
Submitted 5 October 2017
Accepted 15 November 2017
Published 18 December 2017

Corresponding author
Nicolas P. Rougier,
Nicolas.Rougier@inria.fr

Academic editor
Feng Xia

Additional Information and
Declarations can be found on
page 14

DOI 10.7717/peerj-cs.142

Copyright
2017 Rougier et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Sustainable computational science: the
ReScience initiative
Nicolas P. Rougier1, Konrad Hinsen2, Frédéric Alexandre1, Thomas Arildsen3,
Lorena A. Barba4, Fabien C.Y. Benureau1, C. Titus Brown5, Pierre de Buyl6,
Ozan Caglayan7, Andrew P. Davison8, Marc-André Delsuc9, Georgios Detorakis10,
Alexandra K. Diem11, Damien Drix12, Pierre Enel13, Benoît Girard14,
Olivia Guest15, Matt G. Hall16, Rafael N. Henriques17, Xavier Hinaut1,
Kamil S. Jaron18, Mehdi Khamassi14, Almar Klein19, Tiina Manninen20,
Pietro Marchesi21, Daniel McGlinn22, Christoph Metzner23, Owen Petchey24,
Hans Ekkehard Plesser25, Timothée Poisot26, Karthik Ram27, Yoav Ram28,
Etienne Roesch29, Cyrille Rossant30, Vahid Rostami31, Aaron Shifman32,
Joseph Stachelek33, Marcel Stimberg34, Frank Stollmeier35, Federico Vaggi36,
Guillaume Viejo14, Julien Vitay37, Anya E. Vostinar38, Roman Yurchak39 and
Tiziano Zito40

1 INRIA Bordeaux Sud-Ouest, Talence, France
2Centre de Biophysique Moléculaire UPR4301, CNRS, Orléans, France
3Department of Electronic Systems, Technical Faculty of IT and Design, Aalborg University, Aalborg,
Denmark

4Department of Mechanical and Aerospace Engineering, The George Washington University, Washington,
D.C., USA

5Department of Population Health and Reproduction, University of California Davis, Davis, CA, USA
6 Instituut voor Theoretische Fysica, KU Leuven, Leuven, Belgium
7 Laboratoire d’Informatique (LIUM), Le Mans University, Le Mans, France
8UNIC FRE 3693, CNRS, Gif-sur-Yvette, France
9 Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
10Department of Cognitive Sciences, University of California Irvine, Irvine, CA, USA
11Computational Engineering and Design, University of Southampton, Southampton, United Kingdom
12Humboldt Universität zu Berlin, Berlin, Germany
13Department of Neuroscience, Mount Sinai School of Medicine, New York, NY, USA
14 Institute of Intelligent Systems and Robotics, Sorbonne Universités - UPMC Univ Paris 06 - CNRS, Paris,
France

15 Experimental Psychology, University College London, London, Greater London, United Kingdom
16UCL Great Ormond St Institute of Child Health, London, United Kingdom
17Champalimaud Centre for the Unknown, Champalimaud Neuroscience Program, Lisbon, Portugal
18Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
19 Independent scholar, Enschede, The Netherlands
20BioMediTech Institute and Faculty of Biomedical Sciences and Engineering, Tampere University of
Technology, Tampere, Finland

21 Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
22Department of Biology, College of Charleston, Charleston, SC, USA
23Centre for Computer Science and Informatics Research, University of Hertfordshire, Hatfield,
United Kingdom

24Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
25 Faculty of Science and Technology, Norwegian University of Life Sciences, Aas, Norway
26Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada
27Berkeley Institute for Data Science, University of California, Berkeley, CA, USA
28Department of Biology, Stanford University, Stanford, CA, USA
29Centre for Integrative Neuroscience, University of Reading, Reading, United Kingdom
30 Institute of Neurology, University College London, London, United Kingdom

How to cite this article Rougier et al. (2017), Sustainable computational science: the ReScience initiative. PeerJ Comput. Sci. 3:e142;
DOI 10.7717/peerj-cs.142

https://peerj.com
mailto:Nicolas.Rougier@inria.fr
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.142
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj-cs.142


31 Institute of Neuroscience & Medicine, Juelich Forschungszentrum, Jülich, Germany
32Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
33Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
34 Sorbonne Universités/UPMC Univ Paris 06/INSERM/CNRS/Institut de la Vision, Paris, France
35Max Planck Institute for Dynamics and Self-Organization, Göttingen, Lower Saxony, Germany
36Amazon, Seattle, WA, USA
37Department of Computer Science, Chemnitz University of Technology, Chemnitz, Saxony, Germany
38Department of Computer Science, Grinnell College, Grinnell, IA, USA
39 Symerio, Palaiseau, France
40Neural Information Processing Group, Eberhard Karls Universität Tübingen, Tübingen, Germany

ABSTRACT
Computer science offers a large set of tools for prototyping, writing, running, testing,
validating, sharing and reproducing results; however, computational science lags
behind. In the best case, authors may provide their source code as a compressed archive
and they may feel confident their research is reproducible. But this is not exactly true.
James Buckheit and David Donoho proposedmore than two decades ago that an article
about computational results is advertising, not scholarship. The actual scholarship is
the full software environment, code, and data that produced the result. This implies
new workflows, in particular in peer-reviews. Existing journals have been slow to
adapt: source codes are rarely requested and are hardly ever actually executed to check
that they produce the results advertised in the article. ReScience is a peer-reviewed
journal that targets computational research and encourages the explicit replication
of already published research, promoting new and open-source implementations in
order to ensure that the original research can be replicated from its description. To
achieve this goal, the whole publishing chain is radically different from other traditional
scientific journals. ReScience resides on GitHub where each new implementation of
a computational study is made available together with comments, explanations, and
software tests.

