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Abstract

The ill-posedness of the nonparametric instrumental variable (NPIV) model leads to estimators that

may suffer from poor statistical performance. In this paper, we explore the possibility of imposing shape

restrictions to improve the performance of the NPIV estimators. We assume that the function to be

estimated is monotone and consider a sieve estimator that enforces this monotonicity constraint. We

define a constrained measure of ill-posedness that is relevant for the constrained estimator and show

that, under a monotone IV assumption and certain other mild regularity conditions, this measure is

bounded uniformly over the dimension of the sieve space. This finding is in stark contrast to the well-

known result that the unconstrained sieve measure of ill-posedness that is relevant for the unconstrained

estimator grows to infinity with the dimension of the sieve space. Based on this result, we derive a novel

non-asymptotic error bound for the constrained estimator. The bound gives a set of data-generating

processes for which the monotonicity constraint has a particularly strong regularization effect and

considerably improves the performance of the estimator. The form of the bound implies that the

regularization effect can be strong even in large samples and even if the function to be estimated is steep,

particularly so if the NPIV model is severely ill-posed. Our simulation study confirms these findings

and reveals the potential for large performance gains from imposing the monotonicity constraint.
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1 Introduction

Nonparametric instrumental variable (NPIV) methods have received a lot of attention in the

recent econometric theory literature, but they are still far from the popularity that linear IV

and nonparametric conditional mean estimation methods enjoy in empirical work. One of the

main reasons for this originates from the fact that the NPIV model is ill-posed, which may cause

nonparametric estimators in this model to suffer from poor statistical performance.

In this paper, we explore the possibility of imposing shape constraints to improve the per-

formance of NPIV estimators. We study the NPIV model

Y = g(X) + ε, E[ε|W ] = 0, (1)

where Y is a dependent variable, X an endogenous explanatory variable, and W an instrumental

variable (IV). We are interested in the estimation of the nonparametric function g based on a

random sample of size n from the distribution of the triple (Y,X,W ). To simplify the presen-

tation we assume that X is a scalar, although the results can be easily extended to the case

where X is a vector containing one endogenous and several exogenous explanatory variables.

Departing from the existing literature on the estimation of the NPIV model, we assume that

the function g is increasing1 and consider a constrained estimator ĝc of g that is similar to the

unconstrained sieve estimators of Blundell, Chen, and Kristensen (2007) and Horowitz (2012)

but that enforces the monotonicity constraint. In addition to the monotonicity of g, we also

assume a monotone first stage relationship between X and W in the sense that the conditional

distribution of X given W corresponding to higher values of W first-order stochastically dom-

inates the same conditional distribution corresponding to lower values of W (the monotone IV

assumption).

We start our analysis from the observation that as long as the function g is strictly increasing,

as the sample size n gets large, any appropriate unconstrained estimator of g is increasing

with probability approaching one, in which case the corresponding constrained estimator is

numerically identical to the unconstrained one. Thus, the constrained estimator must have

the same, potentially very slow, rate of convergence as that of the unconstrained estimator.

In simulations, however, we find that the constrained estimator often outperforms, sometimes

substantially, the unconstrained one even if the sample size n is rather large and the function g

is strictly increasing; see Figure 1 for an example. Hence, it follows that the rate result misses

an important finite-sample phenomenon.

In this paper, we derive a novel non-asymptotic error bound for the constrained estimator

that captures this finite-sample phenomenon. For each sample size n, the bound gives a set

of data-generating processes for which the monotonicity constraint has a particularly strong

regularization effect, thereby considerably improving the performance of the estimator. The

1All results in the paper hold also when g is decreasing. In fact, as we show in the supplement to this paper,

the sign of the slope of g is identified under our monotonicity conditions.
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Figure 1: an example demonstrating performance gains from imposing the monotonicity constraint. In this

example, g(x) = x2 + 0.2x, W = Φ(ζ), X = Φ(ρζ +
√

1 − ρ2ε), ε = σ(ηε +
√

1 − η2ν), where (ζ, ε, ν) is a

triple of independent N(0, 1) random variables, ρ = 0.3, η = 0.3, σ = 0.5, and Φ(·) is the cdf of the N(0, 1)

distribution. The four panels of the figure show the square root of the MISE of the constrained (con) and the

unconstrained (uncon) sieve estimators defined in Section 3 as a function of the sample size n depending on the

dimension of the sieve space K. We use the sieve estimators based on the quadratic regression splines, so that

the sieve space is spanned by (1, x) if K = 2, by (1, x, x2) if K = 3, by (1, x, x2, (x − 1/2)2+) if K = 4, and

by (1, x, x2, (x − 1/3)2+, (x − 2/3)2+) if K = 5. The figure shows that the constrained estimator substantially

outperforms the unconstrained one as long as K ≥ 3 even in large samples.

form of the bound implies that the regularization effect can be strong even in large samples and

for steep functions g, particularly so if the NPIV model is severely ill-posed.

To establish our non-asymptotic error bound, we define a constrained sieve measure of ill-

posedness that is relevant for the constrained estimator. We demonstrate that as long as the

monotone IV assumption and certain other regularity conditions are satisfied, this measure is

bounded uniformly over the dimension of the sieve space. This should be contrasted with the

well-known result that the unconstrained sieve measure of ill-posedness that is relevant for the

unconstrained estimator grows to infinity, potentially very fast, with the dimension of the sieve

space; see Blundell, Chen, and Kristensen (2007).

