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Abstract

During speciation, the degree of clustering of a population in terms of genetic
polymorphisms increases gradually until the exchange of genes between sub-
populations is no longer possible. The isolation-with-migration (IM) model
is used to estimate how long ago an ancestral population divided into two
subpopulations, and to infer the level of gene flow between the subpopulations
during genetic divergence. Its assumption of constant gene flow until the present
is however particularly unrealistic in the context of two present-day species. In
addition, traditional methods to fit the IM model are aimed at large numbers
of DNA sequences from a small number of loci, and are computationally very
expensive.

To overcome these limitations, this thesis begins by focusing on an extension
of the IM model in which the initial period of gene flow is followed by a period
of isolation: the so-called isolation-with-initial-migration (IIM) model. For an
IIM model with potentially asymmetric gene flow and unequal subpopulation
sizes, the distribution of the number of nucleotide differences between two
homologous DNA sequences is derived. Based on this distribution, we develop
a maximum-likelihood estimation method which is appropriate for data sets
containing observations from many independent loci, and is both very efficient
and able to deal with mutation rate heterogeneity. Using a data set of Drosophila
sequences from approximately 30,000 loci, we show how alternative models,
representing different evolutionary scenarios, can be distinguished by means of
likelihood ratio tests. To enable inference on both historical and contemporary
rates of gene flow between two closely related species, our estimation method
is extended to a generalised IM (GIM) model, in which gene flow rates and
population sizes can change at some point in the past.

Finally, we show how the theory of statistical inference under model mis-
specification can be used to improve the accuracy of interval estimation and
comparison of speciation models; and we develop a simulation method to esti-
mate the limiting distribution of the likelihood ratio statistic when the true
parameter vector lies on the boundary of the parameter space.
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population is given by the integer part of the value inside its
corresponding box. . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2 Three extensions of the IM model: the isolation-with-initial-
migration (IIM) model of Wilkinson-Herbots (2012), with sym-
metric gene flow and symmetric subpopulation sizes during gene
flow (top left-hand side); an IIM model which drops both sym-
metry assumptions of Wilkinson-Herbots (2012) (top right-hand
side); and an IM model in which migration rates and population
sizes are allowed to change at time τ1 (bottom). The size of each
population is given by (the integer part of) the value inside its
corresponding box. . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1 The IIM model. The size of each population is given by the
integer part of the value inside its corresponding box. The
parameters m12 and m21 represent the probabilities of migration
of each sequence between τ0 and τ1. Between τ1 and the present,
there is no gene flow between the subpopulations. . . . . . . . . 30

2.2 Boxplots of estimates of M under asymmetric migration and
unequal population sizes during divergence. The true values
of M2 are given on the x axis. The parameter M1 is fixed
at 0.3 throughout. The parameter b, given on the top of each
graph, represents the relative size of subpopulation 2 with respect
to subpopulation 1 (see Figure 2.1). The red horizontal lines
indicate the true average migration rate. . . . . . . . . . . . . . 34



List of figures 9

2.3 Boxplots of estimates of V = θ(τ0 − τ1) under asymmetric
migration and unequal population sizes during divergence. The
true values of M2 are given on the x axis. The parameter M1 is
fixed at 0.3 throughout. The parameter b, given on the top of
each graph, represents the relative size of subpopulation 2 with
respect to subpopulation 1 (see Figure 2.1). The red horizontal
lines indicate the true value of V . . . . . . . . . . . . . . . . . 34

2.4 Estimates of population size parameters for simulated data. For
each parameter, the estimates shown on the left, centre and right-
hand side boxplots are based on sample sizes of 8000, 40 000 and
800 000 loci respectively. The values stated in parentheses are
the true parameter values used to generate the data. Horizontal
dashed lines indicate the true parameter values for each group
of boxplots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5 Estimates of migration rates and time parameters for simulated
data. For each parameter, the estimates shown on the left,
centre and right-hand side boxplots are based on sample sizes
of 8000, 40 000 and 800 000 loci respectively. The values stated
in parentheses are the true parameter values used to generate
the data. Horizontal dashed lines indicate the true parameter
values for each group of boxplots. . . . . . . . . . . . . . . . . . 47

2.6 Q-Q plots of maximum-likelihood estimates of the parameter θc1

obtained from simulated data, against the theoretical quantiles
of the standard normal distribution. The estimates shown in the
left-hand side, centre and right-hand side q-q plots are based on
sample sizes of 8000, 40 000 and 800 000 loci respectively. In the
central q-q plot, one outlier with a value above 10 is not shown. 48

2.7 Q-Q plots of maximum-likelihood estimates of the parameter T1

obtained from simulated data, against the theoretical quantiles
of the standard normal distribution. The estimates shown in the
left-hand side, centre and right-hand side q-q plots are based on
sample sizes of 8000, 40 000 and 800 000 loci respectively. . . . . 48

2.8 Q-Q plots of maximum-likelihood estimates of the parameter M1

obtained from simulated data, against the theoretical quantiles
of the standard normal distribution. The estimates shown in the
left-hand side, centre and right-hand side q-q plots are based on
sample sizes of 8000, 40 000 and 800 000 loci respectively. . . . . 49



List of figures 10

2.9 Models fitted to the data of Wang and Hey (2010): θa = θa,
θb = θb, θc1 = θc1, θc2 = θc2, V = T0 − T1 = θ(τ0 − τ1) and
T1 = θτ1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.10 Q-Q plots of the estimated quantiles of the likelihood ratio
statistic null distribution against the χ2 distribution theoretical
quantiles. Left plot: H0 = ISO model, H1 = IM1 model. Right
plot: H0 = IM1 model, H1 = IIM1 model. . . . . . . . . . . . . 52

3.1 The generalised isolation-with-migration (GIM) model. The size
of each population is given by (the integer part of) the value
inside its corresponding box. The probabilities of migration of
each sequence are given by m12 and m21, between τ0 and τ1, and
by m′

12 and m′
21, between τ1 and 0. . . . . . . . . . . . . . . . . 59

3.2 Three models of divergence nested in the isolation-with-initial-
migration (IIM) model. The parameters have the same meaning
as in Figure 3.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.3 The full GIM model (centre) and two models of divergence nested
in it. The parameters have the same meaning as in Figure 3.1. . 59

3.4 Models fitted to the data of Janko et al. (2016): θa = θa, θb = θb,
θc1 = θc1, θc2 = θc2, V = T0 − T1 = θ(τ0 − τ1) and T1 = θτ1. . . . 67

3.5 Estimated splitting times and gene flow levels for C. elongatoides,
C. tanaitica, C. taenia and C. pontica (Janko et al., 2016). . . . 71

4.1 A q-q plot of the percentiles of the χ2
2 distribution against the

percentiles of the distribution of 1.39 X + 0.08, where X ∼ χ2
1.81.

The χ2
2 distribution is the large-sample distribution of the likeli-

hood ratio statistic of IIM1 (H0) versus IIM2 (H1) when the true
model is IIM1. The distribution of 1.39 X + 0.08 approximates
the large-sample distribution of the likelihood ratio statistic for
the same model comparison, under the weaker assumption that
the IIM1 model is closer to the true unknown model of the Wang
and Hey (2010) data than the IIM2 model, in the sense of the
Kullback-Leibler divergence. . . . . . . . . . . . . . . . . . . . . 78

4.2 A q-q plot of the sample percentiles of simulated observations
from expression (4.3) against the sample percentiles of simulated
observations from ∑q

k=0 1
(
Yq ∈ Rk

)
χ2

k. The matrix M0 is given
by equation 4.17, Ω = [0, ∞)3 × (0, ∞) and Ω0 = {0}3 × (0, ∞). 88



List of figures 11

4.3 A q-q plot of the sample percentiles of simulated observations
from expression (4.3) against the sample percentiles of simulated
observations from ∑q

k=0 1
(
Yq ∈ Rk

)
χ2

k. The matrix M0 is given
by equation 4.18, Ω = [0, ∞)4 × (0, ∞) and Ω0 = {0}4 × (0, ∞). 89

4.4 A q-q plot of estimated percentiles of a likelihood ratio statis-
tic distribution, against the estimated percentiles of 0.251 χ2

0 +
0.504 χ2

1 + 0.245 χ2
2 . The likelihood ratio statistics refer to the

comparison between the ISO model with θa = θ = θb (true model)
and the IM1 model with θa = θ = θb (see Figure 2.9). The χ2

mixture was estimated using the observed Fisher information
(for a single data set), divided by the number of observations, as
an approximation to M0. . . . . . . . . . . . . . . . . . . . . . 91

4.5 A q-q plot of estimated percentiles of a likelihood ratio statistic
distribution, against the theoretical percentiles of the χ2

2 distri-
bution. The likelihood ratio statistics refer to the comparison
between the ISO model with θa = θ = θb (true model) and the
IM1 model with θa = θ = θb (see Figure 2.9). . . . . . . . . . . 92

5.1 A model of divergence in which current gene flow is preceded by
a period of isolation (a GIM model with m12 = m21 = 0). Such a
scenario may have been caused, for example, by climatic changes
leading to habitat fragmentation and subsequent reconnection
of populations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2 Violation of demographic assumptions. Left-hand side diagram:
true model. Right-hand side diagram: best-fitting model. Di-
vergence times are measured by twice the expected number of
mutations per sequence, population sizes are represented by
scaled mutation rates, and rates of gene flow by scaled migration
rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3 Violation of demographic assumptions. Left-hand side diagram:
true model. Right-hand side diagram: best-fitting model. Di-
vergence times are measured by twice the expected number of
mutations per sequence, population sizes are represented by
scaled mutation rates, and rates of gene flow by scaled migration
rates. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



List of tables

2.1 Results for the data of Wang and Hey (2010): maximum-
likelihood estimates and values of the maximised log-likelihood,
for the models shown in Figure 2.9. . . . . . . . . . . . . . . . . 51

2.2 Forward selection of the best model for the data of Wang and
Hey (2010). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.3 Results for the data of Wang and Hey (2010): point estimates
and confidence intervals under the model IIM3. . . . . . . . . . 54

2.4 Effective population size estimates for the data of Wang and
Hey (2010) under the model IIM3 (values in millions of diploid
individuals). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.5 Divergence time estimates for the data of Wang and Hey (2010)
under the model IIM3 (values in millions of years ago). . . . . . 56

2.6 Converted migration rates for the data of Wang and Hey (2010)
under the model IIM3. . . . . . . . . . . . . . . . . . . . . . . . 56

3.1 Results for the data of Janko et al. (2016): best model fitted to
each pair of species and maximum-likelihood estimates. . . . . . 68

3.2 Results for the data of Janko et al. (2016): profile likelihood
confidence intervals for population sizes. . . . . . . . . . . . . . 68

3.3 Results for the data of Janko et al. (2016): profile likelihood
confidence intervals for speciation times and migration rates. . . 69

4.1 Results for the data of Wang and Hey (2010): point estimates
and confidence intervals under the model IIM3. . . . . . . . . . 75

4.2 Results for the data of Wang and Hey (2010): point estimates
and 95% profile likelihood confidence intervals under the model
IIM3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1 Comparison of converted estimates obtained with IM and IIM
models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95



List of tables 13

5.2 Converted estimates for the data of Wang and Hey (2010): full
sequences and trimmed sequences. . . . . . . . . . . . . . . . . 101

5.3 Results for the data of Wang and Hey (2010), reduced version:
p-values for (composite) likelihood ratio tests in model selection. 105

5.4 Results for the data of Wang and Hey (2010), reduced version:
point estimates and estimated standard errors under the model
IIM3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



Chapter 1

Introduction

1.1 Population genetics and the coalescent

Population genetics studies the dynamics of genotypic diversity in a population
of DNA sequences, from a statistical perspective. Underlying any study in
population genetics is a population genetic model, i.e., a set of statistical
assumptions about the processes that affect the reproduction of DNA sequences
and the creation of new alleles, namely mutation, natural selection, recombina-
tion, and mating system. Several stochastic processes, tracing the evolution
of different aspects of genetic diversity, can usually be defined using the same
population genetic model. The results of population genetics concern the
statistical properties of these processes.

