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Abstract—We propose several low-complexity Transmit
Antenna Selection (TAS) and precoding schemes for Massive
multi-input multi-output (M-MIMO). It is well established
that large antenna arrays in M-MIMO lead to particularly
high hardware overheads as they require an equally large
number of radio-frequency chains, and antenna selection is
envisaged as a solution to reducing this hardware complex-
ity. Accordingly, in the proposed schemes, both hardware
and computational complexity of M-MIMO systems are
addressed by jointly optimizing TAS and precoding. We
first introduce a mixed-integer programming approach that
simultaneously identifies the transmitting antennas subset
and solves the precoding problem, by employing a unified
metric based on Constructive Interference (CI) concept.
We then propose three sub-optimal techniques that allow a
reduction of the computational complexity required to solve
the joint optimization. Our analyses and results prove that
the proposed joint TAS and precoding schemes based on CI
exploitation are able to outperform the state-of-the-art, while
providing a favorable performance-complexity trade-off.

Index Terms—Massive MIMO, Multiuser MIMO, An-
tenna selection, Interference optimization

I. INTRODUCTION

In recent years, the research community has considered
M-MIMO as one of the most promising technologies
for future wireless communication systems [1], [2]. The
seminal work in [2] showed that MIMO systems with
very large arrays (VLAs) are able to achieve extremely
high throughputs by exploiting the innate high degrees
of freedom offered by a large number of antennas at the
transmitter. In addition, it was proven that infinitely large
arrays lead to very favorable propagation effects, which
make simple linear precoding techniques asymptotically
optimal [1]. Further works showed that the key con-
cepts behind M-MIMO can be also applied to multiuser
scenarios by equipping base stations (BS) with VLAs
that greatly out-scale the number of served users [3],
allowing to perform secure, robust and energy-efficient
communications with increased throughputs.
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While the theoretical benefits of M-MIMO systems are
undoubtedly very appealing, their practical implementa-
tion are just as equally challenging for both hardware
requirements and signal processing. In fact, since each
radiating element is connected to a radio-frequency (RF)
chain, a BS equipped with a VLA requires an equally
large number of amplifiers, analog-to-digital converters
and mixers. These considerations have brought to many
array configurations, such as cylindrical or planar arrays,
which are mostly characterized by small active units [3] to
respect cost and space constraints. Toward this end, recent
works [4]–[7] have also investigated the possibility of
increasing the number of array elements in fixed physical
spaces by exploiting the deriving transmit mutual coupling
at the BS.

In the past years, many works [8]–[12] showed that the
hardware complexity deriving from the use of multiple
antennas can be tackled by means of antenna selection,
either at the transmitter or at the receiver side. In antenna
selection systems, only a subset of the available antennas
is actually used in transmission or reception [13], allow-
ing for a reduction in the RF chains employed, while
also benefiting from augmented antenna diversity. First
approaches were based on exhaustive search [11], [14],
however this proves to be a prohibitively costly approach
as the numbers of transmitter or receiver increase [10].
Toward this end, the authors in [10] introduced a selection
algorithm based on the minimization of the capacity losses
deriving from the usage of a subset of antennas. Such
approach proved to be cost efficient for low-dimensional
MU-MIMO [10], especially when compared with exhaus-
tive searches [12], [15], however its direct application to
M-MIMO was shown to be nearly prohibitive [16]. Since
a direct application of MIMO TAS techniques to massive
systems can be impractical in terms of computational
costs, recent works [17]–[19] focused on TAS algorithms
precisely designed for M-MIMO systems 1. More specif-
ically, the work in [20] presents a TAS study under the

1While TAS reduces the beneficial effects of M-MIMO with a full
transmission (i.e., with one RF chain per radiating element), such as
the channel hardening or the asymptotic optimality of simple linear
precoding, it is also true that TAS is able to exploit the vastly enhanced
spatial selectivity of VLAs. In fact, in TAS-based systems, a reduced
number of RF chains (i.e., one per user) can serve a larger number of
antennas, while improving the system performance in terms of power
efficiency and hardware complexity.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2017.2720733, IEEE
Transactions on Communications

2

Fig. 1. Conventional TAS block diagram.

perspective of energy efficiency, while the authors in [21]
study a random selection approach. Finally, [22] and [19]
proposed the use of convex optimization for M-MIMO
TAS systems, for a massively distributed antenna system
and for channel capacity optimization respectively.

State-of-the-art TAS-based multiuser MIMO (MU-
MIMO) systems are known to approach selection and
downlink precoding as two disjointed optimization prob-
lems [8], [9]. In fact, TAS systems from the literature
are characterized by a cascade of the antenna selection
and either linear or nonlinear precoding [10]–[12], [16],
[23], as shown in Fig.1. This is caused by the fact that
conventional TAS algorithms and precoding designs are
based on different and disjointed metrics, hence leading to
two separated optimization problems. In contrast with this,
we propose a fully digital novel transmission approach
where both TAS and precoding can be jointly performed
by optimizing a single performance metric, shared by
both techniques 2. Joint TAS and precoding optimization
offers the unique opportunity to maximize interference
exploitation benefits, as TAS provides the extra degrees
of freedom in the optimization. More specifically, the
proposed schemes are based on the optimization of a CI-
based metric [28], [29], where the resulting multiuser in-
terference (MUI) is manipulated in order to constructively
align to the useful received signal. The deriving opti-
mization is a Mixed-Integer Programming (MIP) problem
and can be efficiently solved by commercial optimization
solvers. In addition to the proposed MIP-based approach,
we present three different heuristic solutions to the op-
timization problem and their performances are analyzed.
More specifically, the proposed schemes employ a novel
low-complexity TAS-precoding algorithm to retain the
maximum benefits of Constructive Interference (CI) [28]–
[37] in a MU-M-MIMO scenario. It has been established
in [28], [29] that MUI can be beneficial for downlink
transmission performances both in terms of signal de-
tection and power efficiency, as it allows to increase the
received power of the desired signal. Given the fact that
interference is data dependent, the transmitter is able to
predict MUI and can use this knowledge to manipulate

2While the proposed algorithms have been specifically tailored for
a fully digital system, they could be directly applied to hybrid digital-
analog precoding schemes [24]–[27], where a reduced number of RF
chains is able to serve a larger number of beams.

it and capitalize on it. More specifically, works in [28],
[29] showed that the transmitted signal can be effectively
precoded in order to rotate the destructive component of
interference to align the interfering transmissions towards
the desired signal. Finally, the authors in [38] have studied
the possibility to exploit CI-based symbol-level precoding
concepts to enhance the security of MU-MIMO commu-
nications by means of Directional Modulation [39].