More specifically, our non-asymptotic error bound for the constrained estimator ĝc of g has

the following structure: for each sample size n, uniformly over a certain large class of data-
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generating processes,

‖ĝc − g‖2,t ≤ C
(

min {‖Dg‖∞ + Vn, τnVn}+Bn

)
, (2)

holds with large probability, where C is a constant independent of n and g, ‖Dg‖∞ the maximum

slope of g, and ‖ · ‖2,t a certain L2-norm defined below. Bn on the right-hand side of this

bound is a bias term that behaves similarly to that of the unconstrained NPIV estimator, and

min{‖Dg‖∞+Vn, τnVn} is the variance term, where Vn is of the same order as the variance term

of a nonparametric conditional mean estimator up to a log-term, i.e. of a well-posed problem,

and τn is the unconstrained sieve measure of ill-posedness. Without the monotonicity constraint,

the variance term would be τnVn, but because of the monotonicity constraint, we can replace

τnVn by min{‖Dg‖∞ + Vn, τnVn}.
The main implications of the bound (2) are the following. First, note that the right-hand

side of the bound becomes smaller as the maximum slope of g decreases. Second, because of

ill-posedness, τn may be large, in which case

min{‖Dg‖∞ + Vn, τnVn} = ‖Dg‖∞ + Vn � τnVn, (3)

and it is this scenario in which the monotonicity constraint has a strong regularization effect. If

the NPIV model is severely ill-posed, τn may be particularly large, in which case (3) holds even

if the maximum slope ‖Dg‖∞ is relatively far away from zero, i.e. the function g is steep.

As the sample size n gets large, the bound eventually switches to the regime when τnVn

becomes small relative to ‖Dg‖∞, and the regularization effect of the monotonicity constraint

disappears. Asymptotically, the ill-posedness of the model, therefore, undermines the statistical

properties of the constrained estimator ĝc just as it does for the unconstrained estimator, and

may lead to a slow, logarithmic convergence rate. However, when ill-posedness is severe, the

switch to this regime may occur only at extremely large sample sizes.

Our simulation experiments confirm the theoretical findings and demonstrate possibly large

finite-sample performance improvements of the constrained estimator relative to the uncon-

strained one when the monotone IV assumption is satisfied. The estimates show that imposing

the monotonicity constraint on g removes the estimator’s non-monotone oscillations due to

sampling noise, which in the NPIV model can be particularly pronounced because of its ill-

posedness. Therefore, imposing the monotonicity constraint significantly reduces variance while

only slightly increasing bias.

Both of our monotonicity assumptions can be tested in the data. Perhaps more importantly

though, we regard both assumptions as natural in many economic applications. In fact, both of

these conditions often directly follow from economic theory. To see this consider the following

generic example. Suppose an agent chooses input X (e.g. schooling) to produce an outcome

Y (e.g. life-time earnings) such that Y = g(X) + ε, where ε summarizes determinants of the

outcome other than X. The cost of choosing a level X = x is C(x,W, η), whereW is a cost-shifter

(e.g. distance to college) and η represents (possibly vector-valued) unobserved heterogeneity in

4



costs (e.g. family background, a family’s taste for education, variation in local infrastructure).

The agent’s optimization problem can then be written as

X = arg max
x
{g(x) + ε− c(x,W, η)}

so that, from the first-order condition of this optimization problem, the function X(W, η) satisfies

∂X

∂W
=

∂2c
∂X∂W

∂2g
∂X2 − ∂2c

∂X2

≥ 0 (4)

if marginal cost are decreasing in W (i.e. ∂2c/∂X∂W ≤ 0), marginal cost are increasing in X

(i.e. ∂2c/∂X2 > 0), and the production function is concave (i.e. ∂2g/∂X2 ≤ 0). As long as

W is independent of the pair (ε, η), condition (4) implies our monotone IV assumption and g

increasing corresponds to our monotonicity assumption on the function of interest. Dependence

between η and ε generates endogeneity of X, and independence of W from (ε, η) implies that W

can be used as an instrument for X. Other examples are the estimation of Engel and demand

curves.

Matzkin (1994) advocates the use of shape restrictions in econometrics and argues that eco-

nomic theory often provides restrictions on functions of interest, such as monotonicity, concav-

ity, and/or Slutsky symmetry. In the context of the NPIV model (1), Freyberger and Horowitz

(2015) show that, in the absence of point-identification, shape restrictions may yield informa-

tive bounds on functionals of g and develop inference procedures when the explanatory variable

X and the instrument W are discrete. Blundell, Horowitz, and Parey (2013) demonstrate via

simulations that imposing Slutsky inequalities in a quantile NPIV model for gasoline demand

improves finite-sample properties of the NPIV estimator. Grasmair, Scherzer, and Vanhems

(2013) study the problem of demand estimation imposing various constraints implied by eco-

nomic theory, such as Slutsky inequalities, and derive the convergence rate of a constrained

NPIV estimator under an abstract projected source condition. Our results are different from

theirs because we focus on non-asymptotic error bounds, we derive our results under easily in-

terpretable, low-level conditions, and we show that the regularization effect of the monotonicity

constraint can be strong even in large samples and for steep functions g, particularly so if the

NPIV model is severely ill-posed.

Other related literature. The NPIV model has received substantial attention in the recent

econometrics literature. Newey and Powell (2003), Hall and Horowitz (2005), Blundell, Chen,

and Kristensen (2007), and Darolles, Fan, Florens, and Renault (2011) study identification of the

NPIV model (1) and propose estimators of the function g. See Horowitz (2011, 2014) for recent

surveys and further references. In the mildly ill-posed case, Hall and Horowitz (2005) derive

the minimax risk lower bound in L2-norm and show that their estimator achieves this lower

bound. Under different conditions, Chen and Reiß (2011) derive a similar bound for the mildly

and the severely ill-posed case and show that the estimator by Blundell, Chen, and Kristensen

(2007) achieves this bound. Chen and Christensen (2013) establish minimax risk bounds in the
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sup-norm, again both for the mildly and the severely ill-posed case. The optimal convergence

rates in the severely ill-posed case were shown to be logarithmic, which means that the slow

convergence rate of existing estimators is not a deficiency of those estimators but rather an

intrinsic feature of the statistical inverse problem.