Subjects Data Science, Digital Libraries, Scientific Computing and Simulation, Social Computing
Keywords Computational science, Open science, Publication, Reproducible, Replicable,
Sustainable, GitHub, Open peer-review

INTRODUCTION
There is a replication crisis in Science (Baker, 2016;Munafò et al., 2017). This crisis has been
highlighted in fields as diverse as medicine (Ioannidis, 2005), psychology (Open Science
Collaboration, 2015), the political sciences (Janz, 2015), and recently in the biomedical
sciences (Iqbal et al., 2016). The reasons behind such non-replicability are as diverse as the
domains in which it occurs. In medicine, factors such as study power and bias, the number
of other studies on the same question, and importantly, the ratio of true to no relationships
among the all relationships probed have been highlighted as important causes (Ioannidis,
2005). In psychology, non-replicability has been blamed on spurious p-values (p-hacking),
while in the biomedical sciences (Iqbal et al., 2016), a lack of access to full datasets and

Rougier et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.142 2/17

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.142


detailed protocols for both clinical and non-clinical biomedical investigation is seen as a
critical factor. The same remarks were recently issued for chemistry (Coudert, 2017).
Surprisingly, the computational sciences (in the broad sense) and computer sciences (in
the strict sense) are no exception (Donoho et al., 2009; Manninen, Havela & Linne, 2017)
despite the fact they rely on code and data rather than on experimental observations, which
should make them immune to the aforementioned problems.

When Colberg and colleagues (2016) decided to measure the extent of the problem
precisely, they investigated the availability of code and data as well as the extent to which
this code would actually build with reasonable effort. The results were dramatic: of the 515
(out of 613) potentially reproducible papers targeted by the study, the authors managed
to ultimately run only 102 (less than 20%). These low numbers only reflect the authors’
success at running the code. They did not check for correctness of the code (i.e., does
the code actually implement what is advertised in the paper), nor the reproducibility of
the results (does each run lead to the same results as in the paper). One example of this
problem can be found in Topalidou et al. (2015), in which the authors tried to replicate
results obtained from a computational neuroscience model. Source code was not available,
neither as supplementary material to the paper nor in a public repository. When the
replicators obtained the source code after contacting the corresponding author, they found
that it could not be compiled and would be difficult to reuse for other purposes.

Confronted with this problem, a small but growing number of journals and publishers
have reacted by adopting explicit policies for data and software. Examples can be seen
in the PLOS instructions on Materials and Software Sharing and on Data Availability,
and in the recent announcement by eLife on forking (creating a linked copy of) software
used in eLife papers to GitHub. Such policies help to ensure access to code and data
in a well-defined format (Perkel, 2016) but this will not guarantee reproducibility nor
correctness. At the educational and methodological levels, things have started to change
with a growing literature on best practices for making computations reproducible (Sandve
et al., 2013; Crook, Davison & Plesser, 2013; Wilson et al., 2014; Halchenko & Hanke, 2015;
Janz, 2015;Hinsen, 2015). Related initiatives such as Software and Data Carpentry (Wilson,
2016) are of note since their goal is to make scientists more productive, and their work more
reliable, by teaching them basic computing skills. Such best practices could be applied to
already published research codebases as well, provided the original authors are willing
to take on the challenge of re-implementing their software for the sake of better science.
Unfortunately, this is unlikely since the incentives for doing such time-consuming work
are low or nonexistent. Furthermore, if the original authors made mistakes in their
original implementation, it seems likely that they will reproduce their mistakes in any
re-implementation.

REPLICATION AND REPRODUCTION
While recognition of the replication crisis as a problem for scientific research has increased
over time, unfortunately no common terminology has emerged so far. One reason for
the diverse use of terms is that each field of research has its own specific technical and

Rougier et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.142 3/17

https://peerj.com
http://journals.plos.org/plosone/s/materials-and-software-sharing
http://journals.plos.org/plosone/s/data-availability
https://elifesciences.org/elife-news/inside-elife-forking-software-used-elife-papers-github
http://dx.doi.org/10.7717/peerj-cs.142


social obstacles on the road to publishing results and findings that can be verified by other
scientists. Here we briefly summarize the obstacles that arise from the use of computers
and software in scientific research, and introduce the terminology we will use in the rest of
this article. We note, however, that there is some disagreement about this particular choice
of terminology even among the authors of this article.

Reproducing the result of a computation means running the same software on the
same input data and obtaining the same results. The goal of a reproduction attempt is to
verify that the computational protocol leading to the results has been recorded correctly.
Performing computations reproducibly can be seen as a form of provenance tracking, the
software being a detailed record of all data processing steps.

In theory, computation is a deterministic process and exact reproduction should
therefore be trivial. In reality, it is very difficult to achieve because of the complexity of
today’s software stacks and the tediousness of recording all interactions between a scientist
and a computer (although a number of recent tools have attempted to automate such
recording, e.g., Guo & Engler, 2011; Davison, 2012;Murta et al., 2015). Mesnard and Barba
explain (Mesnard & Barba, 2017) how difficult it can be to reproduce a two-year-old
computation even though all possible precautions were taken at the time to ensure
reproducibility. The most frequent obstacles are the loss of parts of the software or
input data, lack of a computing environment that is sufficiently similar to the one used
initially, and insufficient instructions for making the software work. An obstacle specific
to numerical computations is the use of floating-point arithmetic, whose rules are subject
to slightly different interpretations by different compilers and runtime support systems.
A large variety of research practices and support tools have been developed recently to
facilitate reproducible computations. For a collection of recipes that have proven useful,
see Kitzes, Turek & Deniz (2017).