While the proposed schemes have been specifically
tailored for Phase-Shift Keying (PSK) modulation sce-
narios, recent works have shown that such concepts can
be readily adapted to accommodate CI exploitation in
Quadrature Amplitude Modulation (QAM) [40], [41]. In
fact, the authors in [42] have proven that the benefits
of CI can extend to 16-QAM modulations by allowing
the predictable interference at the BS to constructively
superimpose with the desired signal at the receiver side.
Analogously, [43] presented constraints and metrics for
QAM and asymmetric phase-shift keying modulations,
proving that the interference exploiting approach on a
symbol-level precoding can strongly enhance power ef-
ficiency at the BS.

The developed algorithms introduce a novel approach
to M-MIMO TAS systems and are designed to fully
exploit both CI and the high diversity offered by VLAs
by jointly selecting a small subset of transmitting antennas
and defining the precoded signal. The joint optimization
enables to fully exploit the benefits of both TAS and
precoding. In fact, the proposed joint TAS-precoding
allows to greatly reduce the number of RF chains at
the BS, hence achieving both a significant mitigation
of hardware complexity and power consumption at the
transmitter side, and an important reduction of the signal
processing required.

Here we list the contributions of the paper:
• We introduce a novel transmission scheme for mul-

tiuser M-MIMO scenarios based on concepts of CI
exploitation that jointly performs TAS and precoding;

• We define a MIP-based and three low-complexity
heuristic approaches to efficiently solve the proposed
optimization problem. We further evaluate the opti-
mality of these heuristic approaches;

• We study the effects of imperfect Channel-State In-
formation (CSI) over the presented metrics and derive
a CSI-robust approach for the proposed techniques;

• We evaluate the performances obtained by the pro-
posed schemes in terms of Symbol Error Rate (SER),
Capacity and an energy efficiency metric that com-
bines throughput with system power requirements.

The rest of the paper is organized as follows: Sec-
tion II introduces the system model used throughout
this work, CI concepts are described in Section III.
The joint MIP TAS/precoding optimization problem is
derived and solved in Section IV. In Section V three
heuristic approaches with decreasing computational com-
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plexity are presented. The optimality of the proposed
heuristic schemes is discussed in detail in Section VI.
Section VII describes the benchmark techniques used in
the paper, while Section VIII investigates the computa-
tional requirements of the proposed schemes. Channel
uncertainty effects are analyzed in Section IX and a
robust approach to the transmission optimization scheme
is presented. Finally, Section X is dedicated to a study
of the performances obtained with the proposed system,
while Section XI summarizes the contributions of the
paper.

Notation: We use the following notation throughout the
paper. Upper case boldfaced letters identify matrices (i.e.
X), lower case boldfaced letters are used for vectors (i.e.
x), vector subindices are used to identify the columns of a
matrix (i.e. xm is the m-th column of X), tr[·] represents
the trace of a matrix, diag(·) identifies the diagonal of a
matrix, superscripts (·)T , (·)H and (·)∗ stand respectively
for transpose, Hermitian transpose and complex conjugate.

II. SYSTEM MODEL

In our analyses, we investigate the application of
the proposed schemes to the PSK-modulated downlink
transmission in a multiuser scenario 3, where the BS
adopts a very large N -sized array to communicate with a
population of K single antenna users. The signals received
by the K users are collected in a CK×1 vector y, whose
k-th element is defined as:

yk = hTk x + nk =
N∑
n=1

hn,kxn + nk, (1)

where hk identifies the CN×1 channel vector of the k-
th user, i.e. the channel matrix H = [h1, ...,hk, ...,hK ],
x is the CN×1 transmitted signal and nk is the k-
th component of the CK×1 zero mean additive white
Gaussian noise vector n, i.e. n ∼ CN (0, N0) with N0

being the noise variance. Each hn,k entry of the channel
matrix H individually represents the complex path gain
between the n-th transmitting antenna at the BS and the
k-th user and can be modelled as [2]

hn,k = αn,k
√
βk, (2)

where αn,k identifies the complex fast-fading experienced
by the n-th transmitted symbol when received by the k-
th user and βk represents the real slow-fading coefficient
of the k-th user. In our studies, we consider a single-cell
downlink transmission scenario and model each element
of the channel matrix as independent Rayleigh fading, i.e.
hn,k,∀n ∈ {1, ..., N} , k ∈ {1, ...,K} is a zero mean

3It is important to highlight that while the proposed schemes are
specifically designed for PSK modulations, their optimization metrics
could be adapted to accommodate CI exploitation to quadrature ampli-
tude modulation schemes, as shown in [42], [43].

Fig. 2. Constructive Interference region for 8-PSK symbol.

independent and identically distributed complex Gaussian
variable [44].

When TAS is considered, the received signal equation
for the k-th user ỹk and the transmitted signal from the
n-th antenna need to be accordingly modified as follows

ỹk =
N∑
n=1

hn,kx̃n + nk, (3)

where x̃n represents the n-th element of the CN×1 pre-
coded transmitted signal x̃ and whose value is null when
its index corresponds to one of the deactivated antennas,
i.e., x̃n = 0, ∀n /∈ N with N being the subset of
transmitting antennas with cardinality equal to the number
of available RF chains card (N ) = N

RF
.

III. CONSTRUCTIVE INTERFERENCE CLASSIFICATION
AND BEAMFORMING

Classical signal processing approaches regard interfer-
ence as a disrupting element for transmissions and aim to
reduce or nullify its effects over downlink transmissions
through precoding [45]–[48]. In opposition to this, we
employ a transmission concept where interference is seen
as a resource to exploit and efficiently capitalize on to en-
hance system performances. More specifically, CI is used
as a means to significantly increase the received signal-to-
interference and noise ratio (SINR) [28], hence allowing
a more robust detection at the user side. The concepts
of interference exploitation for PSK signals were first
introduced for linear precoding [28] and further extended
to M-MIMO TAS systems in [16]. Here, we first describe
CI theoretical foundations in PSK modulations, and then
present the proposed optimization problems that aim to
exploit interference in a joint TAS-Precoded transmission.
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A. CI for PSK signals

For PSK-modulated signals, MUI can be deconstructed
into the linear combination of two different elements: a
constructive component, beneficial for the transmission,
and destructive component, detrimental for reception. The
distinction between the two components is performed
according to simple geometrical concepts, which are de-
scribed in details in CI literature [28], [29], [33].