There is also a large statistics literature on nonparametric estimation of monotone functions

when the regressor is exogenous, i.e. W = X, so that g is a conditional mean function. This

literature can be traced back at least to Brunk (1955). Surveys of this literature and further

references can be found in Yatchew (1998), Delecroix and Thomas-Agnan (2000), and Gijbels

(2004). For the case in which the regression function is both smooth and monotone, many

different ways of imposing monotonicity on the estimator have been studied; see, for example,

Mukerjee (1988), Cheng and Lin (1981), Wright (1981), Friedman and Tibshirani (1984), Ramsay

(1988), Mammen (1991), Ramsay (1998), Mammen and Thomas-Agnan (1999), Hall and Huang

(2001), Mammen, Marron, Turlach, and Wand (2001), and Dette, Neumeyer, and Pilz (2006).

Importantly, under the mild assumption that the estimators consistently estimate the derivative

of the regression function, the standard unconstrained nonparametric regression estimators are

known to be monotone with probability approaching one when the regression function is strictly

increasing. Therefore, such estimators have the same rate of convergence as the corresponding

constrained estimators that impose monotonicity (Mammen, 1991). As a consequence, gains

from imposing a monotonicity constraint can only be expected when the regression function is

close to the boundary of the constraint and/or in finite samples. Zhang (2002) and Chatterjee,

Guntuboyina, and Sen (2013) formalize this intuition by deriving risk bounds of the isotonic

(monotone) regression estimators and showing that these bounds imply fast convergence rates

when the regression function has flat parts. Our results are different from theirs because we

focus on the endogenous case with W 6= X and study the impact of monotonicity constraints in

the presence of ill-posedness which is absent in the standard regression problem.

STATA code. We provide STATA code implementing both the unconstrained and constrained

sieve NPIV estimators at http://github.com/danielwilhelm/STATA-NPIV.

Supplement. The supplement to this paper consists of two parts. Sections A and B are

available as “online supplement” and contain the proofs of the two main theorems. Sections C–I

are part of an additional supplement within “data and programs” on the Econometrica website.

These sections provide more detailed discussions of our results through examples, additional

results, and simulations.

Notation. For a differentiable function f : R → R, we use Df(x) to denote its derivative.

For random variables A and B, we denote by fA,B(a, b), fA|B(a|b), and fA(a) the joint, con-

ditional and marginal densities of (A,B), A given B, and A, respectively. Similarly, we let

FA,B(a, b), FA|B(a|b), and FA(a) refer to the corresponding cumulative distribution functions.

For an operator T : L2[0, 1] → L2[0, 1], we let ‖T‖2 denote the operator norm defined as
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‖T‖2 = suph∈L2[0,1]: ‖h‖2=1 ‖Th‖2. Finally, by increasing and decreasing we mean that a function

is non-decreasing and non-increasing, respectively.

2 Boundedness of the Constrained Measure of Ill-posedness

In this section, we introduce a constrained measure of ill-posedness for the NPIV model (1),

which is relevant for studying the behavior of the constrained estimator. We show that, unlike the

standard, unconstrained measure of ill-posedness introduced by Blundell, Chen, and Kristensen

(2007), our constrained measure is bounded, a result that plays a fundamental role in the

derivation of our non-asymptotic error bound in Section 3.

In the NPIV model (1), the function g solves the equation E[Y |W ] = E[g(X)|W ]. Letting

T : L2[0, 1]→ L2[0, 1] be the linear operator defined by (Th)(w) := E[h(X)|W = w]fW (w) and

m(w) := E[Y |W = w]fW (w), we can express this equation as

Tg = m. (5)

Let 0 < x1 < x2 < 1 be some constants and define the truncated L2-norm ‖ · ‖2,t by ‖h‖2,t :=

(
∫ x2
x1
h(x)2dx)1/2, h ∈ L2[0, 1]. For a ∈ R, let

H(a) :=

{
h ∈ L2[0, 1] : inf

0≤x′<x′′≤1

h(x′′)− h(x′)

x′′ − x′
≥ −a

}
be the space containing all functions in L2[0, 1] with lower derivative bounded from below by

−a uniformly over the interval [0, 1]. Then, the constrained measure of ill-posedness is

τ(a) := sup
h∈H(a)
‖h‖2,t=1

‖h‖2,t
‖Th‖2

. (6)

To study properties of τ(a), we impose two assumptions. Let 0 < δ1 < 1/2, 0 ≤ δ2 ≤ δ1,

δ2 < x1 < x2 < 1− δ2, and 0 < w1 < w2 < 1 be some constants.

Assumption 1 (Monotone IV). For all x,w′, w′′ ∈ (0, 1),

w′ ≤ w′′ ⇒ FX|W (x|w′) ≥ FX|W (x|w′′). (7)

Furthermore, there exists a constant CF > 1 such that

FX|W (x|w1) ≥ CFFX|W (x|w2), ∀x ∈ (0, 1− δ1) (8)

and

CF (1− FX|W (x|w1)) ≤ 1− FX|W (x|w2), ∀x ∈ (δ1, 1) (9)

The first part of this assumption, condition (7), requires first-order stochastic dominance of

the conditional distribution of the endogenous explanatory variable X given the instrument W

as we increase the value of the instrument W . Standard tests for stochastic dominance (e.g. Lee,

7



Linton, and Whang, 2009) can be employed to test condition (7). If the first stage relationship

can be written asX = r(W,U) for some vector of unobservables U that is independent ofW , then

condition (7) is equivalent to r(w, u) being monotone in its first argument for every u. Finally,

note that this condition is not related to the monotone IV assumption in the influential work

by Manski and Pepper (2000) which requires the function w 7→ E[ε|W = w] to be increasing.

Instead, we maintain the mean independence condition E[ε|W ] = 0.

Conditions (8) and (9) strengthen the stochastic dominance in (7) in the sense that the

conditional distribution is required to “shift to the right” by a strictly positive amount at least

between two values of the instrument, w1 and w2, so that the instrument is not redundant.