Publishing a reproducible computational result implies publishing all the software and
all the input data, or references to previously published software and data, along with the
traditional article describing the work. An obvious added value is the availability of the
software and data, which helps readers to gain a better understanding of the work, and can
be re-used in other research projects. In addition, reproducibly published results are more
trustworthy, because many commonmistakes in working with computers can be excluded:
mistyping parameter values or input file names, updating the software but forgetting to
mention the changes in the description of the method, planning to use one version of some
software but actually using a different one, etc.

Strictly speaking, reproducibility is defined in the context of identical computational
environments. However, useful scientific software is expected to be robust with respect to
certain changes in this environment. A computer program that produces different results
when compiled using different compilers, or run on two different computers, would be
considered suspect by most practitioners, even if it were demonstrably correct in one
specific environment. Ultimately it is not the software that is of interest for science, but
the models and methods that it implements. The software is merely a vehicle to perform
computations based on these models and methods. If results depend on hard-to-control

Rougier et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.142 4/17

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.142


implementation details of the software, their relation to the underlyingmodels andmethods
becomes unclear and unreliable.

Replicating a published result means writing and then running new software based on
the description of a computational model or method provided in the original publication,
and obtaining results that are similar enough to be considered equivalent. What exactly
‘‘similar enough’’ means strongly depends on the kind of computation being performed,
and can only be judged by an expert in the field. The main obstacle to replicability is an
incomplete or imprecise description of the models and methods.

Replicability is a much stronger quality indicator than reproducibility. In fact,
reproducibility merely guarantees that all the ingredients of a computation are well
documented. It does not imply that any of them are correct and/or appropriate for
implementing the models and methods that were meant to be applied, nor that the
descriptions of these models and methods are correct and clear. A successful replication
shows that two teamshave produced independent implementations that generate equivalent
results, whichmakes seriousmistakes in either implementation unlikely.Moreover, it shows
that the second team was able to understand the description provided by the first team.

Replication can be attempted for both reproducible and non-reproducible results.
However, when an attempt to replicate non-reproducible work fails, yielding results too
different to be considered equivalent, it can be very difficult to identify the cause of
the disagreement. Reproducibility guarantees the existence of a precise and complete
description of the models and methods being applied in the original work, in the
form of software source code, which can be analyzed during the investigation of any
discrepancies. The holy grail of computational science is therefore a reproducible replication
of reproducible original work.

THE RESCIENCE INITIATIVE
Performing a replication is a daunting task that is traditionally not well rewarded.
Nevertheless, some people are willing to replicate computational research. The motivations
for doing so are very diverse (see Box 1). Students may want to familiarize themselves
with a specific scientific domain, and acquire relevant practical experience by replicating
important published work. Senior researchers may critically need a specific piece of code
for a research project and therefore re-implement a published computational method.
If these people write a brand new open source implementation of already published
research, it is likely that this new implementation will be of interest for other people as
well, including the original authors. The question is where to publish such a replication. To
the best of our knowledge, no major journal accepts replications in computational science
for publication. This was the main motivation for the creation of the ReScience journal
(https://rescience.github.io) by Konrad Hinsen and Nicolas P. Rougier in September 2015.

Rougier et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.142 5/17

https://peerj.com
https://rescience.github.io
http://dx.doi.org/10.7717/peerj-cs.142


Box 1. Authors having published in Rescience explain their motivation.

(Stachelek, 2016) I was motivated to replicate the results of the original paper because
I feel that working through code supplements to blog posts has really helped me learn
the process of scientific analysis. I could have published my replication as a blog post
but I wanted the exposure and permanency that goes along with journal articles. This
was my first experience with formal replication. I think the review was useful because
it forced me to consider how the replication would be used by people other than my-
self. I have not yet experienced any new interactions following publication. However,
I did notify the author of the original implementation about the replication’s publi-
cation. I think this may lead to future correspondence. The original author suggested
that he would consider submitting his own replications to ReScience in the future.

(Topalidou & Rougier, 2015) Our initial motivation and the main reason
for replicating the model is that we needed it in order to collaborate with our
neurobiologist colleagues. When we arrived in our new lab, the model had just
been published (2013) but the original author had left the lab a few months before our
arrival. There was no public repository nor version control, and the paper describing
the model was incomplete and partly inaccurate. We managed to get our hands on the
original sources (6,000 lines of Delphi) only to realize we could not compile them. It
took us three months to replicate it using 250 lines of Python. But at this time, there
was no place to publish this kind of replication to share the new code with colleagues.
Since then, we have refined the model and made new predictions that have been
confirmed. Our initial replication effort really gave the model a second life.

(Viejo, Girard & Khamassi, 2016) Replicating previous work is a relatively routine
task every time we want to build a new model: either because we want to build on
this previous work, or because we want to compare our new model to it. We also
give replication tasks to M.Sc. students every year, as projects. In all these cases,
we are confronted with incomplete or inaccurate model descriptions, as well as
with the impossibility to obtain the original results. Contacting the original authors
sometimes solves the problem, but not so often (because of the dog ate my hard drive
syndrome). We thus accumulate knowledge, internal to the lab, about which model
works and which doesn’t, and how a given model has to be parameterized to really
work. Without any place to publish it, this knowledge is wasted. Publishing it in
ReScience, opening the discussion publicly, will be a progress for all of us.

