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Abstract  
 

Background & Aims: Sleep preparation/onset are associated with peripheral vasodilatation and a 

decrease in body temperature. The hyperdynamic syndrome exhibited by patients with cirrhosis 

may impinge on sleep preparation, thus contributing to their difficulties falling asleep. The aim of 

this study was the assessment of skin temperature, in relation to sleep-wake patterns, in patients 

with cirrhosis.  

Methods: Fifty three subjects were initially recruited, and 46 completed the study. Of the final 

46, twelve were outpatients with cirrhosis, 13 inpatients with cirrhosis, 11 inpatients without 

cirrhosis and 10 healthy volunteers. All underwent baseline sleep-wake evaluation and blood 

sampling for inflammatory markers and morning melatonin levels. Proximal/distal skin 

temperature and their gradient (DPG) were recorded for 24 hours by a wireless device. Over this 

period subjects kept a sleep-wake diary.  

Results: Inpatients with cirrhosis slept significantly less well than the other groups. Inpatients 

and outpatients with cirrhosis had higher proximal temperature and blunted rhythmicity compared 

to the other groups. Inpatients with/without cirrhosis had higher distal temperature values and 

blunted rhythmicity compared to the other groups. Inpatients and outpatients with cirrhosis had 

significantly lower DPG values compared to the other groups, and DPG reached near-zero values 

several hours later. Significant correlations were observed between temperature and sleep-wake 

variables and inflammatory markers.  

Conclusions: Alterations of distal/proximal skin temperature, their gradient and their time-course 

were observed in patients with cirrhosis, which may contribute to their sleep disturbances.  
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Key points  

an excellent predictor of sleep latency, with a near-zero DPG indicating that sleep is imminent.  

 thermoregulation, both in terms of 

absolute values and the time-course of DPG.  

-wake indices, 

suggesting that abnormal thermoregulation may contribute to the sleep-wake disturbances 

exhibited by these patients.  

management of insomnia in patients with cirrhosis.  

 

  



Introduction  
Sleep is regulated by the interaction between a homeostatic and a circadian process.1 The 

homeostatic process determines sleep propensity in relation to sleep-wake history, so that the 

need to sleep increases with the duration of wakefulness.2 The circadian process, which is marked 

by variations in the plasma levels of the hormone melatonin, regulates sleep propensity in relation 

to dark/light cues. Sleep preparation is accompanied by changes in vascular tone and peripheral 

temperature, which are key to the timing and the speed of sleep onset.3,4 Accordingly, an index of 

peripheral heat loss [i.e. the distal-proximal skin temperature gradient (DPG)] is an excellent 

predictor of sleep latency, or the length of time between attempting to sleep and actual sleep 

onset. When the DPG reaches near-zero values, sleep is imminent.3,5  

A significant proportion of patients with cirrhosis exhibit sleep-wake disturbances, mainly in the 

form of difficulties falling asleep, awakenings, alterations in sleep timing, and excessive daytime 

sleepiness.6,7 Despite multiple theories, the pathophysiology of such disturbances remains largely 

unknown. Hepatic encephalopathy is thought to play a role, especially in daytime sleepiness.8 

Alterations in both circadian9 and homeostatic sleep-wake regulation have been documented,10-11 

and an abnormal interaction between the two systems is thus likely.12  

There is a yet unexplored possibility that the splanchnic vasodilatation/hyperdynamic circulatory 

syndrome which complicates cirrhosis may impinge on temperature regulation, and thus 

compromise the fine temperature changes that accompany sleep preparation and sleep onset.  

Thus the aim of this study was to determine the 24-hour distal and proximal temperature curves 

and the DPG of both in- and out-patients with cirrhosis, with reference to their sleep-wake 

patterns and by comparison with healthy and disease controls.  

 

 

Methods  
Subjects  
A total of 53 subjects were initially enrolled: 16 inpatients with cirrhosis, 16 outpatients with 

cirrhosis, 11 inpatients without cirrhosis and 10 healthy volunteers. Patients were excluded if they 

were <18 years, active smokers, could not/were unwilling to comply with the study procedures, 

had a fever or infection, had cancer, a history of neurological/psychiatric comorbidity, were 

taking beta-blockers, drugs affecting the vascular tone or psychoactive drugs (for example 

hypnotics, anxiolytics and neuroleptics). Patients and healthy volunteers were excluded if they 

had misused alcohol or undertaken shift work/intercontinental travel in the preceding six months.  

