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Diffusion in Hierarchical Systems: A Simulation Study in
Models of Healthy and Diseased Muscle Tissue

Matt G. Hall* and Chris A. Clark

Purpose: To investigate the sensitivity of diffusion-MR signal
to microstructural change in muscle tissue associated with

pathology, and recommend optimal acquisition parameters.
Methods: We employ Monte-Carlo simulation of diffusing
spins in hierarchical tissue to generate synthetic diffusion-

weighted signal curves over a wide range of scan parameters.
Curves are analyzed using entropy—a measure of curve com-

plexity. Entropy change between a baseline and various micro-
structural scenarios is investigated. We find acquisitions that
optimize entropy difference in each scenario.

Results: Permeability changes have a large effect on the
diffusion-weighted signal curve. Muscle fiber atrophy is also
important, although differentiating between mechanisms is

challenging. Several acquisitions over a range of diffusion
times is optimal for imaging microstructural change in muscle

tissue. Sensitivity to permeability is optimized for high gradient
strengths, but sensitivity to other scenarios is optimal at other
values.

Conclusions: The diffusion-attenuated signal is sensitive to
the microstructural changes, but the changes are subtle. Tak-

ing full advantage of the changes to the overall curve requires
a set of acquisitions over a range of diffusion times. Perme-
ability causes the largest changes, but even the very subtle

changes associated with fiber radius distribution change the
curves more than noise alone. Magn Reson Med 78:1187–
1198, 2017. VC 2016 International Society for Magnetic Res-
onance in Medicine.
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INTRODUCTION

Diffusion MRI is known to have a degree of sensitivity to
changes to the microstructural properties of tissue. Tech-
niques such as diffusion tensor imaging (DTI) (1) and
spherical deconvolution (2) have allowed estimation of
the orientation of brain tissue in vivo, and a large body
of research literature has developed around inferring
more detailed microstructural information such as axon
fiber radius distribution (3,4). Application of advanced
methods in brain benefits from the favorable relaxation
properties of the tissue to allow MR measurements with

sufficient signal-to-noise ratio (SNR), to provide informa-

tive parameter estimates.
Application to muscle tissue has historically been more

challenging. T2 of skeletal muscle is shorter than in brain

((5) gives 50 6 4 ms in skeletal muscle at 3 Tesla (T) ver-

sus 99 6 7 ms in gray matter and 69 6 3 ms in white mat-

ter), making pulse sequence design more challenging,

particularly for diffusion MRI. Recently, however, scanner

hardware has improved to the point where muscle imag-

ing is feasible on advanced clinical systems. 3T systems

and improved gradient hardware enable diffusion-

weighted images of muscle tissue to be acquired with

short, clinically practical acquisition times.
There have been a number of applications of advanced

diffusion methodology to muscle. DTI and tractography

have been applied to image fibers in the myocardium

(6), and HARDI has been applied to resolve crossing

fibers ex vivo in the bovine esophagus (7). More recently,

Sigmund et al. derived properties such as surface area to

volume ratio from skeletal muscle (8).
A number of pathologies affect muscle tissue structure.

Duchenne muscular dystrophy (DMD), for example, is a

progressive, genetic muscle-wasting pathology. The

development of novel drug therapies is hampered by the

lack of quantitative measures of disease progression. The

gold standard is biopsy, which is both invasive and

highly localized (9).
Image-based biomarkers offer the potential to mea-

sure pathological changes in tissue noninvasively and

in a way that covers entire muscle groups rather than

specific locations in tissue. Previous applications of

MRI to DMD typically provide images that quantify tis-

sue fat-fraction (10), but the replacement of muscle tis-

sue with fat is a late stage of the pathological process

and there is a need for imaging that can resolve earlier

changes. Diffusion MRI is a candidate but it is not

clear a priori how sensitive the signal is to muscle

microstructure or how the pathology alters diffusion-

weighted measurements.
One challenge is the structure of muscle tissue itself.

