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Abstract

Large-amplitude, horizontally-propagating internal wave trains are commonly
observed in the coastal ocean, fjords and straits. They are long nonlinear
waves and hence can be modelled by equations of the Korteweg-de Vries
type. However, typically they propagate through regions of variable back-
ground hydrology and currents, and over variable bottom topography. Hence
a variable-coefficient Korteweg-de Vries equation is needed to model these
waves. Although this equation is now well-known and heavily used, a term
representing non-conservative effects, arising from dissipative or forcing terms
in the underlying basic state, has usually been omitted. In particular this
term arises when the hydrology varies in the horizontal direction. Our pur-
pose in this paper is to examine the possible significance of this term. This is
achieved through analysis and numerical simulations, using both a two-layer
fluid model and a re-examination of previous studies of some specific ocean
cases.
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1. Introduction

Large amplitude internal solitary wave are commonly observed in the
coastal ocean, fjords and straits, see the reviews by Grimshaw (2001), Hol-
loway et al. (2001), Ostrovsky and Stepanyants (2005), Helfrich and Melville
(2006), Grimshaw (2007), Grimshaw et al. (2010) and the book by Vlasenko
et al. (2005). They are long waves with wavelengths greater than the rele-
vant vertical scale (such as the fluid depth or pycnocline depth) and hence it
is now widely accepted that the basic paradigm for the description of these
waves is based on the Korteweg-de Vries (KdV) equation, first derived in this
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context by Benney (1966) and Benjamin (1966) and subsequently by many
others, see the aforementioned references.

However, typically they propagate through regions of variable hydrol-
ogy and currents, and over variable bottom topography. Hence a variable-
coefficient Korteweg-de Vries (vKdV) equation has been commonly used to
model these waves. For internal waves this is given by, see Grimshaw (1981);
Zhou and Grimshaw (1989) for a detailed derivation,

ηt + cηx +
cQx

2Q
η + µηηx + δηxxx + ση = 0 , (1)

Here η(x, t) is the amplitude of the wave elevation above the undisturbed
level, see (17) below, x, t are space and time variables respectively, and sub-
scripts denote derivatives. Here c(x) is the relevant linear long wave speed,
and Q(x) is the linear magnification factor, defined so that Qη2 is the wave
action flux density for linear long waves. The coefficients c,Q, µ, δ, σ are
determined by the waveguide properties of the specific physical system be-
ing considered, and they are slowly-varying functions of x. Our concern in
this paper is especially with the final term ση which in general is due to non-
conservative effects arising from dissipative or forcing terms in the underlying
basic state, see Andrews and McIntyre (1978); Grimshaw (1984) for a general
discussion of how this term arises when considering wave action conservation.
We use the term “non-conservative” here and throughout advisedly in the
restricted sense that the term is non-conservative only within the frame-
work of the chosen basic equation set. A term of this form representing
dissipation effects on solitary waves was first introduced by Ott and Sudan
(1970), but for the case when there is no background inhomogeneity and so,
in (1), the coefficients c, µ, δ, σ,Q are each constant. In the present internal
wave context, this term was first derived by Pelinovsky et al. (1977) for the
special case when the bottom is flat, there is no background current and non-
conservative effects arise solely to a horizontally varying background density
field. Later Grimshaw (1981) derived this term in the general case when
the bottom topography, the background current and the background density
field may all vary in the horizontal direction, see also Zhou and Grimshaw
(1989) for a simplified description of the derivation. More recently Vlasenko
and Stashchuk (2006) derived a wave energy equation with a source term
describing the interaction with the background flow field, for the special case
of internal waves interacting with a barotropic tidal current with horizontal
shear arising due to a bottom topographic slope. However, under the Boussi-
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nesq approximation used by Vlasenko and Stashchuk (2006) the system is
conservative, and we assume that the derived wave energy equation can be
expressed as a conservative wave action equation. Although the term ση
in (1) has been known for over three decades, it has usually been neglected
in modelling studies of internal waves. Our purpose here is to rectify that
omission and test the possible significance of this term.

A brief summary of the derivation of (1) is given in section 2, emphasising
the origin of the term ση. Here we first note that the derivation uses the
usual KdV balance that the weak nonlinearity has the same order as the weak
linear dispersion, that is ηηx has the same order of magnitude as ηxxx, and
in addition assumes that the waveguide properties (that is, the coefficients
c,Q, µ, δ, σ) vary slowly so that both ηQx/Q and ση are of the same order
of magnitude. In this scenario, the first two terms in (1) are the dominant
terms, and hence we can make the transformation

A =
√
Qη , T =

∫ x

0

dx

c
, X = T − t . (2)

Substitution into (1) yields, to the same order of approximation as in the
derivation of (1),

AT + νAAX + λAXXX + σA = 0 , (3)

ν =
µ

c
√
Q
, λ =

δ

c3
. (4)

The coefficients ν, λ, σ are functions of T alone. Note that although T is a
variable along the spatial path of the wave, we shall subsequently refer to it
as the “time”. Similarly, although X is a temporal variable (in a reference
frame moving with speed c), we shall subsequently refer to it as a “space”
variable. Finally, since we can assume δ > 0 in practice see (21) below for
right-going waves, it is useful to make a further transformation yielding the
canonical form,