ReScience is an openly-peer-reviewed journal that targets computational research and
encourages the explicit replication of already published research. In order to provide
the largest possible benefit to the scientific community, replications are required to be
reproducible and open-source. In two years of existence, 17 articles have been published
and 4 are currently under review (#20, #39, #41, #43). The editorial board covers a wide
range of computational sciences (see http://rescience.github.io/board/) and more than
70 volunteers have registered to be reviewers. The scientific domains of published work

Rougier et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.142 6/17

https://peerj.com
https://github.com/ReScience/ReScience-submission/pull/20
https://github.com/ReScience/ReScience-submission/pull/27
https://github.com/ReScience/ReScience-submission/pull/30
https://github.com/ReScience/ReScience-submission/pull/30
http://rescience.github.io/board/
http://dx.doi.org/10.7717/peerj-cs.142


are computational neuroscience, neuroimaging, computational ecology and computer
graphics, with a majority in computational neuroscience. The most popular programming
languages are Python and R. The review process takes about 100 days on average and
involves about 50 comments. There is a strong bias towards successful replication (100%);
experience has taught us that researchers are reluctant to publish failed replications, even
when they can prove that the original work is wrong. For young researchers, there is a
social/professional risk in publishing articles that show results from a senior researcher to
be wrong. Until we implement a certified anonymized submission process, this strong bias
will most likely remain.

One of the specificities of the ReScience journal is a publishing chain that is radically
different from any other traditional scientific journal, since ReScience lives on GitHub,
a platform originally designed for collaborative software development. A ReScience
submission is treated very similarly to a contribution to an Open Source software project.
One of the consequences is that the whole process, from submission via reviewing to
publication, is open for anyone to see and even comment on.

Each submission is considered by a member of the editorial board, who may decide to
reject the submission if it does not respect the formal publication criteria of ReScience. A
submission must contain

• a precise reference to the work being replicated,
• an explanation of why the authors think they have replicated the paper (same figures,
same graphics, same behavior, etc.) or why they have failed,

• a description of any difficulties encountered during the replication,
• open-source code that produces the replication results,
• an explanation of this code for human readers.

A complete submission therefore consists of both computer code and an accompanying
article, which are sent to ReScience in the form of a pull request (the process used on
GitHub to submit a proposed modification to a software project). Partial replications that
cover only some of the results in the original work are acceptable, but must be justified.

If the submission respects these criteria, the editor assigns it to two reviewers for further
evaluation and tests. The reviewers evaluate the code and the accompanying material in
continuous interaction with the authors through the discussion section until both reviewers
consider the work acceptable for publication. The goal of the review is thus to help the
authors meet the ReScience quality standards through discussion. Since ReScience targets
replication of already published work, the criteria of importance or novelty applied by
most traditional journals are irrelevant.

For a successful submission (i.e., partial or full replication) to be accepted, both reviewers
must consider it reproducible and a valid replication of the original work. As we explained
earlier, this means that the reviewers

• are able to run the proposed implementation on their computers,
• obtain the same results as indicated in the accompanying paper,

Rougier et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.142 7/17

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.142


• consider these results sufficiently close to the ones reported in the original paper being
replicated.

For a failure to replicate submission to be accepted, we require extra steps to be taken.
In addition to scrutiny of the submission by reviewers and editors, we will try to contact
the authors of the original research, and issue a challenge to the community to spot and
report errors in the new implementation. If no errors are found, the submission will be
accepted and the original research will be declared non-replicable.

Since independent implementation is a major feature of replication work, ReScience
does not allow authors to submit replications of their own research, nor the research
of close collaborators. Moreover, replication work should be based exclusively on the
originally published paper, although exceptions are admitted if properly documented
in the replication article. Mistakes in the implementation of computational models and
methods are often due to biases that authors invariably have, consciously or not. Such biases
will inevitably carry over to a replication. Perhaps evenmore importantly, cross-fertilization
is generally useful in research, and trying to replicate the work of one’s peers might pave
the way for a future collaboration, or may give rise to new ideas as a result of the replication
effort.

LESSONS LEARNED
Although ReScience is still a young project, the submissions handled so far already provide
valuable experience concerning the reproducibility and replicability of computational work
in scientific research.

Short-term and long-term reproducibility
While some of the reasons for non-reproducibility are specific to each scientific domain,
our experience has shown that there are also some common issues that can be identified.
Missing code and/or data, undocumented dependencies, and inaccurate or imprecise
description appear to be characteristic of much non-reproducible work. Moreover, these
problems are not always easy to detect even for attentive reviewers, as we discovered when
some articles published in ReScience turned out to be difficult to reproduce for someone
else for exactly the reasons listed above. ReScience reviewers are scientists working in the
same domain as the submitting authors, because familiarity with the field is a condition
for judging if a replication is successful. But this also means that our reviewers share a
significant common background with the authors, and that background often includes the
software packages and programming languages adopted by their community. In particular,
if both authors and reviewers have essential libraries of their community installed on
their computers, they may not notice that these libraries are actually dependencies of the
submitted code. While solutions to this problem evidently exist (ReScience could, for
example, request that authors make their software work on a standard computational
environment supplied in the form of a virtual machine), they represent an additional
effort to authors and therefore discourage them from submitting replication work to
ReScience. Moreover, the evaluation of de-facto reproducibility (‘‘works on my machine’’)

Rougier et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.142 8/17

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.142


by reviewers is useful as well, because it tests the robustness of the code under small
variations in the computational environments that are inevitable in real life. Our goal is
to develop a set of recommendations for authors that represent a workable compromise
between reproducibility, robustness, and implementation effort. These recommendations
will evolve over time, and we hope that with improving technology we will ultimately reach
full reproducibility over a few decades.

Another issue with reproducibility is that with today’s computing technology, long-
term reproducibility can only be achieved by imposing drastic constraints on languages
and libraries that are not compatible with the requirements of research computing. This
problem is nicely illustrated by Mesnard & Barba (2017) whose authors report trying to
reproduce their own work performed two years earlier. Even though Barba’s group is
committed to reproducible research practices, they did not escape the many problems
one can face when trying to re-run a piece of code. As a consequence, code that is written
for ReScience today will likely cease to be functional at some point in the future. The
long-term value of a ReScience publication lies not just in the actual code but also in the
accompanying article. The combination of the original article and the replication article
provide a complete and consistent description of the original work, as evidenced by the
fact that replication was possible. Even 5, 10, or 20 years later, a competent scientist should
be able to replicate the work again thanks to these two articles. Of course, the new code
can also help, but the true long-term value of a replication is the accompanying article.