Most of the modeling literature in diffusion MRI was

developed for application in brain, particularly in white

matter. Here, tissue can be approximated by oriented

structures such as parallel cylinders, which can be cap-

tured both in simulation and simpler models suitable for

fitting to in vivo data (11). White-matter fibers have typi-

cal radii on the order of 1–5 microns (12), which is com-

patible with diffusion times accessible in pulse gradient

spin-echo (PGSE) or oscillating gradient spin-echo

(OGSE) sequences. Muscle fibers are considerably larger:

typically 20–90 microns (13), requiring longer diffusion

times to probe. Perhaps more importantly, the tissue is
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hierarchical. It consists of bundle fibers that are in turn
bundles of smaller fibers (14). This form of structure
restricts diffusion across a wide range of length scales
from the macroscopic down to the nanoscale.

Constructing an explicit model of diffusion in a multi-
scale structure is very challenging. Such a model would
require smoothing on multiple hierarchical levels, which
would lead to a model that is not only complicated and
difficult to fit, but also degenerate with many other
curves. Here we adopt an approach based on the curve
entropy, which requires no explicit description of tissue
and no model-fitting step while still quantifying the dif-
ference between different decay curves. We use this
approach to explore the sensitivity of synthetic
diffusion-weighted MRI data. We quantify the diffusion-
weighted signal curve across a range of gradient
strengths and diffusion times by considering the
information-theoretic entropy of the signal (15).

We construct a Monte-Carlo simulation of diffusion in
muscle tissue, and synthesize diffusion-weighted meas-
urements across a wide range of gradient strengths and
diffusion times. We consider a baseline tissue model
derived from histology of healthy tissue and compare
those data with several scenarios that capture micro-
structural changes that result from DMD pathology.

There has been a considerable research effort in
modeling the diffusion signal in brain (see (4) for a
review). Monte-Carlo simulation was first employed in
diffusion MRI research by Szafer et al. (16). Since that
time it has become a vital part of the diffusion imaging
methods development process. It has been used, for
example, as a validation tool (17) and to aid the develop-
ment of novel analyses (3). The current work uses the
Camino Monte-Carlo simulation framework (17,18),
employing a new model of muscle tissue and extending
the framework to increase numerical efficiency.

Changes in the form of the diffusion signal curve are
quantified using entropy, which measures how much
information is encoded in a curve. Changes to curve
shape cause changes in curve entropy, and the magni-
tude of entropy change provides a convenient measure
of the change in curve shape.

Entropy in this context was originally proposed by Shan-
non (15) in 1948. It is common in signal processing and
has been used in genetics (19) and finance (20). In diffu-
sion MRI, Ingo et al. (21) considered the entropy of a model
fitted to diffusion-weighted MR data, but in principle there
is no requirement for model fitting. An entropy can be cal-
culated directly from diffusion-weighted data. We obtain
entropies directly from synthetic measurements from simu-
lation to investigate sensitivity in the data without interme-
diate models. This removes bias caused by the sensitivity
of the model to particular change in the underlying data.

We investigate the effect on the diffusion signal result-
ing from several microstructural scenarios:

� Permeability changes. All barriers to diffusion are
given a finite probability of allowing spins to diffuse
through them;

� Atrophy of internal muscle fibers. Fibers inside bun-
dles are reduced in radius by a constant factor (Figs.
2b and 2d);

� Fiber radius distribution. Distribution of fiber sizes

is fitted to a mouse disease model of DMD (Fig. 2e);

and
� Removal of fibers from the substrate (Fig. 2f).

Each scenario is simulated using different degrees of

parameter change. Differences between each set of syn-

thetic measurements and a baseline scenario (Fig. 2a and

2c) are quantified using the percentage entropy change.

For comparison, we also obtain entropy changes as a

result of Rician noise at SNR¼ 20. We then employ an

optimization procedure that finds subsets of acquisitions,

which maximizes the change in entropy. Magnitude of

parameter changes are chosen to assess the sensitivity of

the signal to the effect.

METHODS

Monte-Carlo Simulation

Skeletal muscle tissue structure is hierarchical (14).