The relationship between interference and desired con-
stellation symbol can be explicitly expressed from the
definition of received symbol in a noiseless scenario rk
as follows

rk =
N∑
n=1

hn,kxn = uk + tk, (4)

where tk identifies the interference suffered by the k-
th user, as shown in Fig.2 for an 8-PSK symbol. With
reference to Fig. 2, rk is considered to be benefiting from
interference, i.e., to be affected by CI, when MUI causes
the received symbol to be positioned further away from
the decision thresholds of the desired constellation symbol
uk. On the other hand, rk is perturbed by destructive
interference if its distance from the decision thresholds
is shorter than the one of uk. Equivalent analytical CI
conditions to the visual presentation in Fig.2 can be
defined for a generalized M -ordered PSK modulation as
[29]

ωk , <
(
tk · e−jφk

)
tan Φ−

∣∣= (tk · e−jφk
)∣∣ ≥ 0, (5)

where ωk denotes the interference classification criterion
for user k4, the operators < (·) and = (·) identify the real
and imaginary part of the complex argument, respectively,
and Φ represents the central angle of the constellation
sectors identified by the decision thresholds, which can
be computed in function of the constellation order M as
Φ = π/M . In (5), we can see that the received signal for
the k-th user is phase-shifted according to the phase of
the desired constellation symbol for the k-th user uk =
ejφk . The phase-shift is a fundamental step, as it allows
to isolate the effects of the interference between phase
and amplitude, as shown in Fig.2 where the notation τ =
tk ◦ u∗k = τR + j · τI is used to identify the phase shifted
k-th interfering symbol with its real and imaginary parts.

The inequality (5) offers an analytical evaluation on
how constructive or destructive the interfering symbol tk
is for the k-th user. In fact, if tk leads to a negative ωk
in (5), it directly implies that the received symbol for
the k-th user is destructively affected by the interference,
causing rk to lie in the destructive region of the symbol
constellation, the red area in Fig.2. On the other hand, if
ωk is positive (i.e., the inequality is respected), we can

4More specifically, ωk is the k-th element of the RK×1 vector
ω = < (t ◦ u∗) tan Φ− |= (t ◦ u∗)|, which collects the classification
criterion for each of the K users.

automatically infer that the received symbol is benefiting
from CI, as MUI pushes rk further away from the decision
thresholds (i.e., the blue region in Fig.2) and consequently
more robust against noise effects. In other words, CI
concepts allow the system to experience an increase in
the received power, while keeping the transmitted power
at the base station fixed. The reader is referred to [29]
for a detailed description of the above geometry and the
interference classification criteria.

B. Constructive Interference Beamforming

The concepts of MUI exploitation led to the design of
a CI beamforming in [29], where the downlink beam-
forming problem was formulated in order to exploit the
MUI experienced at the receiver side. More specifically,
it was shown in [29] that CI concepts can be used
in order to minimize the transmitted power required in
order to achieve specific SINR requirements. Under these
assumptions, the beamforming problem becomes

P1 : minimize
x

‖x‖2

subject to
∣∣∣=(ḣTk x)∣∣∣ ≤ [<(ḣTk x)− Γk

]
tan Φ, ∀k,

(6)
where ḣk = hk · u∗k and Γk,∀k identifies the SINR
constraints considered for the system. In [29] it was shown
that P1 is a second-order cone programming problem and
can be efficiently solved by means of standard convex
optimization tools.

IV. PROPOSED JOINT MIP CONSTRUCTIVE ANTENNA
SELECTION AND PRECODING (MIP-CASP)

In this section, we introduce a novel transmission
scheme where CI conditions in (5) are considered to
define a novel optimization problem where TAS and
downlink precoding are jointly performed. The newly
defined optimization problem is designed so that the
minimum achievable value of CI among all the users is
maximized, while simultaneously optimizing two separate
optimization variables, i.e., TAS vector a and the corre-
sponding precoded vector x̃. Analytically, we have

P2 : maximize
a,x̃

min {< (t ◦ u∗) tan Φ− |= (t ◦ u∗)|} (7a)

subject to t = HT x̃− u, (7b)
‖x̃‖2 ≤ 1, (7c)
|x̃| � a, (7d)
N∑
n=1

an = N
RF
, (7e)

an ∈ {0, 1} , (7f)

where the operator ◦ identifies the Hadamard product,
b � c represents that inequality has to be respected
for each element of both vectors (i.e.,bi ≤ ci,∀i) and
a represents the selection vector, whose entries are either
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one, when the corresponding antenna is to be connected
to the RF chain for transmission, or null, when the
corresponding antenna needs to be deactivated. As we
can see, P2 maximizes the minimum value of the CI
criterion for all the users ω. In fact, when the minimum
value of ω is positive, CI conditions in (5) are met and
maximized for all the users. On the other hand, when
the solution to P2 leads to negative values of the cost
function, it implies that the achieved solution is minimiz-
ing destructive interference effects as its least constructive
component is maximized. Clearly, (7) jointly optimizes the
precoded symbols through x̃ and TAS through a, subject
to power constraints in (7c) (without loss of generality
we assume a total power budget of 1 for simplicity),
and the typical antenna-number constraint also found
in (21). Additionally, the relationship between precoded
vector and TAS vector is represented by the constraint
(7d), which imposes the elements of x̃ to be null when
corresponding to a deselected antenna. Given its binary
constraint, the optimization problem (7) is clearly non-
convex, however it can be efficiently solved by means
of commercial optimization tools such as MoSek. Still,
it is important to highlight that its objective function is
concave w.r.t. x̃ 5 [29], since it can be deconstructed
into the combination of two functions: a linear function
< (t ◦ u∗) and a concave function − |= (t ◦ u∗)|, as the
extraction of the imaginary and real of a linear function
preserves its linearity [29].

As we can see, P2 is designed in order to jointly
perform TAS (i.e., identifying the subset of transmitting
antennas a) and design the precoded signal x̃. The joint
optimization allows us to fully exploit the beneficial
components of MUI, achieving significant transmission
benefits and a particularly interesting trade-off between
system complexity and performances.

V. HEURISTIC APPROACHES TO JOINT ANTENNA
SELECTION AND PRECODING

While the joint MIP-CASP approach above effectively
reduces the RF chains at the transmitter, the joint op-
timization of a and x̃ involved introduces a significant
computational burden. Accordingly, we propose three
heuristic successive optimization approaches, based on
the decomposition of P2 into three different optimization
problems. In line with the literature on multiple variable
non-convex optimization [19], P2 can be heuristically
solved by optimizing in a successive manner three sepa-
rate single-variable optimization problems. Given the an-
alytical definition of P2, the optimization problem can be
approached by recursively solving the same optimization
problem when one of the two variables (i.e., a and x̃)

5Note that the optimization variables directly affect the cost function.
This can be explicitly expressed by substituting the constraint (7d) into
the cost function.

is considered fixed. That is, P2 can be decomposed into
the succession of three convex optimization problems, as
follows:
• a full-system preliminary precoding, where the pre-

coded signal x of the system with no TAS is derived
via constructive beamforming (CBF)

• TAS, where the sub-set of transmitting antennas a is
identified via CI antenna selection (CAS)

• subset precoding, where the transmitted signal for the
chosen N

RF
transmitting antennas x̃ is re-computed

6.
Towards reducing the involved computational complex-

ity, the solution to the succession of these problems can
be achieved through different approaches with decreas-
ing computational complexities, here introduced and dis-
cussed. More specifically, we introduce the three follow-
ing approaches with reducing computational complexity:
• 3-step approach, namely CBF-CAS-CBF, involving

CBF for the original precoding in the first step,
CAS in TAS step, and CBF in the final precoding
step, where each one of the three aforementioned
optimization problems is solved through convex op-
timization tools

• 2-step approach, namely MFCAS-CBF, where the
first step is circumvented by employing a closed
form Matched Filtering (MF) precoder, while the
remaining two problems are solved by means of
convex optimization techniques

• 1-step approach, namely MFCAS, where the first and
last steps are circumvented by employing the MF
precoder and only the antenna optimization problem
is solved by convex optimization.