One of the main goals of classical population genetics is to make predictions
regarding the evolution of allele frequencies, or of measures related to allele
frequencies, such as the probability of sampling a pair of heterozygous DNA
sequences at a given locus, or the probability of fixation of a given allele
in a population. Most theoretical results are derived within the framework
of increasingly complex Wright-Fisher population genetic models and of the
continuous-time diffusion processes that approximate them (Wakeley, 2010).

In the 1970’s, a new branch of population genetics called coalescent theory
began to develop. It relied on essentially the same population genetic models,
but studied a different class of stochastic processes under these models, namely
the genealogy of a random sample of DNA sequences. In rough terms, the
genealogy of the sample can be defined as a stochastic process that traces
the ancestral lineages of the sample back into the past until their most recent
common ancestor. The emergence of coalescent theory was to a large extent
motivated by the knowledge of genotypic variation at the molecular level, i.e.,
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by the emergence of DNA sequencing and DNA sequence data sets (Ewens,
2004). The analysis of these data sets using sequence evolution models from
classical population genetics is extremely hard (Nordborg, 2007). However,
it was realised that the distribution of the observable genetic differences in
a sample depends to a large extent on the distribution of the topology and
branch lengths of its genealogy, which in turn depends on the mechanisms of
natural selection, mating structure and genetic recombination. In other words,
it was realised that genetic polymorphisms can contain valuable information
on the mechanisms responsible for genetic variation.

One of the two main aims of the present thesis is to enable the estimation of
a set of population genetic models about the mating structure of a population
and the historical evolution of this structure. This is achieved by making use of
coalescent theory to derive the likelihood for data sets in which each observation
consists of the number of nucleotide differences between two homologous DNA
sequences, and which contain a large number of observations. The second main
aim is to deliver a detailed analysis of some technical issues that should be
raised when using this likelihood to make statistical inferences. The best way
to clarify the object of our research is to present the population genetic model
whose extensions we will be focusing on: the two-island isolation-with-migration
(IM) model.

1.2 The isolation-with-migration (IM) model

1.2.1 Definition and genealogy

The IM model is a model for the reproduction of a haploid population of DNA
sequences from a given genetic locus. Generations are discrete, which means
that a new generation replaces the current one instantaneously after a fixed
period of time. Suppose that τ0 ∈ (0, ∞) and N ∈ N, and that [·] denotes the
integer part function. Until generation [2Nτ0] ago, the population had constant
size 2N and evolved according to the Wright-Fisher model. In generation [2Nτ0]
ago, it split into subpopulation 1 and subpopulation 2, with sizes [2b1N ] and
[2b2N ] respectively, where b1, b2 ∈ (0, ∞), and evolved according to a two-island
Wright-Fisher model with potential gene flow until the present.

These reproduction assumptions, which define the IM model for the purposes
of the present thesis, can be more thoroughly described. Before generation
[2Nτ0] ago, each generation has 2N sequences which are chosen by simple ran-
dom sample with replacement among the sequences in the previous generation.
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Fig. 1.1 A two-island IM model: the division of the ancestral population occurred
in generation [2Nτ0] ago; each DNA sequence from subpopulation i migrates to
subpopulation j independently with probability mij , for i ∈ {1, 2}, and i ̸= j; the size
of each population is given by the integer part of the value inside its corresponding
box.

In other words, each sequence chooses independently one sequence from the
previous generation to be a copy of, and this choice is carried out uniformly
at random. In generation [2Nτ0], each sequence is still chosen uniformly at
random from the 2N sequences of the previous generation: the difference is
that there are now [2b1N ] + [2b2N ] sequences distributed between two subpopu-
lations. For 0 ≤ k < [2Nτ0], generation k ago is the result of the following two
steps: first, each sequence from generation k + 1 in subpopulation i (i ∈ {1, 2})
migrates independently to subpopulation j (j ̸= i) with probability mij; then,
generation k of subpopulation i is created by sampling uniformly at random,
with replacement, [2biN ] sequences, so that reproduction undoes any change in
population size caused by gene flow. A diagram of the two-island IM model is
shown in fig. 1.1.

To derive the likelihood for a data set, we make use of a particular ge-
nealogical process, which we refer to as the coalescent under the IM model.
To understand what the coalescent under the IM model is, it is useful to
consider first the process ZN(t), t ∈ [0, ∞), where the time variable t is in
units of 2N generations, and ZN(t) represents the state of the genealogy of
a present-day sample, [2Nt] generations ago, when the sample is drawn from
a population which has evolved according to an IM model with parameter
N . More specifically, the random variable ZN(t) gives the number of distinct
ancestral lineages of the sample in each of the two subpopulations, for all t

such that 0 ≤ [2Nt] ≤ [2Nτ0], or in the ancestral population, for all t such
that [2Nt] > [2Nτ0] . According to the Wright-Fisher model of reproduction,
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each new DNA sequence is generated by copying one single sequence from the
previous generation, which means that recombination within loci is assumed to
be impossible. Since two or more sequences can descend (i.e. be copies) from
the same parent, the number of distinct ancestral lineages of the sample can
only decrease or stay the same at each time step into the past, and the process
is absorbed when the most recent common ancestor of the sample is reached.

Let the state space of the process, for all t such that 0 ≤ [2Nt] ≤ [2Nτ0] , be
represented by E =

{
(αk)k∈{1,2} : αk ∈ N, 1 ≤ α1 + α2 ≤ n

}
, where n is the size

of the present-day sample and αk is the number of lineages in subpopulation
k. Moreover, let ϵ(i) be a vector of length two with ‘1’ in position i and
‘0’ in the remaining position, and, for i, j ∈ {1, 2} and i ̸= j, assume that
Mi := lim

N→∞
4N mji

bj

bi
exists and is finite. Suppose also that u ∈ (0 , τ0] and N is

large enough to ensure that 0 < [2Nu]. Because between generation [2Nu] and
generation 0 the population evolved according to a two-island Wright-Fisher
model with gene flow, we know, from Notohara (1990), that

lim
N→∞

P [ZN(u) = η|ZN(0) = ξ] =
(
euQmig

)
ξη

,

where Qmig =
(
q (mig)

ξη ; ξ, η ∈ E
)

is a transition rate matrix with entries

q (mig)
ξη =



αi
Mi

2 if η = ξ − ϵ(i) + ϵ(j) ,

1
bi

αi (αi − 1)
2 if η = ξ − ϵ(i),

−
2∑

i=1

[
1
bi

αi (αi − 1)
2 + αi

Mi

2

]
if η = ξ,

0 otherwise,

and where
(
euQmig

)
ξη

denotes the (ξ, η) entry of the probability transition
matrix euQmig . In other words, in the limit of infinite population size, the
process ZN (t), t ∈ [0, τ0], converges in distribution to a continuous-time Markov
chain with transition rate matrix Qmig (Kingman, 1982b, p. 31, for the type
of convergence in question here).

Suppose now that u ∈ (τ0, ∞) and we wish to compute the limit, as N → ∞,
of P [ZN(u) = η|ZN(0) = ξ], where ξ ∈ E and η ∈ {1, 2, ..., n}. For this purpose,
we let Ei, i ∈ {1, 2, ..., n}, denote a set composed of the elements of E which
describe how many lineages, from a total of i lineages, are in each subpopulation,
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i.e., Ei =
{
(αk)k∈{1,2} : αk ∈ N, α1 + α2 = i

}
. Then

lim
N→∞

P [ZN (u) = η|ZN (0) = ξ]

= lim
N→∞

∑
γ∈E

P [ZN (u) = η|ZN (τ0) = γ, ZN (0) = ξ] P [ZN (τ0) = γ|ZN (0) = ξ]

= lim
N→∞

n∑
i=1

∑
γ∈Ei

P [ZN (u) = η|ZN (τ0) = γ, ZN (0) = ξ] P [ZN (τ0) = γ|ZN (0) = ξ] ,

(1.1)

since E1, E2, ..., En is a partition of E . To further simplify equation (1.1), sup-
pose we know that there are i lineages ancestral to the sample at generation
[2Nτ0]. From the definition of the IM model, each of these lineages was chosen
independently and uniformly at random from the 2N sequences of the previous
generation. In fact, all lineages ancestral to the sample until generation [2Nτ0]
(inclusive) were produced in this manner. This sampling scheme is the same
regardless of the value of ZN(0), and of how the i lineages are distributed
between the two subpopulations at τ0. Hence for all γ ∈ Ei,

P [ZN(u) = η|ZN (τ0) = γ, ZN(0) = ξ] = P [ZN(u) = η|ZN (τ0) ∈ Ei] .

Since our process is in units of 2N generations, and the DNA sequences
were generated according to the Wright-Fisher model until generation [2Nτ0]
(inclusive), the limiting probability that a sample of i sequences at τ0 has η

ancestors at u follows from the results of Kingman (1982a,b). In particular, for
any i ∈ {1, 2, ..., n},

lim
N→∞

P [ZN(u) = η|ZN(τ0) ∈ Ei] =
[
e(u−τ0)Qanc

]
iη

,

where the transition rate matrix Qanc =
(
q (anc)

iη ; i, η ∈ {1, 2, ..., n}
)

has entries

q (anc)
iη =


− i(i−1)

2 if η = i ,

i(i−1)
2 if η = i − 1 ,

0 otherwise.
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Combining the results of Kingman (1982a,b) with those of Notohara (1990),
equation (1.1) can be rewritten, for the case of u > τ0, as

lim
N→∞

P [ZN(u) = η|ZN(0) = ξ]

= lim
N→∞

n∑
i=1

P [ZN(u) = η|ZN (τ0) ∈ Ei]
∑
γ∈Ei

P [ZN (τ0) = γ|ZN(0) = ξ]

=
n∑

i=1

[
e(u−τ0)Qanc

]
iη

∑
γ∈Ei

[
eτ0Qmig

]
ξγ

The expression ∑γ∈Ei

[
eτ0Qmig

]
ξγ

denotes the limiting probability that, at t = τ0,
the sample has i ancestral lineages, given that, at t = 0, the process is in state
ξ ∈ E . If we define V as a matrix with a row for each ξ ∈ E and n columns,
where the ith column has 1’s in the components corresponding to states in Ei

and zeros otherwise, then ∑γ∈Ei

[
eτ0Qmig

]
ξγ

=
[
eτ0Qmig V

]
ξi

, and

lim
N→∞

P [ZN(u) = η|ZN(0) = ξ] =
n∑

i=1

[
e(u−τ0)Qanc

]
iη

[
eτ0Qmig V

]
ξi

=
[
eτ0Qmig V e(u−τ0)Qanc

]
ξη

.

Summarising, we may say that, as N → ∞, the process ZN(t) converges in
distribution to a continuous-time Markov process which is piecewise time-
homogeneous. Its transition rate matrix is Qmig for 0 ≤ t ≤ τ0, and Qanc for
t > τ0. This limiting process is what we designate as the coalescent under the
IM model.

1.2.2 Mutation model and inference

The vector of parameters of an IM model – say ψ – typically includes the
rates of migration between subpopulations, the splitting time of the ancestral
population, and the population sizes. Let y denote a polymorphism data set
of n DNA sequences from a single locus; and let U be a random vector (or
variable) whose value depends on the coalescent process of n sequences for
that same locus, and whose distribution depends on ψ. To estimate ψ by
maximum-likelihood, a possible first step is to derive the distribution of U,
which we denote p (u;ψ). Apart from this derivation, we also need a model
of mutation: a set of assumptions from which the conditional distribution
p (y | u;θ) can be derived, or at least estimated by simulation. Then, to obtain
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the likelihood of the parameters given a data set for a single locus, the following
integral, sometimes referred to as Felsenstein’s decomposition (Felsenstein,
1988), is computed:

L (ψ,θ; y) = p (y;ψ,θ) =
∫

p (y | u;θ) p (u;ψ) du . (1.2)

As follows from the previous sections, in our implementations y will be the
number of nucleotide differences between two randomly sampled DNA sequences
(also termed ‘pairwise nucleotide differences’); hence U will be a function of
the coalescent process (under an IM model) of two sequences only. More
specifically, U is the time, in units of 2N generations, until their most recent
common ancestor. The model of mutation we use to derive p (y | u ;θ) is the
infinite-sites model of Watterson (1975), and consists of the following two
assumptions. First, it is assumed that the number of mutations hitting any one
lineage, during a single generation, follows a Poisson distribution with mean µ;
or, equivalently, that during t units of 2N generations, the distribution of the
number of these mutations follows a Poisson distribution with mean θt

2 , where
θ = 4Nµ is the so-called ‘scaled mutation rate’. Second, it is assumed that each
single nucleotide cannot be hit more than once by a mutation. As will become
clear in the next chapters, the infinite-sites mutation model, along with the
genealogical process described in the previous section, allow an (almost) fully
analytical derivation of p (y;ψ,θ).