The aetiology of cirrhosis was established on clinical, laboratory, radiological, and histological 

variables. Its severity was determined using Pugh’s modification of the Child’s grading system13 

and the model for end-stage liver disease (MELD) score.14  

Experimental design  
One experimental session was conducted over 28 hours, from 08:00 am to 12:00 midday of the 

following day (Figure 1). All participants completed a baseline sleep-wake assessment and then a 

detailed sleep-wake diary covering the experimental study session. Temperature recordings were 

carried out over 24 hours (12:00 midday to 12:00 midday of the following day) by use of 

temperature loggers. Blood samples were collected at the beginning of the experimental session, 

at 8:00 am.  

Baseline sleep-wake profile  
The Pittsburgh Sleep Quality Index (PSQI) questionnaire is utilized to assess subjective sleep 

quality over the preceding month. The higher the PSQI global score (range 0-21), the worst the 

sleep quality. A score ≥ 5 identifies poor sleepers.15,16  

The Epworth Sleepiness Scale (ESS) is used to evaluate the daytime sleepiness. Individuals rate 

their likelihood of ‘dozing off’ in eight different daytime situations. The higher the ESS score 

(range 0-24), the sleepier the subject. A score of ≥11 is considered abnormal.17 The Horne-

Östberg (HÖ) questionnaire evaluates diurnal preference and qualifies subjects as definitely 



morning, moderately morning, intermediate, moderately evening and definitely evening based on 

19 self-administered questions.18  

Sleep-wake diary  
Subjects were instructed to fill in the wake diary (daily activities, meal times and any 

period/reason for removal of the sensors) before going to bed and the sleep diary (bed time, sleep 

onset time, try to sleep time, wake-up time, get-up time, number of any night awakening/daytime 

naps) the following morning. Standard indices were obtained, to include sleep onset latency (or 

time required to fall asleep), number of awakenings, total time spent in bed, sleep efficiency (i.e., 

time asleep/time spent in bed, as a percentage), and sleep quality on a scale of 1 to 10.19 For 

subjects who reported long and difficult-to-estimate sleep latencies, a fixed, arbitrary maximum 

of 120 min was utilized (3 inpatients with cirrhosis and 1 inpatient without cirrhosis). Similarly, 

for subjects who reported several awakenings during the night, a fixed, arbitrary maximum of 10 

awakenings was utilized (2 inpatients with cirrhosis and 3 inpatients without cirrhosis).  

Distal and proximal temperature  
Distal and proximal temperatures were recorded for 24 hours by use of wireless temperature 

sensors (iButtons, model no. DS1922L-F5, Maxim Integrated, San Jose, CA, USA). 20-21 

Sampling rate was set at 3 min (resolution 0.0625 ºC; approximately 500 temperature values per 

day). Nine sensors were placed on the skin (left/right mid-thighs on the rectus femoris, left/right 

infraclavicular area, abdomen, thenar area of the left/right hand, and mid metatarsal area of the 

plantar site of the left/right foot) using medical tape. Data from the sensors were transferred by an 

adapter to a computer, using the iButton Viewer software (Dallas Semiconductor, Maxim 

Integrated Products, Sunnyvale, CA). An artifact rejection procedure was applied to exclude 

extremes.20 Then proximal and distal skin temperature were calculated as follows:20,22  

Tprox = 0.383×average (mid-thighs) + 0.293×average (infraclavicular sites) + 0.324×abdomen  

Tdist = [average (hands) + average (feet)]/2  

The above were then used to calculate DPG (Tdist - Tprox).  

Temperature variability analysis  
Methods derived from nonlinear dynamics are useful in analyzing the complexity of 

physiological signals such as heart rate, respiratory rate and temperature.23 Body temperature 

exhibits complex fluctuations at different time-scales and analyzing pattern of these variations 

provides information about the dynamics of the thermoregulatory system.23-24 Proximal 

temperature data were used for calculation of sample entropy and multiscale entropy in this study.  

Sample entropy  

Sample entropy measures the negative logarithmic likelihood of the repetition of patterns in a 

time series. In other words, sample entropy calculates the probability that subseries within a 

temperature series that match within tolerance r for m points will also match for m+1 points, 

taking into account the fact that subseries might overlap. A lower value of sample entropy reflects 

a higher degree of regularity. In the present study, the parameter m was fixed to 2, and tolerance 

level r was 0.2.  