It is important to highlight that all the proposed heuris-
tic approaches converge. In fact, the proposed algorithms
are based on the successive optimization of convex opti-
mization problems, whose optimality and convergence are
known, as shown in detail in [49].

A. 3-step Successive Optimization CBF-CAS-CBF
We define as 3-step CBF-CAS-CBF the scheme based

on the decomposition of P2 into three different convex
problems to be solved in a sequential manner. In 3-step
CBF-CAS-CBF, we first derive the precoded vector for
the full-system x = [x1, ..., xN ]

T by solving the CBF
optimization problem

P3a : maximize
x

min {< (t ◦ u∗) tan Φ− |= (t ◦ u∗)|}
subject to t = HTx− u,

‖x‖2 ≤ 1.
(8)

6While TAS is intrinsically an integer programming problem, it can be
approached by relaxing the integer constraints over the selection vector
a, in line with [19]. In fact, if we relax the binary constraints over a
into a continuous positive real value, the optimization problem becomes
convex, allowing us to solve it via conventional convex optimization
tools.
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The optimization problem P3a can be cast as a second-
order cone programming [49], since its objective function
is concave [29]. Once the optimal precoded vector for the
full N -antenna system x is achieved, the system proceeds
in identifying the antenna subset for transmission based
on a. The constructive TAS is performed according to the
following CAS optimization problem

P3b : maximize
a

min {< (t ◦ u∗) tan Φ− |= (t ◦ u∗)|}
subject to t = HTx− u,

|x| � a,
an ∈ [0, 1] ,∀n ∈ {1, ..., N} ,
N∑
n=1

an = N
RF
,

(9)
where a represents the selection vector, following the
same notation as for P2. The solution to P3b yields a
vector with non-binary values of a, which are achieved
by selecting the N

RF
largest elements with their indices

representing the selected antennas. Finally, in order to
achieve the final transmitted signal, the solution to P3b is
used to identify the precoded vector x̃ for the transmitting
antennas subset N in the following

P3c : maximize
x̃

min {< (t ◦ u∗) tan Φ− |= (t ◦ u∗)|}
subject to t = HT x̃− u,

‖x̃‖2 ≤ 1,
|x̃| � a.

(10)

B. 2-step Successive Optimization MFCAS-CBF
While the previous approach is able to achieve near

optimal performances, it is based on the derivation of
the precoding vector for the full-size system x, which
is a computationally demanding step. Because of this, in
order to further reduce the computational complexity of
the signal processing at the BS, we propose an additional
approach, called 2-step MFCAS-CBF, which leverages on
the known property of asymptotic optimality for linear
precoding in M-MIMO systems [2].

Thanks to this property, the computational burdens
required by the convex precoding in P3a are greatly re-
duced, as they are replaced by a simple closed-form linear
precoding approach. As it follows, we can represent the
2-step MFCAS-CBF approach in the following algorithm,
where we first identify the subset of transmitting antennas
based on the assumption of MF precoding

P4a : maximize
∆

min {< (c ◦ u∗) tan Φ− |= (c ◦ u∗)|}
subject to c = HT∆Hu− u,

N∑
n=1

∆n,n = N
RF
,

∆n,n ∈ [0, 1] ,
(11)

where ∆ is a N ×N selection matrix and ck is the k-th
element of the MUI interference with MF assumption c =

HT∆Hu−u, i.e., x = Hu. Matrix ∆ is real-valued and
diagonal, and its entries can be either null, i.e., ∆n,n = 0
if n is a non-selected antenna, or unitary, i.e., ∆n,n = 1 if
n is an antenna selected for transmission. After identifying
the antenna subset a = diag(∆), we then proceed in
deriving the precoding vector x̃ as a solution to the CBF
problem

P4b : maximize
x̃

min {< (t ◦ u∗) tan Φ− |= (t ◦ u∗)|}
subject to t = HT x̃− u,

‖x̃‖2 ≤ 1,
|x̃| � a,

(12)
which can be efficiently solved by standard convex opti-
mization techniques, as for in (10).

C. 1-step Successive Optimization MFCAS

In addition to the previous schemes, we propose a
final approach to MUI exploiting AS-precoding where the
computational burden is further reduced. Here, the antenna
subset selection is the only problem that requires convex
optimization in order to be solved, while precoding is
performed by assuming only MF at the transmitter side.
Accordingly, we can define a new single-step optimization
problem as follows

P5 : maximize
∆

min {< (c ◦ u∗) tan Φ− |= (c ◦ u∗)|}
subject to c = HT∆Hu− u,

N∑
n=1

∆n,n = N
RF
,

∆n,n ∈ [0, 1] ,
(13)

After the transmitting subset N has been identified, we
proceed in computing the transmitted signal x̃, based on
MF

x̃n =

 1/ξn
K∑
k=1

hn,kuk, ∀ n ∈ N ,

0 ∀ n /∈ N ,
(14)

where ξn is a scaling factor, which guarantees a unitary

transmitted power
N∑
n=1
|xn|2 = 1.

VI. OPTIMALITY EVALUATION

In this section, we further characterize the proposed
heuristic approaches by studying the impact that succes-
sive optimization and closed form approximations have
over the achievable cost function values. In line with the
literature [50], we define the figure of merit M as

M =
f

f?MIP ,

(15)

where f defines the objective function for which we want
to measure the optimality. Clearly here

f = min {< (t ◦ u∗) tan Φ− |= (t ◦ u∗)|} , (16)
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represents the cost function of the optimization problem
P2 when the heuristic solutions are considered, i.e., the
minimum CI achieved by successive optimization tech-
niques, and f?MIP identifies the cost function evaluation
when the optimal MIP-CASP solution is considered, i.e.,
when f is computed considering the x̃ solution of P2.
The defined metric represents a direct evaluation of the
optimality of the proposed heuristic approaches, as f?MIP

represents the optimal and maximum value of minimum
CI achievable from a system. Clearly M = 1 signifies
that a MIP-equivalent solution is obtained.