Open reviewing
The well-known weaknesses of the traditional anonymous peer-reviewing system used
by most scientific journals have motivated many experiments with alternative reviewing
processes. The variant adopted by ReScience is similar to the ones used by F1000Research
or PeerJ, but is even more radically open: anyone can look at ReScience submissions and at
the complete reviewing process, starting from the assignment of an editor and the invitation
of reviewers. Moreover, anyone with a GitHub account can intervene by commenting.
Such interventions could even be anonymous because a GitHub account is not required to
advertise a real name or any other identifying element. ReScience does currently require
all authors, editors, and reviewers to provide real names (which however are not verified
in any way), but there are valid reasons to allow anonymity for authors and reviewers, in
particular to allow junior scientists to criticize the work of senior colleagues without fear
of retribution, and we envisage exploring such options in the future.

Our experience with this open reviewing system is very positive so far. The exchanges
between reviewers and authors are constructive and courteous, without exception. They are
more similar in style to a coffee-table discussion than to the judgement/defence style that
dominates traditional anonymous reviewing. Once reviewers have been invited and have
accepted the task, the editors’main role is to ensure that the reviewmoves forward, by gently
reminding everyone to reply within reasonable delays. In addition, the editors occasionally
answer questions by authors and reviewers about the ReScience publishing process.

The possibility to involve participants beyond the traditional group of authors, editors,
and reviewers is particularly interesting in the case of ReScience, because it can be helpful

Rougier et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.142 9/17

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.142


to solicit input from the authors of the original study that is being replicated. For example,
in one recent case (#28), a reviewer suggested asking the author of the original work for
permission to re-use an image. The author intervened in the review and granted permission.

Publishing on the GitHub platform
GitHub is a commercial platform for collaborative software development based on the
popular version control system git. It offers unlimited free use to public projects, defined
as projects whose contents are accessible to everyone. All ReScience activities are organized
around a few such Open Source projects hosted by GitHub. This is an unusual choice
for a scientific journal, the only other journal hosted on GitHub being The Journal of
Open Source Software (Smith et al., 2017). In this section, we discuss the advantages and
problems resulting from this choice, considering both technical and social issues.

There are clear differences between platforms for software development, such as GitHub,
and platforms for scientific publishing, such as HighWire. The latter tend to be expensive
commercial products developed for the needs of large commercial publishers, although the
market is beginning to diversify with products such as Episciences.More importantly, to the
best of our knowledge, no existing scientific publishing platform supports the submission
and review of code, which is an essential part of every ReScience article. For this reason,
the only option for ReScience was to adopt a software development platform and develop
a set of procedures that make it usable for scientific publishing.

Our experience shows that the GitHub platform provides excellent support for the
reviewing process, which is not surprising given that the review of a scientific article
containing code is not fundamentally different from the review of code with accompanying
documentation. One potential issue for other journals envisaging adoption of this platform
is the necessity that submitting authors have a basic knowledge of the version control system
Git and of the techniques of collaborative software development. Given the code-centric
nature of ReScience, this has not been a major problem for us, and the minor issues have
been resolved by our editors providing technical assistance to authors. It is of course
possible that potential authors are completely discouraged from submitting to ReScience
by their lack of the required technical competence, but so far nobody has provided feedback
suggesting that this is a problem.

The main inconvenience of the GitHub platform is its almost complete lack of support
for the publishing steps, once a submission has successfully passed the reviewing process. At
this point, the submission consists of an article text in Markdown format plus a set of code
and data files in a git repository. The desired archival form is an article in PDF format plus
a permanent archive of the submitted code and data, with a Digital Object Identifier (DOI)
providing a permanent reference. The Zenodo platform allows straightforward archiving
of snapshots of a repository hosted on GitHub, and issues a DOI for the archive. This
leaves the task of producing a PDF version of the article, which is currently handled by the
managing editor of the submission, in order to ease the technical burden on our authors.

A minor inconvenience of the GitHub platform is its implementation of code reviews. It
is designed for reviewing contributions to a collaborative project. The contributor submits
new code and modifications to existing code in the form of a ‘‘pull request’’, which other

Rougier et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.142 10/17

https://peerj.com
https://github.com/ReScience/ReScience-submission/pull/28
http://github.com/
https://git-scm.com/
http://home.highwire.org/
https://www.episciences.org/
https://zenodo.org/
http://dx.doi.org/10.7717/peerj-cs.142


project members can then comment on. In the course of the exchanges, the contributor
can update the code and request further comments. Once everybody is satisfied, the
contribution is ‘‘merged’’ into the main project. In the case of ReScience, the collaborative
project is the whole journal, and each article submission is a contribution proposed as a
pull request. This is, however, not a very intuitive representation of how a journal works.
It would be more natural to have a separate repository for each article, an arrangement
that would also facilitate the final publishing steps. However, GitHub does not allow code
review on a new repository, only on contributions to an already existing one.

Relying on a free-use offer on a commercial platform poses some additional problems
for scientific publishing. GitHub can change its conditions at any time, and could in
principle delete or modify ReScience contents at any time without prior notice. Moreover,
in the case of technical problems rendering ReScience contents temporarily or permanently
inaccessible, the ReScience community has no legal claims for compensation because there
is no contract that would imply any obligations forGitHub. It would clearly be imprudent to
count on GitHub for long-term preservation of ReScience content, which is why we deposit
accepted articles on Zenodo, a platform designed for archiving scientific information and
funded by research organizations as an element of public research infrastructure.