Conditions (8) and (9) are rather weak as they require such a shift to occur only in some

intervals (0, 1− δ1) and (δ1, 1), respectively.

Assumption 2 (Density). (i) The joint distribution of the pair (X,W ) is absolutely con-

tinuous with respect to the Lebesgue measure on [0, 1]2 with the density fX,W (x,w) satisfying∫ 1
0

∫ 1
0 fX,W (x,w)2dxdw ≤ CT for some finite constant CT . (ii) There exists a constant cf > 0

such that fX|W (x|w) ≥ cf for all x ∈ [δ2, 1− δ2] and w ∈ {w1, w2}. (iii) There exists constants

0 < cW ≤ CW <∞ such that cW ≤ fW (w) ≤ CW for all w ∈ [0, 1].

This is a mild regularity assumption. Examples C.1 and C.2 in the supplement show that

Assumptions 1 and 2 are satisfied when (X,W ) is a transformation of a bivariate normal random

vector with positive correlation to [0, 1]2 or when the first-stage relationship between X and W

has random coefficients.

Our first result gives a bound on τ(a).

Theorem 1 (Bound for the constrained Measure of Ill-Posedness). Let Assumptions 1 and 2 be

satisfied. Then there exist constants cτ > 0 and 0 < Cτ <∞ such that, for all a ≤ cτ ,

τ(a) ≤ Cτ .

Here, cτ and Cτ depend only on the constants appearing in Assumptions 1, 2, and on x1, x2.

This theorem shows that τ(a) must be finite when a is not too large. It implies in particular

that the constrained measure of ill-posedness is finite when defined over the set of increasing

functions h ∈ H(0), i.e. τ(0) ≤ Cτ < ∞. This result is important because, as we show in

Section C.2 of the supplement, τ(∞) is infinite for many ill-posed and, in particular, for all

severely ill-posed problems. This suggests that imposing shape constraints, like monotonicity,

may have a substantial regularization effect.

Even though Theorem 1 may seem surprising and is important for studying the finite-sample

behavior of the constrained estimator we present in the next section, it does not imply well-

posedness of the constrained NPIV problem (Scaillet, 2016).

Remark 1 (Reasons for norm truncation). There are two reasons for using the truncated L2-

norm ‖ · ‖2,t in the numerator on the right-hand side of (6) instead of the usual L2-norm ‖ · ‖2.
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First, the main argument in the proof of Theorem 1, Lemma A.2 in the supplement, shows that

for any increasing continuously differentiable h ∈ L1[0, 1], we have∫ 1−δ2

δ2

|h(x)|dx ≤ C‖Th‖1, (10)

where C is finite if cf > 0. For some distributions of (X,W ), like a transformation of a bivariate

normal random vector with positive correlation to [0, 1]2, Assumption 2 holds with cf > 0 only

if δ2 > 0, which introduces the norm truncation on the left-hand side of (10). For many other

distributions of (X,W ), however, Assumption 2 holds with cf > 0 even if δ2 = 0. In this case,

(10) becomes

‖h‖1 ≤ C‖Th‖1, (11)

and we can avoid the norm truncation in the L1-norm bound. Second, the norm truncation is

required to transform the L1-norm bounds (10) and (11) into the desired L2-norm bound. To

see this, consider the case δ2 = 0. Since ‖Th‖1 ≤ ‖Th‖2 and, for any increasing h,

‖h‖2,t =

(∫ x2

x1

h(x)2dx

)1/2

≤
√
x2 − x1

min{x1, 1− x2}
‖h‖1,

the inequality (11) implies

‖h‖2,t ≤
C
√
x2 − x1

min{x1, 1− x2}
‖Th‖2; (12)

see Lemma A.1 in the supplement for details. This explains the reasons for the norm truncation

in our arguments and also how the bound (12) changes as we send x1 to 0 and x2 to 1. �

3 Non-asymptotic Risk Bounds

The rate at which unconstrained NPIV estimators converge to g depends crucially on the so-

called sieve measure of ill-posedness, which, unlike τ(a), does not measure ill-posedness over

the space H(a), but rather over the space Hn(∞), a finite-dimensional (sieve) approximation to

H(∞). In particular, the convergence rate is slower the faster the sieve measure of ill-posedness

grows with the dimensionality of the sieve space Hn(∞). The convergence rates can be as

slow as logarithmic. Since by Theorem 1, our monotonicity assumptions imply boundedness of

τ(a) for some range of finite values a, we expect these assumptions to translate into favorable

performance of a constrained estimator that imposes monotonicity of g. In this section, we

derive a novel non-asymptotic bound on the estimation error of the constrained estimator that

imposes monotonicity of g (Theorem 2), which gives a set of data-generating processes for which

the monotonicity constraint has a strong regularization effect and substantially improves finite-

sample properties of the estimator.

Let (Yi, Xi,Wi), i = 1, . . . , n, be an i.i.d. sample from the distribution of (Y,X,W ). To define

our estimator, we first introduce some notation. Let {pk(x), k ≥ 1} and {qk(w), k ≥ 1} be two

orthonormal bases in L2[0, 1]. For K = Kn ≥ 1 and J = Jn ≥ Kn, let p(x) := (p1(x), . . . , pK(x))′
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and q(w) := (q1(w), . . . , qJ(w))′ be vectors of basis functions. Define P := (p(X1), . . . , p(Xn))′,