Fig.3 collects the cost function evaluation f for all
the proposed approached with several modulation orders
when considering increasing sub-set array sizes at the
base station, i.e., increasing the number of transmitting
antennas at the BS N

RF
. Interestingly, we can notice

that both the 3-step and the 2-step approaches are able
to achieve near optimal solutions when compared to the
optimal f?MIP for all the modulation orders. This result is
particularly important, as it proves that SO-based approxi-
mation approaches are able to efficiently approximate and
solve the MIP equivalent formulation. On the other hand,
we can see that the closed form single-step approach,
1-step MFCAS, is characterized by lower values of f
when we increase the modulation order, because of the
suboptimal approach when solving the precoding problem
(i.e., MF linear precoding). Nevertheless, Fig.3 shows that
such approach can still represent an interesting alternative
for low-order modulation and low-energy scenarios, as it
is characterized by very low complexity and is still able
to achieve acceptable performances for the 4-PSK and 8-
PSK scenario.

These results are confirmed in Fig.4, where the figure
of merit M curves are presented for three different mod-
ulation orders. As we can see, these results confirm that
both the 2-step and 3-step approaches are characterized by
near optimal performances, as they rapidly and closely
approach the optimality line, represented by the unitary
value. On the other hand, the 1-step MFCAS approach
proves to be a valuable alternative for low-power and
low-modulation scenarios, thanks to its favorable trade-off
between complexity and performances. Towards quanti-
fying this trade-off, below we evaluate the computational
complexity of each of the proposed schemes.

VII. BENCHMARK SCHEMES

In this section, we present the TAS-based benchmark
schemes considered in the paper. In line with the literature
[9], [14], they are all characterized by a cascade of state-
of-the-art TAS algorithms and beamforming techniques.

Regarding TAS algorithms, we consider a near-optimal
convex optimization-based capacity maximization [19]
and a simple path gain amplitude maximization selection
[11], [51]. TAS-based M-MIMO complexity could be
further reduced by means of low-complex algorithms,

NRF
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Fig. 3. Minimum CI when K = 5 and N = 100.
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Fig. 4. Figure of merit M when K = 5 and N = 100.

such as the random selection described in [19] or TAS
paired with matched filter precoding [16]. While these
approaches identify interesting performances in terms of
computational burdens [16], they are characterized by
poor performance which severely affect the applicability
in realistic scenarios.

Regarding beamforming techniques, two separate state-
of-the-art algorithms are considered, both based on the
optimization of the received SINR: transmitted power
minimization [48] and SINR balancing [47]. More specif-
ically, we can evaluate the received SINR for the k-th user
as

γk =

∣∣hTk pk
∣∣2∑

j 6=k

∣∣hTk pj
∣∣2 +N0

=

∣∣∣∣ N∑
n=1

hn,kpn,k

∣∣∣∣2
∑
j 6=k

∣∣∣∣ N∑
n=1

hn,kpn,j

∣∣∣∣2 +N0

,
(17)

where pn,k represents the n-th element of the k-th user
beamforming vector pk. Given the beamforming vector
pk, it is possible to compute the transmitted signal x as
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follows

x =
K∑
k=1

pkuk. (18)

A. TAS: Capacity-Based Selection (CapMax)

In [19], a convex approach to sum-capacity based
antenna selection for M-MIMO is proposed. The selection
is performed over the system sum-capacity when consid-
ering dirty-paper coding at the transmitter with equally
distributed power among the users 7. In particular, we can
define the sum-capacity as

E = log2

[
det
(
IK + ρHH∆H

)]
, (19)

where IK is a K-dimensional identity matrix and ∆ is
the selection diagonal matrix, as in P4a. Accordingly, we
can identify the optimization problem for sum-capacity
maximization antenna selection as

P6 : maximize
∆

log2

[
det
(
IK + ρHH∆H

)]
subject to ∆n,n ∈ {0, 1} ,∑N

n=1 ∆n,n = N
RF
.

(20)

Given its formulation, the optimization problem P6 is
non-convex due to the binary constrains imposed over the
diagonal of the selection matrix. Nevertheless, a relaxation
of such constraint was proven to be achieving near-optimal
performances when compared to exhaustive search ap-
proaches [19]. Accordingly, the new relaxed optimization
problem can be defined as

P ′6 : maximize
∆

log2

[
det
(
IK + ρHH∆H

)]
subject to ∆n,n ∈ [0, 1] ,∑N

n=1 ∆n,n = N
RF
,

(21)

which leads to TAS subset definition

N = arg max
Nt

{∆1,1, ...,∆n,n, ...,∆N,N} . (22)

The newly formulated optimization problem P ′6 is con-
vex and can be solved by means of convex optimization
tools [19]. A similar approach could be directly applied to
the MIP-CASP problem. However, while such approach is
characterized by an interesting low-complexity, we have
chosen not to deviate from the focus of our paper, and
designate this as the focus of our future work.

B. TAS: Path Gain Selection (PGMax)

Path gain selection at the transmitter can be easily
performed by selecting the subset of antennas whose path
gains are higher. The antenna subset can be analytically
identified as follows

N = arg max
Nt

{
‖h1,:‖2 , ..., ‖hn,:‖2 , ..., ‖hN,:‖2

}
,

(23)

7In the proposed benchmark schemes, power allocation is still per-
formed at a latter stage, during beamforming design [47], [48].

where the notation xn,: identifies the n-th row of the
matrix X and max

N
RF

identifies the N
RF

highest values of

the argument.

C. Beamforming: Transmitted Power Minimization Beam-
forming

Transmitted power minimization [48] represents a con-
ventional approach to downlink beamforming, where in-
terference is regarded to as a harmful element for trans-
mission. Because of this, the beamforming optimization
problem is designed to minimize the transmitted power
while respecting predefined SINR requirements Γk,∀k ∈
{1, ...,K}. Analytically

P7 : minimize
pk

K∑
k=1

‖pk‖2

subject to γk =

∣∣∣∣ N∑
n=1

hn,kpn,k

∣∣∣∣2∑
j 6=k

∣∣∣∣ N∑
n=1

hn,kpn,j

∣∣∣∣2+N0

≥ Γk,

(24)
which can be efficiently solved by means of convex
optimization with a semidefinite relaxation approach [48].

D. Beamforming: SINR Balancing

We define as SINR balancing the optimization problem
that aims to maximize the minimum received SINR, while
respecting a predefined transmitted power constraint PT .
The new problem can be analytically defined as

P8 : maximize
pk

Γk

subject to γk ≥ Γk
K∑
k=1

‖pk‖2 ≤ PT .
(25)

Differently from P7, the SINR balancing problem is
non-convex and its solution requires a more complex
algorithmic approach [47].

