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Abstract 

The number of the people affected by neurodegenerative disorders is growing dramatically 

due to the aging of population. The major neurodegenerative diseases share some 

common pathological features including involvement of mitochondria in the mechanism of 

pathology and misfolding and accumulation of abnormally aggregated proteins. 

Neurotoxicity of aggregated beta-amyloid, tau, alрha-synuclein and huntingtin is linked to 

effects of these proteins on mitochondria. All these misfolded aggregates affect 

mitochondrial energy metabolism by inhibiting diverse mitochondrial complexes and limits 

ATP availability in neurons. Beta-amyloid, tau, alрha-synuclein and huntingtin are shown to 

be involved in increased production of reactive oxygen species which can be generated in 

mitochondria or can target this organelle. Most of these aggregated proteins are able to 

deregulate mitochondrial calcium handling that in combination with oxidative stress lead to 

opening of the mitochondrial permeability transition pore. Despite some of the common 

features, aggregated beta-amyloid, tau, alpha-synuclein and huntingtin have diverse 

targets in mitochondria that can partially explain neurotoxic effect of these proteins in 

different brain regions. 

 

Introduction 

Aging of the population in the majority of countries leads to increase in the number of 

people with age-related disorders, including neurodegenerative diseases. Despite the 

differences in aetiology and different mechanisms of cell loss, most of neurodegenerative 

disorders share some of common features including the involvement of mitochondrial 

dysfunction and oxidative stress in development of pathology and, specific for each 

disease misfolded proteins which aggregates in the brain of patients. Thus, for Alzheimer’s 

disease there are two misfolded proteins – β-amyloid (main component of the senile 

plaques) and tau protein (aggregates of which form an intracellular tangles) (1). It should 

be noted that tau aggregates are not specific for Alzheimer’s only and appeared in the 

number of other neurodegenerative disorders. Tau mutations are shown to be linked to 

familial form of frontotemporal dementia (2, 3). Second most common neurodegenerative 

disorder – Parkinson’s disease is characterised by intracellular occlusions called Lewy 

bodies, which are formed by aggregated α-synuclein (4). One of the main histopathological 

features of Huntington disease is an aggregate of huntingtin protein (5). All these 

aggregates in the brain consist mostly of protein fibrils and for long time are believed to be 



the trigger of cellular pathology and neurodegeneration in these diseases. Only recently a 

number of studies showed that small oligomeric forms of these proteins are more toxic 

than monomeric or fibril forms.  

Mitochondrion is an organelle which is strongly implicated in the mechanisms of 

neurodegeneration. Being the major energy producer in the cell, mitochondria play 

important role in the mechanism of cell death, calcium and redox signalling (6). Ability of 

mitochondria to produce reactive oxygen species (ROS) in the electron transport chain, 

TCA cycle and some other enzymes has a functional implication in cell signalling, however 

overproduction of ROS in mitochondria links this organelle to the age-related pathology 

and neurodegenerative disorders (7, 8). However, some of the mitochondrial enzymes 

could be specifically linked to functions involved in maintenance of neuronal homeostasis. 

Thus, the enzyme monoamine oxidase, which is located on the outer membrane of 

mitochondria, is involved in the homeostasis of neurotransmitters – dopamine, serotonin 

and norepinephrine (9, 10). Neurons are also dependent on mitochondrial function due to 

several reasons: a) Neurons predominantly produce ATP via oxidative phosphorylation in 

the mitochondria, with almost no contribution from glycolysis; b) The brain consumes 10 

times more oxygen and glucose than any other organ or tissue that may results in higher 

probability of ROS production. c) Neurons are long-lived differentiated cells that are 

therefore more dependent on the processes of mitochondrial dynamics and removal of 

unwanted mitochondria (mitophagy) compare to cells from other tissues. d) Neurons are 

excitable cells with high calcium fluxes. Mitochondria play a role of buffering Ca2+ that 

shapes calcium signals and protects cells from calcium excitotoxicity. e) Neuronal 

processes, that is, axons and dendrites, may be very long and therefore depend on 

mitochondrial transport for transfer of energy molecules to different parts of the cell. 

Because of the importance of all mitochondrial functions to neuronal health, it is perhaps 

understandable why neurons are vulnerable to dysfunction in any mitochondrial pathway. 