Q := (q(W1), . . . , q(Wn))′, and Y := (Y1, . . . , Yn)′. LetHn(a) be a sequence of finite-dimensional

spaces defined by

Hn(a) :=

h ∈ H(a) : ∃b1, . . . , bKn ∈ R with h =

Kn∑
j=1

bjpj

 ,

which become dense in H(a) as n → ∞. Throughout the paper, we assume that ‖g‖2 < Cb

where Cb is a large but finite constant known by the researcher. We define two estimators of g:

the unconstrained estimator ĝu(x) := p(x)′β̂u with

β̂u := argminb∈RK :‖b‖≤Cb
(Y −Pb)′Q(Q′Q)−1Q′(Y −Pb), (13)

which is similar to the estimator defined in Horowitz (2012) and a special case of the estimator

considered in Blundell, Chen, and Kristensen (2007), and the constrained estimator ĝc(x) :=

p(x)′β̂c with

β̂c := argminb∈RK : p(·)′b∈Hn(0),‖b‖≤Cb
(Y −Pb)′Q(Q′Q)−1Q′(Y −Pb), (14)

which imposes the monotonicity of g through the constraint p(·)′b ∈ Hn(0). Define the con-

strained and unconstrained sieve measures of ill-posedness τn,t(a) and τn as

τn,t(a) := sup
h∈Hn(a)
‖h‖2,t=1

‖h‖2,t
‖Th‖2

and τn := sup
h∈Hn(∞)

‖h‖2
‖Th‖2

.

It is well-known that the unconstrained measure τn →∞ as n→∞ and the rate at which this

happens is related to the rate at which the singular values of T converge to zero (e.g. Blundell,

Chen, and Kristensen (2007), Horowitz (2012)). Since τ(a) ≤ Cτ for all a ≤ cτ by Theorem 1

and since by definition τn,t(a) ≤ τ(a), we also have τn,t(a) ≤ Cτ for all a ≤ cτ . Thus, for all

values of a that are not too large, the constrained measure τn,t(a) remains bounded uniformly

over all n, irrespectively of how fast the singular values of T converge to zero.

Let s > 0 be some constant. Also, define the operator Tn : L2[0, 1]→ L2[0, 1] by (Tnh)(w) :=

q(w)′E[q(W )p(X)′]E[p(U)h(U)] with w ∈ [0, 1] and U ∼ U [0, 1]. Finally, denote ξK,p :=

supx∈[0,1] ‖p(x)‖, ξJ,q := supw∈[0,1] ‖q(w)‖, and ξn := max(ξK,p, ξJ,q).

Assumption 3 (Monotonicity of g). The function g is increasing.

Assumption 4 (Moments). For some CB <∞, (i) E[ε2|W ] ≤ CB and (ii) E[g(X)2|W ] ≤ CB.

Assumption 5 (Relationship between J and K). For some constant CJ <∞, J ≤ CJK.

Assumption 6 (Approximation of g). There exist βn ∈ RK and a constant Cg < ∞ such

that the function gn(x) := p(x)′βn, defined for all x ∈ [0, 1], satisfies (i) gn ∈ Hn(0), (ii)

‖g − gn‖2 ≤ CgK−s, and (iii) ‖T (g − gn)‖2 ≤ Cgτ−1n K−s.
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Assumption 7 (Approximation of m). There exist γn ∈ RJ and a constant Cm <∞ such that

the function mn(w) := q(w)′γn, defined for all w ∈ [0, 1], satisfies ‖m−mn‖2 ≤ Cmτ−1n J−s .

Assumption 8 (Operator T ). (i) The operator T is injective and (ii) for some constant Ca <

∞, ‖(T − Tn)h‖2 ≤ Caτ−1n K−s‖h‖2 for all h ∈ Hn(∞).

Assumption 3 is one of our two monotonicity conditions. The other assumptions are standard

in the NPIV literature. Assumption 4 is a mild moment condition. Assumption 5 is satisfied

when the dimension of the vector q(w) is not much larger than the dimension of the vector

p(x). The first part of Assumption 6 restricts the approximating function gn for g to be increas-

ing. The second part requires a particular bound on the approximation error in the L2-norm.

De Vore (1977a,b) show that the assumption ‖g−gn‖2 ≤ CgK−s holds when the approximating

basis p1, . . . , pK consists of polynomial or spline functions and g belongs to a Hölder class with

smoothness level s. The third part of this condition is similar to Assumption 6 in Blundell,

Chen, and Kristensen (2007). Assumption 7 is similar to Assumption 3(iii) in Horowitz (2012)

and Assumption 8 is similar to Assumption 5 in Horowitz (2012). Therefore, comments made

there also apply here.

Lemma B.1 in the supplement formalizes the intuitive result that the unconstrained and

constrained estimators must possess the same convergence rate when the function of interest,

g, is strictly increasing. Therefore, imposing the monotonicity constraint cannot improve the

convergence rate of the NPIV estimator in that case. On the other hand, our simulations in

Section 4 show significant finite sample performance gains from imposing the constraint, even

in very large samples and for functions g that are strictly increasing and relatively steep. The

following theorem, the main result of this paper, explains these seemingly conflicting findings:

Theorem 2 (Non-asymptotic error bound for the constrained estimator). Let Assumptions 1-8

be satisfied, and let δ ≥ 0 be some constant. Assume that ξ2n log n/n ≤ c for sufficiently small

c > 0. Then with probability at least 1− α− n−1, we have

‖ĝc − g‖2,t ≤ C
{
δ + τn,t

(‖Dgn‖∞
δ

)
Vn +K−s

}
(15)

and

‖ĝc − g‖2,t ≤ C min
{
‖Dg‖∞ + Vn, τnVn

}
+ CK−s, (16)

where Vn :=
√
K/(αn) + (ξ2n log n)/n. Here, c and C depend only on the constants appearing in

Assumptions 1-8, and on x1, x2.

To explain the main features of this theorem, it is important to notice that C in the bounds

(15) and (16) depends only on the constants appearing in Assumptions 1-8, and on x1, x2, and

so these bounds hold uniformly over all data-generating processes that satisfy those assumptions

with the same constants.2 In particular, for any two data-generating processes in this set, the

2The dependence of C on those constants can actually be traced from the proof of the theorem, but we omit

these expressions here to save space.
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same non-asymptotic bounds (15) and (16) hold with the same constant C, even though the

unconstrained sieve measure of ill-posedness τn may be of different order of magnitude for these

two data-generating processes.