Multiscale entropy (MSE)  

Multiscale entropy (MSE) measures the irregularity of a time series as a function of time scale.25 

The temperature-series of different time scales were reconstructed by averaging non-overlapping 

consecutive n temperature data to form the new time-series (scaling factors from 1 to 10 were 

used in this study). Entropy in each new time series was quantified by calculating sample entropy 

as described before.25  

Laboratory variables  
Venous blood samples (5 ml) were obtained at 08:00 and stored in plastic tubes containing 

clotting activator (BD-Vacutainer, ref. 368815). Samples were then centrifuged at 1500 × g for 

10 min at 4 ºC. The resulting serum was divided into 1 ml aliquots and stored at -80 ºC until they 

were analyzed.  

Cytokines determination  



Interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) were measured using a solid-phase 

immunological method with a monoclonal immobilizing murine antibody and a polyclonal 

enzyme-labeled (bovine alkaline phosphatase) antibody. The system was coupled in a 

chemoluminescent sequential immunometric assay, using an automated analyzer (Immulyte One, 

Siemens Healthcare, Milan, Italy). The intra-assay coefficient of variation (CV) of IL-6 was 5.2% 

and total imprecision CV 7.4% at the concentration of 112 ng/L; analytical performance of TNF-

α were: CV intra-assay 3.5% and inter-assay CV 5.8% at the concentration of 34 ng/L. The 

analytical sensitivity of IL-6 is 2.0 ng/L and TNF-α 1.7 ng/L.  

High-sensitivity c-reactive protein (CRP) determination in serum  
C-reactive protein was measured using immune-nephelometric method with polistirene particles 

coated with a monoclonal antibody in a Siemens Vista System, (Siemens Healthcare, Milan, 

Italy), imprecision intra-assay CV 4.0%, inter-assay CV 4.4% at the concentration of 3.5 mg/L. 

Analytical sensitivity 0.6 mg/L.  

Melatonin determination in serum  
Melatonin was measured using radio-immunoassay after extraction with precipitating agent, 

Hoelzel Diagnostika-biotech (Koln, Germany). Imprecision intra-assay CV 9.7%, inter-assay CV 

10.9% at the concentration of 42 ng/L. Limit of detection 2.3 ng/L.  

Ethics  
The study was approved by the Padova University Hospital Ethics Committee and all participants 

provided written, informed consent. The study was conducted according to the Declaration of 

Helsinki (Hong Kong Amendment) and Good Clinical Practice (European) guidelines.  

Statistical analysis  
The variables distribution was tested for normality using the Shapiro-Wilks’ test. Differences 

between normally distributed variables were examined by Student’s t test/one-way ANOVA; 

subsequent between-group comparisons were performed using the Tukey test. Differences 

between non normally distributed variables were examined by Mann-Whitney U test/Kruskal-

Wallis ANOVA; subsequent between-group comparisons were performed using the Median test 

for multiple comparisons. Skin temperature over the study period was analysed by repeated 

measures ANOVA, by group. Correlation analysis was performed by the Pearson r or Spearman 

rank tests, as appropriate. The receiver operating characteristic (ROC) analysis was used to test 

the ability of temperature variability methods to distinguish between groups.  

 

Results  
Seven out of the 53 subjects initially recruited were excluded from one/more analyses sets 

because of lack of adherence to the protocol, loss of one/more sensors, and onset of fever. Thus 

46 subjects completed all study parts.  

Inpatients with cirrhosis (n=13): 9 males; 60.7 ± 10.8 years; 2 Child A, 5 Child B, 6 Child C. The 

causes of hospitalization were fluid retention/hepato-renal syndrome (n=5), hepatic 

encephalopathy (3), jaundice (2), suspected spontaneous bacterial peritonitis, which was not 

confirmed on ascitic tap (2), transaminitis (1). The aetiology was as follows: viral (n=4), alcohol 

(4), mixed (3), and primary sclerosing cholangitis (2).  

Outpatients with cirrhosis (n=12): 10 males; 63.2 ± 11.6 years; 8 Child A, 4 Child B. The 

aetiology was as follows: viral (n=1), alcohol (7), mixed (3), and metabolic (1).  

Inpatients without cirrhosis group (n=11): 8 males; 74.8 ± 9.1 years. Reasons for hospitalization 

were pulmonary oedema (n=3), anaemia (2), chest pain (2), shortness of breath/pneumonia (1), 

syncope/pulmonary embolism (1), acute pancreatitis (1), acute renal failure (1).  