The use of free services provided by GitHub and Zenodo was clearly important to get
ReScience started. The incentives for the publication of replication work being low, and its
importance being recognized only slowly in the scientific community, funding ReScience
through either author page charges or grants would have created further obstacles to its
success. A less obvious advantage of not having to organize funding is that ReScience can
exist without being backed by any legal entity that would manage its budget. This makes
it possible to maintain a community spirit focused on shared scientific objectives, with
nobody in a position to influence ReScience by explicit or implicit threats of reducing
future funding.

OUTLOOK
Based on our experience with the ReScience initiative, we can engage in informed
speculation about possible future evolutions in scientific publishing, in particular
concerning replication work. We will not discuss minor technical advances such as a
better toolchain for producing PDF articles, but concentrate on long-term improvements
in the technology of electronic publishing and, most of all, in the attitude of the scientific
community towards the publication, preservation, and verification of computer-aided
research.

A fundamental technical issue is the difficulty of archiving or accurately describing the
software environments inwhich computational scientists perform their work. A publication
should be accompanied by both a human-readable description of this environment and
an executable binary form. The human-readable description allows an inspection of the
versions of all software packages that were used, for example to check for the impact
of bugs that become known only after a study was published. The executable version
enables other scientists to re-run the analyses and inspect intermediate results. Ideally, the

Rougier et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.142 11/17

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.142


human-readable description would permit rebuilding the executable version, in the same
way that software source code permits rebuilding executable binaries. This approach is
pursued for example by the package manager Guix (Courtés & Wurmus, 2015). A more
limited but still useful implementation of the same idea exists in the form of the conda
packagemanager (Anaconda Inc., 2017), which uses a so-called environment file to describe
and reconstruct environments. The main limitation compared to Guix is that the packages
that make up a conda environment are themselves not reproducible. For example, a conda
environment file does not state which compiler versions were used to build a package.

Containerization, as implemented e.g., by Docker (Docker Inc., 2017) is currently
much discussed, but provides only the executable version without a human-readable
description. Moreover, the long-term stability of the container file format remains to be
evaluated. History has shown that long-term stability in computing technology is achieved
only by technology for which it is a design priority, as in the case of the Java Virtual
Machine (Lindholm & Yellin, 1999). Docker, on the contrary, is promoted as a deployment
technology with no visible ambition towards archiving of computational environments.

Today’s electronic publishing platforms for scientific research still show their origins in
paper-based publishing. Except for the replacement of printed paper by a printable PDF
file, not much has changed. Although it is increasingly realized that software and data
should be integral parts of most scientific publications today, they are at best relegated
to the status of ‘‘supplementary material’’, and systematically excluded from the peer
review process. In fact, to the best of our knowledge, ReScience is the only scientific
journal that aims to verify the correctness of scientific software. As our experience has
shown, it is far easier to graft publication onto a software development platform than to
integrate software reviewing into a publishing platform. Furthermore, tools that will allow
for the automated validation of computational models and the automated verification of
correctness are being actively developed in the community (see, for example, SciUnit or
OSB-model-validation). An integration of such frameworks, which would greatly enhance
the verification and validation process, seems feasible for the existing software development
platforms.

A logical next step is to fully embrace the technology designed for software development,
which far better takes into account the specificity of electronic information processing than
today’s scientific publishing systems. In addition to the proper handling of code, such an
approach offers further advantages. Perhaps the most important one is a shift of focus from
the paper as a mostly isolated and finished piece of work to scientific progress as a collection
of incremental and highly interdependent steps. The Software Heritage project, whose aim
is to create a permanent public archive of all publicly available software source code, adopts
exactly this point of view for the preservation of software. As our experience with ReScience
has shown, integrating the narrative of a scientific article into a framework designed for
software development is not difficult at all. Publishing and archiving scientific research
in Software Heritage would offer several advantages. The intrinsic identifiers that provide
access to the contents of the archive permit unambiguous and permanent references to
ongoing projects as well as to snapshots at a specific time, and to whole projects as well as
to the individual files that are part of them. Such references hold the promise for better

Rougier et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.142 12/17

https://peerj.com
https://github.com/scidash/sciunit
https://github.com/OpenSourceBrain/osb-model-validation
https://www.softwareheritage.org/
http://dx.doi.org/10.7717/peerj-cs.142


✓

Original work Article

 Replication
(success)

Authors A Authors A

Authors B

Replication
(sucess)

Certified
Article

Authors B Authors A+B

✓

✓

A. ReScience

B. CoScience

Replication
(failure)

Authors B

✗

Original work

Replication
(failure)

No publication

Authors A

Authors B

✗

Feedback to author & editor

Feedback to author & editor

Figure 1 (A) The ReScience publication chain starts from an original research article by authors A, pub-
lished in a journal, in conference proceedings, or as a preprint. This article constitutes the base material
for authors B, who attempt to replicate the work based on its description. Success or failure to replicate is
not a criterion for acceptance or rejection, even though failure to replicate (continued on next page. . . )

Full-size DOI: 10.7717/peerjcs.142/fig-1

Rougier et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.142 13/17

https://peerj.com
https://doi.org/10.7717/peerjcs.142/fig-1
http://dx.doi.org/10.7717/peerj-cs.142


Figure 1 (. . .continued)
requires more precaution to ensure this is not a misunderstanding or a bug in the new code. After review,
the replication is published, and feedback is given to original authors (and editors) to inform them the
work has been replicated (or not). (B) The CoScience proposal would require the replication to happen
before the actual publication. In case of failure, nothing will be published. In case of success, the publica-
tion will be endorsed by authors A and authors B with identified roles and will be certified as reproducible
because it has been replicated by an independent group.

reuse of scientific information, for better reproducibility of computations, and for fairer
attribution of credit to scientists who contribute to research infrastructure.

