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Abstract

Alzheimer’s disease (AD) is a serious global health problem with growing human and monetary
costs. Neuroimaging data offers a rich source of information about pathological changes in
the brain related to AD, but its high dimensionality makes it difficult to fully exploit using
conventional methods. Automated neuroimage assessment (ANA) uses supervised learning to
model the relationships between imaging signatures and measures of disease. ANA methods are
assessed on the basis of their predictive performance, which is measured using cross validation
(CV). Despite its ubiquity, CV is not always well understood, and there is a lack of guidance as
to best practice.

This thesis is concerned with the practice of validation in ANA. It introduces several key
challenges and considers potential solutions, including several novel contributions. Part I of
this thesis reviews the field and introduces key theoretical concepts related to CV. Part 1I is
concerned with bias due to selective reporting of performance results. It describes an empirical
investigation to assess the likely level of this bias in the ANA literature and relative importance
of several contributory factors. Mitigation strategies are then discussed. Part III is concerned
with the optimal selection of CV strategy with respect to bias, variance and computational
cost. Part IV is concerned with the statistical analysis of CV performance results. It discusses
the failure of conventional statistical procedures, reviews previous alternative approaches, and
demonstrates a new heuristic solution that fares well in preliminary investigations.

Though the focus of this thesis is AD ANA, the issues it addresses are of great importance
to all applied machine learning fields where samples are limited and predictive performance is

critical.
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Chapter 1

Introduction

As the world’s population ages, a growing fraction lives with ageing related cognitive impair-
ment [1]. When this cognitive impairment becomes severe enough to interfere with a person’s
work and usual activities, it may be called dementia [2]. There are multiple pathological pro-
cesses responsible for cognitive decline. Of these, Alzheimer’s disease (AD) is probably the
most common [3], followed by vascular dementia. As of 2016, about 40 million people have
dementia worldwide, and this number is expected to increase to 100 million by 2050 [1,4].

AD and other dementias have a heavy social cost, as they greatly reduce their sufferers’
quality of life [5]. They also place a great financial burden on individuals and governments
responsible for sufferers’ long term care [5]. The total monetary cost of dementia was estimated
at 604 billion USD in 2010 [6]. For AD, as for most other causes of dementia, there is currently
no cure.

The great societal burden of dementia has prompted much research into new methods
to improve the measurement and tracking of its underlying pathologies. Clinical trials for new
therapies rely on accurate measurements of response to treatment, and preventative therapies are
only effective when pathology can be detected early on. Neuroimaging offers an unparallelled
description of the brain’s structure and physiology, but the information it provides is not easy to
interpret. For these reasons, many new computational methods have been developed to better
extract meaningful clinical and physical quantities from neurological images. These include
the methods of automated neuroimaging assessment (ANA) and diagnosis, which use machine
learning to directly estimate the level or category of pathology in a person.

A great deal of research effort is expended to refine and develop new ANA pipelines in
search of improved performance, particularly for applications in AD [7]. However, without re-
liable ways to validate and compare these pipelines, many of the apparent gains will be illusory,
and much of this research effort will be wasted. A thorough and considered review of validation

practices therefore has the potential to be of great benefit to the field.
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1.1 Biomarkers for AD

AD is a progressive condition whose symptoms are initially mild. The brain atrophy and tissue
destruction associated with it are likely to be irreversible [8], making a true cure unlikely. For
this reason, clinical trials have focussed on finding therapies to slow and prevent tissue loss
in an early phase of the disease before large scale changes can occur. Clinical trials for new
therapies depend on both accurate tracking of disease progression and a reliable pre-selection of
subjects who are most likely to benefit. Pre-selection will typically involve identifying incipient
AD in a cohort of subjects suffering from mild cognitive impairment (MCI), a heterogeneous
condition with a number of other potential aetiologies [9, 10]. Tracking will involve monitoring

differences in primary and secondary outcome measures between treatment and control groups.

