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Example of the Path Tracing Rule 

Consider the situation where we seek to estimate the effects of A, P and C on body weight in 

women (Y). Assume the two mediators, daily caloric intake (M1) and daily calories burned (M2), 

completely mediate the effect of P on Y, and (somewhat questionably perhaps) that these 

mediators are not affected by either A or C.  

In the first step we estimate the effect of period separately on the two mediators, here 

using linear regression, 

E(M1| P) = 𝛾0 + 𝛾1 ∙ 𝑃 

E(M2| P) = 𝛾2 + 𝛾3 ∙ 𝑃 

The period effect on 𝑀1 is then represented by 𝛾1, and the period effect on 𝑀2 by 𝛾3.  

Correct specification of the above equation is sufficient for unbiased estimation of these 

parameters by ordinary least squares (OLS). For unbiased estimation of the precision of these 

parameters using the conventional variance estimator routinely used alongside OLS, we assume 

that the errors εi = M i - E(M1 | Pi), i=1, …, n, are independent and homoskedastic. These 

additional conditions could be relaxed if instead we used a sandwich estimator of variance.  

In the second step we estimate the effect of age, the two period mediators, and cohort on 

body weight using a linear regression model, 

E(𝑌|𝐴, 𝑀1, 𝑀2, 𝐶) =  𝛿0 + 𝛿1 · 𝐴 +  𝛿2 · 𝐶 +  𝛿3 · 𝑀1 + 𝛿4 · 𝑀2   
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The age effect on Y is then represented by 𝛿1, and the cohort effect by 𝛿2.  

Again, unbiased estimation of these parameters by OLS follows from the correct specification of 

the forms of the conditional expectations given above. Again, the conventional variance 

estimators rely on independent homoskedastic errors for unbiased estimation, violations of which 

can be accommodated using sandwich estimators.  

Using the path tracing rule, the effect of P on Y through M1 is equal to 𝛾1 ∙ 𝛿3 and the 

effect of P on Y through M2 is equal to 𝛾3 ∙ 𝛿4 Hence the total effect of P on body weight is equal 

to 𝛾1 ∙ 𝛿3 + 𝛾3 ∙ 𝛿4 . 
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Estimating APC effects using the mechanism-based approach when more than one of APC 

affects a mediator, or if there are multiple mediators 

 

In scenario 2 ‘more causes’, next to period, age was an additional cause of BMI, and cohort was 

an additional cause of smoking. Hence, these mediators had more than one cause. Furthermore, 

in all scenario’s, we had four mediators on the path from APC to the outcome. Therefore, we will 

explain estimation in a setting where there are more causes of mediators, and where there is more 

than one mediator, using scenario 2. We will describe estimation both in the probit variant (using 

the multiplication approach) and the logistic variant (using the Monte Carlo approach). We will 

again use a linear representation for ease of reading, but in our simulations we modelled age, 

period and cohort as categorical variables through dummy coding. 

 

Multiplication approach 

First, we estimated a probit model with age A, cohort C, Unmeasured (M1), BMI (M2), Smoking 

(M3), and Statins (M4): 

E(Y | A, M1, M2, M3, M4, C) = 𝛷(𝛿0 + 𝛿1 · A + 𝛿2 · C + 𝛿3· M1 + 𝛿4· M2 + 𝛿5· M3 + 𝛿6· M4) 

Where Φ is the probit link. In this case, 𝛿1 and 𝛿2 only represent partial effect estimates of the 

age and cohort effects, respectively, because part of the age and cohort effects go through the 

mediators. The δ’s 3 through 6 represent the effect of the mediators on the outcome. 