One immediate and legitimate question is to wonder to what extent a replication could
be performed rior to the publication of the original article. This would strongly reinforce
a claim because a successful and independent replication would be available right from
the start. As illustrated in Fig. 1, this would require group A to contact group B and send
them a draft of their original work (the one that would be normally submitted to a journal)
such that group B could perform a replication and confirm or refute the results. In case of
confirmation, a certified article could be later published with both groups as authors (each
group being identified according to their respective roles). However, if the replication
fails and the original work cannot be fixed, this would prevent publication. This model
would improve the quality of computational research and also considerably slow down the
rapid pace of publication we are observing today. Unfortunately, such a scenario seems
highly improbable today. The pressure to publish is so strong and the incentive for doing
replication so low that it would most probably prevent such collaborative work. However,
we hope that the current replication crisis will lead to a change in attitude, with an emphasis
on the quality rather than the quantity of scientific ouput, with CoScience becoming the
gold-standard approach to quality assurance.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
Federico Vaggi is an employee of Amazon, Inc., Roman Yurchak is an employee of Symerio,
and C. Titus Brown and Nicolas P. Rougier are Academic Editors for PeerJ.

Author Contributions
• Nicolas P. Rougier wrote the paper, prepared figures and/or tables, reviewed drafts of
the paper, co-founder, editor, author.

• Konrad Hinsen wrote the paper, reviewed drafts of the paper, co-founder, editor.
• Frédéric Alexandre, Alexandra K. Diem, Rafael N. Henriques, Owen Petchey, Frank
Stollmeier and Guillaume Viejo reviewed drafts of the paper, author.

• Thomas Arildsen, Pierre de Buyl and Olivia Guest wrote the paper, reviewed drafts of
the paper, editor.

Rougier et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.142 14/17

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.142


• Lorena A. Barba, C. Titus Brown, Timothée Poisot, Karthik Ram and Tiziano Zito
reviewed drafts of the paper, editor.

• Fabien C.Y. Benureau, Ozan Caglayan, Andrew P. Davison, Marc-André Delsuc and
Etienne Roesch wrote the paper, reviewed drafts of the paper, reviewer.

• Georgios Detorakis, Mehdi Khamassi, Aaron Shifman and Julien Vitay reviewed drafts
of the paper, reviewer, author.

• Damien Drix, Pierre Enel, Matt G. Hall, Xavier Hinaut, Kamil S. Jaron, Almar Klein,
Tiina Manninen, Pietro Marchesi, Daniel McGlinn, Hans Ekkehard Plesser, Yoav Ram,
Cyrille Rossant, Marcel Stimberg, Federico Vaggi, Anya E. Vostinar and Roman Yurchak
reviewed drafts of the paper, reviewer.

• Benoît Girard wrote the paper, reviewed drafts of the paper, editor, reviewer, author.
• Christoph Metzner wrote the paper, reviewed drafts of the paper, reviewer, author.
• Vahid Rostami and Joseph Stachelek wrote the paper, reviewed drafts of the paper,
author.

Data Availability
The following information was supplied regarding data availability:

ReScience journal: https://zenodo.org/communities/rescience/.

REFERENCES
Anaconda Inc. 2017. Conda. Available at https:// conda.io/ .
Baker M. 2016. 1, 500 scientists lift the lid on reproducibility. Nature 533(7604):452–454

DOI 10.1038/533452a.
Colberg C, Proebsting TA. 2016. Repeatability in computer systems research. Communi-

cations of the ACM 59(3):62–69 DOI 10.1145/2812803.
Coudert F-X. 2017. Reproducible research in computational chemistry of materials.

Chemistry of Materials 29(7):2615–2617 DOI 10.1021/acs.chemmater.7b00799.
Courtès L, Wurmus R. 2015. Reproducible and user-controlled software environments

in HPC with Guix. In: Hunold S, Costan A, Giménez D, Iosup A, Ricci L, Requena
MEG, Scarano V, Varbanescu AL, Scott SL, Lankes S, Weidendorfer J, Alexander M,
eds. Euro-Par 2015: parallel processing workshops. Lecture notes in computer science,
vol. 9523. Cham: Springer.

Crook SM, Davison AP, Plesser HE. 2013. 20 years of computational neuroscience.
In: Bower MJ, ed. Chap. Learning from the past: approaches for reproducibility in
computational neuroscience. New York: Springer New York, 73–102.

Davison AP. 2012. Automated capture of experiment context for easier reproducibility
in computational research. Computing in Science and Engineering 14:48–56
DOI 10.1109/MCSE.2012.41.

Docker Inc. 2017. Docker. Available at https://www.docker.com/ .
Donoho DL, Maleki A, Rahman IU, ShahramM, Stodden V. 2009. Reproducible

research in computational harmonic analysis. Computing in Science Engineering
11(1):8–18 DOI 10.1109/MCSE.2009.15.

Rougier et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.142 15/17

https://peerj.com
https://zenodo.org/communities/rescience/
https://conda.io/
http://dx.doi.org/10.1038/533452a
http://dx.doi.org/10.1145/2812803
http://dx.doi.org/10.1021/acs.chemmater.7b00799
http://dx.doi.org/10.1109/MCSE.2012.41
https://www.docker.com/
http://dx.doi.org/10.1109/MCSE.2009.15
http://dx.doi.org/10.7717/peerj-cs.142


Guo PJ, Engler D. 2011. CDE: using system call interposition to automatically create
portable software packages. In: Proceedings of the 2011 USENIX annual technical
conference, USENIX’11. Portland: USENIX Association. Available at http://dl.acm.
org/ citation.cfm?id=2002181.2002202.

Halchenko YO, HankeM. 2015. Four aspects to make science open ‘‘by design’’ and not
as an after-thought. GigaScience 4(1) DOI 10.1186/s13742-015-0072-7.