Healthy volunteers group (n=10): 3 males (all 7 females were post-menopausal); 55.9 ± 6.4 years.  

The demographic/clinical features of the populations are presented in Table 1. Inpatients without 

cirrhosis were significantly older than healthy volunteers and inpatients with cirrhosis. 

Pugh/MELD average scores were higher in inpatients compared to outpatients with cirrhosis.  

Sleep wake profile  



The sleep-wake profile indices of the populations are presented in Table 2. Inpatients with 

cirrhosis slept significantly worse compared to healthy volunteers. Daytime sleepiness and 

diurnal preference were comparable across groups, with the majority of subjects exhibiting 

moderately morning diurnal preference. Over the experimental period, inpatients with cirrhosis 

presented significantly longer sleep latency compared to inpatients without cirrhosis.  

Proximal and distal skin temperature  
A number of patients were forced to begin/end temperature recording after/before the scheduled 

times because of clinical or logistic issues. Thus, data were available for all from 16:00 hours of 

study day 1 until 10:00 hours of study day 2, and analyses refer to this period unless otherwise 

specified.  

The time-course of proximal and distal skin temperature plus the DPG are presented in Figure 2.  

In- and out-patients with cirrhosis had higher proximal temperature compared to the other two 

groups (Table 3; Figure 2A). In addition, on visual/qualitative analysis of the curves, the time 

course of proximal temperature in inpatients with cirrhosis had limited variation compared to the 

other groups (Figure 2A). On formal analysis, both the factors group and time plus their 

interaction were significant (group: F=3.31, p<0.05; time: F=15.34, p<0.001; group*time: 

F=1.84, p<0.001).  

On visual/qualitative analysis of the curves, inpatients with and without cirrhosis had higher 

distal temperature compared to the other two groups (Table 3; Figure 2B). In addition, while 

some rhythmicity was observed, the time course of their distal temperature was flatter over time 

(Figure 2B). On formal analysis, the factor time plus the interaction group*time were significant 

(group: F=0.92, p=0.44; time: F=15.06, p<0.001; group*time: F=2.07, p<0.001).  

On visual/qualitative analysis of the curves, both in- and outpatients with cirrhosis had 

significantly lower DPG values compared to the other groups, and DPG reached near-zero values 

significantly later (Figure 2C). On formal analysis, both the factors group and time plus their 

interaction were significant (group: F=3.17, p<0.05; time: F=7.58, p<0.001; group*time: F=1.70, 

p=0.001). Only healthy volunteers exhibited the physiological, obvious change in DPG expected 

around sleep onset time (Figure 2C). The time course of DPG in inpatients without cirrhosis was 

closer to that of healthy volunteers, but still flattened (Figure 2C).  

For ease of interpretation, temperature results for patients with cirrhosis as a group (as opposed to 

in- and outpatients) are presented in Supplementary Figure 1.  

A significant correlation was observed between minimum proximal temperature value and MELD 

score (r=0.54, p<0.01). Significant correlations were also observed between temperature and 

sleep-wake variables when all groups were considered (i.e. minimum proximal temperature vs. 

sleep onset latency: r=0.38, p<0.05). The relationships held true when analyses were confined to 

patients with cirrhosis (Table 4).  

Temperature variability analysis  
Sample entropy of temperature data was significantly higher in inpatients with cirrhosis group 

compared to other groups (Figure 3). Inpatients with cirrhosis showed increased entropy 

compared to all other groups when MSE was used to calculate complexity of temperature signals 

at different scales (Supplementary Table 1). ROC analysis showed that sample entropy could 

distinguish between in- and outpatients with cirrhosis with an area under the curve of 0.88 

(p<0.001). MSE demonstrated even better separation [i.e. area under curve (for scaling point 4) 

0.94 (p<0.0001)].  



Laboratory variables  
On average, inpatients with cirrhosis had higher inflammatory markers compared to both 

outpatients with cirrhosis and inpatients without cirrhosis (IL6: 56.13±63.65 vs. 10.31±10.15, and 

56.13±63.65 vs. 5.52±3.23 ng/l, respectively; CRP: 43.17±45.92 vs. 4.72±5.81 and 43.17±45.92 

vs. 6.53±8.12 mg/l, respectively). Average morning melatonin levels were also higher in 

inpatients with cirrhosis but variability was considerable, and the differences not significant 

(36.22±54.88 vs 28.45±37.19 and 36.22±54.88 vs 9.11±6.23 ng/l).  