Length scales of these structures ranges over several

orders of magnitude. We model muscle tissue as an envi-

ronment consisting of nested cylinders (cylinders that

contain other, smaller cylinders).
Data are synthesized using the Camino Monte-Carlo

simulation framework (17,18). Permeability is modeled

using a fixed probability of a spin stepping through a

barrier using the implementation of (22). Parallel cylin-

ders are arranged in reverse order of size using a dynam-

ic spatial map (23). Cylinder placement is top-down:

Larger structures are placed first, then the internal struc-

ture is added to each cylinder. Internal cylinders are par-

allel to the enclosing cylinder, randomly packed,

nonoverlapping, have gamma distributed radii, and do

not intersect the boundary of the outer cylinder.
The most numerically expensive step in Monte-Carlo

simulations is checking intersections: Cylinders must be

placed such that they do not overlap, and steps in the

spins’ random walks must be checked for intersections

with tissue structure. An efficient intersection-checking

algorithm can provide an orders-of-magnitude improve-

ment over brute force methods. Previously, the Camino

Monte-Carlo simulation has employed a regular spatial

subdivision procedure, which is efficient when the size

of the objects is unimodal and they are approximately

evenly distributed in space.
Here we employ a hierarchical intersection checking

procedure that is better suited to hierarchical structures.

Maps of cylinder positions to spatial regions are assem-

bled during tissue model construction, and then used

during dynamics simulation.

Hierarchical Intersection Checking

The method of intersection checking is an extension of

uniform spatial subdivision (23,24). Maps are con-

structed of spatial subregions to sets of objects that inter-

sect them (Fig. 1a). In uniform spatial subdivision

intersection checking, a regular grid is imposed on the

tissue substrate and a map created from objects to the

grid elements they intersect. Because it is simple to con-

struct a list of grid elements surrounding a test object,
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explicit checks need only be performed on a list of can-

didates that intersect these elements.
The hierarchical scheme attaches an additional grid to

each nested object (Fig. 1b). A map is assembled from

elements of the local grid to the elements of the nested

cylinder’s structure. When an explicit check for intersec-

tion with the nested cylinder is required, the local grid

is used to assemble a list of candidates to perform

explicit checks (Fig. 1c). This scheme can be applied to

any level of nest depth.

Tissue Model Construction

Tissue substrates are constructed by arranging a speci-

fied number of parallel cylinders in a region with period-

ic boundaries. Cylinders have radii drawn from a gamma

distribution with specified shape and scale parameters (k

and h, respectively). Cylinders that intersect the bound-

aries on the simulated region are copied on the opposite

side of the substrate to ensure periodicity (23).
Once all cylinders have been placed on the substrate,

each cylinder then has an internal structure added. Inter-

nal cylinders are parallel to the outer cylinder, and have

radii drawn from a gamma distribution with the same

shape parameter as the outer cylinder distribution, but

scale parameter multiplied by the area fraction of the

outer cylinder on the substrate.
Internal cylinders are also nonintersecting. Each cylin-

der has circular cross section and is infinitely long;

therefore, we only need to pick a trial location in the

cross-sectional disk. Uniform sampling is achieved by

picking coordinates using a relation that preserves the

volume element of the unit disk:

dS ¼ 2pada; [1]

where a 2 ½0;1� is the radial coordinate on the disk. Car-

tesian coordinates uniformly distributed on the disk are

obtained using

xu ¼
ffiffiffi
a
p

cosu [2]

yu ¼
ffiffiffi
a
p

sinu: [3]

Note that this transformation is required for uniform

sampling density on the disk (25). Trial coordinates

on the unit disk are generated by sampling a uniformly

in ½0;1� and u uniformly in ½0; 2p�. The coordinates are

then scaled and translated from the unit disk at the ori-

gin to the cylinder of radius R at position ðpx ;pyÞ

x ¼ ðR� rÞxu þ px [4]

y ¼ ðR� rÞyu þ py [5]

where r is the radius of the cylinder being placed.
Intersection checking is performed using the hierarchi-

cal method outlined previously. Once a position for the

new cylinder is found that does not intersect with any

others, it is added to the local map and the process

repeats. The complete map is reused during dynamics

simulation (Fig. 1d).

FIG. 1. Hierarchical spatial intersection checking. Substrate is uni-

formly subdivided (a). Each nested structure has its own uniform
subgrid (b). The regular subgrid makes intersection checking in
the extracellular space more numerically efficient (c). Each local

subgrid facilitates efficient intersection checking against internal
structure (d).
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Diffusion Dynamics and Intersection Checking

Diffusing spins execute random walks in three dimensions

(3D). Each step in a spin’s trajectory must be checked for

intersection with the tissue substrate. As with the tissue

substrate construction phase, the efficiency of this check

has a significant effect on the simulation performance.
For each step in a spin’s trajectory, a set of intersecting

cells is generated using Breshenham’s algorithm (24,26). The

step is tested against objects that intersect these grid ele-

ments. For internal intersection checks, the step is projected

into the local map, and parametric clipping (24,27) is

employed to exclude portions of the step that fall outside it.