When y is simply the number of pairwise nucleotide differences, the amount
of information contained in L (ψ,θ; y) about ψ is quite limited. Meaningful
estimates are typically based on the likelihood of many (at least hundreds)
of observations, each one drawn from the population of DNA sequences at a
different locus. If loci are chosen far apart from each other in the genome,
or separated by recombination hotspots, their genealogical histories can be
considered as independent realisations of the IM model. The likelihood for a
data set comprising j observations hence becomes the product of j individual
likelihoods.

Equation 1.2, or Felsenstein’s decomposition, is applicable to a range of data
types. For example, before the advent of whole-genome sequencing techniques,
when a typical DNA data set would span at most a few independent loci,
inference methods for the IM model sought to maximise the information used
at each locus (Nielsen and Wakeley, 2001; Hey and Nielsen, 2004, 2007; Hey,
2010): for these methods, y typically represents the full DNA sequence data of
an alignment of possibly dozens of sequences at each locus; u gives information
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on the branching structure (topology) of the genealogy, as well as the times
between events of migration and coalescence; and p (y | u ;θ) can be defined in
terms of different models of nucleotide substitution. The integral in (1.2) is
still computed, but not analytically, because an explicit expression for p (u;ψ)
is virtually impossible to obtain (see also Wakeley, 2009, p. 266). Instead, it
must be estimated by simulation, typically using Markov chain Monte Carlo
methods.

1.2.3 Role in speciation studies

In a speciation process, the degree of clustering of a population in terms of
genetic polymorphisms increases gradually until the exchange of genes between
clusters (i.e. subpopulations) is no longer possible (Nosil, 2012). How significant
must the physical and geographic barriers dividing a population be to allow the
formation and differentiation of clusters/subpopulations is a question which
was for long controversial in evolutionary biology (Mayr, 1997). Today, it
is thought that speciation in the absence of significant physical barriers to
gene flow, known as sympatric speciation, is possible as a result of disruptive
selection (Futuyma, 2005). In this type of natural selection, an allele aa is
favoured over a portion of the population’s range, where a given resource is
more abundant, while an allele AA is favoured over the remainder of the range,
where another resource is more common. The opportunities for recombination
events of Aa individuals are decreased, since heterozygous individuals are less
fit than homozygous ones for any of the two resources, and mating events also
tend to occur between individuals who share the same portion of the range.
If, in addition, the locus under selection is situated in an area of reduced
recombination, the genome region around it will diverge much faster than
expected under random mating and free recombination, and may lead to a
speciation event (Pinho and Hey, 2010; Hey, 2006).

Sympatric speciation due to disruptive selection is now considered the
most credible explanation for some patterns of divergence observed in nature.
A well-known putative example of incipient sympatric speciation is that of
the Rhagoletis pomonella. This fly species has two different host plant races
inhabiting roughly the same geographic area of the US. The split into one
race whose larvae develop in native hawthorns and another race whose larvae
develop in the domestic apple is most probably a very recent event, as the
introduction of the domestic apple in the US did not occur before the 19th
century (Futuyma, 2005, p. 395). Sympatric divergence has also been observed
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in laboratory experiments, in particular with Drosophila melanogaster, when the
disruptively selected character is one that causes assortative mating (Futuyma,
2005, p. 394).

As attested by the meta-analysis of research articles in Pinho and Hey
(2010), the available methods to fit the IM model have been used extensively
to look for signs of sympatric divergence, or divergence with gene flow, in DNA
data. During this type of divergence, regions of the genome which are not
linked to loci under disruptive selection are expected to experience higher rates
of gene flow (Pinho and Hey, 2010). So when confronted with two sympatric
subspecies, or two sympatric species which may have achieved reproductive
isolation only recently, it is of interest to: a) assess whether there is evidence of
a recent period of gene flow; and b) assess whether there is evidence that gene
flow has affected all loci except a few that may have been under disruptive
selection. For the first purpose, an IM model can be fitted to polymorphism
data; for the second purpose, the variation of divergence across loci needs to
be analysed.

1.2.4 Review of the relevant literature

The study of the coalescent under the reproduction models that make up each
of the two stages of the IM model started a few decades ago. The main results
for the coalescent in an isolated Wright-Fisher population (such as the ancestral
population of the IM model) are actually the founding results of coalescent
theory, and can be found in J. F. C. Kingman’s seminal papers (Kingman,
1982a,b). The coalescent under the two-island model, with equal subpopulation
sizes and symmetric migration, was first studied by Takahata (1988). The
extension of the results of Takahata to the case of different population sizes
and asymmetric migration rates was carried out in the aforementioned paper
of Notohara (1990).

Before the first implementations of the IM model were developed, most
inference methods used in speciation studies would either assume an n-island
model with equilibrium migration (Nath and Griffiths, 1996; Beerli and Felsen-
stein, 1999; Bahlo and Griffiths, 2000), or a model of divergence in complete
isolation (Nielsen, 1998; Nielsen et al., 1998; Wakeley and Hey, 1997). Methods
such as those of Wakeley (1996a) and of Nielsen and Slatkin (2000) did allow
the performance of statistical tests to distinguish between divergence with and
without gene flow, but under restrictive assumptions about population sizes
and other demographic variables (Nielsen and Wakeley, 2001).
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In a 1996 paper, John Wakeley derived the expectation and the variance of
the number of pairwise nucleotide differences for an IM model with symmetric
migration between two equal-sized subpopulations (Wakeley, 1996b). For the
same model, Rosenberg and Feldman (2002) examined how the distribution of
the coalescence time of a sample of genes depends on the population divergence
time. Excoffier (2004) obtained the distribution and the expectation of the
number of pairwise nucleotide differences for an IM model with symmetric
migration and an infinite number of subpopulations (i.e. where two lineages
from different subpopulations cannot coalesce until they reach the ancestral
population). More general results were derived by Wilkinson-Herbots (2008),
for an IM model with a finite number of equal-sized descendant populations
and symmetric migration.

The first estimation method for the IM model described in section 1.2.1 was
developed by Nielsen and Wakeley (2001) and implemented in the computer
program MDIV. Its development was prompted by the lack of an inference
method that could yield joint estimates of the initial split of a population and the
level of gene flow between the resulting subpopulations (Nielsen and Wakeley,
2001). The method relies on Markov chain Monte Carlo (MCMC) algorithms
to compute either the likelihood or the posterior distribution of parameters,
and is suitable for data sets consisting of an alignment of DNA sequences at
a single non-recombining locus. The generalisation of the method of Nielsen
and Wakeley (2001) to multiple unlinked loci with variable mutation rates was
carried out in Hey and Nielsen (2004) and implemented in the computer program
IM. An approximation to the full joint posterior density of the parameters was
obtained by Hey and Nielsen (2007), using an MCMC algorithm to integrate
over the space of genealogies and integrating out analytically other nuisance
variables. The associated computer program was named IMa. In Hey (2010),
this method was extended to an IM model with more than two subpopulations
and a known phylogeny (computer program IMa2 ).

In the past decade, the availability of large data sets spanning the entire
genome has increased considerably. However, the aforementioned MCMC-based
implementations of the IM model are computationally expensive even for small
numbers of loci, and their running times increase linearly with the number
of loci (Wang and Hey, 2010). Fitting an IM model also provides a rather
simplified picture of the divergence process, which for some research purposes
is clearly insufficient (for example, if one wishes to know whether a process of
sympatric speciation has been completed, or whether gene flow occurred due to
secondary contact). In addition, Becquet and Przeworski (2009) and Strasburg



1.2 The isolation-with-migration (IM) model 24

and Rieseberg (2010) showed that inference based on the programs IM and
IMa can become unreliable if any of the assumptions made about population
structure, recombination, or linkage is severely violated. For these reasons,
there has been a significant increase in the demand for methods that not only
scale well to genome-sized data, but are also able to estimate increasingly
realistic models.

To improve efficiency and scalability, one possible strategy is to work
with summary statistics rather than full data patterns. The MCMC-based
program MIMAR of Becquet and Przeworski (2007, 2009) uses the four summary
statistics studied by Wakeley and Hey (1997) to fit the IM model and drops
the assumption of no intralocus recombination. Gutenkunst et al. (2009)
introduced a method based on the joint sample frequency spectrum (JSFS)
that is able to fit a range of demographic models incorporating multiple
populations, periods of migration and admixture, splits and joins of populations
and changes in population sizes. Based on the same type of data, the more
recent implementation of Kamm et al. (2016) can already deal with a large
number of individuals and populations, but does not yet include gene flow.

Genome-scale data sets, even when stemming from just a few individuals,
tend to be more informative than data sets consisting of many individuals
but covering only a relatively short genomic region. In fact, as the sample
size for a single locus increases, the probability that an extra sequence adds a
deep (i.e. informative) branch to the coalescent tree quickly becomes negligible
(see for example Hein et al., 2005, p. 28-29). Data sets of a small number of
individuals per locus are also more suitable for likelihood-based inference: if
at each locus the observation consists only of a few sequences, the coalescent
process of these sequences is relatively simple and can more easily be used to
derive the likelihood for the locus concerned.

Among the methods designed for whole-genome sequence data of only a few
individuals are those of Mailund et al. (2012), Schiffels and Durbin (2014) and
Steinrücken et al. (2015). The fact that they are designed for full polymorphism
data makes these methods computationally more expensive than JSFS-based
methods. However, they rely on the coalescent with recombination modelled as
a hidden Markov process, i.e., they are able to capture the linkage information
present in the data. Presently, complex models of demographic history can
already be fitted using this approach (see, for example, Steinrücken et al.,
2015).

Arguably the only implementations that can be considered fast are those
based on blockwise likelihood methods. These implementations are aimed at
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a small number of sampled individuals, and use the information in each of a
large number of relatively short and well separated loci: because recombination
within loci is disregarded, it is considerably easier to derive explicitly the
likelihood for each locus; and because linkage between loci is assumed to be
negligible, the likelihood for a data set is just the product of the likelihoods for
the individual loci.

Blockwise likelihood methods for the standard two-deme IM model have
been developed, for example, by Wilkinson-Herbots (2008) and Wang and
Hey (2010), for pairs of DNA sequences at a large number of independent loci,
and by Lohse et al. (2011) and Andersen et al. (2014) for larger numbers of
sequences at each locus. Lohse et al. (2011) also developed a more general
Laplace transform method to calculate blockwise likelihoods for a range of
demographic scenarios, which was further extended and efficiently automated
in Lohse et al. (2016). Zhu and Yang (2012) developed an implementation,
based on triplets of sequences, of an IM model with three species with known
phylogeny and symmetric migration between two of them.

Some authors have focused on blockwise likelihood methods for models of
divergence which drop the assumption of constant gene flow until the present,
and which are therefore more realistic in the context of speciation. In particular,
Innan and Watanabe (2006) considered a model in which the level of gene flow
between two subpopulations gradually decreases until they become completely
isolated from each other. Their calculation of the likelihood given the number
of nucleotide differences between pairs of sequences relies on the numerical
computation of the coalescence time density at different points in time, which
can be computationally expensive. IM models in which gene flow is allowed to
cease at some point in the past – hereafter referred to as isolation-with-initial-
migration (IIM) models – have also been considered by, for example, Teshima
and Tajima (2002), Becquet and Przeworski (2009), Wilkinson-Herbots (2012),
Mailund et al. (2012) and Lohse et al. (2015).

