing the size of the region comprising
unhealthy subjects.

Observing the classification results in Table 6, the correct diagnosis is achieved in
approximately the 95% of the cases and the four unknown subjects used in the Method
1 are correctly assigned. Similarly to Method 2, if no misclassification cost is assigned
(reference case), i.e. C(HY|2B) = C(HY|Vic) = 1, one subject (the same subject as in
Method 2) is classified as HY (instead of Vic), and another subject is classified as 2B
(instead of Vic). By increasing the misclassification costs up to 10, no false negative is
observed anymore. However, as a side-effect, two HY subjects are assigned to 2B class
(lower SnH with respect to the base case), and one Vic subject is still classified as 2B.
This impacts on the Sp2B and Pr2B values, which are lower than in the reference case,
and on the ER value, which is larger.

In this classification method, it was also possible to investigate the effect of the model
calibration set. Following a leave-one-out procedure, it was possible to identify a region of
uncertainty, within which the classification bounds vary according to the calibration set
(Figure 8). Subjects falling within the uncertainty region may be misclassified, since their
classification depends on the specific set of data.
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Figure 7: LDA classification. Representation of boundaries between each couple of classes
obtained with all subjects used in model calibration. In this figure is clear the effect of
misclassification costs C(HY|2B) and C(HY|Vic): increasing them (the direction of the
arrows), the bounds are shifted towards healthy region. Since C(2B|Vic) was not modified,
this boundary is not affected.
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Table 6: LDA classification. Results in terms of performance indices in the cases of no
misclassification cost (C(HY|2B) = C(HY|Vic) = 1)) and with a value of 10.

C(HY|2B) = C(HY|Vic) ER Sensitivity (Sn) Specificity (Sp) Precision (Pr)

HY 2B Vic HY 2B Vic HY 2B Vic

1 0.04 1.00 1.00 0.71 0.93 0.98 1.00 0.97 0.89 1.00
10 0.06 0.94 1.00 0.86 1.00 0.93 1.00 1.00 0.73 1.00

CONCLUSIONS

The results of this analysis have shown that by using a suitable pharmacokinetic
model it is possible to envisage a model-based procedure for VWD diagnosis relying on a
shorter clinical test than the one currently adopted in the medical practice (8 hours vs. 24
hours). The approach is based on three different Methods, built on different classification
techniques and exploits the individuals VWF levels and the body weights of subjects.
Simulated case studies have demonstrated the potential of the methodology, which appears
to be quite robust in terms of detection of VWD-affected subjects, and which in most
cases allows for the correct classification of the VWD typology.

Having said that, it should be recognized that the proposed methodology still has some
limitations and cannot substitute the expertise of clinical practitioners. For instance, it is
forbidden to administer the DDAVP test in cases of type 2B VWD in patients lacking in
large VWF multimers: [29] clearly, only a clinician can identify such situations and decide
about the most convenient tests.

Future work, will aim at assessing the proposed approach via real clinical tests. If
clinical data confirm the satisfactory results of this concept design, the successive step
will be that of implementing a user-friendly tool to help clinicians in the characterization
of the VWD.
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NOMENCLATURE

Acronyms

ABO blood group classification system.

ADAMTS13 metalloprotease enzyme (A Disintegrin-like And Metalloprotease domain
with ThromboSpondin type I motifs, member 13).

DDAVP 1-Desamino-8-D-Arginine Vasopressin.

ELISA Enzyme-Linked ImmunoSorbent Assay.

FIM Fisher Information Matrix.

FVIII blood clotting factor VIII.

H High molecular-weight VWF multimers.

HAS Historical Average Subject.

HnonO Healthy subjects not belonging to O ABO group.

HO Healthy subjects belonging to O ABO group.

HY Healthy subjects (by merging subjects from HO and HnonO classes).

KNN K-Nearest Neighbors.

L Low molecular-weight VWF multimers.

LDA Linear Discriminant Analysis.

LOF lack-of-fit test.

SSWR Sum of Squared Weighted Residuals.

SUL Super Ultra Large molecular-weight VWF multimers.

UL Ultra Large molecular-weight VWF multimers.

VWD von Willebrand Disease.

VWF von Willebrand Factor.

VWF:Ag von Willebrand Factor antigen.
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VWF:CB von Willebrand Factor collagen binding activity.

Roman Symbols

BW body weight (kg).

C(l|g) misclassification cost, the cost of classifying an observation as l when its true class
is g.

CL clearance (ml/kg/h).

dcos cosine distance.

ER error rate for a classification.

fg(x) Gaussian density function for class g.

l̂ predicted class label after classification.

NG number of classes.

ngk element of the confusion matrix, represent object belonging to class g assigned in
class k.

Np number of predictors of the classification.

Nsp number of sampling points.

Nθ number of parameters.

Ny number of measured responses.

P̂ (g|u) posterior probability for subject u to belong to class g for.

Prg Precision of the g-th class to not include subjects from other classes.

