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Inadequate dose selection for confirmatory trials is currently still one of the most challenging issues in drug development, as
illustrated by high rates of late-stage attritions in clinical development and postmarketing commitments required by regulatory
institutions. In an effort to shift the current paradigm in dose and regimen selection and highlight the availability and
usefulness of well-established and regulatory-acceptable methods, the European Medicines Agency (EMA) in collaboration
with the European Federation of Pharmaceutical Industries Association (EFPIA) hosted a multistakeholder workshop on dose
finding (London 4–5 December 2014). Some methodologies that could constitute a toolkit for drug developers and regulators
were presented. These methods are described in the present report: they include five advanced methods for data analysis
(empirical regression models, pharmacometrics models, quantitative systems pharmacology models, MCP-Mod, and model
averaging) and three methods for study design optimization (Fisher information matrix (FIM)-based methods, clinical trial
simulations, and adaptive studies). Pairwise comparisons were also discussed during the workshop; however, mostly for
historical reasons. This paper discusses the added value and limitations of these methods as well as challenges for their
implementation. Some applications in different therapeutic areas are also summarized, in line with the discussions at the
workshop. There was agreement at the workshop on the fact that selection of dose for phase III is an estimation problem and
should not be addressed via hypothesis testing. Dose selection for phase III trials should be informed by well-designed dose-
finding studies; however, the specific choice of method(s) will depend on several aspects and it is not possible to recommend
a generalized decision tree. There are many valuable methods available, the methods are not mutually exclusive, and they
should be used in conjunction to ensure a scientifically rigorous understanding of the dosing rationale.
CPT Pharmacometrics Syst. Pharmacol. (2017) 6, 418–429; doi:10.1002/psp4.12196; published online 0 Month 2017.

In order to receive marketing authorization (MA) and to be

maintained on the market, new drug candidates need to

demonstrate good evidence of efficacy and safety in the

sought indication. Adequately powered phase III random-

ized controlled trials (RCTs) where the new drug candidate

is tested against placebo or an active comparator is the

gold standard for confirmation of efficacy and safety.

Although it is logical to assume that medicinal products that

advance to phase III trials are adequately characterized in

terms of pharmacokinetics (PK), pharmacodynamics (PD),

and the efficacy and safety profile in earlier stages of drug

development, the high attrition rate in phase III does not

support this.1 One of the contributing factors to this high

attrition rate is inadequate dose and regimen selection and,

more generally, the insufficient understanding of the phar-

macology to design an optimal phase III program.2–4 Even

successful phase III trials and regulatory labeling may not

include the optimal dose and regimen, especially for special

populations such as the elderly and pediatrics, as shown in

postmarketing commitments (Post Authorisation Efficacy

Studies, (PAES); Post Authorisation Safety Studies (PASS))

and through subsequent changes to the dosing recommen-

dations postmarketing.5

The most commonly used method for defining the dosing

rationale (dose and dosing regimen) is the pairwise com-

parison of different doses with a common control (e.g., pla-

cebo), a method based on minimal assumptions which,

however, has known limitations in this context, including

reliance on P-values and the need for the dose ranging

studies to be powered for multiple comparisons.6 Further,

the exploratory development is often poorly conceived by

focusing on selecting the dose/regimen instead of
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characterizing dose–exposure–response (DER). The latter
should be prioritized, since it enables more efficient dose/
regimen selection and even goes beyond that. DER can be
used to inform summary of product characteristics (SmPC),
risk management plan (RMP), and support extrapolation to
different populations. In addition, comprehensive DER infor-
mation may be used as a sole basis for approval of a differ-
ent dose/regimen, and a new formulation/route of
administration postmarketing.

This body of evidence should be ideally collected ahead
of confirmatory trials in order to be prospectively and ade-
quately tested.7 In a well-designed development program,
pivotal trials should not enable characterization of DER
because all the patients included should show optimal
response. Inevitably, though, as the drug development is
focused initially on a well-characterized population, which
expands later to reflect the target population in subsequent
stages, DER findings may occur. It is expected that DER in
phase III will be a signal detection exercise that will evalu-
ate consistency of drug effects across subgroups and pro-
pose further actions if inconsistencies are shown.

In an effort to shift the current paradigm in dose and regi-
men selection and highlight the availability and usefulness
of well-established and regulatory-acceptable tools and
methods, the European Medicines Agency (EMA) in collab-
oration with the European Federation of Pharmaceutical
Industries Association (EFPIA) hosted a multistakeholder
workshop on dose finding (London 4–5 December 2014).
Some methodologies that could constitute a toolkit for drug
developers and regulators were presented. This paper will
discuss their added values, limitations, and challenges. A
separate paper will discuss how regulators value informa-
tion on dose–exposure–response relationships at the stage
of MAA and postmarketing.

Building a scientifically rigorous justification for the dosing
rationale for a phase III trial will depend on a large number
of factors that could make this exercise rather case-
specific. It may, however, be possible to benchmark the dif-
ferent tools available and propose some guiding principles
on when and how to use them.

Methods presented during the workshop can be divided
into two categories: 1) methods for data analysis and
2) methods for design optimization.

The aim of this paper is to convey the message that
dose/regimen finding and selection should be a multidisci-
plinary team decision and that there are many methods
available to make sufficiently informed decisions rather than
to propose a general decision tree applicable for all drug
developments in different therapeutic areas. This will be
illustrated through applications where some advanced
methodologies have been applied with relatively positive
outcome.