Secondly, we modelled the mediators, using their causes as covariates in our models: 

E(𝑀1| P) = 𝛾0 + 𝛾1 · P + 𝜈1 

E(𝑀2| A, P) = 𝛾2 + 𝛾3  ·  A + 𝛾4  · P + 𝜈2 

E(𝑀3| C, P) = 𝛷(𝛾5 + 𝛾6  ·  𝐶 + 𝛾7 · P) 
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E(𝑀4| P) = 𝛷(𝛾8 + 𝛾9 · P) 

The total age effect was estimated as: 𝛿1 + 𝛾3 ∙  𝛿4  

The total period effect was estimated as: 𝛿3 · 𝛾1 +  𝛿4 ·  𝛾4 +  𝛿5 · 𝛾7 +  𝛿6 ·  𝛾9 

The total cohort effect was estimated as: 𝛿2 + 𝛾6 ∙  𝛿5  

We applied the bootstrap, and used 2.5% and 97.5% quantiles from the bootstrap distribution to 

find confidence intervals for the estimates of age, period and cohort parameters. 

 

Monte Carlo approach 

In a first step, we estimated the mediators Unmeasured (M1), BMI (M2), Smoking (M3), and 

Statins (M4), using the following models: 

𝑀1(𝑃) = 𝛾0 + 𝛾1 ∙ 𝑃 +  𝜀3 

𝑀2(𝐴, 𝑃) = 𝛾2 + 𝛾3 ∙ 𝐴 +  𝛾4 ∙ 𝑃 + 𝜀4 

𝑙𝑜𝑔𝑖𝑡{𝐸[𝑀3(𝐶, 𝑃)]} = 𝛾5 + 𝛾6 ∙  𝐶 +  𝛾7 ∙ 𝑃 

𝑙𝑜𝑔𝑖𝑡{𝐸[𝑀4(𝑃)]} = 𝛾8 + 𝛾9 ∙ 𝑃 

In the second step, we estimated the outcome: 

𝑙𝑜𝑔𝑖𝑡{𝐸[𝑌(𝐴, 𝑀1, 𝑀2, 𝑀3, 𝑀4, 𝐶)]}

=  𝛿0 +  𝛿1 · 𝐴 + 𝛿2 · 𝑀1  + 𝛿3 · 𝑀2  + 𝛿4 · 𝑀3  + 𝛿5 · 𝑀4  +  𝛿6 · 𝐶 

In the third step, we simulated mediators 𝑀1̃(𝑝), 𝑀2̃(𝑝),  𝑀3̃(𝑝) and 𝑀4̃(𝑝). First we 

independently generated a range of age values 𝑎̃, period values 𝑝, and cohort values 𝑐̃, which had 

the same range as empirically observed age, period and cohort values (but 𝑎̃ = 𝑝 – 𝑐̃ does not 
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hold for the generated values). For the continuous variables, we could then generate mediator 

values immediately, using the estimates from the first step: 

𝑀1̃(𝑝̃)  = 𝛾0 + 𝛾1 ∙ 𝑝 + 𝑒  

𝑀2̃(𝑎̃, 𝑝)  = 𝛾2 + 𝛾3 ∙ 𝑎̃ + 𝛾4 ∙  𝑝 + 𝑒  

For the binary variables, we first estimated means 

𝜇̂𝑚̃3,𝑝,̃𝑐̃ =  
exp (𝛾5 + 𝛾6 ∙ 𝑐̃ + 𝛾7 ∙ 𝑝) 

1 + exp (𝛾̂5 + 𝛾6 ∙ 𝑐̃ + 𝛾7 ∙ 𝑝) 
 

𝜇̂𝑚̃4,𝑝̃ =  
exp (𝛾8 + 𝛾9 ∙ 𝑝) 

1 + exp (𝛾8 + 𝛾9 ∙ 𝑝) 
 

And then drew from Bernoulli distributions with these means. 