1.2.5 Our implementations

The whole of chapter 2, with the exception of section 2.2, is included in
Costa and Wilkinson-Herbots (2017). In that chapter, we extend the work of
Wilkinson-Herbots (2012), who derived explicit formulae for the distribution
of the coalescence time of a pair of sequences under the IIM model, as well as
the distribution of the number of nucleotide differences between them. The
analytical results of Wilkinson-Herbots (2012) enable a very fast computation of
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the likelihood given a data set consisting of observations on pairs of sequences at
a large number of independent loci (Wilkinson-Herbots, 2015; Lohse et al., 2015;
Janko et al., 2016). However, for mathematical reasons, this work adopted two
biologically unrealistic assumptions which may affect the reliability of estimates:
symmetric migration and equal subpopulation sizes during the migration period
(Figure 1.2, top left-hand plot). We study a more general IIM model which
allows for unequal subpopulation sizes during gene flow, as well as during the
isolation stage, and drops the assumption of symmetric gene flow during the
migration period (Figure 1.2, top right-hand plot).

The core of chapter 2 is dedicated to the description of an efficient method to
compute the likelihood given a set of observations on the number of nucleotide
differences between pairs of sequences, when each pair comes from a different
locus and we assume free recombination between loci and no recombination
within loci. Unlike Wilkinson-Herbots (2012), who exploited a result by Griffiths
(1981) concerning the equilibrium symmetric island model, we rely on the
eigendecomposition of the coalescent matrix. Since we manage to obtain
(almost) explicit expression for the likelihood, our method is very fast, and
efficient enough to easily deal with asymmetric bidirectional gene flow, unequal
population sizes, mutation rate heterogeneity and large numbers of mutations.
We also illustrate how to use it to fit the IIM model to real data: the data set
of Drosophila sequences from Wang and Hey (2010), containing over 30,000
observations (i.e. loci), is used for this purpose. Finally, we demonstrate, using
the same data set, how different models representing different evolutionary
scenarios can be compared using likelihood ratio tests. More specifically, we
compare three main scenarios: a) divergence without gene flow; b) divergence
with potentially asymmetric gene flow until the present; and c) divergence with
potentially asymmetric gene flow until some time in the past, and in isolation
since then.

The standard two-deme IM model, as well as the IIM model, are nested in
what we will call the ‘generalised IM’ (GIM) model. This last model can be
described as a two-island IM model in which migration rates and population
sizes are allowed to change at some point in the past (Figure 1.2, bottom plot),
and includes, as a special case, a scenario of secondary contact after a period of
isolation. In chapter 3, we extend our IIM results to the GIM model, enabling
inference on both historical and contemporary rates of gene flow between two
closely related species. Once more, we illustrate the implementation of our
method using a real data set, this time of several species of Cobitis fish.
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Fig. 1.2 Three extensions of the IM model: the isolation-with-initial-migration
(IIM) model of Wilkinson-Herbots (2012), with symmetric gene flow and symmetric
subpopulation sizes during gene flow (top left-hand side); an IIM model which drops
both symmetry assumptions of Wilkinson-Herbots (2012) (top right-hand side); and
an IM model in which migration rates and population sizes are allowed to change at
time τ1 (bottom). The size of each population is given by (the integer part of) the
value inside its corresponding box.



1.3 Estimation and model comparison 28

An essential output of the present thesis is the R code implementing the
theory of chapters 2 and 3, which we believe will be a useful resource for
evolutionary geneticists. Costa and Wilkinson-Herbots (2017) includes an R
script with detailed instructions that can be used to: fit isolation, IM, and
IIM models; simulate observations from these models; and compute Wald-
type confidence intervals. This R program does not require high-performance
computing resources, as fitting a full IIM model to a data set containing
tens of thousands of observations can be carried out in a couple of minutes,
using a personal computer. Its latest version is available at https://github.
com/ruibarrigana/GIM, and incorporates the following additional features: a
wider range of models to fit and simulate from, including many models nested
in the full GIM model; the capability of fitting any model using a single R
function; and the capability of computing confidence intervals based on the
profile likelihood.

1.3 Estimation and model comparison

A substantial part of the present thesis is concerned with deriving the distribu-
tion of the number of nucleotide differences between pairs of DNA sequences.
For this purpose, we use probability theory, in particular coalescent theory. In
chapter 4, however, we rely mostly on general statistics theory, linear algebra,
and basic convex geometry to address some inference issues that we were
faced with while fitting different extensions of the IM model to real data and
comparing how well they fit.

Section 4.1 is essentially devoted to the application of the theory in White
(1996) and Jesus and Chandler (2011) to our inference problems. Its main goal
is to assess the impact of dropping the assumption of correct model specification:
how it changes the distribution of point estimators and of the likelihood ratio
statistic; how confidence intervals and p-values should be computed in the light
of these changes; and how it affects the very meaning of estimation.

In section 4.2, we focus on the asymptotic distribution of the likelihood
ratio statistic under the following (irregular) setting. When comparing how
well two models fit some polymorphism data, using the likelihood ratio statistic,
it sometimes happens that, under the null hypothesis, the true vector of
parameters lies on the boundary of the parameter space, rather than on its
interior. Fundamental theoretical results regarding this research topic are given
in the papers of Chernoff (1954) and Self and Liang (1987), as well as explicit
derivations for relatively simple cases (for example, a vector of p parameters,

https://github.com/ruibarrigana/GIM
https://github.com/ruibarrigana/GIM
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where the 2 parameters of interest are assumed to lie on the boundary and
the remaining p − 2 parameters are interior points). Kopylev and Sinha (2011)
derive the limiting distribution for a few other specific situations (for example,
one parameter of interest and two nuisance parameters on the boundary). Liang
and Self (1996) and Chen and Liang (2010) adapt the theory of Chernoff (1954)
and Self and Liang (1987) to a pseudolikelihood setting, but their explicit
results for the limiting distribution of the likelihood ratio statistic also concern
very particular cases.

To avoid the case-by-case approach of these papers, we started by developing
a program in R which estimated, by simulation, the mixing coefficients of the
asymptotic mixture distribution of the likelihood ratio statistic for the case
of only two parameters on the boundary (the parameters of interest); later,
we succeded in extending our program to an arbitrary number of parameters
of interest on the boundary of the parameter space, and an arbitrary number
of nuisance parameters on its interior. The R program is available at https:
//github.com/ruibarrigana/boundary. Section 4.2 evolved mainly from our
wish to demonstrate the correctness of our estimation method. For this purpose,
we relied on basic linear algebra and convex geometry, and also benefited from
the work of Silvapulle and Sen (2011), in particular their theorem 3.4.2 (our
equation 4.8).

https://github.com/ruibarrigana/boundary
https://github.com/ruibarrigana/boundary


Chapter 2

The asymmetric IIM model

2.1 Definition

Recall our definition of an IM model: a population of DNA sequences in which
reproduction followed a Wright-Fisher model until [2Nτ0] generations ago,
and, since then until the present, followed a Wright-Fisher two-island model
with potential gene flow. If we take an IM model and add the assumption
that, [2Nτ1] generations ago, for 0 < τ1 < τ0, gene flow ceased, we obtain an
isolation-with-initial-migration (IIM) model. Figure 2.1 illustrates the fullest
IIM model dealt with in this thesis. The subpopulation on the left-hand side

Fig. 2.1 The IIM model. The size of each population is given by the integer part of
the value inside its corresponding box. The parameters m12 and m21 represent the
probabilities of migration of each sequence between τ0 and τ1. Between τ1 and the
present, there is no gene flow between the subpopulations.

of the diagram is defined as ‘subpopulation 1’, and the one on the right-hand
side as ‘subpopulation 2’. The population sizes, in units of DNA sequences, are
given by the integer part of the values inside the boxes of the diagram. Note the
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slightly different parameterisation of the population sizes: subpopulation 1 now
has [2N ] sequences during the migration stage, and the ancestral population
has [2aN ] sequences. In each generation of the migration stage, each sequence
in subpopulation i migrates to subpopulation j independently with probability
mij, for i, j ∈ {1, 2} and i ̸= j.

As before, we are interested in the process ZN(t), t ∈ [0, ∞), running
backward in time, where t is in units of 2N generations, and which gives the
number of lineages ancestral to the sample in generation [2Nt] ago: in each
subpopulation, for all t such that [2Nt] ≤ [2Nτ0], or in the ancestral population,
for all t such that [2Nt] > [2Nτ0]. We will work with present-day samples of
two sequences only, so we can simplify the notation for the state space of ZN (t)
as follows. During the isolation stage and the migration stage, the process can
only be in state 1 – both lineages in subpopulation 1 –, state 2 – both lineages
in subpopulation 2 –, state 3 – one lineage in each subpopulation –, or state
4 – in which lineages have coalesced. In the ancestral population, the lineages
have either coalesced already – state 4 –, or have not – state 0. Only states 1,
2 and 3 can be initial states, according to whether we sample two sequences
from subpopulation 1, two sequences from subpopulation 2, or one sequence
from each subpopulation.

As N → ∞, the genealogical process converges in distribution to a succession
of three continuous-time Markov chains, one for each stage of the IIM model
(Kingman, 1982a,b; Notohara, 1990). We refer to this stochastic process in
continuous time as the coalescent under the IIM model. During the isolation
stage, the convergence is to a Markov chain defined by the generator matrix

Q(i)
iso =


(i) (4)

(i) − 1
ci

1
ci

(4) 0 0

,
(2.1)

with i ∈ {1, 2} being the initial state (Kingman, 1982a,b). If 3 is the initial
state, the two lineages cannot coalesce before τ1. During the ancestral stage,
the genealogical process converges to a Markov chain with generator matrix

Qanc =


(0) (4)

(0) − 1
a

1
a

(4) 0 0

 (2.2)
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(Kingman, 1982a,b). In between, during the migration stage, the convergence
is to a Markov chain with generator matrix

Qmig =



(1) (3) (2) (4)

(1) −(1 + M1) M1 0 1

(3) M2
2 −

(
M1+M2

2

)
M1
2 0

(2) 0 M2 −(1/b + M2) 1/b

(4) 0 0 0 0


(2.3)

(Notohara, 1990). In this matrix, M1/2 := lim
N→∞

2Nm21b represents the rate
of backward migration (in continuous time) of a single sequence when in
subpopulation 1; the corresponding rate of migration of a single sequence
in subpopulation 2 is represented by M2/2 := lim

N→∞
2Nm12/b. The rates of

coalescence for two lineages in subpopulation 1 or 2 are 1 and 1/b respectively.
Note that state 3 corresponds to the second row and column, and state 2 to the
third row and column. This swap was dictated by mathematical convenience:
the matrix Qmig should be as symmetric as possible because this facilitates a
proof in the next section.

2.2 Motivation

The IIM model just defined is the IIM model of Wilkinson-Herbots (2012)
without the assumptions of symmetric migration rates and of equal population
sizes during divergence. There are essentially two reasons to drop these unreal-
istic assumptions. First, speciation under asymmetric gene flow is an object
of study in its own right. For example, Servedio (2000) studied the impact
of asymmetric gene flow and unequal subpopulation sizes on the mechanisms
of reinforcement, i.e., on the development of mating preferences that decrease
the production of unfit hybrids. Telschow et al. (2006) showed how gene flow
asymmetries can be caused by sex ratio imbalances, rather than by differences
in subpopulation sizes and densities.

A second reason is the lack of robustness of the estimators of the symmetric
IIM model. Whether subpopulation sizes and migration rates are asymmetric
or not, and how asymmetric they are, may not be relevant to answer a specific
research question. However, according to a short robustness study we carried
out (figures 2.2 and 2.3), there is reason to believe that substantial violations
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of the assumptions of symmetry and equal population sizes can translate into
substantial estimator biases.