Tissue Models

This section describes tissue models designed to investi-

gate microstructural change as well as a baseline model

of healthy muscle tissue.

Baseline

The baseline scenario is used as a basis for comparison

for microstructural changes. We employ microstructural

parameters from a histological study of healthy mouse

forelimb muscle tissue (13). We use maximum likelihood

estimation to obtain gamma distribution parameters from

histograms of muscle fiber diameter (shape¼13.5,

scale¼ 3.02� 10�6 m, 3 sig. figs.) and construct tissue

substrates containing 750 parallel cylinders. The size of

the substrate was chosen to maximize intracellular vol-

ume fraction. A substrate size of 2:46� 10�3 m gives

intracellular volumes fractions of 70% or greater. Each

cylinder contains 525 internal cylinders.
Figs. 2a and 2c illustrate the constructed substrates.

Atrophy as a Result of Fiber Diameter Shrinkage

Atrophy is modeled as change in the radii of internal

cylinders. The radius of each internal cylinder is

FIG. 2. Cross sections of substrates used in different microstructural scenarios. Space outside cylinders is colored white, space inside
cylinders is red, and cell membranes are purple. (a) Baseline substrate. Outer cylinders have radii drawn from a gamma distribution fit-
ted to histology of healthy, wild-type mouse forelimb tissue. Each cylinder on the substrate contains regularly packed internal cylinders

(c). (b) Effect of atrophy scenario 1, in which all internal cylinders are reduced in radius by a fixed factor. (d) The same cylinder as (c)
with internal cylinders reduced in radius. Positions are unchanged. (e) A substrate with cylinder radii drawn from a different distribution,

fitted to histology of an Mdx mouse model of DMD. Close inspection reveals that these cylinders have a wider range of radii than those
in (a), but the packing fractions achieved are similar. Internal structure in (e) is similar to that in (a). (f) Atrophy scenario 2. Here, complete
nested cylinders are removed from the baseline arrangement at random. In this example, 10% have been removed. The permeability

scenario is not shown, as it is visually identical to the baseline.
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reduced by a specified factor. Positions of cylinders are

unchanged. This increases the space between fibers and

reduces restriction inside top-level cylinders. Substrates

in which the atrophy ratio is set to 5, 10, and 20% (ie,

cylinder radii are 95, 90, or 80% of the equivalent in the

baseline) are investigated. Figures 2b and 2d illustrate

the internal fiber atrophy.

Fiber Removal

Atrophy is modeled as the loss of a fixed proportion of cyl-

inders on the substrate. After constructing the baseline

substrate, cylinders are removed with a fixed probability,

resulting in gaps between neighboring cylinders (see Fig.

2f). Cylinders are removed with 2, 5, and 10% probability.

Permeability

We introduce a finite probability for spins to step

through barriers rather than be reflected by them, but all

other microstructural parameters as the baseline. Perme-

abilities are set to 0.5, 1, and 2%. Permeability scenario

substrates are visually identical to the baseline.

Fiber Radius Distribution

We fit gamma distribution parameters to histological

data from (13) (shape¼6.01; scale¼ 6.16�10�6 m; 3 sig.

figs.). We pack 850 cylinders, each containing 590 inter-

nals, into the substrate (see Fig. 2e). Numbers of cylin-

ders and substrate size were chosen empirically to

obtain as good agreement as possible between intracellu-

lar volume fractions between this and the baseline.
Figures 2a and 2e are visually quite similar, however

Figure 2e exhibits a wider range of radii and a greater pro-

portion of larger cylinders than Figure 2a. The visual sim-

ilarity between this and the baseline illustrates the

subtlety of changes we aim to resolve in diffusion signals.

Noise Only

Rician noise is introduced to the baseline signal at

SNR¼20 (defined on the unweighted image) by adding

Gaussian noise to the real and imaginary components

and taking the magnitude (28).

Entropy

We use nonnormalized entropy (21) given by

H ½S� ¼
XN

i¼1

SilnSi [6]

where N ¼ 205 is the number of measurements (one per

scan parameter combination in Supporting Table S1) and

Si is the ith normalized diffusion-weighted measurement.
The magnitude of the entropy of each set of synthetic

measurements is of less importance than the changes in

the value of the entropy between each pathological sce-

nario and the baseline. We report percentage changes in

entropy between each scenario and the baseline.