CHALLENGES FOR DOSE SELECTION DURING DRUG
DEVELOPMENT

The traditional drug development is usually concerned with
what dose should be chosen for phase III, to meet the
requirements for prespecification and strict type I error

control in confirmatory trials. Even if this paradigm facili-
tates confirmatory testing, at the end it is not clear if the
selected dose is optimal because the DER space is not
known. In addition, the confirmatory data generated in
phase III with the specific dose makes it difficult to chal-
lenge “the dose.” There is an agreement in different fora,
including the EMA dose-finding workshop, that there is a
way to improve dose selection for phase III, retaining the
principles of confirmatory testing.

One principle-based method of dose finding in drug
development that can also be linked directly to the clinical
use of a drug was described more than 20 years ago.8 The
principle is based on the concept of a target effect and use
of a PD model to predict the target concentration needed to
achieve that effect and a PK model to predict the dose
required to achieve the target concentration (Eqs. 1–4).

Target Effect ! Target Concentration ! Dose (1)

Target Concentration5C503Target Effect=ðEmax2Target EffectÞ
(2)

Loading Dose5Volume of Distribution3Target Concentration (3)

Maintenance Dose Rate5Clearance3Target Concentration (4)

This simple example shows that only four parameters are
required to find the right dose. These are maximum drug
effect (E-max) and potency (C50) to predict the target con-
centration and volume of distribution (V) and clearance
(CL) to predict the dose. In actual drug development pro-
grams, the PD and PK models are usually more complex
but the principle remains the same.

The challenges of applying this model-based method for
dose finding are:

1. What is the target effect? From the patient perspective the target
effect is to relieve symptoms completely or restore normal function
or return to a normal survival probability. In practice, this is rarely
achievable because drugs may not be sufficiently effective to
achieve these goals and/or the magnitude of the effect is limited by
adverse effects. The desired beneficial effects and the undesired
adverse effects are both determined by drug concentration. The
challenge is to thus determine the optimal target concentration that
achieves as much benefit as possible with acceptable adverse
effects. The challenge is made more complex because the time
course of beneficial and adverse effects may be different, so that
the target concentration itself may change with time. This is the
implicit principle behind the empirical dosing aphorism ‘‘start low
and go slow’’ (e.g., Ref. 9).

2. What is the concentration (or related exposure metric) that produ-
ces the effect? This is a more general problem than simply predict-
ing the target concentration because it must be clearly understood
what exposure metric is most appropriate for a target. When drugs
have reversible effects and the clinically useful concentrations are
close to and above the C50 and the desired clinical benefit is
dependent on a cumulative drug effect (e.g., frusemide for relief of
heart failure symptoms), then schedule dependence is expected
and the time course of concentration must be considered. For
drugs which have slowly reversible actions or are irreversible and
require a new drug target to be synthesized, then the cumulative
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concentration over time (‘‘area under the curve’’ or AUC) and thus
the cumulative dose is the target (e.g., busulfan for bone marrow
ablation). In between these extremes of the full time course to the
full integrated time course the most widely used concentration met-
ric is the average steady state concentration (Css). Css is directly
related to the steady state AUC in a dosing interval. AUC is com-
monly recommended but it requires that the dosing interval be
defined as well, which can lead to confusion when this is not
clearly stated. Css avoids this problem and is simple to use to pre-
dict the required maintenance dose. Specific target concentration
(or related metrics) can be evaluated by concentration-controlled
clinical trials.10–14 Further challenges arise when dealing with drug
combination therapy but the principle is the same.

3. What variability of effect is acceptable when dosing is based on a
population target concentration? How does it translate into what
variability is acceptable in the exposure metric(s)? Population analy-
sis methods applied to PK and PD models can describe the pre-
dictable and unpredictable (random) components of variability, but
the challenge is identifying the acceptable range that allows the
drug to be used safely and effectively.15

4. Finally, some practical considerations are also of importance. The
scientific challenges in defining the target effect, concentration, and
finally dose are further confounded by the limitations of clinical trials,
i.e., restricted number of events, patients, and investigations that can
be conducted. For example, in case of lifelong treatments to prevent
rare events, the DER relationship is often built on PD markers, with
the additional complexity of translation to clinical outcome. In rare dis-
eases, where the number of patients is limited, there is a tradeoff
between the patients enrolled in dose selection vs. the ones
‘‘reserved’’ for confirmatory testing. In some diseases, such as tuber-
culosis, it is challenging to measure concentrations at the site of infec-
tion, e.g., lung granuloma; therefore, assumptions are made on the
distribution of the medicinal products in the lungs and actual PK
measurements are limited to plasma and epithelial lining fluid.

METHODS

The different methods presented during the workshop for

data analysis and/or study design optimization (Figure 1)

are described in detail in the following sections.

Methods for data analysis
Pairwise comparisons. Pairwise comparisons were not thor-

oughly discussed during the workshop, given their limita-

tions. This method will therefore only be shortly presented

in this paper. However, given that it has historically been

the main method used and that it is still widely used for

dose selection in phase II studies, several illustrative exam-

ples can be found in the literature.16,17 Generally, parallel-

group, double-blind, randomized, dose-ranging trials are

implemented, and patients are randomly assigned to one of

the dose levels and/or placebo/active comparator. The aim

of the analysis is often the selection of the adequate dose

for confirmatory trials. The results obtained in different

treatment arms are compared with a statistical test (e.g.,

analysis of variance (ANOVA)). This method, while allowing

to make a statement on specific dose without relying on

model assumptions, penalizes the developer when a wide

range of doses are tested, has limited statistical power

compared to model-informed methods, and makes ineffi-

cient use or disregards the available information.17

During the workshop it was agreed that selection of dose

for phase III is an estimation problem and should not be

addressed via hypothesis testing.