Q total amount of VWF released (IU/kg).

R ratio between VWF:CB and VWF:Ag at the basal state.

SE standard error.

sij i, j−th element of the inverse matrix of the experimental errors.

Sng sensitivity of the g-th class to recognize correctly its subjects.

Spg specificity of the g-th class to reject subjects from other classes.
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tmax lag time (min).

Vd volume of distribution (dL).

W weight of the distance in the KNN method.

xL number of low molecular-weight multimer units of VWF.

xUL+H number of ultra large and high molecular-weight multimer units of VWF.

y experimental data of the response.

ȳ historical data of the response.

ŷ predicted response obtained from the model.

Greek Letters

γ heteroscedastic factor.

ω parameter of heteroscedastic variance.

σerr constant standard deviation for the generation of in-silico experiments.

σe heteroscedastic variance of the pool.

πg prior probability of class g.

τ test duration (min).

Υ factor for the calculation of the posterior probability in the KNN, equal to one if the
subject belongs to that class and zero otherwise.

χ2 chi-square value, used in lack-of-fit test.

Matrixes and Arrays

H∗θ dynamic information matrix [Nθ×Nθ].

Hθ discrete dynamic information matrix [Nθ×Nθ].

Qi|k dynamic sensitivity matrix for the i-th measured response in the k-th experiment
[Nsp×Nθ].

Σ covariance matrix of the class [Np×Np].

ϕ design vector [-].

θ array of parameters of the model [1×Nθ].

24



REFERENCES

[1] F. Rodeghiero, G. Castaman, E. Dini, Blood, 1987, 69, 454–459.

[2] E. J. Werner, E. H. Broxson, E. L. Tucker, D. S. Giroux, J. Shults, T. C. Abshire,
J. Pediatr., 1993, 123, 893–898.

[3] V. Kumar, A. K. Abbas, J. C. Aster, Robbins and Cotran; pathologic basis of disease,
9 ed., Elsevier Health Science, Philadelphia, U.S.A., 2015.

[4] J. E. Sadler, P. M. Mannucci, E. Berntop, N. Bochkov, V. Boulyjenkov, D. Ginsburg,
D. Meyer, I. Peake, F. Rodeghiero, A. Srivastava, Thromb. Haemostasis, 2000, 84,
160–174.

[5] D. Lillicrap, Thromb. Res., 2007, 120, S11–S16.

[6] L. Gallinaro, M. G. Cattini, M. Szutukowska, R. Padrini, F. Sartorello, E. Pontara,
A. Bertomoro, V. Daidone, A. Pagnan, A. Casonato, Blood, 2008, 111, 3540–3545.

[7] A. Casonato, E. Pontara, F. Sartorello, M. Cattini, M. Sartori, R. Padrini, A. Girolami,
Blood, 2002, 99, 180–184.

[8] N.H.L.B.I., The Diagnosis, Evaluation and Management of von Willebrand Dis-
ease, NIH Publication No. 08-5832, US Department of Health and Human Ser-
vices - National Institutes of Health - National Heart, Lung and Blood Insti-
tution, Bethesda, USA, 2007. URL: https://www.nhlbi.nih.gov/files/docs/
guidelines/vwd.pdf.

[9] F. Galvanin, M. Barolo, R. Padrini, A. Casonato, F. Bezzo, AIChE J., 2014, 60,
1718–1727.

[10] A. Casonato, L. Gallinaro, M. G. Cattini, E. Pontara, R. Padrini, A. Bertomoro,
V. Daidone, A. Pagnan, Haematologica, 2010, 95, 1366–1372.

[11] Z. M. Ruggeri, P. M. Mannucci, R. Lombardi, A. B. Federici, T. S. Zimmerman,
Blood, 1982, 59, 1272–1278.

[12] J. E. Sadler, Thromb. Haemostasis, 2005, 3, 1702–1709.

[13] M. Ferrari, F. Galvanin, M. Barolo, V. Daidone, R. Padrini, F. Bezzo, A. Casonato, “A
mechanistic model to quantify von Willebrand factor release, survival and proteolysis
in Type 2 von Willebrand disease”, J. Thromb. Haemost., submitted.

[14] P. J. Lenting, E. Westein, V. Terraube, A. S. Ribba, E. G. Huizinga, D. Meyer, P. G.
de Groot, C. V. Denis, J. Biol. Chem., 2004, 279, 12102–12109.

25

https://www.nhlbi.nih.gov/files/docs/guidelines/vwd.pdf
https://www.nhlbi.nih.gov/files/docs/guidelines/vwd.pdf


[15] D. Menache, D. Aronson, F. Darr, R. Montgomery, J. Gill, C. Kessler, J. Lusher,
P. Phatak, A. Shapiro, A. Thompson, G. White, Brit. J. Haematol., 1996, 94,
740–745.

[16] F. Galvanin, C. C. Ballan, M. Barolo, F. Bezzo, J. Pharmacokinet Phar., 2013, 40,
451–467.