Figure 2.2 shows boxplots of estimates of the symmetric migration rate
(M) obtained by fitting the IIM model of Wilkinson-Herbots (2012). Figure
2.3 shows the same but for estimates of the parameter V = θ(τ0 − τ1), which
is defined as twice the expected number of mutations hitting a single lineage
during the migration period, and thus gives a measure of the duration of
gene flow on a mutational scale. Each boxplot depicts the distribution of 100
estimates, and each estimate was obtained from a different data set. A single
data set contained 40,000 independent observations on the number of pairwise
nucleotide differences: 10,000 for pairs of sequences drawn from subpopulation
1; 10,000 for pairs of sequences drawn from subpopulation 2; and 20,000 for
pairs in which there is one sequence from each subpopulation. The data sets
were generated by simulation from an asymmetric IIM model in which M2 = 0.3,
τ0 = 3, τ1 = 1.5, a = 1.5, c1 = 2.3, c2 = 1.7 and θ = 2, but using different
values of b and M1. For each of three different values of b (1, 1.25 and 2), we
generated four batches of 100 data sets each, with each batch corresponding
to a different value of M1 (0.3, 0.15, 0.05 or 0). In figure 2.2, a red horizontal
line indicates the average migration rate M1+M2

2 used in the simulation of each
batch of 100 data sets. In figure 2.3 the red horizontal lines indicate the value
of V used to simulate all data sets.

We would expect that if M̂ is to give a reasonably accurate picture of the
overall level of gene flow between the subpopulations, then it should be close
to the average migration rate in the two directions. The boxplots in figure
2.2 suggest that the performance of M̂ is strongly affected by the asymmetry
of population sizes, but is fairly robust to the asymmetry in migration rates.
Similarly, the distribution of V̂ shifts away from the true value of V , as the
true value of b increases, but is fairly insensitive to decreases in M2.

2.3 Coalescence time distribution

2.3.1 Models with bidirectional gene flow

Suppose that the genealogical process of two present-day sequences is the
coalescent under the IIM model with initial state i ∈ {1, 2, 3}. Let T (i) denote
the time until their most recent common ancestor (or their coalescence time)
and let S(i) denote the number of nucleotide differences between them. To find
f

(i)
T , the density of the coalescence time T (i) given that there is gene flow in both
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Fig. 2.2 Boxplots of estimates of M under asymmetric migration and unequal
population sizes during divergence. The true values of M2 are given on the x
axis. The parameter M1 is fixed at 0.3 throughout. The parameter b, given on the
top of each graph, represents the relative size of subpopulation 2 with respect to
subpopulation 1 (see Figure 2.1). The red horizontal lines indicate the true average
migration rate.

Fig. 2.3 Boxplots of estimates of V = θ(τ0 − τ1) under asymmetric migration and
unequal population sizes during divergence. The true values of M2 are given on the
x axis. The parameter M1 is fixed at 0.3 throughout. The parameter b, given on
the top of each graph, represents the relative size of subpopulation 2 with respect to
subpopulation 1 (see Figure 2.1). The red horizontal lines indicate the true value of
V .
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directions, we consider separately the three Markov chains mentioned above.
We let T

(i)
iso (i ∈ {1, 2}), T

(i)
mig (i ∈ {1, 2, 3}) and T (0)

anc denote the times until
absorption of the time-homogeneous Markov chains defined by the generator
matrices Q(i)

iso, Qmig and Qanc respectively. And we let the corresponding pdf ’s
(or cdf ’s) be denoted by f

(i)
iso, f

(i)
mig and f (0)

anc (or F
(i)
iso, F

(i)
mig and F (0)

anc). Then f
(i)
T

can be expressed in terms of the distribution functions just mentioned:

f
(i)
T (t) =



f
(i)
iso(t) for 0 ≤ t ≤ τ1,[
1 − F

(i)
iso(τ1)

]
f

(i)
mig(t − τ1) for τ1 < t ≤ τ0,[

1 − F
(i)
iso(τ1)

] [
1 − F

(i)
mig(τ0 − τ1)

]
f (0)

anc(t − τ0) for τ0 < t < ∞,

0 otherwise,

(2.4)
for i ∈ {1, 2}. If 3 is the initial state,

f
(3)
T (t) =


f

(3)
mig(t − τ1) for τ1 < t ≤ τ0,[
1 − F

(3)
mig(τ0 − τ1)

]
f (0)

anc(t − τ0) for τ0 < t < ∞,

0 otherwise.

(2.5)

The important conclusion to draw from these considerations is that to find
the distribution of the coalescence time under the IIM model, we only need to
find the distributions of the absorption times under the simpler processes just
defined.

A Markov process defined by the matrix of transition rates Qanc, and
starting in state 0, is simply Kingman’s coalescent (Kingman, 1982a,b). For
such a process, the distribution of the coalescence time is exponential, with
rate equal to the inverse of the relative population size:

f (0)
anc(t) = 1

a
e− 1

a
t, 0 ≤ t < ∞. (2.6)

A Markov process defined by Q(i)
iso, i ∈ {1, 2}, is again Kingman’s coalescent, so

f
(i)
iso(t) = 1

ci

e
− 1

ci
t
, 0 ≤ t < ∞. (2.7)

Finally, with respect to the ‘structured’ coalescent process defined by the matrix
Qmig, we prove below that, for i ∈ {1, 2, 3},

f
(i)
mig(t) = −

3∑
j=1

V −1
ij Vj4λje

−λjt, (2.8)
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where Vij is the (i, j) entry of the (non-singular) matrix V, whose rows are
the left eigenvectors of Qmig. The (i, j) entry of the matrix V−1 is denoted
by V −1

ij . The λj (j ∈ {1, 2, 3}) are the absolute values of those eigenvalues of
Qmig which are strictly negative (the remaining one is zero). Since the λj are
real and strictly positive, the density function of T

(i)
mig is a linear combination

of exponential densities.
Proof:
This proof has three parts. Part (i) proves the result under two assumptions:

a) Qmig has three strictly negative eigenvalues and one zero eigenvalue, all of
them real; and b) Qmig is diagonalisable. Part (ii) proves assumption a). Part
(iii) proves assumption b). To simplify the notation, we denote Qmig by Q
throughout the proof.

(i)

Consider the continuous-time Markov chain defined by the matrix Q. Let
Pij(t), the (i, j) entry of the matrix P(t), be the probability that the process is
in state j at time t into the past, given that the process starts in state i. P(t)
can be calculated by solving the following initial value problem:

P′(t) = P(t)Q ;
P(0) = I4 ,

where I4 is the four by four identity matrix. Under the assumptions that Q
is diagonalisable and that its eigenvalues are real, the solution to this initial
value problem is given by:

P(t) = P(0)eQt

= V−1eBtV ,

where B denotes the diagonal matrix containing the real eigenvalues βj, j ∈
{1, 2, 3, 4}, of Q, and V is the matrix of left eigenvectors of Q. Note that
Pi4(t) is the probability that the process has reached coalescence by time t, if
it started in state i. In other words, it is the cdf of T

(i)
mig:

Pi4(t) = F
(i)
mig(t) = v−1

i. eBtv.4 ,
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where v−1
i. is the ith row vector of V−1, and v.4 the 4th column vector of V.

Differentiating, we get the pdf :

f
(i)
mig(t) = v−1

i. BeBtv.4

=
4∑

j=1
V −1

ij Vj4βje
βjt .

If we denote the eigenvalue equal to zero by β4, and the remaining eigenvalues are
strictly negative, this pdf can be written as a linear combination of exponential
densities:

f
(i)
mig(t) = −

3∑
j=1

V −1
ij Vj4λje

−λjt , (2.9)

where λj = |βj| for j ∈ {1, 2, 3}.

(ii)

As Q is given by equation (2.3), its characteristic polynomial, PQ(β), is of the
form β × PQ(r)(β), where Q(r) is the three by three upper-left submatrix of Q,
that is:

Q(r) =


−(1 + M1) M1 0

M2/2 − (M1 + M2) /2 M1/2

0 M2 −(1/b + M2)

 .

Thus the eigenvalues of Q are the solutions to β × PQ(r)(β) = 0. Consequently,
one of them is zero (β4, say) and the remaining three eigenvalues are also
eigenvalues of Q(r).

Now consider the similarity transformation

S = DQ(r)D−1 =


−(1 + M1)

√
M1M2

2 0√
M1M2

2 −M1+M2
2

√
M1M2

2

0
√

M1M2
2 −(1

b + M2)

 ,

where D =


√

M2
2M1

0 0
0 1 0
0 0

√
M1
2M2

 .

Because S is a symmetric matrix, its eigenvalues are real. Therefore, all the
eigenvalues of Q(r) are real (a similarity transformation does not change the
eigenvalues). S is also a negative definite matrix, since its first, second and
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third upper-left determinants are respectively negative, positive, and negative.
Hence its eigenvalues are all strictly negative, and so are the eigenvalues of
Q(r). Hence Q has one zero eigenvalue (β4) and three real, strictly negative
eigenvalues (β1, β2 and β3).

(iii)

Being a symmetric matrix, S has three independent eigenvectors. A similarity
transformation preserves the number of independent eigenvectors, so Q(r) has
three independent eigenvectors as well. We denote by V(r) the matrix whose
rows are the left eigenvectors of Q(r).

By definition, any left eigenvector vj. of Q satisfies the system of equations
x(Q − Iβj) = 0, where x = [x1 x2 x3 x4]. The first three linear equations
of this system are identical to x(r)(Q(r) − Iβj) = 0, for j ∈ {1, 2, 3} and
x(r) = [x1 x2 x3], which is solved by x(r) = v(r)

j. . So this implies that, for
βj ∈ {β1, β2, β3}, any row vector x in R4 that has v(r)

j. as its first three elements
will solve the first three equations of the system, whatever the value of x4. If
x4 = (V (r)

j1 + 1
b
V

(r)
j3 )/βj , that vector will be an eigenvector of Q, because it also

solves the fourth equation of the system:

[
——v(r)

j. —— V
(r)

j1 + 1
b

V
(r)

j3
βj

]


−(1 + M1) − βj M1 0 1
M2
2 − (M1+M2)

2 − βj
M1
2 0

0 M2 −(1
b + M2) − βj

1
b

0 0 0 −βj


=
[

0 0 0 0
]

,

for βj ∈ {β1, β2, β3}. For the case of βj = β4 = 0, a row eigenvector is [0 0 0 1].
Collecting these row eigenvectors in a single matrix, we get V. So,

V =



—— v(r)
1. —— (V (r)

11 + 1
b

V
(r)

13 )
β1

—— v(r)
2. —— (V (r)

21 + 1
b

V
(r)

23 )
β2

—— v(r)
3. —— (V (r)

31 + 1
b

V
(r)

33 )
β3

0 0 0 1


.

If the matrix V can be shown to be invertible, then Q is diagonalisable.
This will be the case if the system xV = 0 can only be solved by x = [0 0 0 0].
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Now since the three by three upper-left submatrix of V, V(r), is full-ranked,
x1 = x2 = x3 = 0 is a necessary condition for xV = 0. But then x4 = 0, from
the last equation of the system. Thus we have shown that Q is diagonalisable.
2

Substituting the pdf ’s from equations (2.6), (2.7) and (2.8) into the equations
(2.4) and (2.5), and denoting by A the three by three matrix with entries
Aij = −V −1

ij Vj4, we obtain

f
(i)
T (t) =



1
ci

e
− 1

ci
t for 0 ≤ t ≤ τ1,

e
− 1

ci
τ1

3∑
j=1

Aijλje
−λj(t−τ1) for τ1 < t ≤ τ0,

e
− 1

ci
τ1

3∑
j=1

Aije
−λj(τ0−τ1) 1

a
e− 1

a
(t−τ0) for τ0 < t < ∞,

0 otherwise,

(2.10)

for i ∈ {1, 2}, and

f
(3)
T (t) =



3∑
j=1

A3jλje
−λj(t−τ1) for τ1 < t ≤ τ0,

3∑
j=1

A3je
−λj(τ0−τ1) 1

a
e− 1

a
(t−τ0) for τ0 < t < ∞,

0 otherwise.

(2.11)

If M1 = M2 and b = 1 (i.e., in the case of symmetric gene flow and equal
subpopulation sizes during the gene flow period), results (2.10) and (2.11)
above simplify to the corresponding results in Wilkinson-Herbots (2012) – in
this case, the coefficient Ai3 in the linear combination is zero for i ∈ {1, 2, 3}.