Significant, consistent correlations were observed between inflammatory markers/melatonin 

levels and temperature (i.e. minimum proximal temperature vs. IL-6: r=0.46, p<0.01; minimum 

proximal temperature vs. CRP: r=0.42, p<0.05; maximum proximal temperature vs. melatonin 

r=0.41 p<0.05). The relationships held true when analyses were confined to patients with 

cirrhosis (i.e. minimum proximal temperature vs. IL-6: r=0.49, p<0.05; minimum proximal 

temperature vs. CRP: r=0.45, p<0.05).  

 

Discussion  
Diverse theories have been proposed to clarify the thermophysiological mechanism leading to 

sleep initiation. Over the past decades, the influence of altering core body temperature, body heat 

production and/or heat loss have been studied as potential processes involved in the circadian 

regulation of the sleep-wake cycle.26-30 Currently, it is assumed that the redistribution of heat 

from proximal to peripheral sites, driven by vasodilation of distal skin regions, is a crucial step 

and it is closely linked to sleep onset latency.3,5,28 Indeed, it has been demonstrated that the DPG 

is strongly correlated with sleep propensity.3,5  

In the present study the curves of distal and proximal skin temperature recorded in patients with 

cirrhosis (in- and outpatients) were remarkably different from those observed in inpatients 

without cirrhosis and healthy volunteers. Considering that environmental conditions and sleep 

timing were not controlled for, the temperature curves registered in healthy volunteers were 

substantially comparable to those obtained in other studies.3,5 On the other hand, the circadian 

rhythm of temperature was abnormal in patients with cirrhosis, particularly inpatients, in whom 

the temperature curves recorded were markedly blunted. This was more obvious in the proximal 

temperature curve. The elevated skin temperatures and the absence of circadian variations 

throughout the day may be explained by the hyperdynamic circulatory syndrome,31 caused by 

splanchnic and systemic vasodilation, which is responsible for increased splanchnic blood flow, 

and also increased skin blood flow.32 Cutaneous vasodilatation is a well-documented 

phenomenon in patients with liver disease32 that may explain why patients with cirrhosis had a 

higher proximal temperature in comparison with healthy volunteers. The reason for systemic 

vasodilatation in cirrhosis is twofold: 1. cirrhosis is associated with increased level of circulating 

endogenous vasodilators;32 2. vascular responsiveness to adrenergic stimulation is significantly 

impaired in patients with cirrhosis.33 In addition to blunted response to adrenergic stimulation, 

vascular beds from cirrhotic subjects have impaired endothelium-dependent vasodilator response 

to cholinergic stimulation.34 This indicates that although peripheral vessels in cirrhosis are more 

dilated than normal individuals, they may not respond well to cholinergic vasodilatatory 

mechanisms such as sympathetic cholinergic fibers. This is particularly important in cutaneous 

circulation as the autonomic nerve fibers in the skin almost completely derive from sympathetic 

cholinergic neurons.35  

The DPG is a good indicator of the time taken to fall asleep so that, when the DPG is near-zero, 

sleep onset is imminent.3,5 In inpatients with cirrhosis the DPG did never reach zero, whereas in 

outpatients with cirrhosis a near-zero DPG was recorded almost two hours after the try-to-sleep 

time they reported. These results suggest a compromised skin thermoregulatory function in 

patients with cirrhosis. Since the vasodilatation from proximal to distal sites is a crucial 

physiological step for sleep initiation, the generalized state of vasodilatation which characterizes 

cirrhosis may hamper heat dissipation. Indeed, such an ineffective heat loss may explain why 

these patients do not reach a near-zero DPG value and their difficulties in falling asleep. It is also 



interesting to note that the DPG curves obtained in in- and outpatients with cirrhosis were 

overlapping, and different from both healthy volunteers and inpatients without cirrhosis, 

suggesting that the aforementioned temperature disturbances are specific to the pathology.  

Inpatients without cirrhosis were introduced into the study to check for the potential influence of 

hospitalization on the circadian rhythm of temperature since bed rest and physical inactivity 

strongly influence heat production/loss.36 Despite the fact that it was not as evident as in healthy 

volunteers, circadian variations were observed in both distal and proximal temperature curves in 

inpatients without cirrhosis. Likewise, the DPG was very similar to that obtained in healthy 

volunteers and tended to zero around sleep onset time, although the curve was somewhat 

flattened. These findings suggest that bed rest and physical inactivity, together with disease, may 

influence the circadian rhythm of skin temperature. However, despite the severity of the medical 

conditions within the inpatients without cirrhosis group, the effect was not sufficient to deeply 

alter the circadian rhythm, in contrast to what happened in in- and out-patients with cirrhosis.  