The term biomarker refers to a reliable measure of disease progression of the type that
may be used for pre-selection and outcome measurement in a clinical trial. More effective
biomarkers with lower natural variability allow for clinical trials to be more powerful, smaller,
and shorter. In a world where inconclusive results may go unreported [11], higher power is
also crucial in ensuring the reliability of published results [12]. Smaller trials place fewer
patients at risk of side effects. Because the patent for a new drug lasts a fixed term that begins
with the drug’s discovery, longer clinical trials provide a financial disincentive for commercial
investment in research [13]. The identification of the superior biomarkers for both of these
tasks is thus an important research goal in itself [14]; for AD, as for cancer and heart disease,
“research investments aimed at establishing and validating surrogate endpoints may have a large

social return” [13].
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Figure 1.1: The sequential biomarker change model of [15]. The two dashed lines describing the
progression of cognitive impairment denote the variability of onset time and decline rate.

A variety of biomarkers have been proposed for pre-selection and response tracking in
AD [14]. These include measures derived from biopsies, imaging, and cognitive tests. Those
derived from imaging may be called imaging biomarkers. Different biomarkers show their
most dramatic changes at different stages in the progress of the disease, with cognitive and

behavioural change being the last. Much of the research currently underway is guided by the
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theoretical model described in [15]. In this model, the first marker of AD is the formation of
amyloid plaques and neurofibrillary tangles (NFTs) in the brain. This can only be measured pre-
cisely through post-mortem histology, though it can be less accurately inferred through changes
in the protein composition of the cerebrospinal fluid (CSF) [9, 15]. A biopsy of the CSF in an
AD patient will reveal elevated levels of tau proteins responsible for NFTs. It will also reveal
reduced levels of APy, a particular amyloid protein fragment, as it is accumulated rather than
cleared from the brain [16]. Shortly after amyloid deposition is revealed in the CSF, it may also
be detected with positron emission tomography (PET) using a family of radiotracers that bind
to fibrillar amyloid [10, 17]. After amyloid deposition, the next biomarkers to visibly change
are those related to brain structure, as measured using structural magnetic resonance imaging
(sMRI), and glucose metabolism, as measured using PET with a '®F fluorodeoxyglucose (FDG)
radiotracer [15]. This sequence of biomarker changes is presented in figure 1.1, and an illustra-

tion of the associated imaging signatures is presented in figure 1.2.

Healthy
control

AD

loss of grey/white matter
contrast in Amyloid PET

hypometabolism
apparent in FDG PET

atrophy seen in sMRI

Figure 1.2: Examples of medical image pairs showing signatures typical of healthy subjects and
patients with advanced AD. Above, increased levels of fibrillar amyloid in AD reduce the grey/white
matter contrast seen in amyloid PET. Centrally, the hypometabolism associated with the disease is
apparent in FDG-PET. Below, the widespread tissue atrophy associated with late stage AD is seen in
sMRI.

1.1.1 Imaging biomarkers

Imaging data take the form of a large number of voxels. This information must be reduced
to some useful univariate quantity before it can be used as biomarker. For a long time, this

has been done using visual rating scales such as the Scheltens medial temporal lobe atrophy
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score for sMRI [18]. While visual scales are easily translated into routine clinical practice, they
lack precision and suffer from inconsistencies between raters [19, 20]. Region-based quantita-
tive methods such as hippocampal volumetry in SMRI and reference-normalised standardised
uptake value (SUVR) in PET [21] can offer biomarkers with greater statistical and diagnostic
power [19]. Where these methods are based on manual delineation of regions of interest (ROI),
they may be time consuming to produce and, to an even greater extent than visual rating scales,
dependent on rare clinical expertise [19]. Where different human raters are associated with
different groups of subjects in a clinical trial, this leads to systematic differences that can cause
spurious effects [20]. Where regional measurements can be automated, these restrictions on

their use are eliminated.