Experiments

Monte-Carlo Simulation

Thirty simulations were run for each of the microstructural

scenarios described in the Methods section. Care was taken

to ensure that the step lengths in spins’ random walks

were sufficiently smaller than the smallest cylinders on the

substrate. The number of updates was chosen such that the

step length in all simulations was smaller than half the

radius of the smallest cylinder. Simulation duration was

fixed by the pulse sequences considered. Once the number

of updates were chosen, we simulated as many spins as

were computationally feasible.
Simulations have 10000 spins and 100000 updates, giving

a step length of 8.3� 10�7 m. Simulations in each ensemble

differ only in the seed of the random number generator.
Simulations were run on a Dell Precision T7610 PC run-

ning Ubuntu Linux 14.04, with dual 8-core Intel Xeon pro-

cessors and 128 GB RAM running a Java 7 SE Runtime

Environment Hotspot 64-bit Server VM in mixed mode.

Typical execution time for each simulation was 4 to 5 h,

requiring 12–16 GB of RAM, depending on scenario.
Synthetic diffusion-weighted signals were obtained

from each simulation for the gradient strength ranging

from 0.01–0.12 Tm�1 and diffusion times ranging from

40–200 ms. In all cases, the gradient duration was 20 ms

and gradients were applied perpendicular to cylinder

axes. We calculated a mean and standard deviation for

each diffusion-weighted signal across each ensemble.
The range of diffusion times and gradient strengths

chosen was designed to cover and exceed the range

accessible on a modern state-of-the-art clinical system,

which might include maximum gradient strengths of

0.08 Tm�1. The range of diffusion times considered

greatly exceeded what was feasible for a PGSE sequence,

but is accessible using a diffusion-weighted STimulated

Echo Acquisition Mode (STEAM) sequence.

Acquisition Subset Optimization

Optimization searches were performed for a subset of M

combinations of gradient strength and diffusion time that

maximize the entropy difference between the baseline

and each microstructural scenario. We tested each com-

bination of size M from the global set, excluding repeti-

tions and re-orderings.
The optimization proceeded as follows:

1. For all combinations of M indices

1.1 Calculate the entropy of the baseline signal

from the subset
1.2 For each microstructural scenario

1.2.1 Calculate the entropy of the

microstructural scenario using only

those acquisitions in the subset
1.2.2 Calculate the percentage change

in entropy between scenario and

baseline
1.2.3 Record the largest change

2. Report the subsets and entropy changes for all

scenarios
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We optimized subsets of sizes M¼ 5 and 6 from a total

set of 205.
Optimization code was written in Cþþ11 and run on

the same computing setup as the previous section.

RESULTS

Monte-Carlo Simulations

Figures 3–6 show the synthetic diffusion-weighted sig-

nals as a function of gradient strength and diffusion

time. Solid lines represent the ensemble mean, and error

bars show 61 standard deviation.
The baseline (Figs. 3a and 3b, Supporting Fig. S3)

shows rapidly increasing diffusion attenuation at lower

gradient strengths and shorter diffusion times, with a

plateau at higher diffusion weightings. The plateau itself

is not completely flat; a small decrease is observed with

increasing diffusion time.
Figures 4a–4f show the effect of atrophy of inner fibers

by 5, 10, and 20%. Increasing atrophy acts primarily to

lower the plateau in the signal. The 5, 10, and 20% atro-

phy scenarios give changes of 9.4, 18.64, and 34.7% in

the signal, respectively.
Figures 5a–5f show the effect of the removal of a fixed

proportion of fibers. The overall pattern is similar to Fig-

ure 4, although the change in the height of the plateau is

less marked. Extreme values on the plateaus are 4027,

3903, and 3707 for 2, 5, and 10% changes, respectively.
Figures 6a–6f show the effect of permeabilities of

0.005, 0.01, and 0.02%. The addition of permeability

strongly changes the form of the curve. Plateauing is not

present, with the curve continuing to decrease with

increasing diffusion time and gradient strength.
Figures 7a and 7c show the synthetic diffusion-

weighted signal with fiber-distribution parameters fitted

to Mdx mouse model tissue histology. Changes in the

curve are subtler than in previous scenarios and are diffi-

cult to distinguish visually. We therefore plot the ratio of

each signal from the scenario to the equivalent in the

baseline. The baseline scenario measurements are gener-

ally of higher magnitude than in the baseline. The differ-

ence between the two signals is largest for diffusion

times above 40 ms, and there is a small increase with

gradient strength, although this is very weak.