The disturbances in sleep-wake and sleep timing indices observed in the current study in patients 

with cirrhosis are in line with those previously reported by other authors.6,7,37 Similarly, high 

morning levels of melatonin have also been reported in this patient population.9,38 Given the 

importance of thermoregulation in sleep initiation, correlation analyses were conducted and 

corroborated the existence of an association between sleep disturbances and thermoregulatory 

alterations observed in these patients, with particularly consistent correlations between sleep 

timing indices and minimal proximal temperature. Under healthy conditions, body temperature 

exhibits complex short-term and long-term fluctuations that are due to the nonlinear interplay 

between sensors and effectors within our thermoregulatory network. Thus, in addition to absolute 

temperature values, temperature variability analysis gives valuable information about the 

thermoregulatory system.23,24 In the present study, we estimated the complexity of temperature 

fluctuations by calculating sample entropy as well as MSE of the temperature series. Our results 

demonstrated that among our experimental groups, healthy volunteers, outpatients with cirrhosis 

and inpatients without cirrhosis had similar sample entropy and MSE in their temperature 

fluctuations. The only group that had significantly higher entropy was inpatients with cirrhosis. 

According to Pincus,39 tighter coupling of signals within a complex interconnected system 

increases the entropy of the system. In other words, increased entropy may indicate that different 

components of a system are engaged and coupled together. This increased entropy in the 

temperature series might be an indicator of an active process that has engaged the 

thermoregulatory system. In this respect, inpatients with cirrhosis also had higher serum levels of 

CRP and cytokines, which suggests that systemic inflammation may be a factor associated with 

their admission into a tertiary referral liver unit. ROC analysis showed that both MSE and sample 

entropy are very sensitive and specific indices for distinguishing between in- and outpatients with 

cirrhosis, with an area under curve higher than 88%. This goes along with the idea that nonlinear 

analysis of temperature time series may provide a quantitative measure for assessment of the 

thermoregulatory circuit in clinical practice.23 The observation of abnormalities in both absolute 

temperature values and their dynamics has significant clinical ramifications, especially on the 

concept of fever.  

Our study has a number of limitations. Firstly, it is an observational study, and finding a 

significant association between impaired skin temperature gradient and sleep onset does not 

necessarily indicate causality. The relationship between DPG and sleep abnormalities is 

interesting but might have been influenced by unknown confounders. Secondly, because of the 

known effect of beta-blockers on melatonin secretion, patients on beta-blockers were excluded, 

thus making the population in this study only partially representative of patient with cirrhosis as a 

group.  

In conclusion, considerable alterations of distal/proximal skin temperature and their time-course 

were observed in patients with cirrhosis. Such alterations seem to parallel the severity of the 

disease and the associated sleep-wake disturbances. These findings may have implications for the 

definition of fever and the management of insomnia in these patients.  



Acknowledgements  
The authors are grateful to Professor Eus van Someren (Netherlands Institute for Neuroscience, 

Amsterdam) for technical support and generous advice on outliers removal.  

 

References  
1. Borbély AA. A two process model of sleep regulation. Hum Neurobiol 1982;1:195-204.  

2. Borbély AA. From slow waves to sleep homeostasis: new perspectives. Arch Ital Biol 

2001;139:53-61.  

3. Kräuchi K, Cajochen C, Werth E, Wirz-Justice A. Functional link between distal vasodilatation 

and sleep-onset latency?. Am J Physiol Regulatory Integrative Comp Physiol 2000;278:R741-

R748.  

4. Kräuchi K, Deboer T. The interrelationship between sleep regulation and thermoregulation. 

Front Biosci (Landmark Ed) 2010;15:604-625.  

5. Kräuchi K, Cajochen C, Werth E, Wirz-Justice A. Warm feet promote the rapid onset of sleep. 

Nature 1999;401:36-37.  

6. Córdoba J, Cabrera J, Lataif L, Penev P, Zee P, Blei AT. High prevalence of sleep disturbance 

in cirrhosis. Hepatology 1998;27:339-345.  