Though they can offer precision and repeatability, region-based measures necessarily dis-
card potentially useful information from the majority of voxels. Region-based biomarkers must
also be ‘hand-crafted’ for each new application; that is, they are dependent on the selection of
a meaningful region-based on results in earlier studies. When the progression of disease may
actually entail subtle changes distributed across the entire brain, region-based methods may be
overly reductive [22]. Even if an optimal region selection could be guaranteed, region-based
imaging biomarkers may still fail to capture more complex patterns of change; not all relevant
regions may be equally informative, and there may be valuable information in their joint distri-
bution. In the last decade, advances in machine learning have provided automatic methods that
can be used to overcome these limitations, and effectively perform a data-driven determination

of the relevant regions and their appropriate weightings [23].

1.2 Machine learning

Machine learning can be viewed simply as the application of statistical analysis with a practical
focus; its techniques offer automatic ways to produce hypotheses from example learning data.
All machine learning methods are inherently statistical, not necessarily in the sense that they
involve generative models, but in the sense that they consider the training data to be the result
of a random process. Classical statistical techniques are often concerned with explaining or in-
terpreting observed events to allow humans to make well informed decisions. Machine learning
techniques more often try to make those decisions directly; the predictive models they produce
may not be of direct interest themselves, but they are wanted mainly because they offer high

performance in some predictive or decision making task.

Machine learning may be itself divided into multiple overlapping subfields. In the last 15

years, the following division is perhaps the most common choice:
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unsupervised learning, which is concerned with the discovery of structure in unlabelled data

and includes methods for clustering and dimensionality reduction;

supervised learning, which concerns learning a function which maps inputs to outputs and

includes methods for regression and classification; and

reinforcement learning, which concerns agents taking actions in an environment to maximise

cumulative reward.

Of these, supervised learning is perhaps the dominant subfield, with the terms supervised learn-
ing and machine learning sometimes being used interchangeably. The term pattern recognition
often signifies machine learning in the context of machine vision. Supervised learning, and
particularly classification, will be the main topic of this thesis. A more formal description of

supervised learning will be presented in chapter 3, but a brief outline is also included here.

1.2.1 Outline of supervised learning

In supervised learning, the data comprise a series of atomic observations or items. Each item
Z = (X,Y) is an ordered pair of two variables: some descriptive features that are always avail-
able (denoted X € X), and some dependent labels that may be either available or hidden (de-
noted ¥ € Y). Where X may be represented as a sequence of d numeric values, d is termed the
dimension of the feature space. In order to predict the labels when they are hidden, one must
use some predictor ¢ : X — Y belonging to the set of predictors T. The purpose of a supervised
learning method or learner is to select the predictor 7 based on a training set of labelled items.
The term classification refers to problems where the labels are categorical, while the term re-
gression refers to problems where the labels are ordinal or real valued. In classification, each

possible label value is referred to as a class.

1.3 Automated neuroimaging assessment and diagnosis

Automated neuroimaging assessment (ANA) is defined as the use of supervised learning meth-
ods to infer some clinical variable describing the severity or type of disease present in a person
based on neuroimaging data. At the cost of some interpretability, supervised learning methods
may offer biomarkers with improved sensitivity to change and diagnostic performance [22,24].
In ANA, items are people, features are imaging descriptors, and labels are relevant clinical
variables. I have chosen the term ‘automated neuroimaging assessment’ over ‘computer aided
diagnosis’ [25], as that term has been used to describe any non-trivial use of a computer out-
put in a diagnostic context [26], and the term diagnosis may be taken to exclude methods that

attempt to infer only disease severity rather than type.
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The particular benefits offered by ANA will depend on the application: as discussed in
section 1.1, imaging biomarkers able to offer unparallelled pre-selection and response tracking
can allow for increased power and reduced sample sizes. Even if imaging biomarkers are only
comparable in power to existing measures, they may be desirable if they are less invasive (e.g,
than biopsy) [22]. The benefits of a diagnostic method that can surpass that of current expert
radiologists are obvious, but even those with comparable performance may have great utility;
in a clinical setting, automatic methods may provide a rapid alternative to an expert radiologist
who may be either unavailable or slow to respond [27]. As well as predicting the presence or
absence of disease, supervised methods may be trained to predict response to treatment. By so
doing, they may prevent the needless infliction of side effects on patients who are unlikely to
benefit [27]. In some cases, the prediction models constructed by supervised learning methods
may themselves be used to study the imaging footprint of a condition, though this is typically a

secondary goal.