In the fourth step, we simulated values 𝑌̃(𝑎̃, 𝑝, 𝑐̃) for the outcome using the estimates from step 2 

and the simulated mediator values from step 3. We drew from a Bernoulli distribution with mean 

𝜇̂𝑦,𝑎̃,𝑝̃,𝑐̃ =  
exp(𝛿0 + 𝛿1 ∙ 𝑎̃ + 𝛿2 ∙ 𝑀1̃ + 𝛿̂3 ∙ 𝑀2̃ + 𝛿4 ∙ 𝑀3̃ + 𝛿5 ∙ 𝑀4̃ + 𝛿6 ∙ 𝑐̃) 

1 + exp (𝛿0 + 𝛿1 ∙ 𝑎̃ + 𝛿2 ∙ 𝑀1̃ + 𝛿3 ∙ 𝑀2̃ + 𝛿4 ∙ 𝑀3̃ + 𝛿5 ∙ 𝑀4̃𝛿6 ∙ 𝑐̃) 
 

In the fifth step, we fit a logistic regression model to 𝑌̃(𝑎̃, 𝑝, 𝑐̃) with 𝑎̃, 𝑝 and 𝑐̃ as covariates. 

We applied the bootstrap, and used 2.5% and 97.5% quantiles from the bootstrap distribution to 

find confidence intervals for the estimates of age, period and cohort parameters. 
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Additional Figures 

 

Figure S1. Average estimated parameters for the age, period and cohort effects in scenario 2 

(More causes) probit variant using the mechanism-based approach: summary of 1000 

simulations. 
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 Figure S2. Average estimated parameters for the age, period and cohort effects in scenario 3 

(Confounding) probit variant using the mechanism-based approach: summary of 1000 

simulations. 
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Figure S3. Average estimated parameters for the age, period and cohort effects in scenario 1 

(Simple) logistic variant using the mechanism-based approach: summary of 1000 simulations. 
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Figure S4. Average estimated parameters for the age, period and cohort effects in scenario 2 

(More causes) logistic variant using the mechanism-based approach: summary of 1000 

simulations. 
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Figure S5. Average estimated parameters for the age, period and cohort effects in scenario 3 

(Confounding) logistic variant using the mechanism-based approach: summary of 1000 

simulations. 
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Varying age, period and cohort contributions 

To demonstrate how the unequally distributed strength of age, period and cohort affect the bias, 

we performed two sets of simulations in which we vary these strengths. In the first set, we vary 

the size of the period effect from 0 to 100% in 20% increments, while correspondingly reducing 

the size of the age effect, and keeping the size of the cohort dimension constant at 10% 

(excluding the last increment, where cohort is necessarily set to 0%). The second set is identical, 

but then the cohort effect size is varied and period kept constant at 20%. In both sets, bias is 

generated by removing the first mediator (‘unmeasured’) from the estimation model in the 

‘simple’ scenario. These simulations were done with probit, logit and linear regression variants. 

The linear regression variant is identical to the probit variant, with the exception that the probit 

transformation was not used when generating the data and estimating from the data.  The probit 

variant of the first two sets can be found in the main document. A third set of simulations in 

which the age effect size is varied is described later in this supplemental document. 
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Figure S6. Varying the effect sizes of period from 0 to 100% of the total APC effect in 20% 

increments while keeping cohort effect constant (upper), varying the effect sizes of cohort from 0 

to 100% of the total APC effect in 20% increments while keeping period effect constant (lower). 
When period accounts for 100% the correctly specified cohort trend is a horizontal line at y=0. No bias when cohort 

accounts for 100% because then the period effect (source of bias) accounts for 0%. Only cohort figures (logistic 

variant) shown. Arrow in lower figure indicates the size and direction of the bias. 
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Figure S7. Varying the effect sizes of period from 0 to 100% of the total APC effect in 20% 

increments while keeping cohort effect constant (upper), varying the effect sizes of cohort from 0 

to 100% of the total APC effect in 20% increments while keeping period effect constant (lower). 
When period accounts for 100% the correctly specified cohort trend is a horizontal line at y=0. No bias when cohort 

accounts for 100% because then the period effect (source of bias) accounts for 0%. Only cohort figures (linear 

regression variant) shown. Arrow in lower figure indicates the size and direction of the bias. 
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Varying the age contribution to the total APC effect 

We vary the size of the age effect from 0 to 100% in 20% increments, while correspondingly 

reducing the size of the cohort effect (changing period, the source of bias, would result in an 

additional source of variance and so we choose cohort), and keep the size of the period 

dimension constant at 20% (excluding the two last increments, where period has to be set to 0). 