Mitochondrial pathology has been associated with a wide range of neurodegenerative 

diseases. In primary mitochondrial diseases, that is, diseases caused by mutations in 

mitochondrial DNA or nuclear DNA encoding mitochondrial proteins, it is clear that 

perturbation in mitochondrial function alone is sufficient and necessary to trigger neuronal 

death. It is less clear whether the mitochondrial dysfunction seen in the sporadic late onset 

neurodegenerative diseases is necessary for pathogenesis or a bystander effect of 

disease, which is mostly associated with misfolded aggregates.  



For long time, the role of misfolded proteins in mitochondrial function was disputable due to 

lack of evidence of location of misfolded aggregates in mitochondria. Recent studies 

demonstrated that aggregated peptides could be delivered to mitochondria (11).  

In this review we discuss the different mechanisms by which misfolded proteins affect 

mitochondrial function and ROS production and how mitochondrial dysfunction and protein 

aggregation could be related to progressive neuronal death in different forms of 

neurodegeneration. 

 

Effects of β-Amyloid on mitochondria 

The amyloid precursor protein (APP) is cleaved by β and γ-secretase generating a range 

of -amyloid (A) peptides between 39 and 43 amino acid residues long, where the 

hydrophobic nature of A 1-40 and A 1-42 promotes self-aggregation and neurotoxicity. A 

series of conformational changes of A via dimers, oligomers, protofibrils and fibrils leads 

ultimately to a deposition of amyloid plaques. 

A shown to have a strong effect on mitochondrial enzymes which contains iron-sulphur 

centre – the most of these enzymes are the complexes of electron transport chain (Figure 

1) and TCA cycle - α-ketoglutarate dehydrogenase and aconitase (12-15). In intact cortical 

and hippocampal neurons, A reduce ATP levels through inhibition of the complexes I and 

IV (16) and induces profound mitochondrial depolarisation of two types – slow 

mitochondrial depolarisation and sharp and transient loss of ∆ψm (17, 18). This 

mitochondrial depolarisation was dependent on the βA-induced calcium signal (17, 19) and 

induction of ROS overproduction from NADPH oxidase (20, 21). Deregulation of calcium 

homeostasis has been demonstrated in Alzheimer’s disease (AD), with A causing 

increased cytoplasmic calcium levels and mitochondrial calcium overload, resulting in 

increase in ROS production and opening of the PTP (19, 20). βA is able to induce opening 

of PTP in isolated mitochondria (22, 23) and primary astrocytes (17, 24, 25). Furthermore 

A may directly interact with cyclophilin D (a PTP component) forming a complex in the 

mitochondria that has reduced threshold for opening in the presence of mPTP inducers. 

Prevention of PTP opening by inducing cyclophilin D deficiency (molecular inhibition of 

PTP opening) is also able to improve mitochondrial function and learning/memory in an 

aging AD mouse model (26). 



A reduction in complex IV activity has been demonstrated in mitochondria from the 

hippocampus and platelets of AD patients, as well as in AD animal models and AD cybrid 

cells (27). Aggregation of A leads to oxidative stress, mitochondrial dysfunction and 

energy failure prior to the development of plaque pathology (28). Activation of the DNA 

repairing enzyme PARP in AD due to overproduction of ROS in NADPH oxidase leads to 

consumption of NAD and restriction of substrates (Figure 1) for mitochondrial complex I, 

resulting in collapse in bioenergetics and cell death (29, 30). Provision of mitochondrial 

substrates can prevent amyloid induced cell death (17, 21). A perturbation in mitochondrial 

dynamics has also been described in AD human brain and cell models. Fragmented 

mitochondria are seen in AD hippocampus in association with a downregulation of 

mitochondrial fusion proteins (MFN-1, MFN-2, OPA-1), with an increase in expression of 

the mitochondrial fission protein Fis-1 (31).  

Mitochondria also can regulate aggregation of βA, tau or alpha-synuclein. Inorganic 

polyphosphate plays important signalling role in brain (32, 33) and in mammalian cells 

produced in mitochondria (34). Inorganic polyphosphate accelerates aggregation of βA, 

tau and alpha-synuclein forming non-toxic fibrils playing role cytoprotective modifier (35). 