Aτ + αAAX + AXXX + βA = 0 . (5)

where τ =

∫ T

0

λ dT =

∫ x

0

δ

c4
dx , α =

ν

λ
=

µc2√
Qδ

, β =
σ

λ
=
σc3

δ
. (6)

Note that the coefficients α, β, originally expressed as functions of x, are now
functions of τ through the transformation τ = τ(x) in (6).
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We shall call equation (5) the vKdV equation. It has two conservation
laws

∂M

∂τ
= −βM , M =

∫ ∞
−∞

AdX , (7)

∂P

∂τ
= −2βP , P =

∫ ∞
−∞

A2 dX , (8)

for mass and wave action flux respectively, that express the conservation of
the transformation M,P in the conservative case when β = 0. Note that

A = RB , R = exp (−
∫ τ

0

β dτ ′) , Bτ +RαBBX +BXXX = 0 , (9)

leads to the usual vKdV equation but with a modified nonlinear coefficient.
This transformed equation is useful for numerical simulations, where we sim-
ulate this version with a pseudo-spectral method and fourth-order Runge-
Kutta for the time-discretization. Note that the scaling factor R is a cumu-
lative measure of the coefficient β.

In section 2 we present a brief summary of the derivation of (1) empha-
sising the origin of the coefficient σ. Then in sections 3 and 4 we present
some analysis and numerical simulations to examine the possible significance
of this coefficient. In section 3 we use a two-layer fluid model for two cases;
one where there is horizontal variation in the hydrology but any background
current is ignored, and the other where the horizontal variation in the hy-
drology is supported by a background current. In section 4 we re-examine
three ocean cases studied by Grimshaw et al. (2004) where there may have
been horizontal variation in hydrology, but the term ση in (1) was ignored.
We conclude in section 5.

2. Variable-coefficient Kortweg-de Vries equation

A derivation of the vKdV equation (1) is briefly reproduced here to bring
out the origin of the coefficient σ. In the ocean, the background state varies
slowly in the horizontal due to varying depth, and slow variations in the
basic state hydrology and background currents. That is, the depth h =
h(x), the background horizontal current u0 = u0(z;x) with a corresponding
vertical velocity field w0(z, x), a density field ρ0(z;x) a corresponding pressure
field p0(z;x) and a free surface displacement η0(x). This basic state satisfies
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the full steady-state Euler equations, with the exception of the momentum
equations where there are body forces F0(z;x), G0(z;x) respectively. That is

ρ0(u0u0x + w0u0z) + p0x = F0 , (10)

[ρ0(u0w0x + w0w0z)] + p0z + gρ0 = [G0] , (11)

u0ρ0x + w0ρ0z = 0 , (12)

u0x + w0z = 0 , (13)

w0 + u0hx = 0, at z = −h(x) , (14)

p0 = 0, at z = η0 , (15)

u0η0x = w0 , at z = η0 . (16)

Because the x-dependence is slow, technically ∂/∂x ∼ ε3, w0 ∼ ε3, F0 ∼ ε3

and G0 ∼ ε6, the dominant balance in the vertical momentum equation is
hydrostatic and the terms in [·] can be omitted. Thus, of most importance
here, the horizontal body force F0(z;x) represents terms not present in the
left-hand side of (10) such as diabatic effects, for instance dissipation, Corlolis
terms, and driving terms, for instance wind stress. In this paper, we do not
examine this issue directly. Instead, we use model or observed background
fields ρ0(z;x) and u0(z;x) to estimate the body force F0(z;x) directly, and
hence σ.

This basic state is then perturbed by the wave field, where at the leading
order the vertical particle displacement is given by

ζ ∼ η(x, t)φ(z, x) . (17)

Here the modal function φ(z;x) together with the linear long wave speed
c(x) is defined by the boundary-value problem,

{ρ0(c− u0)2φz}z − gρ0zφ = 0 , for − h < z < η0, (18)

φ = 0 at z = −h , (c− u0)2φz = gφ at z = η0 . (19)

Here the x-dependence is parametric, and is slowly-varying. Continuation of
this asymptotic expansion to the next order than yields the vKdV equation
(1), see Pelinovsky et al. (1977); Grimshaw (1981); Zhou and Grimshaw
(1989) or the reviews by Grimshaw (2007); Grimshaw et al. (2010). The
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coefficients are given by

Iµ = 3

∫ η0

−h
ρ0(c− u0)2φ3

z dz , (20)

Iδ =

∫ η0

−h
ρ0(c− u0)2φ2 dz , (21)

where I = 2

∫ η0

−h
ρ0(c− u0)φ2

z dz , (22)

and Q = c2I∆ , Iσ = −
∫ η0

−h
φφzF0zdz . (23)

These expressions are well-known, except for the expression ∆ and the coef-
ficient σ. ∆ represents wave spreading; for instance in a cylindrical geometry
where x is a radial coordinate, ∆ = x where the virtual source is at x = 0.
In the one-dimensional case considered here, ∆ = 1. The coefficient σ rep-
resents non-conservative effects, and was derived in this form by Grimshaw
(1981). The same term was derived earlier by Pelinovsky et al. (1977) for the
special case when the bottom was flat and there is no background current.
The derivation can also be obtained directly from the general theory for wave
action, see Andrews and McIntyre (1978); Grimshaw (1984).