The use of supervised learning to build predictive models requires a training set of labelled
examples as input. This dataset comprises a set of pairs of neurological images and correspond-
ing disease states. This disease state may be the diagnosis of an expert physician [25], a psy-
chological score [22], a biopsy measure [22], or an outcome derived from follow-up [28]. In
the last case, the prediction to be made is not about the status of a person at the present time,
but at some point in the future. A typical pipeline begins with some image processing step,
which may involve registration, tissue segmentation, and delineation of relevant anatomical re-
gions. This is followed by some feature extraction, where the resultant images are converted
into some appropriate descriptors called features. In some cases, a dimensionality reduction or
feature selection technique may then be applied to make the number of features more manage-
able. Finally, some supervised learning technique is applied to build a predictive model linking
the feature description of an image and the corresponding disease state. This model can then be
applied to the images of unseen subjects to infer their disease states [23-25,27]. An illustration

of this paradigm is presented in figure 1.3.

This thesis will focus on ANA applications in AD. While dementia, and specifically AD,
is probably the most studied application in ANA research [24,27,29], it is only one of many.
ANA has also been applied to problems in schizophrenia [30], depression [31], attention deficit
hyperactivity disorder (ADHD), and many other neurological disorders [32]. All these fields
share a strong focus on the development of new imaging features and novel algorithms with the

aim of improving performance [22] and a set of common validation challenges.
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1.4 Validation challenges in ANA

AD ANA research is a field characterised by a large number of researchers [25] working with
necessarily limited data [29] to search for methods with superior performance. The collections
of imaging and clinical data required to validate ANA pipelines are very expensive; it is not easy
to produce them, and they are unlikely to ever reach the size of the training datasets used in more
general applications of machine vision [33]. After nearly a decade of pipeline development [34],
any clinical trial or healthcare provider wishing to apply an automatic method now has a large
number of options to choose from [24,25]. There is no clear best option, and there are a variety
of issues that can make it difficult to generalise published results [27,29,35]. For all the effort
expended to develop new methods, surprisingly little has been invested in identifying the most
appropriate validation strategies. Without reliable and convincing statements about the relative

performance of new methods, the development of those methods is of little practical use.

This section describes the four key validation challenges facing ANA researchers that I

have identified.

1.4.1 Statistical analysis of performance results

The use of supervised learning in ANA necessitates some form of cross validation (CV), broadly
defined as the use of separate training and testing sets, to estimate the performance of meth-
ods [36]. Unfortunately, the component performance measurements of CV are not indepen-
dent [35,37,38]. The classical statistical techniques that are used to quantify uncertainty (hy-
pothesis tests, confidence intervals, etc.) rely on assumptions of independence between obser-
vations. When they are used in the context of CV, they may no longer provide the securities
that justify them; confidence intervals may have coverage below the nominal level, and the type
I error rates of hypothesis tests may be inflated [35]. That is, 95% confidence intervals may not
contain the true value 95% of the time, and p values less than 5% may occur with probabilities
of more than 5% under the null hypothesis. In this thesis, I shall call this issue the problem of

dependency.

This problem is particularly relevant to applied fields of machine learning where the focus
is on a single prediction task, and the amount of available data is small (as is typically the case in
ANA). When researchers are concerned with the performance of a method in a general context,
they can evaluate it on multiple independent samples corresponding to different representative
problems; the performance measurements from each problem are then independent, and clas-
sical statistical procedures can be used [39]. When samples are large enough, the distinction

between a learning algorithm and the model it generates can be neglected, as model parameters
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will become approximately constant. In such a context, the results on the items of a test set may

be considered independent [40].