Advanced methods
Empirical dose (exposure) response models (regression

models). Empirical regression methods (such as linear, cur-

vilinear spline, and E-max models, etc.) are extensively

used to describe phase II dose-ranging results. They aim to

(empirically) compare and analyze the dose–response rela-

tionship based on different doses tested in phase II trials

and use this as a basis to select a dose (usually one of the

tested doses).18,19 Most of these methods are optimal

under certain conditions; however, many of the statistical

methods have been optimized for conditions seldom

encountered in practice. Two meta-analyses have recently

been conducted on dose–response studies from small-

molecule drugs, which aimed to describe the designs of the

studies, and to summarize methods used for dose–

response analysis. The results showed that, for the majority

of cases, E-max models were used for dose selection.18,19

The E-max model is very common in pharmacology, and

can be derived from the law of mass action relating to

receptor occupancy.20 Other similar families of models

monotonically increasing (or decreasing) to an asymptote,

such as models formed by rescaling the logistic distribu-

tion, could also be used. When unusual situations are en-

countered, they are often more appropriately assessed by

consideration of other approaches such as better PK charac-

terization, description of reasons for discontinuation, or more

mechanistic (physiologically based) PK and/or PK/PD models.

Multiple comparison procedures and modeling (MCP-Mod).

MCP-Mod is a principled method for empirical dose–

response analysis. The modeling is based on a set of can-

didate dose–response shapes that is predefined at the

design stage of the trial. The methodology consists of two

Figure 1 Schematic representation of the role of advanced meth-
ods in phase II and III drug development.
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steps: (i) A statistical test for a dose–response signal,
assessing whether there is a dose-related trend over pla-
cebo (the MCP step). In the second step (ii) the dose–
response curve is estimated based on model selection or
model averaging techniques. For more details on MCP-
Mod, we refer to Bretz et al. and Pinheiro et al.21,22 MCP-
Mod was qualified as an efficient statistical methodology for
model-based design and analysis of phase II dose finding
studies under model uncertainty by the CHMP,23 and
received a fit-for-purpose determination by the US Food
and Drug Administration (FDA).24

MCP-Mod applies when the primary focus of a phase II
study is the investigation of the population dose–response
curve at a specific timepoint. The method is most informa-
tive if it is applied at a timepoint when the dose–response
achieves steady state. It applies to both parallel groups and
crossover designs and when at least three active doses are
utilized vs. a placebo (or placebo-like) comparator. The
method does not apply if the major focus of the study is to
determine an adequate administration frequency rather
than the dose itself within given regimens. It is possible to
extend MCP-Mod to allow modeling more than one admin-
istration frequency when making certain assumptions, e.g.,
some of the model parameters are shared between regi-
mens. MCP-Mod also does not apply when very different
irregular treatment regimens are compared (e.g., regimens
with and without loading dose), or different administration
forms are compared. While the original approach was not
designed to model the evolvement over time, extensions
have been described based on longitudinal nonlinear
mixed-effects models.25 The method should not be used
when patients are titrated based on efficacy and/or safety
outcomes in the design, because a population dose–
response analysis is misleading in this situation. The
method also does not apply to safety dose escalation
studies.

It has been demonstrated through simulations in a num-
ber of realistic scenarios that MCP-Mod is an improvement
over pairwise testing approaches, in terms of power to
detect a dose–response signal and to estimate the dose–
response curve (see Bornkamp et al., among others).26,27

The method is intended to be specified at the design stage.
This means that the study design, including the total sam-
ple size and the dose levels, should be selected to reliably
determine the dose–response curve. This encourages more
informative study designs. Such a structured modeling
approach makes the modeling process more transparent
and less subject to cherry-picking or overfitting. MCP-Mod
can be implemented relatively quickly, compared to a longi-
tudinal DER analysis. The caveat of prespecification (e.g.,
for relevant covariates, times of measures, etc.) is that it
might not be flexible enough to accommodate trends in the
data unanticipated at the design stage. It is therefore rec-
ommended to perform additional exploratory post-hoc anal-
yses (not necessarily based on MCP-Mod) evaluating the
effect of covariates on different aspects of the dose–
response curve; these analyses should be interpreted
carefully. In its standard form, MCP-Mod can only include
covariates as additional effects to the intercept of the
dose–response model, and covariates are only included if

they are assumed to affect the response at the design

stage. Also, MCP-Mod does not use exposure data, but

cross-sectional exposure–response analyses could be per-

formed with MCP-Mod as well. A potential advantage of

MCP-Mod as compared to single models is that model

uncertainty in the estimation (e.g., of the target dose or the

dose–response curve) can be addressed using appropriate

techniques. This solves the impact of model selection

uncertainty on the final inferences to a large extent.