 

Role of tau in mitochondrial physiology and pathology 

Tau protein (tubulin-associated unit) refers to microtubule-associated proteins. It is a 

soluble, natively unfolded, and phosphorylated protein, ubiquitously expressed in most 

tissues and organs. This protein exists as six alternatively spliced isoforms and is encoded 

by a single gene, mapt, that is located on chromosome 17 in humans (36). Tau is found in 

all cellular and subcellular compartments but is most prominent in the axons of neurons of 

the central nervous system (37, 38). Tau protein plays an important role in neuronal 

physiology, in microtubule assembly and dynamics (39), in promoting axonal out growth 

(40), axonal transport and in signal transduction (41). Physiological and pathological 

activity of tau is dependent on the phosphorylation (tau is phosphoprotein) and alternative 

splicing and on the level of aggregation. The soluble prefibrillar aggregates of tau proteins 

cause the most damage to neurons. In disease, tau dissociates from microtubules and 

forms large, primarily intracellular, β-sheet rich fibrils (42). Tau protein is involved in the 

pathogenesis of many neurodegenerative diseases, specifically in Alzheimer’s disease and 

frontotemporal dementia. Pathologies and dementias of the nervous system are 

associated with tau proteins that have become defective and no longer stabilize 



microtubules properly. The abnormal tau function leads to the deficits in fast axonal 

transport, dystrophic neurites, and abnormal mitochondrial distribution (43-45). This 

abnormal distribution of mitochondria is more likely to be induced by impairment the fission 

and fusion of mitochondria by tau (46). It also have been shown that in human tau 

transgenic mice and flies, F-actin is increased, which disrupts the physical association of 

mitochondria and the fission protein DRP1 (Figure 1), leading to mitochondrial elongation 

(46). The resulting neurotoxicity can be rescued either by reducing mitochondrial fusion, or 

by enhancing fission, or by reversing actin stabilization. The possible effect of tau on 

mitochondrial complex I have been shown triple knockout Alzheimer’s disease mouse 

mitochondria (47). The 10+16 intronic mutation in MAPT gene, encoding tau increase in 

the production of 4R tau isoforms, which are more prone to aggregation. Human iPSC 

derived neurons with this mutation are associated with partially suppressed complex I-

driven respiration that lead to F1Fo-ATPase to be switched in reverse mode. This 

combination increased mitochondrial membrane potential that trigger ROS production in 

electron transport chain which causes oxidative stress and cell death (48). 

 

Role of α-synuclein in mitochondrial physiology and pathology 

α-Synuclein is strongly implicated in pathology of Parkinson’s disease as a main 

component of Lewy body – neuronal aggregated inclusions. Lewy body is one of the major 

pathological hallmarks of this neurodegenerative disorder. One of autosomal-dominant 

familial Parkinson’s disease can be attributed solely to mutations in the SNCA gene (which 

encoded α-synuclein) or by genetic duplication or triplication of the wild-type SCNA locus 

(49). Native monomeric form of α-synuclein is soluble protein which aggregates to form 

insoluble fibrils via a series of conformational changes including most toxic intermediates – 

oligomeric.  

Monomeric α-synuclein plays important physiological roles in synaptic signal transduction 

(50, 51) and as a regulator ATP production (Figure 1). Thus, monomeric α-synuclein binds 

F0-F1-ATPsynthase and increase efficiency of this enzyme to produce ATP (52). 

Monomeric, oligomeric and fibrillary α-synucleins are able to penetrate through plasma and 

intracellular membranes (53, 54). The high degree of curvature of mitochondrial 

membranes and the presence of cardiolipin contribute to the interaction of α-synuclein with 

this organelle. It is known that α-synuclein preferentially binds to negatively charged lipids 



(55-58). Previously, it has been found that α-synuclein specifically binds to mitochondria 

but no other cell organelles (53, 59). 

Parkinson’s disease is linked to mitochondrial abnormalities more than any other 

neurodegenerative disorder. It has been proven by toxins (rotenone and MPTP) and by the 

fact that most of the familial forms of Parkinson’s disease are associated with 

mitochondria. Pathogenesis of Parkinson’s disease is characterized by decreased activity 

of mitochondrial respiratory chain complex I in the nigrostriatal system by 25-30%. 

Importantly, oligomeric α-synuclein is able to inhibit complex I (60, 61) or even damage this 

component of electron transport chain (62). In agreement to this oligomeric α-synuclein 

had no effect on the neurons with complex I mutation (63). In transgenic mice 

overexpressing a wild-type α-synuclein occur not only breach morphology, loss of 

mitochondrial membrane potential (Δψ), and fragmentation of the mitochondria, 

predisposing to neurodegeneration (64-66). 