In ANA applications, where the problem of dependency is not acknowledged, statistical
assessments of performance may be unreliable. Where it is, researchers may omit statistical
treatment of uncertainties entirely for fear of being criticised. This situation is arguably even
worse, as conclusions made on the basis of point estimates alone will be even less reliable than
those made using inappropriate techniques. Without reliable treatment of uncertainties, there
is little guarantee that published results will generalise to practical contexts. If results do not

generalise, they are not useful.

1.4.2 Selection bias

The second validation problem facing ANA methods researchers is one seen in many other
fields: publication bias [12,41]. An inevitable consequence of the search for superior methods
is that experiments showing high performance results are more interesting than those that do
not, and the latter are more likely to go unreported. The presence of random effects in the mea-
surement of performance means that impressive results can occur by chance. When researchers
individually or collectively measure the performances of a wide set of pipelines and then re-
port only the more impressive results, a large number of the reported measurements are likely
to be those where the pipeline was “lucky” and had an unusually good result. When a high
performing pipeline from the literature is applied to independent data, it is likely to have a per-
formance that is worse than the reported estimate. This effect is due it being unrepresentatively
well suited to the particular testing items on which it was first evaluated, rather than unusually
well suited to the particular population of those items. In the context of AD, automatic methods
for pre-selection and differential diagnosis may fail to provide the performance demonstrated
in published research, even if study conditions are perfectly replicated. This failure of repro-

ducibility has the potential to undermine the credibility of the ANA research field.

1.4.3 Variance

Small sample sizes are related to higher variance in the estimation of performance. This vari-
ance is a problem in itself, as it limits precision. In the context of pipeline refinement, improve-
ments in performance that are smaller than the natural variation in a validation experiment will
not be consistently detected. Variability is also intimately related to selection bias, with larger
variances producing greater publication bias [12,41]. It is therefore of great interest to identify
efficient validation strategies that are able to provide lower variance using a sample of a given

size.
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1.4.4 Population drift

The bias discussed in section 1.4.2 results from pipelines being unrepresentatively well tailored
to a particular sample. Another source of bias, called population drift, results from pipelines
being unrepresentatively well tailored to a particular population [42]. Though it is not dealt
with in this thesis, it must be mentioned for the sake of completeness, as it is likely to be very
important in any translational context. If ANA methods are ever to be brought into the clinic,
they will have to contend with heterogeneous patient populations that are very different from
those seen in studies, and scanning technology that is likely to be of lower quality [27,43]. The
extent of this effect was measured in several contexts by the authors of [22], who found that
this effect tends to introduce an optimistic bias. To some extent, this problem can be overcome
by including data from multiple studies, centres and populations in the datasets used for ANA

development and validation.

1.5 Original contributions

This thesis contains novel contributions in the following three areas.

Selection bias. I review the problem of selection bias in ANA, and design an experiment to
measure this bias empirically. I use this experiment to demonstrate that bias can account
for a significant fraction of the apparent improvements associated with pipeline AD clas-
sification optimisation in finite samples. I am able to identify the key factors responsible
for bias, and point towards better validation practices that may be used to reduce bias and

detect it where it has occurred.

Variance. I discuss the merits of different CV strategies for ANA and describe a trivial exten-
sion to repeated K-fold CV that allows for greater experimental flexibility. I also develop
and validate another, more complicated extension that has lower variance while using the

same amount of computational effort.

Statistical analysis of performance results. I develop and validate a new approach for the
construction of heuristic statistical procedures for CV results. The new statistical pro-
cedures are shown to have better power and lower type I error/higher interval coverage

than conventional alternatives.