The bound (15) holds for any δ ≥ 0, which means, in principle, we could minimize the

right-hand side of the bound over δ. However, we do not know the explicit form of the function

τn,t(·), which makes it impossible to obtain an explicit minimal value of the right-hand side of

(15). On the other hand, we know from the discussion above that τn,t(a) ≤ Cτ for all a ≤ cτ .

Using this inequality, we obtain the bound (16).

The right-hand side of (16) consists of two parts, the bias term CK−s that vanishes with the

number of series terms K and the variance term C min{‖Dg‖∞+ Vn, τnVn}. The variance term

depends on the maximum slope ‖Dg‖∞ of g, the unconstrained sieve measure of ill-posedness τn,

and Vn that, for many commonly used bases, is of order
√
K log n/n, the order of the variance

in well-posed problems such as conditional mean estimation (up to the log-factor).

The bound (16) has several interesting features. First, the right-hand side of the bound

weakly decreases with the magnitude of the maximum slope of g, so that the bound is tighter

for flatter functions. Also, the higher the desired level of confidence 1− α with which we want

to bound the estimation error, the larger the bound.

Second, and more importantly, the variance term in the bound (16) is determined by the

minimum of two regimes. For a given sample size n, the minimum is attained in the first regime

if

‖Dg‖∞ ≤ (τn − 1)Vn. (17)

In this regime, the right-hand side of the bound (16) is independent of the (unconstrained) sieve

measure of ill-posedness τn, and so is independent of whether the original NPIV model (1) is

mildly or severely ill-posed. This is the regime in which the bound relies upon the monotonicity

constraint imposed on the estimator ĝc and in which the regularization effect of the monotonicity

constraint is strong as long as ‖Dg‖∞ � (τn−1)Vn. This regime is important since even though

Vn is expected to be small, because of ill-posedness, τn can be large, or even very large in severely

ill-posed problems, and so this regime may be active even in relatively large samples and for

relatively steep functions g.

Third, as the sample size n gets large, the right-hand side of the inequality (17) decreases

(if K = Kn grows slowly enough) and eventually becomes smaller than the left-hand side, and

the bound (16) switches to its second regime, in which it depends on the (unconstrained) sieve

measure of ill-posedness τn. This is the regime in which the monotonicity constraint imposed

on ĝc has no impact on the error bound. However, when the problem is sufficiently ill-posed,

this regime switch may occur only at extremely large sample sizes. Panel (a) in Figure 2

illustrates this point. Lines A and B denote ‖Dg‖∞ + Vn (first regime) and τnVn (second

regime), respectively. A converges to the maximum slope ‖Dg‖∞ as n→∞, but, for moderate

n, is of smaller order than B because of the multiplication by the possibly large factor τn. As

n grows sufficiently large, i.e. larger than n0, B becomes smaller than A. Therefore, the error

12
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Figure 2: Stylized graphs showing the relationship of the two regimes determining the minimum of the estimation

error bound in (15).

bound, which is the minimum of A and B, is in its first regime, in which the monotonicity

constraint has an impact, up to the sample size n0 and then switches to the second regime in

which the constraint becomes irrelevant and the ill-posedness of the problem determines the

speed of convergence to zero.

Remark 2 (Truncated norm as performance measure). The truncation of the L2-norm on the

left-hand side of the bounds (15) and (16) does not change the meaning of the bounds from a

practical point of view because, in most applications, researchers are typically not interested in

the values of the function g arbitrarily close to the boundary but rather in the values of g(x) for

x in the interior of the support of X. �

Remark 3 (Robustness of the constrained estimator to tuning parameter choice). Implemen-

tation of the estimators ĝc and ĝu requires selecting the number of series terms K = Kn and

J = Jn. This is a difficult problem because the measure of ill-posedness τn, appearing in the

convergence rate of both estimators, depends on K = Kn and can blow up quickly as we increase

K. Therefore, setting K higher than the optimal value may result in a severe deterioration of

the statistical properties of ĝu. The problem is alleviated, however, in the case of the con-

strained estimator ĝc because ĝc satisfies the bound (16) of Theorem 2, which is independent of

τn for sufficiently large K. In this sense, the constrained estimator ĝc possesses some robustness

against setting K too high. This observation is confirmed by our simulations in Section 4 and

in the supplement. �

Remark 4 (Local-to-flat asymptotics). An alternative explanation of the impact the mono-

tonicity constraint has on the NPIV estimator comes from a “local-to-flat” asymptotic theory in

which we consider a sequence of data-generating processes indexed by the sample size for which

the maximum slope of g drifts to zero. Corollary D.1 in the supplement, a straightforward impli-

cation of Theorem 2, shows that if ‖Dg‖∞ = O(n−s/(1+2s)
√

log n) and K = Kn = CKn
1/(1+2s)
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for some 0 < CK <∞, then

‖ĝc − g‖2,t = Op(n
−s/(1+2s)

√
log n). (18)

Therefore, in the shrinking neighborhood where ‖Dg‖∞ = O(n−s/(1+2s)
√

log n), the constrained

estimator’s convergence rate is the fast polynomial rate of nonparametric conditional mean

regression estimators up to a (log n)1/2 factor, regardless of whether the original NPIV problem

without our monotonicity assumptions is mildly or severely ill-posed. The reason why this is

possible is illustrated in panel (b) of Figure 2. In the shrinking neighborhood, the minimum in

(16) is always attained in the first regime because A is always below B. Finally, we could consider

letting the neighborhood for ‖Dg‖∞ shrink at slower rates than O(n−s/(1+2s)
√

log n), thereby

increasing the neighborhood, but would then obtain a convergence rate for the estimation error

that lies between the fast one in (18) and the standard slow convergence rate for fixed g. �

4 Simulations

In this section, we study the finite-sample behavior of our constrained estimator ĝc that imposes

monotonicity of g and compare its performance to that of the unconstrained estimator ĝu. We

consider the NPIV model Y = g(X) + ε, E[ε|W ] = 0, for two different functions g:

Model 1: g(x) = x2 + 0.2x, x ∈ [0, 1],

Model 2: g(x) = 2(x− 1/2)2+ + 0.5x, x ∈ [0, 1],

where for any a ∈ R, we denote (a)+ := a1{a > 0}. We set W = Φ(ζ), X = Φ(ρζ +
√

1− ρ2ε),
and ε = σ(ηε +

√
1− η2ν), where ρ, η, and σ are parameters and ζ, ε, and ν are independent

N(0, 1) random variables. We set σ = 0.5 and ρ = η = 0.3. Simulations for other parameter

choices yield similar findings and are reported in the supplement.