Model averaging. If a nonlinear regression model is used to

quantify the dose–response (D-R) relationship (or DER

relationship), a natural question is which model to use. In

general, even with high amounts of prior information, there

will be uncertainty in terms of model structure in addition to

model parameter values when fitting and interpreting DER

data. Moreover, while several models might fit the data well,

they may differ on certain estimated quantities of interest; for

example, the target dose estimate as well as the uncertainty

around that estimate. There have been several attempts to

weaken assumptions about the choice of the model to use

(model building) through model selection and model averag-

ing of predefined candidate models of interest.28,29

Model averaging acknowledges model uncertainty explic-

itly as part of the inference and “averages” over all the

model candidates using predefined relative weights for

each model. Averaging of model candidates can be per-

formed by using either a frequentist or a Bayesian

approach. In each approach, there are methods for model

weighing and for averaging the outcome (e.g., the smallest

dose producing an effect that is at least as large as the tar-

get effect). When a frequentist approach is used, the likeli-

hood of the parameter estimates can be approximated and

then different information criteria (Akaike information crite-

rion (AIC), Bayesian information criterion (BIC), etc.) can be

used as selection criteria or as the weights in an averaging

scheme. These effects from each model should be evalu-

ated in such a way as to account for parameter uncertainty.

Other methods of model averaging that utilize bootstrapped

model selection techniques to average over model predic-

tions have also shown promise.30–34

Model averaging techniques can increase the probability

of making the correct dose-finding decisions compared to a

single model informed analysis or to conventional nonmodel

informed study protocols. There exists empirical evidence

that model averaging also improves the estimation effi-

ciency. As a consequence of including model structure

uncertainty and parameter uncertainty when using model

averaging, the quantified uncertainty of an effect may

appear to be bigger than with a single model informed pre-

diction. However, single model informed predictions may be

overoptimistic or biased (if the “wrong” model is used). As

more examples of the dangers of ignoring model uncer-

tainty are publicized, as computing power continues to

expand, and as the size of databases, the numbers of vari-

ables, and hence the numbers of possible models increase,

accounting for model uncertainty (e.g., application through

model sensitivity analysis) will become an integral part of

statistical modeling.28,29,34,35

Advanced Methods for Dose and Regimen Finding During Drug Development
Musuamba et al.

421

http://psp-journal.com



The challenges described for MCP-mod related to model

prespecification are also applicable to model averaging.

Pharmacometrics models. The traditional use of pharmaco-

metric (PMx) modeling for dose selection originates from

the concept of “learn and confirm,” which emerged in the

late 1990s and emphasized the need for early development

activities to more effectively inform later-stage develop-

ment.36,37 The use of modeling in drug development has

increased considerably in the last two decades; models are

used to describe PK and PD properties of drugs and have

now become a standard tool in the pharmaceutical indus-

try.38–41 While PK models relate observed concentrations in

biological fluids to the times of measurements and the

administered dose, (PK/)PD models relate observed

response (clinical efficacy or toxicity) or their biomarkers/

surrogates to dose or concentrations.
Mixed-effects models (population approach) have been

widely used for the analysis of PK, PD, and PK/PD data.

This allows estimation of population parameters that

describe the average response and a measure of variability

in the data. The importance of using this approach during

drug development has been widely discussed in the litera-

ture; it is particularly attractive for unbalanced and sparse

data.42–44

In dose-finding studies, the response of interest can be

continuous or discrete. Continuous response in clinical trials

can take any value and examples include blood pressure,

heart rate, tumor size, time-course of leukocytes, and neu-

trophils and Forced Expiratory Volume in 1 second

(FEV1).45,46 Discrete responses, on the other hand, are

responses that can only take a finite number of values,

they can be ordinal, nominal, count, or time-to-event varia-

bles. Examples of discrete variable include seizure count in

epilepsy, grade of adverse events, and survival data in

oncology.47–50 Dose optimization for efficacy and safety can

sometimes involve a mixture of continuous and discrete

outcomes in a multiresponse model where a careful bal-

ance of the outcomes is important.51

A number of structural models such as linear, E-max,

exponential, log-linear, logistic models, and indirect

response models have been used to characterize either

dose– or exposure–response profiles as part of PMx

models.52,53

As far as the link to physiology and pharmacology are

concerned, different types of PMx models have been

described including empirical and (semi)mechanistic mod-

els.54–56 Model-based meta-analysis (MBMA) has also

been proposed when different (competing) models are

available to describe the data.57

Quantitative and systems pharmacology models. Quantita-

tive and systems pharmacology (QSP) models are mecha-

nistic disease progression, PK/PD, and physiologically

based (PB) PK models that focus on describing in a quanti-

tative manner the interactions between the (healthy and

diseased) organism (so-called system) and different drugs

or drug candidates, starting from the characterization and

quantification of a network of biological/molecular mecha-

nistic pathways. When QSP methods are used for dose

selection, there is therefore a clear need for understanding,
in a precise and predictive manner, how drugs modulate
the system. Both temporal and spatial scales are consid-
ered for this purpose. They incorporate data at several tem-
poral and spatial scales and consider interactions among
all relevant elements at different levels (biomolecules, cells,
tissues, organs, and organism). These methods have also
been widely described in the literature.58–62

QSP models constitute powerful tools to quantitatively
understand and predict therapeutic and toxic effects of
drugs. QSP models, in various therapeutic areas, have suc-
cessfully been used to inform optimal dose selection during
the exploratory phase of drug development.58–62