Entropy Changes between Microstructural Scenarios

Figure 8 shows the signed percentage changes in entropy

between each scenario and the baseline. The largest

entropy changes are the result of changes in permeabili-

ty, on the order of 40–60%.
Atrophy as a result of shrinkage also leads to large

changes in entropy. The changes are less pronounced

than those observed for changes in permeability, but we

observe changes of 30–45%. Atrophy as a result of loss

of fibers shows entropy changes of 4–10%.
Changes in fiber radius distribution are more subtle

than those observed for the other scenarios, with entropy

changes on the order of 4–5%. These changes are still

considerably greater than those observed for noise alone,

which results in a mean entropy change of 0.6%.
Change in entropy as a result of fiber radius distribu-

tion has the opposite sign to that of the other scenarios,

indicating that the signal curve becomes more complex,

rather than less. The sign of the noise change is also pos-

itive, but the standard deviation of the noise entropy

change is 0.8% and hence not significantly different

from zero.

Acquisition Subset Optimization

Sensitivity is optimized to each microstructural scenario.

Optimal subsets of sizes 5 and 6 are given in Table 1 for

the smallest parameter change in each scenario. Acquisi-

tions selected in the M¼6 subsets, which are not present

in M¼5, are in bold. In each case, the overlap between

the sets is maximal.

FIG. 3. Synthetic diffusion attenuated decay curve from the base-
line scenario as a function of diffusion time (a) and gradient
strength (b).
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Parameter ranges optimizing entropy change is highly

dependent on the scenario. Permeability scenarios are

optimized for the longest diffusion times (180–200 ms)

and highest gradient strengths (0.090–0.120 Tm�1) con-

sidered. Internal fiber atrophy sensitivity is optimized

for parameter ranges that are dependent on the degree of

atrophy: the 5% scenario is optimized for diffusion times

between 90 and 180 ms, the 10% scenario 130–150 ms,

and the 20% scenario 120–170 ms, reflecting the change

in typical length scales. Notably, these diffusion time

ranges are well defined in each scenario. Optimal gradi-

ent strengths tend to be repeated in each set. The fiber

radius distribution scenario is optimally sensitive over a

very wide range of diffusion times: from 80–200 ms, but

with quite moderate gradient strengths of 0.020–0.030

Tm�1.

DISCUSSION AND CONCLUSIONS

We constructed Monte-Carlo simulations of diffusion in

hierarchical muscle tissue and investigated the effect of

changes to tissue microstructure on synthetic diffusion-

weighted measurements. The nested structure of muscle

tissue is fundamentally different from that experienced

by spins diffusing in brain tissue, and this affects the dif-

fusion dynamics. To quantify changes in diffusion sig-

nal, we employ an approach based on entropy, which

estimates the information content of the curve. Changes

in entropy can be used to assess sensitivity of the signal

to microstructural change.
Entropy changes observed suggest there is a measur-

able effect on signal in all microstructural scenarios con-

sidered. The signal is more sensitive to changes in

permeability than any of the other effects, even though

the change in the underlying parameter is an order of

magnitude smaller.
Plateaus in attenuation are observed in all scenarios

except permeability. These are the result of hard limits

on diffusion caused by restriction. In the long run,

restriction puts a limit on diffusion displacement. This

is not present for hindered compartments, which eventu-
ally attenuate away completely. Permeability acts to

reduce the overall amount of restriction present in the

system and removes hard limits on net displacement for

spins inside fibers, making the dynamics look more like

free diffusion than in the completely restricted case.

This removes the plateau otherwise observed in the sig-

nal curve.