It is necessary to express all variables and coefficients in non-dimensional
variables based on a length scale h0, a typical depth, and a velocity scale
c0, a typical linear long wave speed, so that the time scale is t0 = h0/c0.
For instance, in an ocean, setting h0 = 100m as a typical thermocline depth
and c0 = 1ms−1 as a typical speed. If needed the density ρ0 can be scaled
with ρ00 = 1 kg m−3. The modal function is non-dimensional with maximum
amplitude 1. Formally, we write

η = h0η̄ , x = h0x̄ , t =
h0t̄

c0
,

(c, U) = c0(c̄, Ū) , µ =
c0µ̄

h0
, δ = c0h

2
0δ̄ , σ = c0σ̄ .

(24)

Then the KdV equation (1) is recovered in the non-dimensional variables, and
also all expressions (20 - 23) hold in the non-dimensional variables. Hence-
forth non-dimensional is omitted.

We conclude this section with a brief summary of modulated periodic
and solitary wave solutions, see the recent account by Grimshaw and Yuan
(2016) and the references therein. When the coefficient α in (5) is a constant
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the KdV equation supports a periodic travelling wave, A(X − V τ), the well-
known cnoidal wave solution

A = a {b(m) + cn2(γθ;m)}+ d , θ = k(X − V τ) , (25)

where αa = 12mγ2k2 , b(m) =
1−m
m

− E(m)

mK(m)
, (26)

V − αd =
αa

3

{
2−m
m

− 3E(m)

mK(m)

}
= 4γ2k2

{
2−m− 3E(m)

K(m)

}
. (27)

Here cn(x;m) is the Jacobian elliptic function of modulus m, 0 < m < 1, and
K(m) and E(m) are the elliptic integrals of the first and second kind. The
expression (25) has period 2π in θ so that γ = K(m)/π, while the spatial
period is 2π/k. The (trough-to-crest) amplitude is a and the mean value
over one period is d. It is a three-parameter family with parameters k,m, d
say. As the modulus m→ 1, this becomes a solitary wave, since then b→ 0
and cn(x) → sech(x), while γ → ∞, k → 0 with γk = Γ fixed. As m → 0,
b → −1/2, γ → 1/2, cn(x) → cos (x), and it reduces to a sinusoidal wave
(a/2) cos (θ) of small amplitude a ∼ m and wavenumber k.

We now allow this cnoidal wave to vary slowly with τ ; that is, the param-
eters k,m, d vary slowly with τ . As three modulation equations are needed,
we supplement (7, 8) with the equation for conservation of waves,

kτ + (kV )X = 0 . (28)

Since here we are allowing only τ -modulations, it follows that k is a con-
stant. The remaining two modulation equations are obtained by inserting
the cnoidal wave solution into the conservation laws (7, 8) and averaging
over the phase θ. The outcomes are

dτ = −βd , (29)

Pτ = −2βP , P =< A2 > , (30)

where the < · · · > denotes a 2π-average over θ. The expression P is given
by

P = d2 + a2{C4 − b2} ,

C4 =
1

3m2K(m)
{3m2K(m)− 5mK(m) + 4mE(m) + 2K(m)− 2E(m)} .

(31)
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Note that the equation for the mean level (29) is uncoupled from (30) and
can be solved independently.

In the solitary wave limit m → 1 and then b ∼ −1/K(m) → 0 and
C4 ∼ 2/3K(m)→ 0. The cnoidal wave expression (25) becomes

A = a sech2(γθ)}+ d , θ = k(X − V τ) , V − αd =
αa

3
= 12γ2k2 , (32)

with one parameter to be determined. This is obtained from a reduction of
(30) as m → 1, or more directly by averaging the wave action conservation
law (8) directly for a solitary wave, see Grimshaw (1979) and the discussion
in El et al. (2012). Setting d = 0 and using the expressions in (32), (33) this
becomes

Aτ = −2βA , A = {a
3

α
}1/2 , (33)

a3

a30
=

α

α0

exp (−4

∫ τ

0

βdτ) , (34)

where the “0” subscript denotes the value at τ = 0. In terms of the original
KdV equation (1) the amplitude of the solitary wave is as = aQ−1/2 and
taking account of (4), (34) becomes

a3s
a3s0

=
κ

κ0
exp (−4

∫ T

0

σ dT ) , κ =
c2µ

Q2δ
. (35)

The case of a periodic wave modulated only in τ was studied by Grimshaw
(2007, 2015) and is reproduced briefly here. For simplicity we again set d = 0
and then, using the expressions in (26), (30) becomes

F (m)

F (m0)
=
α2

α2
0

exp (−2

∫ τ

0

βdτ) , (36)

where F (m) = K(m)2{(4− 2m)E(m)K(m)− 3E(m)2 − (1−m)K(m)2} .
(37)

We see that when β = 0, then as |α| increases/decreases, so does the modulus
m.