7. Mostacci B, Ferlisi M, Baldi Antognini A, et al. Sleep disturbance and daytime sleepiness in 

patients with cirrhosis: a case control study. Neurol Sci 2008;29:237-240.  

8. De Rui M, Schiff S, Aprile D, et al. Excessive daytime sleepiness and hepatic encephalopathy: 

it is worth asking. Metab Brain Dis 2013;28:245-248.  

9. Montagnese S, Middleton B, Mani AR, Skene DJ, Morgan MY. On the origin and the 

consequences of circadian abnormalities in patients with cirrhosis. Am J Gastroenterol 

2010;105:1773-1781.  

10. Boy C, Meyer PT, Kircheis G et al. Cerebral A1 adenosine receptors (A1AR) in liver 

cirrhosis. Eur J Nucl Med Mol Imaging 2008;35:589-597.  

11. Bersagliere A, Raduazzo ID, Nardi M, et al. Induced hyperammonemia may compromise the 

ability to generate restful sleep in patients with cirrhosis. Hepatology 2012;55:869-878.  

12. Montagnese S, De Pittà C, De Rui M, et al. Sleep-wake abnormalities in patients with 

cirrhosis. Hepatology 2014;59:705-712.  

13. Pugh RN, Murray-Lyon IM, Dawson JL, Pietroni MC, Williams R. Transection of the 

oesophagus for bleeding oesophageal varices. Br J Surg 1973;60:646-649.  

14. Kamath PS, Wiesner RH, Malinchoc M, et al. A model to predict survival in patients with 

end-stage liver disease. Hepatology 2001;33:464-470.  

15. Buysse DJ, Reynolds CF III, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh sleep quality 

index: a new instrument for psychiatric practice and research. Psychiatry Res 1989;28:193-213.  

16. Curcio G, Tempesta D, Scarlata S, et al. Validity of the Italian version of the Pittsburgh sleep 

quality index (PSQI). Neurol Sci 2013;34:511-519.  

17. Vignatelli L, Plazzi G, Barbato A, et al. Italian version of the Epworth sleepiness scale: 

External validity. Neurol Sci 2003;23:295-300.  

18. Hörne JA, Östberg OA. Self-assessment questionnaire to determine morningness-eveningness 

in human circadian rhythms. Int J Chronobiol 1976;4:97-110.  

19. Carney CE, Buysse DJ, Ancoli-Israel S, et al. The consensus sleep diary: standardizing 

prospective sleep self-monitoring. Sleep 2012;35:287-302.  

20. van Marken Lichtenbelt WD, Daanen HA, Wouters L, et al. Evaluation of wireless 

determination of skin temperature using iButtons. Physiol Behav 2006;88:489-497.  

21. Rutkove SB, Nie R, Mitsa T, Nardin RA. A methodology for the real-time measurement of 

distal extremity temperature. Physiol Meas 2007;28:1421-1428.  

22. Kräuchi K, Cajochen C, Möri D, Graw P, Wirz-Justice A. Early evening melatonin and S-

20098 advance circadian phase and nocturnal regulation of core body temperature. Am J Physiol 

1997;272:R1178-R1188.  



23. Varela M, Churruca J, Gonzalez A, Martin A, Ode J, Galdos P. Temperature curve 

complexity predicts survival in critically ill patients. Am J Respir Crit Care Med 2006; 74:290-

298.  

24. Papaioannou VE, Chouvarda IG, Maglaveras NK, Pneumatikos IA. Temperature variability 

analysis using wavelets and multiscale entropy in patients with systemic inflammatory response 

syndrome, sepsis, and septic shock. Crit Care 2012;16:R51.  

25. Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of complex physiologic time 

series. Phys Rev Lett 2002;89:068102.  

26. Van Someren EJW. Sleep propensity is modulated by circadian and behavior-induced 

changes in cutaneous temperature. J Therm Biol 2004;29:437-444.  

27. Kräuchi K. The thermophysiological cascade leading to sleep initiation in relation to phase of 

entrainment. Sleep Med Rev 2007;11:439-451.  

28. Raymann RJ, Swaab DF, Van Someren EJ. Cutaneous warming promotes sleep onset. Am J 

Physiol Regul Integr Comp Physiol. 2005;288:R1589-97.  

29. Raymann RJ, Swaab DF, Van Someren EJ. Skin deep: enhanced sleep depth by cutaneous 

temperature manipulation. Brain. 2008;131:500-13.  