FIG. 4. Decay curves in substrates with 5, 10, and 20% atrophy in the internal cylinder radius, as a function of diffusion time (top row)

and gradient strength (bottom row).
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Acquisition optimization results show that sensitivity
to the difference scenarios is optimized at different
parameter ranges. Changes in signal as a result of perme-
ability increase with increasing diffusion sensitivity;
hence, the optimization process picks the highest
weightings available. Changes as a result of atrophy and
fiber removal act to change the height of the plateau,
possibly because of changes in porosity (Supporting
Table S2); hence, the optimal set of acquisition parame-
ters sample the plateau. Changes to the curve as a result
of reduction in the size of internal radii shows a similar
pattern, but over a different range of diffusion times,
reflecting the shorter internal length scales. The optimi-
zation therefore selects a range of diffusion times associ-
ated with these length scales, and specific gradient
strengths that optimize the change in plateau height.

The current work treats each microstructural change
separately. In practice we would expect to encounter all
these effects together, and measure an overall diffusion
curve. Based on these simulated results, small changes in
permeability cause large differences in the signal. The fact
that no previous study has established a link between per-
meability change and Apparent Diffusion Coefficient

(ADC) places bounds on the amount of permeability and
permeability change in the tissue. The effect of the two
atrophy scenarios, although differing in magnitude, is
quite similar in terms of the actual changes to the curve,
and differentiating between them is not currently possi-
ble. Additionally, changes in plateau height would appear
difficult to resolve in the presence of increased permeabil-
ity, which removes the plateauing behavior. This further
suggests that the absence of a plateau in diffusion decay
curves at long diffusion times is an indication that perme-
ability is present in the tissue.

We have chosen to model muscles using parallel cylin-
ders. Although muscle tissue is known to consist of
highly parallel fibers, dispersion is known to be an
important effect from modeling work in brain tissue. The
current results show the effect of each microstructural
scenario separately to the effect of dispersion, which is
necessary so that effects not the result of fiber dispersion
can be separated out.

Measuring changes to underlying fiber radius distribu-
tion has received a lot of interest in the diffusion MR
modeling literature for the brain. Although some techni-
ques have succeeded in estimating distribution

FIG. 5. Decay curve in substrate with 2, 5, and 10% of fibers removed. The positions of the remaining cylinders are the same as in the
baseline scenario. The signal is plotted as a function of diffusion time (top row) and gradient strength (bottom row).
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parameters there (3,29), the resulting maps are frequently
noisy and the estimates are biased. The very small
changes in curve entropy observed here suggest that, at

least for the level of difference in radius distribution
considered, measuring fiber radius distribution parame-
ters in muscle tissue directly is challenging, especially if

permeability is not taken into account. We do observe,
however, that changes to the signal as a result of fiber
radius distribution differences are measurable across the

entire curve. For clinical purposes, it may be more prof-
itable to concentrate on classifying the overall decay
curve, such as by calculating an entropy for each voxel
directly from the scan data, as we have done here for

simulated data.
An important question regarding the current results is

how we can be sure that the simulations are giving the
correct results, given that there are no analytical models

available to test against. Validation of the current simula-
tion is indeed challenging, but the current implementa-
tion is able to make use of a large body of previous

work. Camino employs a robust object-oriented design
that enables code to be reused. The code that simulates
each individual cylinder in the simulation has been

extensively validated (11,17), as have the code that gen-
erates diffusion-weighted phase shifts, the code used to

generate radius samples (17), and the implementation of
permeable barriers (22).

The novel aspects of the simulation employed here
are the recursive cylinder positioning and hierarchical

intersection checking. These were tested by construct-
ing test cases of increasing complexity, whose results

could be verified by a separate calculation. These tests
covered intersection-checking inside and outside nested

cylinders and at different levels of cylinder hierarchy.
The code passes all test cases to the limits of floating
point accuracy. A sanity check is provided by the gen-

eration of substrate cross-section images, in which pix-
els are colored according to the results of checking the

intersection. Accordingly, the images in Figure 2 pro-
vide an additional assurance that the code is working

correctly.
Throughout this work we have assumed gamma distri-

butions for fiber radii. This choice is motivated by the
observation that radius histograms are skewed and non-

negative. The gamma distribution is a common choice in
the brain literature. There has been recent criticism of

FIG. 6. Decay curves in substrates with 0.05, 0.1, and 0.2% permeability in restricting membranes, as a function of diffusion time (top
row) and gradient strength (bottom row).
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the use of gamma distributions in modeling white mat-
ter, specifically that they put too much weight in the
tail. As we have seen, changes to the signal due to
changes in fiber distribution are subtle, so we would not

expect the choice of distribution to have a strong effect

on these results. Experiments with Gaussian distribu-
tions of radii reveal the choice to have an effect
on the magnitude of changes observed here, but the over-

all pattern of results remain the same (Supporting
Fig. S2).