For both functions g and both the constrained and unconstrained estimators, we use the

same sieve spaces for X and W , that is, p(x) = q(x) for all x ∈ [0, 1]. We vary the dimension

of the sieve space, K, from 2 to 5 and choose the basis functions to be regression splines:

p(x) = (1, x)′ if K = 2, p(x) = (1, x, x2)′ if K = 3, p(x) = (1, x, x2, (x − 1/2)2+)′ if K = 4, and

p(x) = (1, x, x2, (x− 1/3)2+, (x− 2/3)2+)′ if K = 5.

The results of our experiments for models 1 and 2 are presented in Tables 1 and 2, respec-

tively. Each table shows the MISE of the constrained estimator (top panel), the MISE of the

unconstrained estimator (middle panel), and their ratio (bottom panel) as a function of the sam-

ple size n and the dimension of the sieve space K. Specifically, the top and middle panels show

the empirical median of 1, 000 ·
∫ 1
0 (ĝc(x)−g(x))2dx and 1, 000 ·

∫ 1
0 (ĝu(x)−g(x))2dx, respectively,

over 500 simulations.3. The bottom panel reports the ratio of these two quantities. Both for

3We have also calculated the empirical means but we prefer to report the empirical medians because the

empirical mean for the unconstrained estimator is often unstable due to outliers arising when some singular

values of the matrix P′Q/n are too close to zero; reporting the empirical means would be even more favorable

for the constrained estimator.
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the constrained and unconstrained estimators, we also report in the last column of the top and

middle panels the optimal value of the corresponding MISE that is obtained by optimization

over the dimension of the sieve space K. Finally, the last column of the bottom panel reports

the ratio of the optimal value of the MISE of the constrained estimator to the optimal value of

the MISE of the unconstrained estimator.

The results indicate that the constrained estimator often outperforms, sometimes substan-

tially, the unconstrained one even if the sample size n is rather large. For example, in the

design with g(x) = x2 + 0.2x (Table 1), when n = 5, 000 and K is chosen optimally both for

the constrained and unconstrained estimators, the ratio of the MISE of the constrained estima-

tor to the MISE of the unconstrained one is equal to remarkable 0.2, so that the constrained

estimator is 5 times more efficient than the unconstrained one. The reason for this efficiency

gain is that using the unconstrained estimator with K = 2 yields a large bias but increasing

K to 3 leads to a large variance, whereas using the constrained estimator with K = 3 gives a

relatively small variance, with the bias being relatively small as well. In addition, in the design

with g(x) = 2(x− 1/2)2+ + 0.5x (Table 2), when K is chosen optimally both for the constrained

and unconstrained estimators, the ratio of the MISE of the constrained estimator to the MISE

of the unconstrained one does not exceed 0.8 even if n = 500, 000, which is a very large sample

size for a typical dataset in economics.

Our simulation results also show that imposing the monotonicity of g on the estimator

sometimes may not lead to efficiency gains in small samples (see the case n = 500 in Tables 1

and 2). This happens because in small samples, it is optimal to set K = 2, so that p(x) = (1, x)′,

even for the constrained estimator, in which case the monotonicity constraint is not binding with

large probability. However, in some cases the gain can be substantial even when n = 500; see

design with g(x) = x2 + 0.2x, ρ = 0.5, and η = 0.3 in Table 1 of the supplement, for example.

Finally, it is interesting to note that whenever K is set to be larger than optimal, the growth

of the MISE of the constrained estimator as we further increase K is much slower than that of the

MISE of the unconstrained estimator. For example, in the design with g(x) = 2(x−1/2)2++0.5x

(Table 2) with n = 5, 000, it is optimal to set K = 3 both for the constrained and unconstrained

estimators, but when we increase K from 3 to 4, the MISE of the constrained estimator grows

from 1.86 to 7.32 and the MISE of the unconstrained estimator grows from 6.49 to 149.46. This

shows that the constrained estimator is more robust than the unconstrained one to incidental

mistakes in the choice of K.

5 Concluding Remarks

In this paper, we develop a novel non-asymptotic bound on the estimation error of the con-

strained NPIV estimator that imposes the constraint that the function g to be estimated is

increasing. The bound is able to explain an empirical observation that the constrained estima-

tor often substantially outperforms the unconstrained one even when the sample size is large

and the function g is strictly increasing and steep, which is difficult to explain because the
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Constrained estimator