1.6 Outline

The remainder of this thesis is structured as follows. Part I contains detailed background in-

formation, with chapter 2 providing a detailed review of ANA for AD, and chapter 3 providing
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a formalisation of the supervised learning problem. Part II deals with bias due to the selective
reporting of performance results, with chapter 4 offering the relevant background, and chapter 5
describing an empirical investigation to estimate the degree of selection bias present in the field
and identify best practices for its reduction. Part III deals with the optimal selection of CV
strategy. Chapter 6 reviews uncommon CV strategies from the literature and discusses the issue
of strategy parameter selection. Chapter 7 describes my work to develop a new strategy with
greater efficiency and parameter flexibility than existing alternatives. Part IV deals with the sta-
tistical analysis of CV performance results, with chapter 8 detailing the problem of dependency
between component results, chapter 9 reviewing proposed statistical tests from the literature,
chapter 10 discussing the design and validation of a heuristic rule for the construction of new
statistical tests. Finally, part V concludes this thesis by discussing the implications of the work
presented for the field of AD ANA research and the possible directions in which it might be

extended.



Part I

Background

34



Chapter 2

Automated neuroimaging assessment for

Alzheimer’s disease

In this chapter, I shall review the key materials and methods of AD ANA research. The methods
selected for discussion are those that appear later in this thesis and those that are important for
the field of ANA in general. I shall begin by describing learning tasks in section 2.1, and then
move on the imaging modalities used to provide imaging features in section 2.2. In section 2.3,
I shall describe the datasets which provide imaging data. In section 2.4, I shall describe the
crucial imaging tools necessary to produce meaningful imaging features. I shall then describe
what these are and how they are processed in section 2.5. Finally, in section 2.6, I shall describe

some important supervised learning algorithms.

2.1 AD ANA Tasks

ANA methods are studied for their potential use as biomarkers. As discussed in section 1.1,
biomarkers for AD are primarily intended for use in the following tasks: 1. the identification
of incipient AD in its earliest phases for clinical trial enrichment and early intervention and 2.
the provision of a reliable measure of disease progression that can be used to track therapeutic
response in clinical trials. In practice, a variety of surrogate tasks are used to evaluate possible
pipelines, with the most common being classification based [29]. These include the following,

with the first three being the most common:

1. Discrimination of AD patients from healthy controls [34,44]. This can be viewed as a
learning exercise for the others that follow; if a method cannot identify AD in its later
stages, it is unlikely to be able to do so in its earlier stages. The detection of advanced
AD using imaging has no clinical utility in itself, as this can be done more easily through

basic questionnaires such as the mini mental state examination (MMSE).

2. Discrimination of MCI subjects and healthy controls [45,46]. This is a harder task, but
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still one of relatively limited utility in itself.

3. Prediction of progression from MCI to AD in a given time window after data collec-
tion [28,47]. This task is harder than the others, but it is the most representative of the
intended application of an ANA method. Its difficulty depends heavily on the choice of
the time window considered, typically of the order of a year. When the time window is
smaller, the progression events to be predicted will be more imminent. The progressive
subjects to be identified will then be those at a more advanced stage of AD, making their

identification an easier task.

4. Differentiation of AD and other dementias such as frontero-temporal lobe degenera-

tion [48,49], a task that is also relevant for the enrichment of clinical trials.
Less commonly, regression surrogate tasks are used, such as one of the following:

» Estimation of psychological scores such as the ADAS-Cog and the MMSE [50,51]. The
fine “resolution” of these indicators of disease progression (relative to diagnostic labels)
may provide more information in the training of predictive models, though it may come

with more “noise”.

* Prediction of the time to progression from MCI to AD [52,53]. This task is similar to the

prediction of progression in the classification equivalent.