3. Applications I

In this section we examine some analytical models of the effect of a hori-
zontal variation of the background hydrology and current.
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3.1. Horizontal variation only in hydrology

For this application, we assume that the basic current u0(z;x) = 0, but
that the density profile ρ0(z;x) depends on both z and x, where the latter
dependence is slowly varying. Then the basic state equations (10 – 16) reduce
to

p0x = F0 , p0z + gρ0 = 0 , and p0 = 0 at z = 0 . (38)

Note that here we can set the free surface displacement η0 = 0. It follows
that, using (23)

F0z = −gρ0x , Iσ =

∫ 0

−h
φφzgρ0x dz = [

1

2
gρ0xφ

2](z = 0)− 1

2

∫ 0

−h
gρ0zxφ

2 dz

(39)
and so the non-conservative term σ is determined by the horizontal gradient
of the basic density profile ρ0(z;x). In the Boussinesq approximation for
internal waves the inertial effects of the density can be ignored; then it follows
in particular that the modal function φ = 0 at z = 0 and so the first term
in (39) can be ignored. It follows that σ is positive or negative depending
on whether the stratification is increasing or decreasing in the horizontal
direction. For instance on the Australian North West Shelf, the stratification
decreases towards the coast, see figure 4 of Grimshaw et al. (2006), implying
that β < 0 and hence causing wave amplification.

It is useful to note that from the modal equation (18) and the definition
of I,Q (22, 23) that in the absence of the background current,

cI

2
= c2

∫ 0

−h
ρ0φ

2
z dz = [gρ0φ

2](z = 0)−
∫ 0

−h
gρ0zφ

2 dz . (40)

Then, on differentiating with respect to x and using (39), we get that

σ =
cx
2

+
1

2I
[ρ0φ

2
zhx](z = −h) +

1

2I

∫ 0

−h
ρ0xφ

2
z dz . (41)

The second term is due to the specific dependence of c on the depth h,

σ =
cx
2
− chhx

2
+

1

2I

∫ 0

−h
ρ0xφ

2
z dz =

[cx](h = constant)

2
+

1

2I

∫ 0

−h
ρ0xφ

2
z dz .

(42)
The first term is thus the horizontal variation in the speed c due to the den-
sity stratification alone, and the last term can be omitted in the Boussinesq
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approximation. Thus, in the Boussinesq approximation, σ > 0(< 0) and the
wave decays (amplifies) due to this term according as [cx](h = constant) >
0(< 0), that is as the speed c increases or decreases with the stratification.
Since the modal equation (18) implies that for an internal wave c scales with
Nh, in general we expect c to increase or decrease as the stratification in-
creases or decreases, and hence then σ > 0(< 0) accordingly. Note that the
last term in the expression (59) for σ, neglected in the Boussinesq approxi-
mation, has the same effect.

As a specific example, choose a two-layer fluid, where the density profile
is

ρ0 = (ρ00 −
∆ρ

2
)H(z + h1) + (ρ00 +

∆ρ

2
)H(−z − h1) , (43)

where H(· · · ) is the usual Heaviside function and h1,2 are the depths of the
upper and lower layers, h1 + h2 = h. In the Boussinesq approximation, the
modal function and linear long wave speed are given by

φ = − z

h1
H(z + h1) +

z + h

h2
H(−z − h1) , c2 =

g′h1h2
h

, g′ =
g∆ρ

ρ00
. (44)

The coefficients (20 – 23) are then

µ =
3c(h1 − h2)

2h1h2
, δ =

ch1h2
6

, I =
2ch

h1h2
, Q = c2I . (45)

Here we have absorbed the constant ρ00 into I, that is, we have replaced I
with I/ρ00. To find an expression for σ we assume that both ∆ρ and h1 vary
with x, corresponding to changing stratification and changing pycnocline
depth respectively, so that then the coefficients (45) also vary with x. Then,
from (39),

Iσ =
g′x
2
− g′h1x(h1 − h2)

2h1h2
, so that σ =

1

2
[cx](h = constant) , (46)

in agreement with the general result (59). Thus σ is positive or negative
according as either g′x is positive or negative, or as h1x(h1 − h2) is positive
or negative. Thus, a shallowing pycnocline, h1x > 0, h1 < h2 with weaker
stratification, g′x < 0, leads to σ < 0 and hence wave amplification. For
instance suppose that c decreases from 2ms−1 to 1ms−1 uniformly over
a horizontal distance of 100 km; then σ ∼ −0.5 × 10−5 s−1 in dimensional
terms.
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As a specific oceanic example, we choose h = 1000 − 500χm, and h1 =
200−150χm, where χ = 0.5x 10−5 in the range 0 < χ < 1. This corresponds
to a shelf of width 200 km, that is 0 < x < 200 km, where the depth decreases
from h = 1000m to h = 500m, the upper layer depth decreases from h1 =
200m to h1 = 50m, and then the lower layer depth decreases from h2 =
800m to h2 = 450m. The coefficients µ, δ,Q can then be computed from
(45) and note in particular that µ < 0 throughout. Then we also suppose
that the stratification increases shorewards so that g′ = 0.01 + 0.01χms−2,
from which σ can be found from (46). These coefficients are shown in figure
1. The first term in σ due to g′x is positive but the second term due to h1x is
negative. The combination is initially small and positive, but soon becomes
negative as the second term dominates as h1 decreases. This can also be seen
in the plot for the scaling factor R (9) which is initially close to unity, but
then significantly increases. A simulation of the vKdV equation (5) is shown
in figure 2. Here α < 0 throughout and increases in magnitude, leading
to amplitude growth, and incipient fissioning. The effect of the term with
coefficient σ is to enhance the nonlinearity sufficiently that the leading wave
increases further in amplitude and enhances the fissioning