VIII. COMPUTATIONAL EVALUATION

We evaluate the computational costs of the proposed
schemes in terms of running time for different antenna
array sizes at the transmitter side. In order to perform a
fair evaluation, we consider the running times in s within
a coherence time, i.e., for the number of frames where
we can consider constant CSI. This is due to the fact
that the proposed schemes require a symbol-rate evalu-
ation of TAS/precoding, while the conventional CapMax
scheme needs to be performed on a coherence time basis.
With this regard, we consider a TDD scenario [52] and
define as coherence time Tcohe the total number of data-
symbols that can be transmitted when channel propagation
elements in H are constant. The assumption of a TDD
scenario is common for M-MIMO, as frequency division
duplexing would require more time for CSI acquisition
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Fig. 5. Frame Running time when K = 5, NRF = 5 and TDL = 4.

at the transmitter, hence reducing the number of symbols
Tdata � Tcohe dedicated to data transmission [52]. On
the other hand, the TDD assumption allows us to exploit
the reciprocity of the channel, hence defining the number
of slots used for CSI acquisition TCSI with a direct
proportionality to the number of users K, instead of the
numbers of antennas at the transmitter N . Accordingly,
we have

Tdata = Tcohe − µK, (26)

where µ ≥ 1 is a parameter that defines the number
of pilot symbols used for CSI per user. However, only
a fraction ηDL of Tdata is actually used in downlink
transmission, thus defining the data symbols for downlink
within a single coherence time as

TDL = ηDL (Tcohe − TCSI) . (27)

When evaluating the coherence time dedicated to down-
link transmission TDL, we refer to realistic values for a
fast-fading scenario (i.e., where the proposed schemes are
mostly suited for) where Tcohe = 10 symbols, in line
with the work in [52]. More specifically, we consider a
CSI acquisition time of TCSI = 5 symbols (i.e., µ = 1) in
a DL dominant scenario with TDL = 4 symbols dedicated
to downlink transmission (i.e., ηDL = 0.8, with TUL = 1).

As we can see in Fig.5, the proposed schemes are
overall affected by longer computational times over the
length of the coherence time. This is due to the fact
that the proposed schemes require a symbol-by-symbol
update, in contrast with conventional TAS schemes from
the literature. Nevertheless, it is interesting to notice
that the proposed 1-step MFCAS scheme is characterized
by running times that can be compared to the ones
of the benchmark scheme. This strongly reaffirms that
such approach represents a particularly appealing scheme
for low-modulation scenarios, as it is able to achieve
interesting performances with non-significant additional
computational costs. On the other hand, it is important

to notice how the proposed 2-step and 3-step schemes,
are almost unaffected by the increase in array sizes, while
the SINR-CapMax is instead characterized by increasing
computational times as N grows. Accordingly, for very
large systems, the proposed schemes are expected to be
characterized by similar complexity, when compared to
existing TAS schemes. On the other hand, we can see
that the MIP-CASP approach is characterized by higher
computational times, because of its trellis search-based
solution.

Remark. SINR-CapMax requires further operations at
the receiver side in order to equalize the received signal.
Because of this, BS needs to feed-forward the k-th user
with the product of the channel with the k-th precoding
vector, i.e., hTk pk,∀k, in order to recover the data. For
CI precoding there is no need to equalize the composite
channel, as the rk resides in the constructive area of the
constellation. Accordingly, such feedback is not required
by the CI approaches, where all complexity resides at
the BS, which also makes them robust to the estimation
and quantization errors that are involved in the feed-
forwarding process for conventional beamformers.

IX. CHANNEL UNCERTAINTY AND ROBUST
APPROACH

In this section, we study the effects of imperfect CSI
acquisition at the transmitter. More specifically, we define
the channel uncertainty model and derive a robust precod-
ing technique to counteract the errors caused by imperfect
CSI.

A. Model and Effects

In our studies, imperfect CSI at the transmitter side is
modelled by adding a complex random component to the
channel matrix H. Without loss of generality, we consider
the case where channel uncertainty amplitude is upper
bounded by a specific value, i.e., CSI at the BS is affected
by spherical noise [29].

Accordingly, the estimated channel gain between the
n-th antenna and the k-th user is analytically defined as

ĥn,k = hn,k + en,k,∀n ∈ {1, ..., N} , ∀k ∈ {1, ...,K} ,
(28)

where ĥn,k represents the channel gain estimation avail-
able at the BS and en,k represents the channel uncertainty,
i.e.,

∑N
n=1 |en,k|

2 ≤ δ2k with δk being the uncertainty
upper bound over the channel estimation for the k-th user.

Clearly, the presence of uncertainty over the available
CSI at the BS has negative effects over the performances
of a system. In fact, if we consider the BS to possess
imperfect CSI as modelled, the received signal in a noise
free scenario becomes

r̂k =
N∑
n=1

ĥn,kxn =
N∑
n=1

hn,kxn +
N∑
n=1

en,kxn, (29)
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where the second term of the last equation explicitly
represents effects of imperfect CSI at the transmitter side
during signal processing.

In line with the literature [29], [53], BS is assumed
to have no knowledge over the channel uncertainty
en,k,∀n ∈ {1, ..., N} , k ∈ {1, ...,K} beside the upper
bound δk for k-th channel. This assumption allows to
derive a robust precoding design, which guarantees the
downlink transmission to be resistant against all possible
channel uncertainties within the upper bound δ2k.

In the following, we propose a CSI-robust TAS-
precoding technique where we aim to minimize the trans-
mitted power Pt required to meet the constraints imposed
by the specific optimization.

B. MIP-CASP Robust Scheme

Given the MIP-based optimization in (7), we can iden-
tify a worst-case design for imperfect CSI scenarios as

P9 : minimize
a,x̃

‖x̃‖2

subject to min
‖ek‖2≤δ2k,∀k

{
<
(
t̂′
)

tan Φ−
∣∣= (t̂′)∣∣} � 0,

t̂′ =
(
ĤT x̃− u

)
◦ u∗,

‖x̃‖2 ≤ 1,
|x̃| � a,
N∑
n=1

an = N
RF
,

an ∈ {0, 1} ,
(30)

where the super-index b′ = b ◦ u∗ is used to represent
that the vector b has been phase shifted according to the
desired symbols u.

Because of the infinite number of possible error values
en,k, the first constraint in P9 is intractable. However, by
employing a worst-case approach, it is possible to derive a
MIP-CASP robust design optimization for TAS-precoding
with CI exploitation. In order to do so, we need to identify
the equivalent constraint for a worst-case scenario, where
the largest error is considered.

Considering an imperfect CSI and noiseless scenario,
received symbols can be decomposed in order to explicitly
show their real and imaginary part as follows

ŷk =
N∑
n=1

ĥk,nxn

=
N∑
n=1

(ĥRk,nx
R
n − ĥIk,nxIn) + j(ĥRk,nx

I
n + ĥIk,nx

R
n ),

(31)
where real and imaginary part can be rearranged in order
to explicitly identify the effects of imperfect CSI over the
received symbols as

={ŷk} =
N∑
n=1

(hRk,nx
R
n − hIk,nxIn) + (eRk,nx

R
n − eIk,nxIn)

(32)

<{ŷk} =
N∑
n=1

(hRk,nx
I
n + hIk,nx

R
n ) + (eRk,nx

I
n + eIk,nx

R
n ).