2.3.2 Models with unidirectional gene flow and without
gene flow

If either M1 or M2 is equal to zero, or if both are equal to zero, the above
derivation of f

(i)
mig is no longer applicable, as the similarity transformation

in part (ii) of the proof is no longer defined (see the denominators in some
entries of the matrix D). In this section, we derive f

(i)
mig, the density of the

absorption time of the Markov chain defined by the matrix Qmig given in
equation (2.3), starting from state i, when one or both the migration rates are
zero. Again, this is all we need to fill in equations (2.4) and (2.5) and obtain
the distribution of the coalescence time of a pair of DNA sequences under the
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IIM model. Having gene flow in just one direction considerably simplifies the
coalescent. For this reason, we resort to moment generating functions, instead
of eigendecomposition, and derive fully explicit pdf ’s.

Migration from subpopulation 2 to subpopulation 1 backward in
time (M1 = 0, M2 > 0)

Let T
(i)
mig again be defined as the absorption time of the Markov chain generated

by Qmig, now with M1 = 0 and M2 > 0, given that the initial state is
i ∈ {1, 2, 3}. We condition on the state of the coalescent after the first
transition to obtain the following system of equations for the mgf of T

(i)
mig,

where s denotes a dummy variable:

E
[
exp

(
−sT

(1)
mig

)]
=
(

1
1+s

)

E
[
exp

(
−sT

(2)
mig

)]
=
(

M2
1/b+M2+s

)
E
[
exp

(
−sT

(3)
mig

)]
+
(

1/b
1/b+M2+s

)

E
[
exp

(
−sT

(3)
mig

)]
=
(

M2
M2+2s

)
E
[
exp

(
−sT

(1)
mig

)]
.

(see also more general equations in Wilkinson-Herbots, 1998, and Lohse et al.,
2011). Solving this system of equations and applying a partial fraction decom-
position (analogous to the work done in Griffiths, 1981, and Nath and Griffiths,
1993, for the case of symmetric migration and equal population sizes), the
distributions of T

(1)
mig, T

(2)
mig and T

(3)
mig can be expressed as linear combinations of

exponential distributions:

E
[
exp

(
−sT

(1)
mig

)]
=
( 1

1 + s

)
,

E
[
exp

(
−sT

(2)
mig

)]
=
(

M2
1/b+M2+s

) (
M2

M2+2s

) (
1

1+s

)
+
(

1/b
1/b+M2+s

)
=
(

bM2
2

(M2−2)(1−b+bM2)

) (
1

1+s

)
+
(

4bM2
(2−M2)(2+bM2)

) (
M2

M2+2s

)
+
(

1/b
1/b+M2

+ b2M2
2

(2+bM2)(1−b+bM2)(1/b+M2)

) (
1/b+M2

1/b+M2+s

)
,

E
[
exp

(
−sT

(3)
mig

)]
=
(

M2
M2+2s

) (
1

1+s

)
=
(

M2
M2−2

) (
1

1+s

)
+
(

2
2−M2

) (
M2

M2+2s

)
.
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Thus we obtain the following pdf ’s:

f
(1)
mig (t) = e−t ,

f
(2)
mig (t) =

(
bM2

2
(M2−2)(1−b+bM2)

)
e−t +

(
4bM2

(2−M2)(2+bM2)

)
M2
2 e− M2

2 t

+
(

1
1+bM2

+ b2M2
2

(2+bM2)(1−b+bM2)(1/b+M2)

) (
1
b

+ M2
)

e−(1/b+M2)t ,

f
(3)
mig (t) =

(
M2

M2−2

)
e−t +

(
2

2−M2

)
M2
2 e− M2

2 t ,

for t > 0.
The pdf of the coalescence time of a pair of DNA sequences under an IIM

model with M1 = 0 and M2 > 0 can thus be expressed by equations (2.10) and
(2.11) above, but now with

λ =
[
1 M2

2
1
b

+ M2

]
,

and

A =


1 0 0

bM2
2

(M2−2)(1−b+bM2)
4bM2

(2−M2)(2+bM2)
1

1+bM2
+ b2M2

2
(2+bM2)(1−b+bM2)(1/b+M2)

M2
M2−2

2
2−M2

0

 .

Migration from subpopulation 1 to subpopulation 2 backward in
time (M1 > 0, M2 = 0)

In the opposite case of unidirectional migration, and using the same derivation
procedure, we find that:

f
(1)
mig (t) =

(
b2M2

1
(bM1−2)(b−1+bM1)

)
1
b
e− 1

b
t +

(
4M1

(2−bM1)(2+M1)

)
M1
2 e− M1

2 t

+
(

1
(1+M1) + M2

1
(2+M1)(b−1+bM1)(1+M1)

)
(1 + M1) e−(1+M1)t

f
(2)
mig (t) = 1

b
e− 1

b
t

f
(3)
mig (t) =

(
bM1

bM1−2

)
1
b
e− 1

b
t +

(
2

2−bM1

)
M1
2 e− M1

2 t .
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As a result, the pdf of the coalescence time of a pair of sequences under the
IIM model, f

(i)
T (t), is again given by equations (2.10) and (2.11), now with

λ =
[1

b

M1

2 1 + M1

]
and

A =



b2M2
1

(bM1−2)(b−1+bM1)
4M1

(2−bM1)(2+M1)
1

1+M1
+ M2

1
(2+M1)(b−1+bM1)(1+M1)

1 0 0

bM1
bM1−2

2
2−bM1

0

 .

Distribution of the time until coalescence under an IIM model with
M1 = M2 = 0

In this case, the IIM model reduces to a complete isolation model where
both descendant populations may change size at time τ1 into the past. The
distribution of the absorption time T

(i)
mig corresponding to Qmig will now be

either exponential, if both sampled sequences are from the same subpopulation
(i.e. for i ∈ {1, 2}), or coalescence will not be possible at all until the ancestral
population is reached, if we take a sequence from each subpopulation (i.e. if
i = 3). It follows that the pdf of the coalescence time of a pair of sequences in
the IIM model is given by equations (2.10) and (2.11) where

λ =
[
1 1

b
0
]

and A is the 3 × 3 identity matrix.

2.4 The likelihood for a multilocus data set

2.4.1 Distribution of the number of pairwise nucleotide
differences

Let S(i) denote the number of nucleotide differences in a random sample
of two sequences from a given locus, when the ancestral process of these
sequences follows the coalescent under the IIM model and the initial state is
state i (i ∈ {1, 2, 3}). Recall the infinite-sites assumption and assume that
the distribution of the number of mutations hitting one sequence in a single
generation is Poisson with mean µ. As before, time is measured in units of 2N
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generations and we use the coalescent approximation. Given the coalescence
time T (i) of two sequences, S(i) follows a Poisson distribution with mean θT (i),
where θ = 4Nµ denotes the scaled mutation rate. Since the pdf of T (i), f

(i)
T , is

known, the likelihood L(i) of an observation from a single locus corresponding
to the initial state i can be derived by integrating out T (i):

L(i)(γ, θ; s) = P
(
S(i) = s;γ, θ

)
=

∞∫
0

P
(
S(i) = s|T (i) = t

)
f

(i)
T (t)dt,

where γ is the vector of parameters of the coalescent under the IIM model,
that is, γ = (a, b, c1, c2, τ1, τ0, M1, M2) . There is no need to compute this
integral numerically: because f

(i)
T has been expressed in terms of a piecewise

linear combination of exponential or shifted exponential densities, we can use
standard results for a Poisson process superimposed onto an exponential or
shifted exponential distribution.

Equations (18) and (29) of Wilkinson-Herbots (2012) use this superimpo-
sition to derive the distribution of S under a mathematically much simpler
IIM model with symmetric migration and equal subpopulation sizes during
the period of migration. These equations can now be adapted to obtain the
pmf of S under each of the migration scenarios dealt with in this thesis. The
changes accommodate the fact that the density of the coalescence time during
the migration stage of the model is now given by a different linear combination
of exponential densities, where the coefficients in the linear combination, as
well as the parameters of the exponential densities, are no longer the same.
The pmf of S has the following general form: for s ∈ {0, 1, 2, 3, ...},

P (S(i) = s) = (ciθ)s
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if i ∈ {1, 2}, and

P (S(3) = s) =
3∑
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(2.13)
As defined in section 2.3.1, under bidirectional migration, λ = (λ1, λ2, λ3) is
the vector of the absolute values of the strictly negative eigenvalues of Qmig

and Aij = −V −1
ij Vj4. When migration occurs in one direction only, or when

there is no gene flow, the matrix A and the vector λ are defined as in section
2.3.2. In the special case of M1 = M2 and b = 1, equations (2.12) and (2.13)
reduce to the results of Wilkinson-Herbots (2012).

2.4.2 Multiple loci

To jointly estimate all the parameters of the IIM model, our method requires
a large set of observations on each of the three initial states (i.e., on pairs
of sequences from subpopulation 1, from subpopulation 2, and from both
subpopulations). To compute the likelihood of such a data set, we use the
assumption that observations are independent, so we should have no more
than one observation or pair of sequences per locus and there should be free
recombination between loci, i.e., loci should be sufficiently far apart, or at least
separated by recombination hotspots.

Let each locus for the initial state i be assigned a label ji ∈ {1i, 2i, 3i, ..., Ji},
where Ji is the total number of loci associated with initial state i. Denote by
θji

= 4Nµji
the scaled mutation rate at locus ji, where µji

is the mutation
rate per sequence per generation at that locus. Let θ denote the average scaled
mutation rate over all loci and denote by rji

= θji

θ
the relative mutation rate

of locus ji. Then θji
= rji

θ. If the relative mutation rates are known, we can
represent the likelihood of the observation at locus ji simply by L(γ, θ; sji

). By
independence, the likelihood of the data set is then given by

L (γ, θ; s) =
3∏

i=1

Ji∏
ji=1

L(γ, θ; sji
) . (2.14)



2.5 Results on simulated data 45

In our likelihood method, the rji
are treated as known constants. In practice,

however, the relative mutation rates at the different loci are usually estimated
using outgroup sequences (Yang, 2002; Wang and Hey, 2010).

2.5 Results on simulated data

We generated three batches of data sets by simulation, each batch having 100
data sets. Each data set consists of thousands of independent observations,
where each observation represents the number of nucleotide differences between
two DNA sequences belonging to the same locus, when the genealogy of these
sequences follows an IIM model. Each data set of batches 1, 2 and 3 contains
8000, 40,000 and 800,000 observations respectively. In each data set, half of
the observations correspond to initial state 3, 1/4 to initial state 1, and 1/4 to
initial state 2.

All data sets were generated using the following parameter values: a = 0.75,
θ = 2, b = 1.25, c1 = 1.5, c2 = 2, τ0 = 2 and τ1 = 1, M1 = 0.5 and M2 = 0.75.
Each observation in a data set refers to a different genetic locus j, and hence
was generated using a different scaled mutation rate θj for that locus. For
batch 1, we first fixed the average mutation rate over all sites to be θ = 2.
Then, a vector of 8000 relative size scalars rj was randomly generated using
a Gamma(15,15) distribution. The scaled mutation rate at locus j was then
defined to be θj = rjθ, where rj denotes the relative mutation rate at locus j,
that is, the relative size of θj with respect to the average mutation rate, θ. All
data sets in batch 1 were generated using the same vector of relative mutation
rates. The generation of the mutation rates θj used in batches 2 and 3 was
carried out following the same procedure.

When fitting the IIM model to data sets generated in this manner, the
relative mutation rates rj are included as known constants in the log-likelihood
function to be maximised. So, as far as mutation rates are concerned, only
the average over all loci is estimated (i.e. the parameter θ). To increase the
robustness and performance of the fitting procedure (see also Wilkinson-Herbots,
2015, and the references therein), we found the maximum-likelihood estimates
for a reparameterised model with parameters θ, θa = θa, θb = θb, θc1 = θc1,
θc2 = θc2, V = θ (τ0 − τ1), T1 = θτ1 , M1 and M2.