Mitochondria play important role in maintenance of calcium homeostasis in physiology and 

pathology (67). For monomeric and oligomeric α-synuclein shown ability to stimulate 

calcium signal (Figure 1) by incorporation into plasma membrane and forming a pore (68, 

69). Mitochondrial calcium overload and reactive oxygen species are the major triggers for 

mitochondrial permeability transition pore (mPTP) (70). Although activation of production of 

ROS in mitochondria by α-synuclein is disputable it was shown recently that β-sheet-rich α-

synuclein oligomers, and to a lesser extent α-synuclein fibrils are initiated of increase ROS 

production and lipid peroxidation (71, 72) Ability of oligomeric (but not monomeric) α-

synuclein to induce both calcium rise and ROS production increases the probability of 

mPTP opening. However, using of purified recombinant human α-synuclein on isolated 

mitochondria it has been shown that the addition of oligomeric forms of α-synuclein 

reduced retention time exogenously added Ca2+, promoted of Ca2+ induced swelling and 

mitochondrial depolarization and accelerated secretion of cytochrome C. Inhibition of 

mPTP prevented these oligomer-induced changes of mitochondrial parameters (61).  

In all eukaryotic cells, endoplasmic reticulum (ER) and mitochondria interact closely using 

a specific sub-domains of ER and MITO membrane, forming MAM structures 

(mitochondria-associated membranes, see Figure 1) (73). MAM site of ER has a unique 

lipid composition, enriched of cholesterol and the anionic phospholipids, with the 

characteristics of the lipid raft (74). It has been shown that α-synuclein affects a key MAM 

function - calcium transport between the ER and mitochondria and the wild type α-



synuclein from cell lines and brain tissue of human and mouse is present in MAM 

structures (73, 75). It was found that pathogenic point mutations in human α-synuclein 

result in its reduced association with MAM, coincident with a lower degree of apposition of 

ER with mitochondria, a decrease in MAM function, and an increase in mitochondrial 

fragmentation compared with wild-type (76). 

α-Synuclein can interfere with number of mitochondrial transport proteins including TOM 

machinery and VDAC (57). Thus, it was shown that certain types of post-translationally 

modified α-synuclein binds with high affinity to the receptor TOM20, related to 

mitochondrial protein importing machinery TOM. This binding prevented the interaction of 

TOM20 with its co-receptor, TOM22, and impaired mitochondrial protein import (77). 

 

Huntingtin protein and mitochondria 

Huntington's disease is neurodegenerative disorder caused by mutation of a CAG repeat 

located in exon 1 of Huntingtin gene. Vulnerability and degeneration of striatal neurons are 

the first obvious signs of early-grade Huntington's disease. Importantly, a mutation of 

huntingtin protein (Htt) changes the location of this protein from the nucleus and cytoplasm 

for wild type Htt to mitochondria for mutant Htt (78, 79). For wild type Htt the role in vesicle 

trafficking, secretion pathways and apoptosis was demonstrated (80, 81). 

The Htt function should affect a multitude of signalling pathways that could be confirmed by 

lethality of htt knockout mouse model (82).  

The co-localisation of mutant Htt to the mitochondria leads to inhibition of electron transport 

chain and reduction of energy levels in Huntington's disease which initiates striatal cell 

death (Figure 1). Expression of mutant Htt in mice resulted in a reduced mitochondrial 

membrane potential, suggesting that one or more of the electron transport chain 

complexes are not working correctly. Thus, in mice with mutated Htt activity of the complex 

II and complex IV is reduced and expression of mitochondrial complex II is also 

significantly decreased (83-85). Lower mitochondrial membrane potential in neurons with 

mutated Htt leads to dramatically reduced calcium buffering capacity (86). Lower 

mitochondrial buffering capacity in cells with mutated Htt could be the reason for induction 

of mitochondrial PTP and cell death (87). 

 

Conclusions and future directions 



Despite the difference in toxicity between βA, α-synuclein, tau and Htt and their original 

location (extracellular, intracellular or membranes) all these misfolded proteins and 

peptides have similarities in the mechanisms of neurodegeneration induced by their 

aggregates. One of the most important steps is an induction of oligomerisation of these 

peptides. Considering possible role of monomers (α-synuclein, tau and huntingtin) in cell 

physiology aggregation of these peptides is the initial step in the mechanism of their 

toxicity. Although all these misfolded proteins initiate ROS production and inhibit 

mitochondrial respiration via different mechanisms, it results in induction of cell death 

through opening of mPTP.  
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Figure legend 

Figure 1. Effects of the major misfolded proteins on mitochondria. Beta-amyloid, tau, 

alpha-synuclein and huntingtin protein have a direct effect on mitochondria. Oligomeric 

beta-amyloid, alpha-synuclein and huntingtin protein inhibit complexes of electron transport 

chain, tau play important role in mitochondrial dynamics. Mitochondrial dysfunction induced 

by aggregated proteins lead to neuronal cell death 
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