3.2. Current with only horizontal shear

For this application we assume that the basic current u0(z;x) = U(x)
does not depend on z, but the density profile ρ0(z;x) depends on both z
and x, where the latter dependence is slowly varying. This situation was
considered by Vlasenko and Stashchuk (2006) in a study of the effect of a
background barotropic tidal current with horizontal shear on the internal
waves generated by the tidal flow over a sill. They combined a theoretical
analysis of the interaction between the waves and the background tidal flow
with numerical simulations, using the fully nonlinear equations in a Boussi-
nesq approximation, to study the well-known generation of internal solitary
waves in Knight Inlet. Their main conclusion is that these internal waves
are amplified when propagating either upstream into a region of increasing
current, or downstream into a region of decreasing current; otherwise the
waves are suppressed. Here we examine this same situation but within the
framework of the vKdV equation (1). In this special case the basic state
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equations (10 – 16) reduce to

ρ0UUx + p0x = F0 , (47)

p0z + gρ0 = 0 , (48)

u0 = ψ0z , w0 = −ψ0x , (49)

ψ0 = M0y , y =
z + h

H
, ψ0(z = η0) = HU = M0 , H = h+ η0 , (50)

ρ0 = ρ0(y) . (51)

It follows that

F0z = ρ0zUUx − gρ0x , UUx = −U2Hx

H
,

ρ0x = −w0ρ0z
U

= ρ0z(Hx(1− y)− η0x)
(52)

The modal function now satisfies (18, 19), which can be rewritten in the
scaled form using the change of variable y = (z + h)/H,

c̃2(ρ0φy)y − ρ0yφ = 0 , c̃ =
ĉ

c0
for 0 < y < 1 , (53)

φ = 0 at y = 0 , c̃2φy = φ at y = 1 . (54)

Here ĉ = c − U and c0 = (gH)1/2, and ρ0 = ρ0(M0y) depends only on y.
In this scaled form there is no explicit x-dependence in the modal equation,
and hence φ(y) and c̃ have no explicit x-dependence. Using the same scaling
the expressions (20 – 23) for the coefficients become

µ =
3c0
2H

µ̃ , Ĩµ̃ = c̃

∫ 1

0

ρ0φ
3
y dy , (55)

δ =
c0H

2

6
δ̃ , Ĩ δ̃ = 3c̃

∫ 1

0

ρ0φ
2 dy , (56)

Ĩ =

∫ 1

0

ρ0φ
2
y dy , Q =

2c2ĉ

H
Ĩ . (57)

The scaled entities µ̃, δ̃, Ĩ are independent of x, and so the dependence of
µ, δ,Q on x is now explicitly determined. The coefficient σ is now given by

σ =
σ̃

2c0c̃
, Ĩ σ̃ = −

∫ 1

0

ρ0yφφy[−U2Hx

H
− gHx(1− y) + gη0x] dy , (58)
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Using the modal equations (53, 54) in the Boussinesq approximation when
ρ0 in the term (ρ0φy)y is kept constant, this can be expressed as

Ĩ σ̃ =
c̃2

2
{−J(U2Hx

H
− gη0x)−KgHx} ,

ĨJ = [ρ0φ
2
y]

1
0 , ĨK = {[ρ0(1− y)φ2

y]
1
0 + Ĩ} .

(59)

The sign of σ thus depends inter alia on the signs of J,K. For a near-surface
pycnocline we expect that J > K > 0 for a mode one wave. Further, in
the Boussinesq approximation we expect the term in gη0x can be neglected
compared to gHx. Assuming here that the waves propagate in the positive
x-direction when there is no current, that is c̃ > 0, it follows that σ > 0
when Hx < 0 and σ < 0 when Hx > 0. It follows that there is wave amplifi-
cation (suppression) when a wave propagates into an decreasing (increasing)
current, whether advancing or opposing.

To examine the entities J,K in more detail, we consider a two-layer fluid,
ρ0(y) = ρ1H(y − y2) + ρ2H(−y + y2) where the upper layer has depth y1
and the lower layer has depth y2, with y1 + y2 = 1. In the Boussinesq
approximation,

φ =
1− y
y1

, y2 < y < 1 ; φ =
y

y2
, 0 < y < y2 , c̃2 = y1y2 . (60)

In the original variables, the upper layer has depth h1 and the lower layer
has depth h2 where H = h+ η0 = h1 + h2; hence y1 = h1/H and y2 = h2/H.
Note that y1,2 are constants, but that h1,2 and hence H vary with x. Then
J = (y2−y1)/y1y2 and K = (y2−y1)/y2. Thus in the usual oceanic situation
when the upper layer is thinner than the lower layer, y1 < y2, J > K > 0
as expected. But note that if the upper layer is thicker than the lower layer,
these scenarios are reversed.