With regard to characterization of drug efficacy, QSP
models include investigation of the sources of variability in
drug response at different levels: single-cell, organ, and/or
patient level. Variability that can originate from intrinsic or
environment factors. QSP approaches include incorporation
of data from diverse sources (from omics to clinical levels),
characterization of pharmacodynamic biomarkers, develop-
ment of inform integrated and multiscale models of drug-
response in different patient populations, and development
of animal and tissue models for preclinical pharmacology.
The final aim of using a QSP approach for efficacious dose
finding is better target validation, development of multiscale
pharmacological models, and therefore fewer phase II and
III failures due to lack of efficacy.58

QSP models have also been used for drug safety predic-
tion and evaluation in a quantitative manner, and therefore
offer the possibility to have quantitative metrics on both
sides of the benefit/risk (B/R) balance so that statements
can be made about clinical benefit, clinical utility, or effec-
tiveness of drugs under development.62

Phase II studies are particularly relevant to systems
pharmacology because it is at this stage that correct selec-
tion of targets, drugs, dosing regimens, and therapeutic
effects should rigorously be tested.

It should, however; be noted that the actual mechanism
of action (i.e., how target engagement leads to patient
responses) remains at least partly obscure for most thera-
peutic drugs. An immediate challenge for use of QSP will
therefore be developing the capacity to make rigorous
statements about both sensitivity and specificity for pre-
dicted treatment outcomes.58

Moreover, use of QSP will require the participation of
investigators with different skill sets, but will also benefit
from the insight of individuals who can bring concepts and
information from several relevant fields (integrators rather
than specialists).58

This poses a challenge, since the current culture of aca-
demic biomedicine research community has evolved to
reward individuals who are embedded in the culture of a
single field, with the unintended consequence that interdis-
ciplinary innovation is made harder.58

Methods for study design optimization
Irrespective of the method used for the analysis of data,
dose selection for confirmatory trials will also be impacted
by design factors in phase II dose-ranging studies and vice
versa. Design factors include dose range, study durations,
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number of patients included (study size), timing, and num-

ber of PK/PD/clinical response measures, etc. All the

inclusion/exclusion criteria can also be considered as part

of study design and will impact the results of phase II data

analysis and subsequent phase III dose selection. Effective

tools for study design optimization are described in the liter-

ature. Several methods have been described for this pur-

pose, including optimality defined based on the determinant

of the Fisher information matrix (FIM) and clinical trial simu-

lations. These methods should be used when planning

phase II studies. Design optimization tools work better if

the model to be used to analyze phase II data has been

characterized from previous experience/study(ies). Other-

wise, a two-stage approach should be envisaged in which

the study design implemented at the initiation of the study

is refined based on the results of the interim analysis.

Three methods for phase II study design optimization are

detailed in the following sections: FIM-based methods, clini-

cal trial simulations, and adaptive study designs.

Fisher information matrix-based methods. The use of a

model-informed approach in drug development provides a

framework that allows studies such as dose-finding studies

to be performed in a way that data collection is carried out

in a very efficient way for proper characterization of dose–

response or exposure–response relationships. Optimal designs

are obtained by optimization of a function of the FIM, an

approach that is based on Cramer–Rao inequality. Expres-

sions for FIM for fixed and mixed effects model have been

described. This is usually a square matrix of the dimension

of the number of parameters in the model, each row/column

of the matrix corresponding to a parameter. Different optimal-

ity criteria (A, C, D, E, G) have been described in the litera-

ture, depending on the objective of the study, a function of

which can be optimized to obtain optimal doses for charac-

terization of dose–response relationships as uniresponse or

multiresponse models with a mixture of both continuous and

discrete outcomes. In addition to (number of) dose levels,

other design factors can be optimized to ensure collection

of informative data in exploratory trials, such as number of

patients (study size), number of samples, sampling times,

and study duration.63–69

A major challenge in optimal design of nonlinear models

is that the FIM is a function of unknown parameters. Such

parameter estimates can sometimes be obtained from pre-

vious studies or another relevant study i.e., another drug in

the class. Local validity of the results is another problem;

the result of the optimization is only valid for the parameter

and model that were used for the optimization. If a set of

parameter estimates have been used for the optimization,

the results are only valid for this set and cannot be general-

ized. To address this problem, a robust design using Bayes-

ian approaches can be employed; this allows incorporation

of a measure of uncertainty in the parameter values in the

optimization. Similarly, methodologies to guard against pos-

sible model misspecification when there is more than one

competing model have also been described.70,71

Clinical trial simulations (CTS). Clinical trial simulation

involves the specification of several types of models which

are then used together to simulate the outcome of individ-

ual patients in a clinical trial to produce a dataset similar to

the real data from an actual trial.
These key models are:

1. A model describing structural features and variability of the disease
and its progression and the time course of drug effects on the
disease.

2. A model for the covariate distribution in the target population that
can be used to predict individual efficacy and safety differences
that are dependent on the covariates (for known covariates that are
associated with the efficacy or safety outcomes).

3. A model for the nominal design of the study involving the treatment
arms and dosing strategies.

4. A model for deviations from the nominal design due to trial partici-
pant withdrawal, incomplete adherence with the dosing regimen,
and missing observations.