2.2 Imaging modalities and other information sources

By far the most common choice of imaging modality is MRI, due to its ubiquity and lack of ion-
ising radiation. In particular, structural magnetic resonance imaging (sMRI) is well established
as a way to measure the loss of neural tissue associated with AD, and so it is a natural choice of
information source [22,24,27]. Alternatively, functional magnetic resonance imaging (fMRI)
may be used to measure the disruption of the brain’s functional networks [54,55]. More rarely,
diffusion tensor MRI may be used to exploit changes in microstructure that may precede the
larger scale changes apparent in sMRI [56]. FDG-PET, which can detect changes in cerebral
metabolism, has been extensively studied for AD ANA purposes [57,58]. Amyloid PET has
been used too [59], though to a much lesser extent. Even single-photon emission computed
tomography (SPECT) has been used [60,61] for its ability to measure changes in cerebral blood
perfusion.

Commonly, only a single image is used to describe each subject in the sample, but it is

also possible to use several images from multiple time-points [62, 63]. This allows one to
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see not only the morphology/physiology in a subject, but also to see its rate of change. While
longitudinal data provide more information, scans at multiple time-points are likely to be harder
to achieve in a clinical or practical setting. Most longitudinal methods are based on MRI, whose
ubiquity makes this more feasible, though PET data have also been used [57].

The modalities mentioned above may be used alone or in combination. By incorporating
information from complementary sources, multi-modal methods aim to achieve greater perfor-
mance than using any one alone. Perhaps the most common combination is SMRI and FDG-
PET [28,45, 50], though various other combinations have been demonstrated [29, 64, 65]. In
addition to combinations of multiple imaging modalities, various combinations of imaging and
non-imaging information have been explored. Non-imaging data sources considered include
measures based on genetics [28, 66], blood composition [67, 68], CSF biopsies [28, 69] and
psychological tests [70].

2.3 Datasets

In order to train and validate new methods, ANA research requires large collections of stan-
dardised clinical and imaging data. Due to the necessary expense, it would never be possible
for individual studies to gather their own data. As such, the field is reliant on large data sharing

initiatives created for biomarker research. These include the following.

The Alzheimer’s Disease Neuroimaging Initiative (ADNI). ADNI' is a large multi-centre
study with 1000’s of subjects across the U.S. and Canada. It has been developed to test
whether serial MRI, PET, other biological markers, and clinical and neuropsychological
assessments can be combined to measure the progression of MCI and early AD. Deter-
mination of sensitive and specific markers of very early AD progression is intended to
aid researchers and clinicians to develop new treatments and monitor their effectiveness,

as well as lessen the time and cost of clinical trials [14].

AddNeuroMed (ANM). ANM is a multi-centre European study with 100’s of subjects. It aims
to develop and validate novel surrogate markers of disease and treatment, based upon in
vitro and in vivo models in animals and humans in AD. The neuroimaging part of ANM
uses MRI and magnetic resonance spectroscopy to establish imaging markers for early
diagnosis and detection of disease and efficacy of disease modifying therapy in man, as
well as translational imaging biomarkers in animal models of AD. It has been designed

for compatibility with ADNI, and uses the same MRI protocols [71].

lwww.adni-info.com



38 Chapter 2. Automated neuroimaging assessment for Alzheimer’s disease

The Australian Imaging Biomarkers and Lifestyle (AIBL). AIBL is a two-centre Aus-
tralian study comprising over 1000 subjects. It aims to discover which biomarkers,
cognitive characteristics, and health and lifestyle factors determine subsequent develop-

ment of symptomatic AD [72].

The Open Access Series of Imaging Studies (OASIS). OASIS is a series of magnetic reso-
nance imaging datasets that is publicly available for study and analysis. The dataset
consists of a cross-sectional collection of 416 subjects aged 18 to 96 years. One hundred
of the included subjects older than 60 years have been clinically diagnosed with very mild

to moderate AD [73].

Of these, ADNI appears to provide by far the largest samples, and it also is by far the most
commonly used [24,25,29].

2.4 Imaging tools

ANA pipelines rely on meaningful imaging features capable of describing the changes associ-

ated wit