The entropy we use here is conceptually related to the
more familiar thermodynamic entropy. The precise rela-

tionship between the two quantities has been long-
debated (30), but for current purposes it is enough to say
that the two qualities differ mostly in their interpretation

of the underlying quantity. Information theory concerns
itself with the probability of a given set of received data,
whereas thermodynamic entropy considers the probabili-
ties attached to sets of states in a microcanonical ensem-

ble. Both are a measure of the complexity of the system.
Additionally, non-thermodynamic entropies are not
bound by the second law of thermodynamics, and may

increase or decrease with changes to the system, as
indeed we observed in this study.

Changes in entropy reflect the curve shape, and these
changes may or may not be reflected in ADCs fitted to

the data (Supporting Fig. S1). The analysis presented
here can be adapted to consider ADC and which scan
parameters maximize ADC difference, but some care is

required to investigate how value, number, and ranges of
gradient strengths affect ADC and its sensitivity. Further
work is required to investigate this fully, but the current

FIG. 7. Decay curves in substrates
with cylinder radius distribution

parameters fitted to Mdx mouse
model tissue as a function of diffusion
time (a) and gradient strength (c). (b)

and (d) show the ratio of the signal
with the baseline scenario curve.

FIG. 8. Percent change in entropy of synthesized curves in each

microstructural scenario from the baseline.

1196 Hall and Clark



results do show a difference between the time depen-

dence of ADC in permeable and impermeable scenarios.
The substrate construction method has a proscribed

termination depth. Internal cylinders may also have an

internal structure of their own. The choice made here is

motivated by the range of length scales of interest in the

tissue, and constrained ultimately by the memory avail-

able on the system. Other than memory restrictions,

there is no reason why this approach could not be used

to construct models with deeper recursion, although an

appropriately short step length would be necessary to

minimize bias in the resulting signal.
Our optimization results suggest that individual effects

may be difficult to disentangle unambiguously from the

diffusion signal, but that the overall change to the diffu-

sion as a result of microstructural changes is measurable

over a specific parameter ranges. This suggests that

acquisitions can be tuned to individual changes or

applied in a more “broadband” sense.
Clinically, if we wish to image the net effect of all sce-

narios, a broad range of several diffusion times is preferred,

covering the entire range considered here so as to capture

changes to fiber radius at 80 ms, atrophy scenarios at 90–

180 ms, and permeability at 180–200 ms. Although in all

cases we have used a gradient duration of 20 ms, there

may be scope for further improvement by changing this.
The simulation code, including all novel additions

described here, is available open-source as part of the

Camino diffusion MR framework (www.camino.org.uk)

(18). Scripts used to generate all results and figures are

available upon request.
Simulation of water diffusion in a hierarchical system

such as muscle suggests that different ranges of diffusion

time should be used depending on whether the prevalent

feature of the pathology to be detected is a change in

permeability, loss of external or internal fibers, or net

reduction in fiber diameter. However, assuming these

factors do not change and that there is only change in

the fiber radius distribution (a possible scenario arising

from DMD histopathology), then changes of this nature

can be captured using diffusion times spanning 80 to

200 ms and gradient strengths of 0.02 to 0.03 Tm�1.

Overall, however, it may be desirable to acquire a
broader range of diffusion times to include sensitivity to
all microstructural scenarios.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of
this article.
Fig. S1. ADC as a function of diffusion time on lin-lin (left) and log-log
(right).
Fig. S2. Entropy changes in each scenario using Gaussian-distributed cyl-
inder radii.
Fig. S3. Lin-log (a and b) and log-log (c and d) plots of baseline signal
decay. Non-monoexponential decay is clearly evident.
Table S1. Combinations of gradient strength and diffusion time used to
generate synthetic measurements.
Table S2. Porosities in the atrophy scenario are unchanged at the top level
of structure and instead affect the volume fractions of cylinders nested
inside the outermost layer. In this case the porosity change is predictable
from the square of the atrophy factor. 2, 5, and 10% gives porosity
changes of 3.96, 9.75, and 10.90%, respectively. Baseline mean porosity
inside cylinders is 0.35, placing the overall change in the same range as for
the removal scenario.
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