These models may be implemented using general-

purpose modeling and simulation tools. The ability of clini-

cal trial simulation to simulate many replicates of trial

participants and then replicates of trials allow statistical

analysis of the simulation results, which in turn can answer

questions about the bias and uncertainty of model parame-

ters and the power of hypothesis tests used to evaluate the

success of the trial.
Clinical trial simulation builds on optimal design methods

used to obtain a nominal design model (Model 3 in the list

above). It allows accounting for impact of missing data on

the outcome of a trial (Model 4 in the list above). It also

allows key uncertainties about components in any of the

four models above to be explored as specific scenarios to

understand the importance of assumptions in determining

the trial analysis outcome. CTS may also be seen as a

powerful tool to visualize and examine complex statistical

distributions.
As for other model-based methods, the technical aspects

of implementing a clinical trial simulation usually involve

just one or two experts familiar with the modeling and simu-

lation methodology. But they rely on working with a larger

team of clinicians, statisticians, and project managers who

are responsible for defining the goals of the clinical trial

simulation in order to ensure the results can be used to

make decisions about actual clinical trial design.
When this larger team works effectively, it leads to many

benefits for the drug development process that go beyond

the design of one particular trial. The disease and drug

model (Model 1 in the list above) has to be built based on

existing knowledge, but commonly important elements of

the model needed to simulate a clinical trial are not

known. Plausible assumptions about missing components

must be agreed on by the wider team before they are

tested as simulation scenarios. The process of under-

standing what is missing often leads to a better apprecia-

tion of the overall project plan and better decision-making

about how to approach the development of a drug or series

of drugs.
There are many examples of successful and not-so-

successful clinical trial simulation projects. The use of
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clinical trial simulation has been extensively reviewed and

discussed, e.g., in Refs. 72–87. The key challenge for tak-

ing advantage of clinical trial simulation is for project man-

agement to start developing a clinical trial simulation

strategy earlier in the drug development process. In many

cases clinical trial simulation is only thought of late in the

development of a drug when hard choices have to be made

about trial design.

Adaptive and Bayesian adaptive studies. In adaptive stud-

ies, the study is designed to have flexible aspects that

dynamically change during the course of the trial, e.g.,

based on predetermined algorithms and models that are

learning from the accruing data in the trial. Clinical trials

are therefore prospectively designed with adaptive features

to make the studies more efficient (e.g., shorter duration,

fewer patients), more likely to demonstrate an effect of the

drug if one exists, or more informative about the most ther-

apeutic dose or the go/no-go decision (e.g., by providing

broader dose–response information).88–92 The great poten-

tial of adaptive designs is that it allows the trial to learn

from the accruing data in order to continue to collect rele-

vant and informative data as the trial continues. For exam-

ple, in a dose-finding trial a predetermined sample size of

200 can be specified or a flexible sample size between 100

and 300 can be specified, allowing the trial to stop when

the appropriate questions are answered. A critical aspect of

dose-finding studies is the ability to select an optimal dose.

In a fixed design the doses and the allocation ratio of each

is prespecified. In an adaptive dose-finding design an algo-

rithm that allows the allocation to vary (response adaptive

randomization) during the course of the trial can create

more patients being allocated to the more therapeutically

beneficial and more informative doses, allowing the potential

for better identification of the optimal therapeutic dose with

fewer resources. Frequently, response adaptive designs can

allow more doses to be explored in dose-finding trials for the

same number of patients.
There is a synergy with adaptive trials to the use of

Bayesian methods. Many dose-finding trials will have many

interim analyses to keep the trial design on track. Bayesian

methods work well in this setting because the calculation of

the posterior distribution at an interim does not only depend

on the result or presence of previous looks in the trial. Fre-

quentist techniques depend on the sample space of the

data, and thus can be quite difficult computationally within

an adaptive trial design. Additionally, the use of posterior

distributions, utility functions, and predictive probabilities

make the Bayesian approach powerful within adaptive

designs.
The complexity of adaptive designs demands more time

for the planning and design of these trials. The flexibility of

the designs, driven by the adaptations and models, create

a situation where the operating characteristics of the design

cannot be easily calculated with analytical methods. There-

fore, clinical trial simulation becomes critical to understand

the characteristics of, and to optimize the behavior of, the

adaptive design. Being “adaptive” does not guarantee a

better-performing trial; hence, appropriate exploration and

optimization of the adaptive design is critical to having a

well-performing design.

APPLICATIONS

Some applications of the above-described methods were

presented during the workshop. Therapeutic areas for

which examples were presented during the workshop

included central nervous system (CNS), oncology, antibiot-

ics, antivirals, cardiovascular, and immunology. For a matter

of conciseness, only applications in three therapeutic areas

(oncology, infection disease, and organ transplantation) will

be briefly discussed. The reader is referred to the workshop

summary report87 for more descriptions of additional appli-

cations as discussed during the workshop. A session of the

workshop was dedicated to dosing in special populations,

which is also summarized in this section.

Oncology drugs
Identification of the maximum tolerated dose (MTD) is still

the most commonly used method to identify the recom-

mended phase II dose (RP2D) for oncology compounds.