However, the amplification or suppression of the wave amplitude refers to
the amplitude A in the transformed equation (5), and to transfer this result
to the physical space amplitude A =

√
Qη (2), it is necessary to evaluate

Q = c2I (23) which in this present case reduces to Q = 2c2ĉĨ/H (57). Thus

Qx

Q
= −3UHx

2cH
, c = c0c̃+ U . (61)

Since we are assuming here that the waves propagate in the positive c-
direction, c > 0, c̃ > 0, it follows that Q decreases (increases) in the positive
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x-direction according as UHx/H > 0(< 0). Thus, relative to the trans-
formed amplitude A, the physical amplitude amplifies when UHx > 0 and is
suppressed when UHx < 0. That is, there is amplification when the waves
propagate into an opposing current of decreasing magnitude U < 0, Hx < 0,
and when the waves propagate into an advancing current of decreasing mag-
nitude U > 0, Hx < 0. This outcome is in complete agreement with the
results obtained by Vlasenko and Stashchuk (2006). They used a Boussinesq
approximation which lead to a conservative setting for their analysis and
numerical simulations. In effect the role of σ is excluded from consideration
in their work and wave amplification or suppression is controlled by wave
action conservation, that is by Q. Indeed, it can be show that when the
wave-flow interaction equation (6-10) in Vlasenko and Stashchuk (2006) is
reduced to the present vKdV framework, the term R in their equation (10)
reduces exactly to (Qx/Q)cE (E is their wave energy) with Qx/Q expressed
by (61).

4. Applications II

In this section we examine the possible effects of a horizontally varying
background hydrology using actual ocean data.Specifically, we consider three
case studies taken from the papers by Grimshaw et al. (2004, 2006). These
are the North West shelf (NWS) of Australia, the Malin shelf edge (MSE)
of Scotland and the Arctic shelf (AC) of Russia. These cases were chosen
to represent three contrasting scenarios; a shelf (NWS) with considerable
variability and a polarity change; a shelf (MSE) with steeper topography
leading to non-adiabatic behaviour and fissioning; and a shelf (AS) with
smooth topography and adiabatic behaviour. In each case they used orceanic
data, including variable background hydrology but not background currents,
to calculate the coefficients of the vKdV equation (1) for a mode 1 wave, and
then used this equation to simulate the propagation of an internal solitary
wave propagating on the continental slope. However, they did not include
the term with coefficient σ and that omission is remedied here.

Although the effects of the Earth’s background rotation are potentially
important for the long-time evolution of an internal solitary wave, we have
chosen not to consider the effects of rotation in this present work. Our main
purpose here is the re-examine the three case studies of Grimshaw et al.
(2004) when the ”new” non-conservative term ση is included. The effects of
rotation were not considered in Grimshaw et al. (2004) and to have included
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rotation here would have clouded the issue of the effect of the term ση. Also, a
time scale of 20h, albeit greater than an inertial period, is rather too short to
see significant effects due to rotation such as the transformation of an internal
solitary wave into an envelope wave packet as described by Grimshaw and
Helfrich (2008). Our experience is that several inertial periods are needed
for this to occur, see for instance the numerical study by Grimshaw et al.
(2014) of propagation of an internal solitary wave over a transect of the South
China Sea, where using both a variable-coefficient Ostrovsky equation and
the MITgcm, it was found that rotation effects started to became evident
only after two to three inertial periods. However, we note that the influence
of earth’s rotation may be important on shorter time scales when a solitary
wave train is formed out of an initial pulse, see Gerkema and Zimmerman
(1995).

4.1. North West shelf

For our purposes we need analytical expressions for the coefficients. From
the data shown in figure 3 of the paper by Grimshaw et al. (2004) (see
also figure 5 in the paper by Grimshaw et al. (2006)), we set µ = (2.5 +
3 tanh (0.1x− 5.0)/100), δ = 12 exp (−0.04x) and c = 1.4−x/xend (xend is the
length of our computational domain) as smooth approximations to the values
exhibited by Grimshaw et al. (2004). Note that µ, δ are α, β respectively
in the paper by Grimshaw et al. (2004). The depth h was represented by
a polynomial interpolation of the actual depth at five points in the domain
0 < x < xend.

However, the data obtained from the paper by Grimshaw et al. (2004) is
not sufficient to find an analytical expression for σ. So for σ only, we use the
two-layer model coefficients (45) and note that then

µδ =
c2

4
(h1 − h2) =

c2

4
(2h1 − h) , (62)

so that with µ, δ, c, h known, h1 can be estimated. With h1 found, the known
expression for c can be used to find g′. Then we use the derived h1, g

′ to
estimate σ from (46).

The final step is to express the non-dimensional α, β in (6) as functions
of τ . To this end we note that we now have α = α(x), and also τ = τ(x)
from evaluating the integral in (6). This is a parametric representation of
α = α(τ). If the total x-domain is 0 < x < xend, then the τ -domain is
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0 < τ < τend where

τend = τ(xend) =

∫ xend

0

δ

c4
dx .