Bias is generated by removing the first mediator (‘unmeasured’) from the estimation model in 

the ‘simple’ scenario. These simulations were done with probit, logit and linear regression 

variants. The linear regression variant is identical to the probit variant, with the exception that 

the probit transformation was not used when generating the data and estimating from the data. 

See next page for the figure. 
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Figure S8. Varying the effect size of age from 0 to 100% of the total APC effect in 20% 

increments following description on previous page. Logistic transformation differs from probit 

and linear regression estimation because of the logistic (nonlinear) transformation. 
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Traditional age-period-cohort analysis 

There are many approaches to age-period-cohort analysis, some formulated decades ago but 

nevertheless still relevant (e.g. Fienberg and Mason, 1976; Hobcraft et al. 1982; Holford, 1983; 

Clayton & Schifflers, 1986). Arguably, an advantage of these methods is that they place 

relatively simple constraints on the APC model, and therefore the direction of bias may also be 

easier to identify. For completeness, we here report the results of such an APC analysis. In 

particular, this model is applied to exactly the same data as the data produced in scenario 1 

‘simple’ (probit variant).  

 

Model specification 

The model is specified as a probit regression model with terms for age, period and birth cohort. 

The model becomes identifiable by constraining two age, period or cohort categories to be equal 

(Clayton & Schifflers, 1986). This can be easily be achieved by setting two age, period or cohort 

categories as reference categories (instead of one category for each); i.e. when a dummy 

specification is used for the categories, this can be done by removing an additional dummy. In 

particular, we fitted two such models; one where the parameters for the 1931-1939 and the 1936-

1944 birth cohorts were set to be equal, and one where those for the 1990-1995 and the 1995-

2000 periods were set to be equal.  

 

Results 

Fitting the model with constraints on the birth cohort parameters leads to good average estimates 

of the age effect, very poor average estimates of the period effect and quite good estimates of the 

average cohort effect (Figure S8). On the other hand, the model with constraints on the period 

parameters has strongly biased estimates of all three effects (Figure S8). 



17 
 

 

Figure S9. Average APC estimates in scenario 1 (simple) using models with 1931-1939 and the 

1936-1944 cohort effects constrained to be equal (‘middle birth cohorts’) and 1990-2000 and the 

1995-2005 period effects constrained to be equal (‘first calendar years’): summary of 1000 

simulations. The correct model specification and an age-cohort model are used as comparisons. 
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Comparison with Mechanism-Based approach 

We compare this ‘traditional’ approach with the mechanism-based approach. We used two 

common types of constraints in our application of the traditional model; one model with 

constraints for birth cohort and one with constraints for period. Substantively, it is believed that 

age has the strongest effect on most outcomes, including cardiovascular outcomes, and hence 

should not be constrained (Hobcraft et al. 1982). In our simulations, constraining two birth 

cohorts to have equal effects led to better estimates than constraining period categories because 

in our simulations the birth cohort parameters had similar values. This assumption therefore 

resulted in little bias in two of the three APC estimates, but the bias would be stronger if age or 

period were instead constrained. In the second traditional model, we therefore constrained 

period, and indeed this resulted in greater bias on average. Given the larger slope of the age 

effects relative to those of period and cohort, constraining age would have resulted in much 

stronger bias. Importantly, in a real application, it is unknown which effect is largest and which 

age, period or cohort categories would have similar effects on the outcome. Furthermore, 

considering that applied researchers commonly have no additional information on the true shape 

or effect sizes of the age, period and cohort effects, an unfavourable selection of constraints can 

easily be made.  
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