There is a need to reconsider the assessment of MTD for

some medicinal products for which continuous dosing is the

foreseen schedule, as exemplified by the case of the multi-

targeted tyrosine kinase inhibitor (TKI, cabozantinib), a con-

ventional 3 1 3 design was used to identify MTD. The need

for dose reduction in a high percentage of patients was

confirmed in the phase III trial (79%), despite the absence of

dose limiting toxicity (DLT) conventionally defined by Grade 3

and 4 events. Dose escalation in the absence of tolerability

concerns would be possible to implement in confirmatory

studies and in clinical practice. However, implementation of

lower starting doses (with the option to be increased as

needed) is currently challenging due clinicians’ perception

that patients could unacceptably be exposed to subtherapeu-

tic doses.
The potential to remove the need to dose to MTD was

discussed during the workshop, particularly with the newer

targeted therapies for which the dosing rationale should be

different from what was implemented for nonselective che-

motherapeutics. Further consideration should be given to

alternative methods such as Bayesian methods, which

could be coupled with PK/PD modeling to identify biologi-

cally effective dose from preclinical and emerging clinical

data would allow the therapeutic index to be optimized in

early clinical development.
The case of osimertinib, an epidermal growth factor

receptor inhibitor, was used to illustrate how pr-clinical PK/

PD relationships can be integrated with clinical PK variabil-

ity using a model-based approach, to answer the question

of “what dose should we aim to escalate to in the clinic to

match efficacious exposure in preclinical models.” A mathe-

matical model relating PK, PD, and efficacy had been

developed in animals for osimertinib during the discovery

program.93 This model was used to place differences

between mouse and human PK into context (including a

simulated clinical dose response in humans). The approach

of integrating clinical PK with a preclinical PD-efficacy
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relationship provided a way to augment early clinical data
with a richer pr-clinical dataset and allowed the biologically
effective dose (based on animal models and clinical expo-
sure) to be identified. However, more research is still
needed on the ongoing question of quantitative translation
of animal models of cancers to the clinic.

Antibiotics
Bacterial load can generally not be quantitatively measured
over time in patients and clinical concentration-bacterial kill-
ing data for antibiotics is therefore rarely available, with
very few exceptions. The treatment period with antibiotic
drugs is typically relatively short, but scheduling is often
important to rapidly clear the bacteria and hence minimize
the development of resistance. Because of the lack of clini-
cal dose-ranging data, the exposure–response relationship
for antibiotics usually relies on preclinical data. Good corre-
lation to clinical response has been demonstrated for many
classes of antibiotics. Antibiotics directly treat the cause of
the disease, the bacteria, and thus studies in preclinical
systems and model-based translation pose a unique oppor-
tunity in this therapeutic area. It also means that bacterial
killing should be the same across different indications, as
long as penetration into the tissue site is taken into
account. The time-course of growth, drug-induced bacterial
killing, and emergence of resistant bacteria is investigated
using in vitro systems with static or dynamic antibiotic con-
centrations. Studies in animals are typically focused on a
single timepoint for evaluation of drug effects and include
mouse models of sepsis, pneumonia, and urinary tract
infections, and the most commonly applied model: the thigh
infection model.94

PD modeling of in vitro data can provide valuable infor-
mation on the rate of killing and the risk and rate of take-
over of resistance. This dynamic information, however, is
rarely coupled with clinical PK in a mechanistic manner,
even though the potential of mechanism-based PK/PD-
models for selection of dosing regimens for antibiotics has
been demonstrated in several published studies.95,96 An
aspect of this is the importance of and potential need to
account for “host” and immune competence.

In current practice, a PK/PD target is instead defined
based on the minimum inhibitory concentration of the bac-
teria (MIC), a summary measure of the PK profile (e.g.,
AUC, Cmax, and time above the MIC), and a fixed time-
point response in a mouse infection model. Stochastic sim-
ulations from a population PK model are performed to
compute the proportion of patients that reaches the target
(the probability of target attainment (PTA)), which can be
compared between different dosing regimens. Dose selec-
tion can be based on a prediction of the majority of patients
reaching PK/PD target attainment.

An example that illustrated the latter approach was pre-
sented during the workshop for phase III dose selection of
fixed dose combination of ceftazidime-avibactam b-lactam–
b-lactamase inhibitors in nosocomial pneumonia, compli-
cated intraabdominal (cIAI), and complicated intrauterine
(cUTI) infections. After target plasma and site of effect con-
centrations and PK/PD index were established using in vitro
(hollow fiber) and animal data, PTA at the most critical

times were derived from PK modeling of phase I and II

studies and using Monte Carlo simulations to calculate PTA

in the intended phase III populations. Phase III dose was

selected based on a prediction of >90% PTA across indica-

tions. The data prospectively collected in phase III trial con-

firmed the adequacy of the dose selected.

Immunology drugs
As far as immunosuppressive drugs are concerned, the

range of doses explored during drug development may be

limited due to ethical considerations, given the well-

documented PK variability and need for concentration

controlled studies. In organ transplantation development

programs, typical dose-finding studies are difficult, and

often the dose rationale which has shown potentially ade-

quate efficacy in a relatively small study is selected for

assessment in a phase III trial. Under such conditions, it is

challenging to ascertain whether the dosing regimen is opti-

mal with respect to benefit/risk. Such assessments are

even more complicated by the fact that, in this context, the

drugs are not at PK steady state during a nonnegligible

portion of the analysis period, and when drugs are adminis-

tered in combinations, it is challenging to distinguish the rel-

ative contribution of individual drugs.97 In such situations,

model-based characterization of the exposure–response

relationship may complement or even substitute the incom-

plete dose–response information.
A case study was presented during the workshop, illustrat-

ing the value of an exposure–response analysis in support-

ing the combination therapy of tacrolimus and everolimus in

liver transplantation. Given that a placebo control arm was

deemed unethical and in the absence of historical placebo

data, it was not possible to estimate the contribution of ever-

olimus to the overall efficacy of the combination therapy by

means of traditional analyses (i.e., directly or indirectly via a

noninferiority mechanism). Instead, an exposure–response

approach was used to estimate the actual contribution of

everolimus to the overall immunosuppressive response.