Then we obtain a plot of α(τ) from this parametric representation over the
domain 0 < τ < τend, and from the plot obtain an analytical expression for
α(τ) by a smooth interpolation. The outcome is shown in figure 3.

The numerical simulations based on the vKdV equation (5) are shown
in figure 4 for both β = 0, β 6= 0 for the initial condition of a solitary wave
(32) of amplitude 5m. The former case corresponds to that in figure 5 of
Grimshaw et al. (2004), see also figure 6 of Grimshaw et al. (2006). Note
that in our simulations the output is A(X, τ), and is plotted as a function
of X at certain fixed τ . This needs to be interpreted in terms of the original
x, t variables through the transformations (2, 6) to plot η(x, t) as a function
of t for certain fixed x as in the figures in Grimshaw et al. (2004, 2006). Note
that the plots we produce here are also plots as a function of time t (strictly
−t) at certain fixed locations xn determined by τ = τn = τ(xn), and A differs
from η only through the factor Q1/2, which can alter the magnitude, but not
the shape of the wave.

The coefficient µ of the quadratic nonlinear term is initially negative and
then becomes positive, so this is a case with a polarity change. Note that
our analytical expression for µ is smoother in the positive regime, than that
displayed in Grimshaw et al. (2004, 2006) but the overall qualitative shape
is the same. The dynamics is controlled by the derived coefficients α, β and
evolution is with resepct to the transformed variable τ (6). Here, from figure
3 we see that α is initially negative, then becomes positive but quite small
before significantly increasing in magnitude. Hence when β = 0, the simu-
lation shown shown in the left column of figure 4, we see the initial internal
solitary wave undergoing the well-known transformation due to the polarity
change, that is the replacement of the initial depression wave by a depression
rarefaction wave, and the development of elevation solitary waves riding on
that pedestal, see Grimshaw and Yuan (2016) and references therein. How-
ever, from figure 3 we see that β is initially positive indicating wave decay,
but then becomes negative and although rather small, will generate wave
growth. The effect can seen in the plot for the scaling factor R (9) which is
initially slightly less than 1 with a minimum of 0.98, but then significantly
increases above 1 to 1.52 towards the end of the domain. The simulation
shown in the right panel of figure 4 for β 6= 0 indicates that consequently
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the wave develops as for the case β = 0 but with a slightly increased am-
plitude until the end of the domain, when the elevation waves riding on the
depression rarefaction are significantly larger. Note that the magnification
factor Q > 1 everywhere, with the smallest Q = 1 at τ = 0 and the largest
Q = 2.82 at the end of the domain. The consequent decrease from A to η is
can be seen clearly in Fig. 4, but note that the factor

√
Q only affects the

magnitude and not the fissioning dynamics.

4.2. Malin shelf edge

Here we use the same approach for the Malin shelf edge (MSE), using
the data shown in figure 7 of Grimshaw et al. (2004) to obtain analyti-
cal expressions for the coefficients. Here we setc = 0.75 − (0.35x/xend),
δ = 36 exp (−0.04x) and h = 925 exp (−0.15x) + 200, while for µ, which
corresponds to α in Grimshaw et al. (2004), is represented by a polynomial
interpolation of the actual values at five points in the domain 0 < x < xend.
These are plotted in figure 5 together with the derived values of α and β. In
this case there is no polarity change and µ is negative over the whole domain.
σ is initially positive, but decreases and eventually becomes slightly negative.
However, the scaling factor R (9) is less than 1 over the whole domain, with
a smallest value of 0.786, and then increases towards unity at the end of the
domain.

The simulations are shown in figure 6. When β = 0, the initial solitary
wave steepens on the front face, and begins to fission at the end of the domain.
But, in contrast to the NWS case, here when β 6= 0, R < 1 over the whole
domain, this reducing slightly the effect of nonlinearity sufficiently to inhibit
the fissioning at the end of the obtain.The transformation A =

√
Qη (2) to

the physical variable η shows that initially η is enhanced above A as initially
Q < 1 and decreases to a minimum of 0.7, but then increases to 1.1 and so
at the end of the domain A and η are virtually the same.

4.3. Arctic shelf

For the Arctic shelf, we use the data shown in figure 11 of Grimshaw
et al. (2004). Here we set c = 0.84− (0.14x/xend), h = 40− (22x/xend) and
δ = 55− (43x/xend), and then again use a polynomial approximation for µ.
These are plotted in figure 7 together with the derived values of α and β.
The linear long wave speed c decreases only slightly from 0.84 to 0.70 ms−1,
and there is then only a small variation of the linear amplification ratio Q
of order 10%. The depth also decreases quite slowly over the total distance
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of 160 km. The quadratic nonlinear term µ does vary significantly, but is
everywhere negative, except in the last 5 km, where is a change in polarity at
a distance of 155 km. In this case β is quite small, and the scaling parameter
R does not change much, as the smallest value is R = 1 while the largest
value is only R = 1.02.