Hinsen K. 2015.Writing software specifications. Computing in Science & Engineering
17(3):54–61 DOI 10.1109/mcse.2015.64.

Ioannidis JPA. 2005.Why most published research findings are false. PLOS Medicine
2(8):e124 DOI 10.1371/journal.pmed.0020124.

Iqbal SA,Wallach JD, KhouryMJ, Schully SD, Ioannidis JPA. 2016. Reproducible
research practices and transparency across the biomedical literature. PLOS Biology
14(1):e1002333 DOI 10.1371/journal.pbio.1002333.

Janz N. 2015. Bringing the gold standard into the class room: replication in university
teaching. International Studies Perspectives Epub ahead of print Mar 9 2015
DOI 10.1111/insp.12104.

Kitzes J, Turek D, Deniz F (eds.) 2017. The practice of reproducible research: case studies
and lessons from the data-intensive sciences. Oakland: University of California Press.

Lindholm T, Yellin F. 1999. Java virtual machine specification. Second Edition. Boston:
Addison-Wesley Longman Publishing Co., Inc.

Manninen T, Havela R, LinneM-L. 2017. Reproducibility and comparability of com-
putational models for astrocyte calcium excitability. Frontiers in Neuroinformatics
11:11 DOI 10.3389/fninf.2017.00011.

Mesnard O, Barba LA. 2017. Reproducible and replicable CFD: it’s harder than you
think. IEEE/AIP Computing in Science and Engineering 19(4):44–55
DOI 10.1109/mcse.2017.3151254.

MunafòMR, Nosek BA, Bishop DVM, Button KS, Chambers CD, Du Sert NP, Simon-
sohn U,Wagenmakers E-J, Ware JJ, Ioannidis JPA. 2017. A manifesto for repro-
ducible science. Nature Human Behaviour 1(1):0021 DOI 10.1038/s41562-016-0021.

Murta L, Braganholo V, Chirigati F, Koop D, Freire J. 2015. noWorkflow: capturing
and analyzing provenance of scripts. In: Provenance and annotation of data and
processes. Lecture notes in computer science, vol. 8628. Berlin: Springer International
Publishing, 71–83.

Open Science Collaboration. 2015. Estimating the reproducibility of psychological
science. Science 349(6251):aac4716–aac4716 DOI 10.1126/science.aac4716.

Perkel J. 2016. Democratic databases: science on GitHub. Nature 538(7623):127–128
DOI 10.1038/538127a.

Sandve GK, Nekrutenko A, Taylor J, Hovig E. 2013. Ten simple rules for repro-
ducible computational research. PLOS Compututational Biology 9(10):e1003285
DOI 10.1371/journal.pcbi.1003285.

Smith AM, Niemeyer KE, Katz DS, Barba LA, Githinji G, GymrekM, Huff KD, Madan
CR, CabunocMayes A, Moerman KM, Prins P, RamK, Rokem A, Teal TK, Valls

Rougier et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.142 16/17

https://peerj.com
http://dl.acm.org/citation.cfm?id=2002181.2002202
http://dl.acm.org/citation.cfm?id=2002181.2002202
http://dx.doi.org/10.1186/s13742-015-0072-7
http://dx.doi.org/10.1109/mcse.2015.64
http://dx.doi.org/10.1371/journal.pmed.0020124
http://dx.doi.org/10.1371/journal.pbio.1002333
http://dx.doi.org/10.1111/insp.12104
http://dx.doi.org/10.3389/fninf.2017.00011
http://dx.doi.org/10.1109/mcse.2017.3151254
http://dx.doi.org/10.1038/s41562-016-0021
http://dx.doi.org/10.1126/science.aac4716
http://dx.doi.org/10.1038/538127a
http://dx.doi.org/10.1371/journal.pcbi.1003285
http://dx.doi.org/10.7717/peerj-cs.142


Guimera R, Vanderplas JT. 2017. Journal of Open Source Software (JOSS): design
and first-year review. ArXiv preprint. arXiv:1707.02264.

Stachelek J. 2016. [Re] least-cost modelling on irregular landscape graphs. ReScience
2(1) DOI 10.5281/zenodo.45852.

TopalidouM, Leblois A, Boraud T, Rougier NP. 2015. A long journey into repro-
ducible computational neuroscience. Frontiers in Computational Neuroscience 9:30
DOI 10.3389/fncom.2015.00030.

TopalidouM, Rougier NP. 2015. [Re] interaction between cognitive and motor cortico-
basal ganglia loops during decision making: a computational study. ReScience 1(1)
DOI 10.5281/zenodo.47146.

Viejo G, Girard B, Khamassi M. 2016. [Re] speed/accuracy trade-off between the
habitual and the goal-directed process. ReScience 2(1) DOI 10.5281/zenodo.27944.

Wilson G. 2016. Software carpentry: lessons learned. F1000Research 3:62
DOI 10.12688/f1000research.3-62.v2.

Wilson G, Aruliah DA, Brown CT, Hong NPC, Davis M, Guy RT, Haddock
SHD, Huff KD, Mitchell IM, Plumbley MD,Waugh B,White EP,Wilson P.
2014. Best practices for scientific computing. PLOS Biology 12(1):e1001745
DOI 10.1371/journal.pbio.1001745.

Rougier et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.142 17/17

https://peerj.com
http://arXiv.org/abs/1707.02264
http://dx.doi.org/10.5281/zenodo.45852
http://dx.doi.org/10.3389/fncom.2015.00030
http://dx.doi.org/10.5281/zenodo.47146
http://dx.doi.org/10.5281/zenodo.27944
http://dx.doi.org/10.12688/f1000research.3-62.v2
http://dx.doi.org/10.1371/journal.pbio.1001745
http://dx.doi.org/10.7717/peerj-cs.142