The boxplots of the maximum-likelihood estimates obtained for the three
batches of simulated data are shown in Figures 2.4 and 2.5. For each parameter,
the boxplots on the left, centre, and right-hand side refer to batches 1, 2 and
3 respectively. From the boxplots of time and population size parameters,
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Fig. 2.4 Estimates of population size parameters for simulated data. For each
parameter, the estimates shown on the left, centre and right-hand side boxplots are
based on sample sizes of 8000, 40 000 and 800 000 loci respectively. The values stated
in parentheses are the true parameter values used to generate the data. Horizontal
dashed lines indicate the true parameter values for each group of boxplots.

it is seen that the estimates are centred around the true parameter values.
Estimates for the migration rates are skewed to the right for batches 1 and
2, possibly because the true parameter values for these rates are closer to the
boundary (zero) than the ones for population sizes and splitting times. For all
types of parameters, increasing the sample size will decrease the variance of the
maximum-likelihood estimator, as would be expected from using the correct
expressions for the likelihood. In the case of the migration rate parameters,
increasing the sample size eliminates most of the skewness.

The three q-q plots in Figure 2.6 show the maximum-likelihood estimates
of θc1 (a size parameter) obtained from simulated data, plotted against the
theoretical quantiles of the standard normal distribution. Figures 2.7 and 2.8
show the corresponding plots for T1 (a time parameter) and M1 (a migration
parameter). In each figure, the left-hand side, centre and right-hand side q-q
plots are based on simulation batches 1, 2 and 3 respectively. It is clear from
figures 2.6 to 2.8 that the distributions of the maximum-likelihood estimates of
θc1 , T1 and M1 become increasingly Gaussian as the number of observations
grows. This is also true for the estimates of the remaining parameters (results
not shown). We note also that the distributions of the time and population
size estimates have already a reasonably Gaussian shape for a sample size of
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Fig. 2.5 Estimates of migration rates and time parameters for simulated data.
For each parameter, the estimates shown on the left, centre and right-hand side
boxplots are based on sample sizes of 8000, 40 000 and 800 000 loci respectively. The
values stated in parentheses are the true parameter values used to generate the data.
Horizontal dashed lines indicate the true parameter values for each group of boxplots.

8000 loci. Again, this is true for the estimates of the remaining time and size
parameters as well. The lack of approximate normality of the migration rate
estimates for smaller sample sizes suggests care should be taken when making
inferences about these parameters – see section 5.1.

2.6 The data from Wang and Hey (2010)

2.6.1 Maximum-likelihood estimation

To illustrate our method, we apply it to a real, multilocus data set from
two closely related species of Drosophila: D. simulans and D. melanogaster.
The DNA sequence data of Wang and Hey (2010) consist of two subsets: a
large subset, which we will call the ‘Wang subset’, containing 30247 blocks of
intergenic sequence, and a smaller subset, which we will refer to as the ‘Hutter
subset’, consisting of 378 blocks of intergenic sequence. Loci in the Wang
subset were sampled by Wang and Hey (2010) from a genome alignment of four
inbred lines, two from D. simulans, and one from each of D. melanogaster and
D. yakuba. To take into account the assumption of no recombination within
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Fig. 2.6 Q-Q plots of maximum-likelihood estimates of the parameter θc1 obtained
from simulated data, against the theoretical quantiles of the standard normal distri-
bution. The estimates shown in the left-hand side, centre and right-hand side q-q
plots are based on sample sizes of 8000, 40 000 and 800 000 loci respectively. In the
central q-q plot, one outlier with a value above 10 is not shown.

Fig. 2.7 Q-Q plots of maximum-likelihood estimates of the parameter T1 obtained
from simulated data, against the theoretical quantiles of the standard normal distri-
bution. The estimates shown in the left-hand side, centre and right-hand side q-q
plots are based on sample sizes of 8000, 40 000 and 800 000 loci respectively.
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Fig. 2.8 Q-Q plots of maximum-likelihood estimates of the parameter M1 obtained
from simulated data, against the theoretical quantiles of the standard normal distri-
bution. The estimates shown in the left-hand side, centre and right-hand side q-q
plots are based on sample sizes of 8000, 40 000 and 800 000 loci respectively.

loci and free recombination between loci, and based on the findings of Hey
and Nielsen (2004) regarding the density of apparent recombination events
in Drosophila, Wang and Hey (2010) chose a locus length of approximately
500 bp and a space of at least 2000 bp between loci. To build the Hutter
subset, they drew 378 pairs of D. melanogaster sequences from the data set of
Hutter et al. (2007), which consists of 378 blocks of sequence sampled from 24
inbred lines of D. melanogaster, with an average locus length of 536 bp and an
average distance of about 52 kb between consecutive loci. They then joined
each of these sequence pairs with their respective D. yakuba orthologs from
the simulans-melanogaster-yakuba genome alignment. Our models are fitted
to the D. melanogaster and D. simulans sequences from both subsets. The D.
yakuba sequences are only used as outgroup sequences, to estimate the relative
mutation rates at the different loci and to calibrate time.

Since our method uses only one pair of sequences at each of a large number
of independent loci, and requires observations for all initial states, the following
procedure was adopted to select a suitable set of data. According to the genome
assembly they stem from, sequences in the Wang subset were given one of
three possible tags: ‘Dsim1’, ‘Dsim2’ or ‘Dmel’. To each of the 30247 loci in
the Wang subset we assigned a letter: loci with positions 1, 4, 7,... in the
genome alignment were assigned the letter A; loci with positions 2, 5, 8,... were
assigned the letter B; and loci with positions 3, 6, 9,..., the letter C. A data set
was then built by selecting observations corresponding to initial states 1 and 3
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Fig. 2.9 Models fitted to the data of Wang and Hey (2010): θa = θa, θb = θb,
θc1 = θc1, θc2 = θc2, V = T0 − T1 = θ(τ0 − τ1) and T1 = θτ1.

from the Wang subset (we used the Dsim1-Dsim2 sequences from loci A, the
Dmel-Dsim1 sequences from loci B, and the Dmel-Dsim2 sequences from loci
C), whilst observations corresponding to initial state 2 were obtained from the
Hutter subset by comparing the two D. melanogaster sequences available at
each locus.

To estimate the relative mutation rates rji
, we use the ad hoc approach

proposed by Yang (2002), which was also used in Wang and Hey (2010) and
Lohse et al. (2011). Estimates are computed by means of the following estimator:

r̂ji
= J k̄ji∑3

m=1
∑Jm

n=1 k̄nm

, (2.15)

where J is the total number of loci, and k̄ji
is the average of the numbers

of nucleotide differences observed in pairs of one ingroup sequence and one
outgroup sequence, at locus ji.

Table 2.1 contains the maximum-likelihood estimates for the models shown
in Figure 2.9. Note that the parameters of time and population size have
been reparameterised as in section 2.5, and recall that M1 and M2 are the
scaled migration rates backward in time. In the diagrams, the left and right
subpopulations represent D. simulans and D. melanogaster respectively.
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Table 2.1 Results for the data of Wang and Hey (2010): maximum-
likelihood estimates and values of the maximised log-likelihood, for the
models shown in Figure 2.9.

Model θa θ θb θc1 θc2 T1 V M1 M2 log L(ψ)

ISO 4.757 5.628 2.665 - - - 13.705 - - -90879.14
IM1 3.974 5.641 2.493 - - - 14.965 0.000 0.053 -90276.00
IIM1 3.191 5.581 2.589 - - 6.931 9.928 0.000 0.528 -90069.44
IIM2 3.273 3.357 1.929 6.623 2.647 6.930 9.778 0.000 0.223 -89899.22
IIM3 3.273 3.357 1.929 6.623 2.647 6.930 9.778 - 0.223 -89899.22

2.6.2 Model selection

In this section, we use a series of likelihood ratio tests for nested models to
determine which of the models listed in Table 2.1 fits the data of Wang and
Hey (2010) best. The use of such tests in the present situation is not entirely
straightforward. We wish to apply a standard large-sample theoretical result
which states that, as the number of observations increases, the distribution of
the likelihood ratio statistic given by

D = −2 log λ (s) ,

where

λ (s) =
sup
ψ∈Ω0

L (ψ; s)

sup
ψ∈Ω

L (ψ; s) (2.16)

approaches a χ2 distribution. In equation (2.16), Ω denotes the parameter
space and Ω0 represents the parameter space according to the null hypothesis
(H0). The number of degrees of freedom of the limiting distribution is given
by the difference between the dimensions of the two spaces. A list of sufficient
regularity conditions for this result can be found, for example, in Casella
and Berger (2001, p. 516). One of them is clearly not met in the present
case: in the pairwise comparison of some of our models, every point of Ω0

is a boundary point of Ω. In other words, if H0 is true, the vector of true
parameters ψ∗ ∈ Ω0, whichever it might be, is on the boundary of Ω. This
irregularity is present, for example, when M1 = M2 = 0 according to H0 and
[M1 M2]ᵀ ∈

{
[0, ∞)2 \ {0}2

}
according to H1. The problem of parameters on

the boundary has been the subject of papers such as Self and Liang (1987) and
Kopylev and Sinha (2011). The limiting distribution of the likelihood ratio
statistic under this irregularity has been derived in these papers, but only for
very specific cases. In most of these cases, the use of the naive χ2

r distribution,
with r being the number of additional free parameters according to H1, turns
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out to be conservative, because the correct null distribution is a mixture of χ2
ν

distributions with ν ≤ r. Our analysis of the data of Wang and Hey (2010)
involves two likelihood ratio tests with parameters on the boundary (ISO vs.
IM1, and IM1 vs. IIM1), so we need to check that the naive χ2

r distribution is
also conservative in these cases. This was verified in a short simulation study
which we now describe.

We generated 100 data sets from the ISO model, each one consisting of
40,000 observations, and fitted both the ISO model (H0) and the IM1 model
(H1) to obtain a sample of 100 realisations of the likelihood ratio statistic.
A q-q plot (Figure 2.10, left boxplot) shows that the estimated quantiles of
the null distribution are smaller than the corresponding theoretical quantiles
of the χ2 distribution with 2 degrees of freedom (the difference between the
dimensions of Ω0 and Ω in this particular case). In other words, the naive
χ2 distribution should be conservative. Using χ2

2 instead of the correct null
distribution, at a significance level of 5%, the null hypothesis (i.e. the ISO
model) was falsely rejected in only 1 out of the 100 simulations performed.

Fig. 2.10 Q-Q plots of the estimated quantiles of the likelihood ratio statistic null
distribution against the χ2 distribution theoretical quantiles. Left plot: H0 = ISO
model, H1 = IM1 model. Right plot: H0 = IM1 model, H1 = IIM1 model.

A similar simulation was carried out with respect to another pair of nested
models: the IM1 model (now as H0), in which τ1 = 0, and the IIM1 model
(H1), in which τ1 ≥ 0. Again the naive χ2 distribution (this time with only one
degree of freedom) was found to be conservative (Figure 2.10, right boxplot).
And once more, only in one out of the 100 simulations performed is the null
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hypothesis (the IM1 model) falsely rejected at the 5% significance level, if χ2
1 is

used instead of the correct null distribution.
To select the model that best fitted the data of Wang and Hey (2010), we

performed the sequence of pairwise comparisons shown in Table 2.2. For any
sensible significance level, this sequence of comparisons leads to the choice
of IIM2 as the best fitting model. In fact, assuming the naive χ2 as the null
distribution, a significance level as low as 1.2 × 10−74 is enough to reject H0

in each of the three tests. However, since M̂1 = 0 for this model (see Table
2.1), a final (backward) comparison is in order: that between IIM2 and IIM3

(which corresponds to fixing M1 at zero in IIM2). The nested model in this
comparison has one parameter less and, as can be seen in Table 2.1, has the
same likelihood. So, in the end, we should prefer IIM3 to IIM2.

Table 2.2 Forward selection of the
best model for the data of Wang and
Hey (2010).