(33)
Both (32) and (33) can be presented in a more compact

manner by exploiting auxiliary vectors, which lead to the
following set of equations

={ŷk} = f̂k
T
w1 = fTk w1 + ēk

Tw1 (34)

<{ŷk} = f̂k
T
w2 = fTk w2 + ēk

Tw2, (35)

where the vectors fk =
[
hRk ,h

I
k

]T
and ēk =

[
eRk , e

I
k

]T
represent the real-valued k-th column of the channel
matrix and the corresponding channel estimation error
vector respectively, with f̂k = f + ēk. In a similar manner,
w1 =

[
xI ,xR

]T
and w2 =

[
xR,−xI

]T
are two auxiliary

real-valued representations of the precoded vector.
Likewise, we can rewrite the first constraint of P9 with

the same notation

=
(
t̂ke
−jφk

)
=

˙̂
fTw1 = ḟTk w1 + ˙̄eTw1 (36)

<
(
t̂ke
−jφk

)
=

˙̂
fTw2 = ḟTk w2 + ˙̄eTw2 − 1, (37)

where

ḟk =
[
(hIku

R
k − hRk u

I
k), (hRk u

R
k + hIku

I
k)
]T

(38)

˙̄ek =
[
(ēIku

R
k − ēRk u

I
k), (ēRk u

R
k + ēIku

I
k)
]T

(39)

represent the real-valued channel vector and CSI error
vector for the k-th user, whose representations have been
modified in order to include the phase shift. Without loss
of generality, for the sake of simplicity of notation, from
now on we consider ˙̄ek = ēk. Accordingly, we can rewrite
the first constraint of P9, as

min
‖ek‖2≤δ2k

{
(ḟTk w2 + ēTkw2 − 1) tan Φ−

∣∣∣ḟTk w1 + ēTkw1

∣∣∣} ≥ 0.

(40)
which can be equivalently decomposed into two different
constraints

min
‖ek‖2≤δ2k

{
(ḟTk w2 + ēTkw2 − 1) tan Φ− (ḟTk w1 + ēTkw1)

}
≥ 0

(41)
min

‖ek‖2≤δ2k

{
(ḟTk w2 + ēTkw2 − 1) tan Φ + (ḟTk w1 + ēTkw1)

}
≥ 0.

(42)

The assumption of a spherical error over the CSI ac-
quisition allows us to derive a robust formulation for (41)
and (42). In fact, the worst-case scenario is characterized
by the channel errors to be ‖ek‖2 = δ2k,∀k, hence causing
the constraints to be lower-bounded by the following
equations[

(ḟTk w2 − 1) tan Φ− ḟTk w1

]
− δ ‖w1 −w2 tan Φ‖ ≥ 0

(43)[
(ḟTk w2 − 1) tan Φ + ḟTk w1

]
− δ ‖w1 + w2 tan Φ)‖ ≥ 0.

(44)
Thanks to the new robust formulation for the constraints
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of P9, we can derive a MIP representation of the worst-
case design for imperfect CSI scenarios that can be effi-
ciently solved by means of optimization tools as its non-
robust counterpart. More specifically, the optimization
problem P9 in its MIP representation becomes

P∗9 : minimize
a,w1,w2

N
RF∑
n
‖w1‖2

subject to Constraints (43) and (44){∣∣∣w(1:N)
1

∣∣∣ , ∣∣∣w(N+1:2N)
1

∣∣∣} � a,{∣∣∣w(1:N)
2

∣∣∣ , ∣∣∣w(N+1:2N)
2

∣∣∣} � a,

w1 = Πw2,
N∑
n=1

an = N
RF
, an ∈ {0, 1} ,

(45)
where Π = [0N ,−IN ; IN ,0N ], a(1:N) notation is used to
identify the new vector b = [a1, ..., aN ] and {a,b} � c is
used to impose the inequality to both vectors (i.e., a � c
and b � c).

X. RESULTS

In this section the performances of the proposed trans-
mission schemes are presented and discussed. The shown
results are evaluated through Monte Carlo simulations
over 50000 channel realizations. In order to study the
performances of the proposed schemes, we evaluate the
SER at the receiver side, the achievable capacity and
the power efficiency of the system. More specifically,
we present results for both 4-PSK and 8-PSK, as the
proposed transmission schemes can be directly applied to
any PSK modulation order. Legends are characterized by
the following notation:

• MIP-CASP identifies the CI exploitation transmis-
sion scheme based on MIP,

• 3-step CBF-CAS-CBF is used to represent the CI
transmission based on the solution of P3,

• 2-step MFCAS-CBF represents the 2-step TAS-
precoding heuristic scheme,

• 1-step MFCAS is used to classify the single-step
approach

• SINR-CapMax stands for the literature approach
where TAS is performed by CapMax and precoding
is performed through SINR balancing.

Moreover, we compare the proposed schemes with two
low-complexity additional approaches from the literature:
ZF-PGMax, where zero forcing (ZF) linear precoding is
considered and TAS is performed via path gain selection
(PGMax), and HY-CIM from [16] for the 4-PSK scenar-
ios, where hybrid linear precoding is considered (HY)
and TAS is performed in order to maximize constructive
interference (CIM). In our simulations, we consider a
single-cell downlink M-MIMO scenario, where the BS
possess perfect CSI and employs a VLA of N = 100

antennas and communicates with K = 5 single-antenna
mobile users, unless differently specified.

A. Symbol Error Rate

In Fig. 6 we compare the SER of the proposed and
conventional approaches for the case of 4-PSK modu-
lation. The proposed schemes greatly outperform all the
benchmark techniques, including SINR-CapMax, which is
characterized by a combination of CapMax TAS [19] and
SINR-balancing beamforming at the transmitter side [47].
At the same time, both 2-step MFCAS-CBF and 3-step
CBF-CAS-CBF are able to achieve near optimal perfor-
mances when compared to the MIP-CASP approach. This
is supported by the previous results in terms ofM, which
showed how the two heuristic approaches were able to
achieve similar performances to the MIP-based scheme.
On the other hand, 1-step MFCAS obtains reasonable
performance in the relatively low-to-mid SNR range, as
the error-floor of the MF is reached when SER is lower
than 10−4. This is due to 4-PSK wider CI regions, which
allow a relative robustness against the inability of MF
precoding to efficiently separate the stream between the
users. However, such inability becomes the main cause for
errors at high SNR and leads to the typical error-floor. This
confirms our previous considerations regarding 1-step
MFCAS as a valuable approach for the low-complexity
and low-power scenarios.

In Fig.7, we explore the same set-up for 8-PSK mod-
ulation. The performance trends for the proposed tech-
niques are preserved. In fact, all the schemes based on
CI exploitation are able to outperform both the SINR-
CapMax and the ZF-PGMax schemes. At the same time,
the error floor for the 1-step MFCAS approach is higher
than the one achieved in the 4-PSK case. This is due to
the fact the final closed-form MF precoding is not able to
correctly separate the different data-streams for different
users, hence leading to uncontrolled inter-channel interfer-
ence, whose effects are more visible in higher modulation
orders. It is important to highlight that tighter decision
thresholds also affect the performance gap between MIP-
CASP and heuristic approaches. In fact, even though
heuristic approaches are characterized by high figures
of merit, as shown in Fig.4, their impact over the SER
performances differ according to the modulation order. In
fact, while the figures of merit for 4-PSK and 8-PSK are
comparable, the SER performance gap is almost negligible
in the 4-PSK case in Fig.6, becoming more pronounced
for the 8-PSK case in Fig.7.