Dose finding in special populations
The importance and the challenges of an appropriate char-

acterization of DER for children and the elderly were dis-

cussed during the workshop. This is particularly critical,

knowing that the elderly are often the main users of drugs

currently developed and the challenges to develop products

in pediatrics, a complex population for which growth and

organ maturation is key to consider. For both populations,

age is rarely an independent source of variability, but corre-

lates with other factors such as changes in physiology that

directly impact PK/PD. Of particular note is that these pop-

ulations may potentially be more at risk in terms of safety

and efficacy—therefore the need for accurate dose recom-

mendations is reinforced. The potential for changes in PK

or PD should be assessed, such as a change in organ

capacity (e.g., renal failure) or a comedication which could

lead to drug–drug interaction risks; or loss of reserve

capacity (e.g., CNS receptors), increased sensitivity (e.g.,

increased bleeding risk with anticoagulants), changes in

cardiovascular function, or comorbidity.
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Modelling and simulation (M&S) is a tool that provides
the possibility for explicit generalized learning on the
impacts of development and aging on disease and pharma-
cology. M&S can aid in scaling the DER from a general
adult population to a special population, whether pediatrics
or the elderly, and propose dose adjustments. Such a dis-
cussion is in line with the EMA’s Geriatric Medicines Strat-
egy98 and the ongoing discussion in EMA on extrapolation.

GENERAL DISCUSSION AND IMPORTANT
RECOMMENDATIONS FROM THE WORKSHOP

There are many methods available to support the design
and analysis of dose-ranging studies. These methods are
not mutually exclusive and should be used in conjunction.
Main features, applicability, and limitations of different meth-
ods are summarized in Table 1. Multidisciplinary dialog is
needed for optimal used of the different methods.

The limitations of the pairwise comparisons were acknowl-
edged by the different stakeholders during the workshop.
While model-based approaches were considered as rela-
tively superior, the selection of the model to be used in a
particular situation is not a straightforward and easy deci-
sion to make. Assumptions, context for use, and limitations
of different methods need to be accounted for. The main
considerations are summarized in Table 1.

Both empirical models developed using a data-driven
approach and pharmacology-based models integrating the
available knowledge on the drug and the disease from dif-
ferent sources (in vitro, animal, and previous human stud-
ies, etc.) were presented. Empirical cross-sectional dose–
response models are valuable when the doses tested cover
the relevant dose range and when there is no relevant time
and/or covariate effects on the shape of the DER relation-
ship. Another implicit assumption when using empirical
dose–response models is that variability due to drug PK is
less important than that due to the PD: dose is therefore
considered as an acceptable exposure marker when
describing the response. Lastly, the tested population is
assumed representative of the target population in all the
aspects relevant to the dose–response.

When pharmacology/physiology guided methods (PMx,
QSP) are used, covariate effects can be assessed, which
constitutes a clear added-value. When QSP methods are
used, determinants of treatment outcomes are character-
ized in an even more robust manner, due to the direct link
to the underlying physiological and pathological processes.
When model-based approaches are used for data analysis,
model assumptions should decrease with increasingly avail-
able data, as shown in Figure 2. In terms of the level of
data needed for the analysis and confidence in the out-
come, pairwise comparisons and systems pharmacology
models constitute the two extremes cases, whereas empiri-
cal functions and pharmacometrics lie in between.

Model selection carries an inherent risk of choosing a
model that is not an optimal approximation of the DER rela-
tionship. Integrative methods such as MCP-mod and model
averaging aim to select the dose for phase III trials based on
objective weighting of a set plausible candidate models and

related parameters, based on acceptable fitting of the avail-
able data. From a regulatory viewpoint, dose selection was
clearly identified as a “shared risk” during the workshop and
not solely a sponsor’s risk. Design factors such as dose
range, study durations, number of patients included, timing,
and number of PK/PD/response measures and other
inclusion/exclusion criteria should be carefully considered
during drug development and appropriate methods such as
FIM-based methods, CTS, and adaptive design used as
needed. Importantly, dose selection should be performed
with a benefit/risk assessment in mind. Optimal dosing in
both target and subgroups of patients at high risk for lack of
efficacy and/or for safety should be an inherent part of the
dose-finding exercise. This is particularly true for drugs with
high variability in their PK and PD. Dose adjustment should
be considered for some subgroups of patients, as needed.
The need for and the value of early dialog with regulators
using the available procedures such as scientific advice, pro-
tocol assistance, qualification opinion, and advice were
highlighted during the workshop.99,100101

Some areas for further discussions have been identified.
They include the possibility for a solid phase II and a confir-
matory phase III could be sufficient in a registration dossier,
the need to ensure that we make the general adult develop-
ment data informative for pediatric and geriatric develop-
ments, how we can support the generation of system data
to better inform our understanding of sources to variability
in DER, and the need for industry to have more regulatory
support, in addition to the ICH E4 guideline, to facilitate
improved study design and regulatory agreement on their
clinical program.

Disclaimer. The content of this article reflects the authors’ own views
and should not be considered as recommendations from the European
Medicines Agency, the Food and Drug Administration, or any European
national medicines agency.
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