K = 2 K = 3 K = 4 K = 5 optimal K

n = 500 9.54 13.44 26.32 38.97 9.54

n = 1, 000 7.41 6.19 23.17 34.04 6.19

n = 5, 000 5.92 1.20 10.42 14.33 1.20

n = 10, 000 5.75 0.80 8.40 9.96 0.80

n = 50, 000 5.59 0.29 2.96 5.89 0.29

n = 100, 000 5.58 0.26 1.47 4.35 0.26

n = 500, 000 5.56 0.05 0.31 3.11 0.05

Unconstrained estimator

K = 2 K = 3 K = 4 K = 5 optimal K

n = 500 9.54 75.08 540.11 1069.93 9.54

n = 1, 000 7.41 32.65 389.19 839.24 7.41

n = 5, 000 5.92 6.10 149.46 515.16 5.92

n = 10, 000 5.75 2.68 104.85 546.66 2.68

n = 50, 000 5.59 0.54 30.41 382.70 0.54

n = 100, 000 5.58 0.28 11.14 248.70 0.28

n = 500, 000 5.56 0.05 1.92 125.80 0.05

Ratio

K = 2 K = 3 K = 4 K = 5 optimal K

n = 500 1.00 0.18 0.05 0.04 1.00

n = 1, 000 1.00 0.19 0.06 0.04 0.84

n = 5, 000 1.00 0.20 0.07 0.03 0.20

n = 10, 000 1.00 0.30 0.08 0.02 0.30

n = 50, 000 1.00 0.54 0.10 0.02 0.54

n = 100, 000 1.00 0.94 0.13 0.02 0.94

n = 500, 000 1.00 1.00 0.16 0.02 1.00

Table 1: simulation results for the case g(x) = x2 +0.2x, ρ = 0.3, and η = 0.3. The top panel shows the MISE of

the constrained estimator ĝc, multiplied by 1000, as a function of n and K. The middle panel shows the MISE of

the unconstrained estimator ĝu, multiplied by 1000, as a function of n and K. Both in the top and in the middle

panels, the last column shows the minimal value of the MISE of the corresponding estimator optimized over K.

The bottom panel shows the ratio of the MISE of the constrained estimator to the MISE of the unconstrained

estimator as a function n and K. The last column of the bottom panel shows the ratio of the optimal value of

the MISE of the constrained estimator to the optimal value of the MISE of the unconstrained estimator.
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Constrained estimator

K = 2 K = 3 K = 4 K = 5 optimal K

n = 500 10.20 14.84 16.88 26.33 10.20

n = 1, 000 8.25 6.84 13.05 21.40 6.84

n = 5, 000 6.77 1.86 7.32 10.78 1.86

n = 10, 000 6.56 1.51 4.13 7.89 1.51

n = 50, 000 6.39 0.96 1.61 4.98 0.96

n = 100, 000 6.37 0.90 1.36 4.66 0.90

n = 500, 000 6.36 0.86 0.66 2.43 0.66

Unconstrained estimator

K = 2 K = 3 K = 4 K = 5 optimal K

n = 500 10.20 75.53 540.11 1069.94 10.20

n = 1, 000 8.25 34.95 389.19 850.47 8.25

n = 5, 000 6.77 6.49 149.46 510.83 6.49

n = 10, 000 6.56 3.69 104.85 554.15 3.69

n = 50, 000 6.39 1.35 30.41 375.25 1.35

n = 100, 000 6.37 1.08 11.14 248.41 1.08

n = 500, 000 6.36 0.86 1.92 128.26 0.86

Ratio

K = 2 K = 3 K = 4 K = 5 optimal K

n = 500 1.00 0.20 0.03 0.02 1.00

n = 1, 000 1.00 0.20 0.03 0.03 0.83

n = 5, 000 1.00 0.29 0.05 0.02 0.29

n = 10, 000 1.00 0.41 0.04 0.01 0.41

n = 50, 000 1.00 0.71 0.05 0.01 0.71

n = 100, 000 1.00 0.83 0.12 0.02 0.83

n = 500, 000 1.00 1.00 0.34 0.02 0.77

Table 2: simulation results for the case g(x) = 2(x− 1/2)2+ + 0.5x, ρ = 0.3, and η = 0.3. The top panel shows

the MISE of the constrained estimator ĝc, multiplied by 1000, as a function of n and K. The middle panel shows

the MISE of the unconstrained estimator ĝu, multiplied by 1000, as a function of n and K. Both in the top

and in the middle panels, the last column shows the minimal value of the MISE of the corresponding estimator

optimized over K. The bottom panel shows the ratio of the MISE of the constrained estimator to the MISE of

the unconstrained estimator as a function n and K. The last column of the bottom panel shows the ratio of the

optimal value of the MISE of the constrained estimator to the optimal value of the MISE of the unconstrained

estimator.
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constrained and unconstrained estimators are asymptotically equivalent as long as g is strictly

increasing.

In principle, assuming usual under-smoothing conditions, this bound can be used for con-

structing confidence bands for g based on the constrained estimator. Indeed, from the proof of

Theorem 2 in the supplement, we can trace back the dependence of the constant C in the bound

(16) on the constants appearing in the assumptions, and those constants can be estimated from

the data. However, the resulting confidence bands would be rather wide because the bound

(16) holds uniformly over a large class of data-generating processes, and the same constant C

applies to the whole class. Instead, confidence bands based on the constrained estimator can be

constructed using the methods developed in Chernozhukov, Newey, and Santos (2015).

The main purpose of this paper is to investigate how the monotonicity constraints improve

estimation of the point-identified NPIV model. However, point identification of the NPIV model

requires completeness conditions, which are somewhat difficult to interpret, and so it is also of

great interest to study how monotonicity or other shape restrictions help with identification of

the NPIV model in the absence of these completeness conditions. Toward this goal, in Section E

of the supplement, we show that the sign of the slope of g is identified under our monotonicity

conditions (when we assume that g is monotone but do not specify whether it is increasing

or decreasing). We also provide bounds on the identified set for g that are implied by our

monotonicity conditions, which complement the results of Freyberger and Horowitz (2015) for

the case of discrete data. It would be interesting future work to tighten these bounds and to

develop estimators for the resulting identified set.

In Section G of the supplement, we apply the constrained and unconstrained NPIV estimators

to the estimation of gasoline demand in the U.S., allowing for endogeneity of prices. We find that

imposing the monotonicity constraint on the estimator has a large impact by eliminating the

implausible increasing parts of the unconstrained estimator. The constrained NPIV estimator is

similar to the constrained conditional mean estimator that assumes exogeneity of prices, which

confirms the findings of the exogeneity test in Blundell, Horowitz, and Parey (2012).
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