The simulations are shown in figure 8. When β = 0 the initial solitary
wave deforms adiabatically until near the end of the domain, when there is a
polarity change, and the wave field transforms to a leading rarefaction wave
on which are riding several elevation solitary waves. Here , since R ≈ 1, the
case β 6= 0 is almost the same. Further because Q does not change very
much from 1, there is very little difference between A and η.

5. Discussion

In this paper we have examined the effect of the nonconservative term
ση in the vKdV equation (1), which has hitherto been usually neglected in
the many studies using this equation to model the propagation and defor-
mation of oceanic internal solitary waves. We used an analytical two-layer
model in section 3 and re-examined three oceanic case studies taken from
Grimshaw et al. (2004, 2006) in section 4. These cases were chosen to repre-
sent three contrasting scenarios; a shelf (NWS) with considerable variability
and a polarity change; a shelf (MSE) with steeper topography leading to
non-adiabatic behaviour and fissioning; and a shelf (AS) with smooth topog-
raphy and adiabatic behaviour. In each case Grimshaw et al. (2004, 2006)
used oceanic data, including variable background hydrology but not back-
ground currents, to calculate the coefficients of the vKdV equation (1) for a
mode 1 wave, and then used this equation to simulate the propagation of an
internal solitary wave propagating on the continental slope. However, they
did not include the term with coefficient σ and that omission is remedied
here.

The effect of this term is best seen in the transformed equation (5) through
the coefficient β = σc3/δ which includes also. the effect of variability in
the dispersion coefficient δ. Further the transformation to the equation (9)
indicates that the cumulative effect of β is best estimated through the scaling
parameter R. The essential issue is whether σ < 0 or σ > 0, and so β < 0
(R > 1) or β > 0 (R < 1) indicating wave amplification or decay respectively.
The analytical and oceanic examples we have considered here suggest that
although β may change sign along the path of the wave, the main issue
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is whether R > 1 or R < 1 at the end of the propagation path, and so
whether or not the wave amplitude has increased or decreases as the wave
reaches shallower depth. Although we have only examined a very few, but
representative cases, it appears that no general conclusion can be reached
and the outcome depends on the specific case being studied. But we note
that when the background is a barotropic tidal current, the case studied by
Vlasenko and Stashchuk (2006) and discussed theoretically here in section
3.2, some general conclusions can be reached. We note that a comparison of
the cases when β = 0 and β 6= 0 suggests that the overall structure of the
dynamical wave evolution remains basically the same, and the role of β and
hence R is mainly to change the wave amplitude.

Since we have demonstrated that the new term ση in (1) may be quite
significant in practice, it becomes important to consider the origin of the hor-
izontal variation in the background hydrology. In the derivation of this term,
the coefficient σ expressed in (23) depends on the body force F0. This hori-
zontal body force F0(z;x) represents terms not present in the left-hand side
of (10) such as diabatic effects, for instance dissipation, Corlolis terms, and
driving terms, for instance wind stress. In this paper, we do not examine this
issue directly. Instead, we use model or observed background fields ρ0(z;x)
and u0(z;x) to estimate the body force F0(z;x) directly, without regard to
its precise physical meaning, and hence find the coefficient σ. However, in
an ongoing study we are examining climatological data to investigate further
the physical meaning of the term ση.
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Figure 1: Variation of the coefficients(left) and derived coefficients(right) of the vKdV
equation for a two-layer fluid model.

22



Figure 2: A numerical simulation of the vKdV equation (5) for the two-layer fluid model,
for the cases when σ = 0 (right four panels) and σ 6= 0 (left four panels). The initial
condition is the solitary wave (32) (blue), the numerical solution is A (black) and the
physical solution is η (red). From top to bottom, the distances from the initial point are
0km, 65km,130km,200km.
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Figure 3: Variation of the estimated coefficients (left) and derived coefficients (right) of
the vKdV equation for conditions of the North West Shelf.
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Figure 4: A numerical simulation of the vKdV equation (5) for the North West shelf when
β = 0 (left) or β 6= 0 (right). The initial condition is the solitary wave (32) (blue), the
numerical solution is A (black) and the physical solution is η (red) of North West shelf.
From top to bottom, the distances from the initial point are 0 km, 34 km, 52 km, 74 km.
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Figure 5: Variation of the estimated coefficients(left) and derived coefficients(right) of the
variable-coefficient KdV equation for conditions of the Malin shelf edge.
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Figure 6: A numerical simulation of the vKdV equation (5) for the Malin Shelf edge when
β = 0 (left) and β 6= 0 (right). The initial condition is the solitary wave (32) (blue), the
numerical solution is A (black) and the physical solution is η (red) of Malin shelf edge.
From top to bottom, the distances from the initial point are 0 km, 11 km, 21 km, 36 km.
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Figure 7: Variation of the estimated coefficients(left) and derived coefficients(right) of the
variable-coefficient KdV equation for conditions of the Arctic shelf.
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Figure 8: A numerical simulation of the vKdV equation (5) for the Arctic shelf for cases
when β = 0 (left) and β 6= 0 (right). The initial condition is the solitary wave (32) (blue),
the numerical solution is A (black) and the physical solution is η (red) of Arctic shelf. From
top to bottom, the distances from the initial point are 0 km, 118 km, 142 km,158 km.

29