30. Romeijn N, Raymann RJ, Møst E, Te Lindert B, Van Der Meijden WP, Fronczek R, Gomez-

Herrero G, Van Someren EJ. Sleep, vigilance, and thermosensitivity. Pflugers Arch. 

2012;463:169-76.  

31. Bolognesi M, Di Pascoli M, Verardo A, Gatta A. Splanchnic vasodilatation and 

hyperdynamic circulatory syndrome in cirrhosis. World J Gastroenterol 2014;20:2555-2563.  

32. Sacerdoti D, Mania D, Jiang H, Pesce P, Gaiani S, Gatta A, Bolognesi M. Increased EETs 

participate in peripheral endothelial dysfunction of cirrhosis. Prostaglandins Other Lipid Mediat 

2012; 98:129-132.  

33. Atucha NM, Shah V, García-Cardeña G, Sessa WE, Groszmann RJ. Role of endothelium in 

the abnormal response of mesenteric vessels in rats with portal hypertension and liver cirrhosis. 

Gastroenterology 1996;111:1627-1632.  

34. Ostadhadi S, Rezayat SM, Ejtemaei-Mehr S, et al. Mesenteric artery responsiveness to 

acetylcholine and phenylephrine in cirrhotic rats challenged with endotoxin: the role of TLR4. 

Can J Physiol Pharmacol 2015;93:475-483.  

35. Roosterman D, Goerge T, Schneider SW, Bunnett NW, Steinhoff M. Neuronal control of skin 

function: the skin as a neuroimmunoendocrine organ. Physiol Rev 2006;86:1309-1379.  

36. Kräuchi K, Wirz-Justice A. Circadian rhythm of heat production, heart rate, and skin and core 

temperature under unmasking conditions in men. Am J Physiol 1994;267:R819-R829.  

37. Montagnese S, Middleton B, Skene DJ, Morgan MY. Sleep-wake patterns in patients with 

cirrhosis: all you need to know on a single sheet. J Hepatol 2009;51:690-695.  

38. Steindl PE, Finn B, Bendok B, Rothke S, Zee PC, Blei AT. Disruption of the diurnal rhythm 

of plasma melatonin in cirrhosis. Ann Intern Med 1995;123:274-277.  

39. Pincus SM. Greater signal regularity may indicate increased system isolation. Math Biosci 

1994; 122:161-181.  

 

Figure legends  
 

Figure 1. One experimental session was conducted from 08:00 to 12:00 midday of the following 

day. Blood samples were collected at the beginning of the experimental session, together with a 

baseline sleep-wake profile, to include the Pittsburgh Sleep Quality Index (PSQI), the Epworth 

Sleepiness Scale (ESS) and the Horne-Östberg (HÖ) questionnaire of diurnal preference. Subjects 

filled a detailed wake diary before going to bed, and a sleep diary on the following morning. Skin 

temperature was recorded for 24 hours, from 12:00 midday to 12:00 midday of the following day.  

Figure 2. Proximal skin temperature (mean ± 95% Confidence Interval; panel A), distal skin 

temperature (panel B) and distal-proximal gradient (DPG; panel C) in healthy volunteers (green 



circles), outpatients with cirrhosis (blue circles), inpatients with cirrhosis (red circles) and 

inpatients without cirrhosis (orange circles).  

On repeated measures ANOVA, by group:  

A: group: F=3.31, p<0.05; time: F=15.34, p<0.001; group*time: F=1.84, p<0.001  

B: group: F=0.92, p=0.44; time: F=15.06, p<0.001; group*time: F=2.07, p<0.001  

C: group: F=3.17, p<0.05; time: F=7.58, p<0.001; group*time: F=1.70, p=0.001  

 

Figure 3. Sample entropy of temperature time-series (mean ± SEM) in healthy volunteers, 

outpatients with cirrhosis, inpatients with cirrhosis and hospitalized patients without cirrhosis.  

§p<0.001 in comparison with healthy volunteers and outpatients with cirrhosis; #p<0.05 in 

comparison with inpatients without cirrhosis.  

Supplementary Figure 1. Proximal skin temperature (mean ± 95% Confidence Interval; panel 

A), distal skin temperature (panel B) and distal-proximal gradient (DPG; panel C) in healthy 

volunteers (green circles), patients with cirrhosis (pink circles), and inpatients without cirrhosis 

(orange circles).  

 

 

  



 

 

 



 

 



 