B. Data Rate

As the conventional CapMax approach is designed
for capacity maximization, it is important to compare
the rate performance of the proposed and conventional
schemes. Accordingly, we compare the throughput of the
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Fig. 6. 4-PSK Symbol Error Rate when K = 5, N = 100 and NRF =
5 with perfect CSI.
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Fig. 7. 8-PSK Symbol Error Rate when K = 5, N = 100 and NRF =
5 with perfect CSI.

MIP-CASP scheme with the capacity achievable when
considering the CapMax TAS scheme from the literature.
The use of throughput instead of the ergodic capacity,
i.e.,

∑
k log2 (1 + γk), as a performance metric for the

proposed MIP-CASP is justified by the fact that its
assumption of a specific modulation, i.e., any PSK modu-
lation order, does not allow to support the assumption of
Gaussian signals. We define the throughput as [28]

T = (1−BLER) ·m ·K, (46)

where BLER is the block error rate, m = log2(M) is
the bit information per symbol and K is the number of
users in the chosen scenario.

Performances are presented in Fig.8, where we compare
the throughput of the proposed MIP-CASP approach for
increasing modulation order, with the capacity of the full
system and that of the CapMax selection. The solid line
with circular markers in the figure represents the peak-
throughput trend for the proposed approach, showing that
the proposed scheme with increasing modulation orders
outperforms the CapMax selection from the literature. It
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is important to notice that the proposed scheme is able
to achieve performances that are comparable to the ones
of a full-system for low-to-mid SNR scenarios, where the
gap with the CapMax scheme from the literature is more
pronounced.

C. Power Efficiency

In order to better highlight benefits and trade-offs
brought by the proposed schemes, we introduce a pa-
rameter which combines the achieved throughput with
the power consumption at the transmitter side. More
specifically, we employ a simple power efficiency metric
as ηT

ηT =
T

Pamp +N
RF
· PRF

, (47)

where Pamp [W ] is the power consumption of the am-
plifier, PRF [W ] is the power requirement of one of
the RF chains employed at the transmitter side, which
is characterized by digital-analog converter, mixer and
filter. When computing (47), we consider realistic power
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perfect CSI and SNR = 10dB.

values from practical systems [54], where Pamp = Pt/ν
is defined as the power required by an amplifier with
ν = 0.35 efficiency and transmitted power Pt = 30dBm
and PRF = 65.9mW . Performances are presented in
Fig.9 and Fig.10 as a function of N

RF
with SNR = 5dB

and SNR = 10dB, respectively. The proposed metric
allows to better characterize the trade-off between power
consumption at the transmitter and achieved throughput
as a function of the variation over the subset size N

RF
.

As already observed in the SER results, performance
trends for both 4-PSK and 8-PSK are preserved. More
specifically, the proposed algorithms are all able to greatly
outperform schemes from the literature for all the spec-
trum of N

RF
values. At the same time, the proposed

schemes achieve their maximum power efficiency between
N

RF
= 6 and N

RF
= 8 for both 4-PSK and 8-PSK. This

shows that systems with low numbers of active antennas
can provide reasonable performance with a very positive
trade-off between hardware complexity and power con-
sumptions (i.e., when compared to the simplified chosen
scenario where N

RF
= K). For a direct performance-

complexity comparison between the schemes, we collect
in Table I, the computational burdens required per frame
to achieve the optimal value of power efficiency shown
in Fig.9. There are evident complexity savings achieved
by the heuristic schemes compared to the MIP approach,
with little loss on the maximum power efficiency. On the
other hand their complexity is comparable to conventional
CapMax, with a more than 50% power efficiency improve-
ment and a ∼94% reduction in the RF chains required to
achieve maximum PE.

D. Robustness to CSI

In order to characterize the performances of the pro-
posed CSI-robust scheme, we introduce a conventional
robust scheme from the literature, which will be used

TABLE I
COMPUTATIONAL BURDENS FOR OPTIMAL POWER EFFICIENCY

POINTS

Name Max ηT Time [s] N
RF

1-step MFCAS 24.78 0.44 7
2-step MFCAS-CBF 26.83 0.85 6
3-step CBF-CAS-CBF 27.59 1.31 6
MIP-CASP 28.38 2 5
SINR-CapMax 18.4 0.55 10
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Fig. 11. Transmitted power for 4-PSK transmission when N = 100,
K = 5 and NRF = 5.

as a benchmark technique. In line with the previous
approaches, when considering the benchmark scheme we
assume a cascade of TAS, based on capacity, followed by
a SINR metric-based precoding. More specifically, when
considering robust precoding, it is common to proceed in
identifying an optimization problem that aims to minimize
the transmitted power required to overcome the worst-case
scenario. Accordingly, the conventional robust precoding
can be defined as follows [53]

P10 : minimize
Pk≥0,sk≥0

K∑
k=1

tr [Pk]

subject to
[

Dk ĥTkQk

Qkĥ
∗
k Qk + skIN

]
≥ 0

Dk = ĥTkQkĥ
∗
k − γkN0 − skδ2k

Qk = pkp
H
k − γk

K∑
i=1,i6=k

pip
H
i

(48)
where the notation A ≥ 0 is used to impose that the
matrix A is semidefinite positive.

In Fig.11 we compare the two robust schemes in terms
of transmitted power as a function of δk = δ, ∀k. In
addition to the robust schemes, the minimum transmit-
ted power for non-robust approaches is also presented.
The proposed scheme is characterized by significantly
lower requirements in terms of transmitted power, when
compared to both robust and non-robust approaches from
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the literature. Additionally, SINR-CapMax Robust scheme
from the literature is affected by a faster growth rate when
compared to MIP-CASP Robust.

XI. CONCLUSIONS

In this paper, we prove that antenna selection and
precoding based on constructive multiuser interference
concepts can be jointly used to greatly improve the
power efficiency of future M-MIMO systems. We showed
through analytical and numerical studies that construc-
tive interference at the receiver side can be optimized
by simultaneously identifying a subset of transmitting
antennas and the precoded signal at the base station.
We characterized the presented schemes by analyzing
the computational costs in terms of running time and
compared it with state-of-the-art algorithms. We evaluated
performances in terms of symbol error rate, sum rate and
power efficiency to analyze the performance-complexity
trade-offs introduced by the proposed scheme. Our anal-
ysis and results have shown that the proposed approaches
offer a favorable performance-complexity trade-off com-
pared to conventional approaches, with a close-to-optimal
performance.
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