[17] F. Galvanin, A. Monte, A. Casonato, R. Padrini, M. Barolo, F. Bezzo, “Towards
model-based diagnosis of von Willebrand disease”, 24th European Symposium on
Computer Aided Process Engineering - ESCAPE 24, J.J. Klemeš, P.S. Varbanov, P.Y.
Liew, Eds. Budapest, Hungary, 15-18 June 2014, 583–588.

[18] L. C. Zullo, Computer aided design of experiments. An engineer approach, PhD
Thesis, University of London, London, UK, 1991.

[19] F. Pukelsheim, Optimal design of experiments, John Wiley & Sons, New York, U.S.A,
1993.

[20] M. Sarkar, T. Y. Leong, “Application of K-nearest neighbors algorithm on breast
cancer diagnosis problem”, In: Proceedings of the AMIA Symposium, American
Medical Informatics Association, 2000, 759–763.

[21] T. M. Cover, P. E. Hart, IEEE T. Inform. Theory, 1967, 13, 21–27.

[22] A. R. Webb, Statistical pattern recognition, 2 ed., John Wiley & Sons, Malvern, UK,
2002.

[23] D. Ballabio, R. Todeschini, “Multivariate classification for qualitative analysis”,
Infrared spectroscopy for food quality analysis and control, D. W. Sun Eds., Elsevier:
Burlington, MA, USA, 2009, 83-104.

[24] D. G. Morrison, J. Marketing Res., 1969, 6, 156–163.

[25] D. J. Burn, G. V. Sawle, D. J. Brooks, J. Neurol. Neurosur. Ps., 1994, 57, 278–284.

[26] C. H. Miller, J. B. Graham, L. R. Goldin, R. C. Elston, Blood, 1979, 54, 137–145.

[27] R. A. Fisher, Ann. Hum. Genet., 1936, 7, 179–188.

[28] T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning; Data
Mining, Inference and Prediction, 2 ed., Springer, New York, USA, 2008.

[29] A. Casonato, A. Steffan, E. Pontara, A. Zucchetto, C. Rossi, L. De Marco, A. Girolami,
Thromb. Haemostasis, 1999, 81, 224–228.

26



Figure Captions

1 Historical average subject data for each class for responses of (a) VWF:Ag
and (b) VWF:CB. Error bars represent SE of the mean. . . . . . . . . . . 4

2 Structure of the new pharmacokinetic model, showing the compartments
involved and the available measurements. . . . . . . . . . . . . . . . . . . 5

3 Three-step procedure for in-silico experiment assessment. . . . . . . . . . 8
4 Profiles of the trace of the information matrix over time, computed for each

historical average subject. . . . . . . . . . . . . . . . . . . . . . . . . . . 9
5 Total amount of information for different sampling approaches, different

number of samples and different test duration. The results refer to the
HnonO historical average subject. . . . . . . . . . . . . . . . . . . . . . . 10

6 Pairwise representation of the three indices Q, CL and R, characterizing a
given subject, for all subjects considered in this study. Subjects are grouped
into three classes thanks to medical examination: healthy (HY), 2B and Vic. 12

7 LDA classification. Representation of boundaries between each couple
of classes obtained with all subjects used in model calibration. In this
figure is clear the effect of misclassification costs C(HY|2B) and C(HY|Vic):
increasing them (the direction of the arrows), the bounds are shifted towards
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3 Heteroscedastic parameters for the four classes considered in classification
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4 Results of model-based diagnosis in terms of SSWR on four unknown
subjects. Between parenthesis the real membership class, in boldface the
lowest value suggesting the diagnosis. . . . . . . . . . . . . . . . . . . . . 18

27



5 KNN classification. Results in terms of performance indices in the cases of
no misclassification cost (C(HY|2B) = C(HY|Vic) = 1)) and with a value
of 5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6 LDA classification. Results in terms of performance indices in the cases of
no misclassification cost (C(HY|2B) = C(HY|Vic) = 1)) and with a value
of 10. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

28


	ABSTRACT
	INTRODUCTION
	THE PROPOSED DDAVP CLINICAL TEST
	Available Data
	The Pharmacokinetic Model
	Parameter estimation

	Developing a Shorter Protocol
	In-silico tests
	Selecting the sampling approach
	Time reduction results


	A PROCEDURE FOR DIAGNOSING VWD
	Method 1: SSWR Diagnosis
	Method 2: K-Nearest Neighbors Diagnosis
	Assessing performance of the classification

	Method 3: Linear Discriminant Analysis Diagnosis

	RESULTS
	Method 1 Results: SSWR Diagnosis
	Method 2 Results: K-Nearest-Neighbors Diagnosis
	Method 3 Results: Linear Discriminant Analysis Diagnosis

	CONCLUSIONS
	ACKNOWLEDGEMENTS
	NOMENCLATURE
	Acronyms
	REFERENCES