H0 H1 −2 log λ(S) P-value

ISO IM1 1206.293 1.140E-262
IM1 IIM1 413.12 7.673E-92
IIM1 IIM2 340.44 1.187E-74

2.6.3 Confidence intervals for the selected model

Wald-type confidence intervals are straightforward to calculate whenever the
vector of estimates is neither on the boundary of the model’s parameter space,
nor too close to it. In that case, it is reasonable to assume that the vector
of true parameters does not lie on the boundary either, which justifies the
application of standard large-sample results: the vector of maximum-likelihood
estimators is consistent, and its distribution approaches a multivariate Gaussian
distribution as the sample size grows (see, for example, Pawitan, 2001, p. 258).
The confidence intervals can then be calculated using the inverse of the observed
Fisher information. In the case of the data of Wang and Hey (2010), the vector
of estimates of the selected model (IIM3) is an interior point of the parameter
space. Assuming that the vector of true parameters is also away from the
boundary, we computed the Wald 95% confidence intervals shown in Table
2.3. In agreement with our assumption, we note that none of the confidence
intervals includes zero.
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Table 2.3 Results for the data of Wang and Hey (2010):
point estimates and confidence intervals under the model
IIM3.

Parameter Estimate 95% Confidence intervals
Wald Profile likelihood

θa 3.273 (3.101, 3.445) (3.100, 3.444)
θ 3.357 (3.139, 3.575) (3.097, 3.578)
θb 1.929 (0.079, 3.779) (0.672, 5.010)
θc1 6.623 (6.407, 6.839) (6.415, 6.843)
θc2 2.647 (2.304, 2.990) (2.331, 3.021)
T1 6.930 (6.540, 7.320) (6.542, 7.319)
V 9.778 (9.457, 10.099) (9.456, 10.098)

M2 0.223 (0.190, 0.256) (0.186, 0.259)

For large sample sizes, and for true parameter values not too close to
the boundary of the parameter space, the Wald intervals are both accurate
and easy to compute. To check how well the Wald intervals for the IIM3

model fare against the more accurate (see Pawitan, 2001, pp. 47-48), but also
computationally more expensive, profile likelihood intervals, we included these
in Table 2.3. The two methods yield very similar confidence intervals for all
parameters except θb. The cause of this discrepancy should lie in the fact that
we only had pairs of D. melanogaster sequences available from a few hundred
loci (θb is the size of the D. melanogaster subpopulation during the migration
stage).

2.6.4 Conversion of estimates

The conversion of point estimates and confidence intervals to more conventional
units is based on the estimates of Powell (1997) of the duration of one generation
(g = 0.1 years) and the speciation time between D. yakuba and the common
ancestor of D. simulans and D. melanogaster (10 million years) – see also Wang
and Hey (2010) and Lohse et al. (2011). Using these values, we estimated
µ, the mutation rate per locus per generation, averaged over all loci, to be
µ̂ = 2.31 × 10−7.

In Tables 2.4, 2.5 and 2.6, we show the converted estimates for the best-
fitting model IIM3. The effective population size estimates, in units of diploid
individuals, are all based on estimators of the form N̂ = 1

4µ̂
× θ̂. For example,

the estimate of the ancestral population effective size Na is given by 1
4µ̂

× θ̂a.
The estimates in years of the time since the onset of speciation and of the time
since the end of gene flow are given by t̂0 = g

2µ̂
× (T̂1 + V̂ ) and t̂1 = g

2µ̂
× T̂1
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respectively. With respect to gene flow, we use m̂12 = µ̂ × M̂2b̂
θ̂

as the estimator
of the expected fraction of subpopulation 1 which, in each generation, migrates
to subpopulation 2, forward in time, and ŝ12 = M̂2b̂

2 as the estimator of the
expected number of migrant sequences from subpopulation 1 to subpopulation
2 in each generation, also forward in time.

Table 2.4 Effective population size estimates for the data of Wang and Hey
(2010) under the model IIM3 (values in millions of diploid individuals).

Population Population size 95% Confidence intervals
Wald Profile likelihood

Ancestral population (Na) 3.549 (3.362, 3.736) (3.362, 3.735)
D. simulans, migration stage (N) 3.640 (3.404, 3.877) (3.359, 3.880)
D. melanogaster, migration stage (Nb) 2.092 (0.085, 4.099) (0.729, 5.433)
D. simulans , isolation stage (Nc1 ) 7.182 (6.949, 7.415) (6.957, 7.421)
D. melanogaster, isolation stage (Nc2 ) 2.871 (2.498, 3.243) (2.528, 3.276)

If g and µ̂ are treated as constants, then each of the estimators just given
can be expressed as a constant times a product – or a ratio – of the estimators
of non-converted parameters. For example, we have that

m̂12 = µ̂ × M̂2b̂

θ̂
= constant × M̂2b̂

θ̂
,

and
N̂a = θ̂a

4µ̂
= constant × θ̂a .

Hence if we denote the vector of estimators of the converted parameters by
ψ̂c, then ψ̂c = Wψ̂, where W is a diagonal matrix and ψ̂ = [M̂2b̂/θ̂ θ̂a ... ]ᵀ.
Because ψ̂ is a maximum-likelihood estimator (of a reparameterised model),
its distribution, for a large sample size, is approximately multivariate Gaussian
with covariance matrix Σ = I−1, where I is the observed Fisher information;
hence ψ̂c has a distribution which is approximately multivariate Gaussian, but
with covariance matrix WΣWT. The Wald confidence intervals of Tables 2.4,
2.5 and 2.6 were calculated using this covariance matrix.

Profile likelihood confidence intervals were first computed for the parame-
terisation ψ = [M2b/θ θa ... ]ᵀ. Then, if û (or l̂) is the vector of estimated
upper (or lower) bounds for the parameters in ψ, Wû (or Wl̂) will be the
vector of estimated upper (or lower) bounds for the converted parameters. This
follows from the likelihood ratio invariance – see, for example, Pawitan (2001,
p. 47-48).
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Table 2.5 Divergence time estimates for the data of Wang and Hey
(2010) under the model IIM3 (values in millions of years ago).

Event Time since occurrence 95% Confidence intervals
Wald Profile likelihood

Onset of speciation (t0) 3.624 (3.559, 3.689) (3.561, 3.691)
Complete isolation (t1) 1.503 (1.419, 1.588) (1.419, 1.587)

Note: These are the converted estimates of τ0 and τ1 (see Figure 2.1).

Table 2.6 Converted migration rates for the data of Wang and Hey
(2010) under the model IIM3.

Migration parameter Point Estimate 95% Confidence intervals
Wald Profile likelihood

m12 8.8E-09 (1.1E-10, 1.8E-08) (3.2E-09, 2.4E-08)
s12 0.064 (0.001, 0.127) (0.023, 0.172)

Note: These are forward-in-time parameters; m12 is the expected fraction of subpopulation
1 (D. simulans) which, in each generation, migrates to subpopulation 2 (D. melanogaster),
during the period of gene flow; s12 is the expected number of sequences migrating from
subpopulation 1 to subpopulation 2 in each generation, during the same period.



Chapter 3

The generalised
isolation-with-migration (GIM)
model

3.1 Motivation

In this chapter, we introduce the generalised isolation-with-migration (GIM)
model, and derive some theoretical results which enable its estimation by
maximum-likelihood. Broadly speaking, a GIM model is an IM model in which
population sizes and migration rates are allowed to change at some point in
the past, as illustrated in Figure 3.1.

The need for a maximum-likelihood implementation of the GIM model
became apparent during the analysis of a set of mRNA sequences in Janko et al.
(2016), as part of an effort to reconstruct the speciation history of four species
of European loaches (Cobitis): C. elongatoides, C. tanaitica, C. taenia and C.
pontica. In previous studies (Janko et al., 2007; Choleva et al., 2012; Janko
et al., 2012), hybrids of C. elongatoides with any of the three other species
seemed unable to mediate gene flow, as they were found to be either infertile
(males) or fertile but clonally reproducing (females). However, the signs of past
mitochondrial gene flow between C. elongatoides and C. tanaitica reported
in Choleva et al. (2014) suggested that, at least between these two species,
non-clonal hybrids may have existed in the past, and that reproductive isolation
may have been accomplished through the initiation of hybrid asexuality. In
Janko et al. (2016), the scenario of ancestral gene flow between C. elongatoides
and any of C. tanaitica, C. taenia, and C. pontica was represented by the IIM
model. We were interested in assessing how well it fitted the available data
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compared to other models representing two alternative scenarios: divergence
without gene flow and divergence with continuous gene flow until the present.

One way to perform this comparison would be to fit the three models
depicted in Figure 3.2: a complete isolation model, a standard IM model, and
a version of the IIM model in which the sizes of the diverging populations are
kept constant. The aim of this latter restriction is to separate, as much as
possible, the effect of allowing for a different gene flow pattern from the effect
of allowing for population size changes.

In practice, however, one is often ignorant of whether the sizes of the
populations during divergence have changed significantly or not, and allowing
for population size changes may improve the fit of the models substantially.
Therefore, we would like to be able to compare the three gene flow scenarios in
a framework which incorporates the full IIM model shown in Figure 2.1. The
aim of this chapter is to build such a framework, by developing a maximum-
likelihood implementation of the GIM model. This will enable us to compare
the three models shown in Figure 3.3, which include the full GIM model (central
diagram) and two models nested in it. As in the case of the IIM model, our
goal is to enable these models to be fitted to data sets consisting of observations
on the number of nucleotide differences between pairs of DNA sequences from
a large number of independent, non-recombining loci.

3.2 Theory and methods

From a backward-in-time perspective, the fullest GIM model we consider
consists of two successive Wright-Fisher two-island models with migration
and one ancestral Wright-Fisher population, as illustrated in Figure 3.1. As
before, the subpopulation on the left of the diagram will be referred to as
‘subpopulation 1’ and the subpopulation on the right as ‘subpopulation 2’. The
full GIM model makes the same assumptions of the full IIM model (see section
2.1), with one exception: between τ1 and 0, the two subpopulations evolve
according to a two-island Wright-Fisher model with gene flow. More specifically,
for i, j ∈ {1, 2}, and i ̸= j, subpopulation i has [2ciN ] sequences and, in each
generation, each sequence in subpopulation i migrates to subpopulation j

independently with probability m′
ij.

As in the case of the IIM model, we are interested in the genealogical process
of a random sample of two DNA sequences from the same locus, taken from
either of the present populations (or one from each population). Before τ0

into the past, this process has four possible states: state 1, if there are two
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Fig. 3.1 The generalised isolation-with-migration (GIM) model. The size of each
population is given by (the integer part of) the value inside its corresponding box.
The probabilities of migration of each sequence are given by m12 and m21, between
τ0 and τ1, and by m′

12 and m′
21, between τ1 and 0.

Fig. 3.2 Three models of divergence nested in the isolation-with-initial-migration
(IIM) model. The parameters have the same meaning as in Figure 3.1.

Fig. 3.3 The full GIM model (centre) and two models of divergence nested in it.
The parameters have the same meaning as in Figure 3.1.
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lineages in population 1; state 2, if there are two lineages in population 2;
state 3, if there is one lineage in each population; and state 4, if coalescence
has occurred. To facilitate the derivation of the time until the MRCA, or the
coalescence time, we let the process have four states even after τ0 into the past:
if the process reaches τ0 in state i ∈ {1, 2, 3}, it remains in this state until the
two lineages have coalesced (state 4). As before, the density of the time until
coalescence is derived for the coalescent under the GIM model, that is, for the
continuous-time limit of the genealogical process when time is measured in
units of 2N generations and N goes to infinity.

3.2.1 The coalescent under the GIM model
The coalescent under the GIM model is defined by the following generator
matrices. When 0 ≤ t ≤ τ1,

Q1 =



(1) (3) (2) (4)

(1) −
(

1
c1

+ M ′
1

)
M ′

1 0 1
c1

(3)
M ′

2
2 −

(
M ′

1+M ′
2

2

)
M ′

1
2 0

(2) 0 M ′
2 −

(
1
c2

+ M ′
2

)
1
c2

(4) 0 0 0 0


(3.1)

(Notohara, 1990), where, for i ∈ {1, 2} and i ̸= j, M ′
i/2 := lim

N→∞
2Nm′

ji
cj

ci
is the

rate of backward migration of a single lineage when in subpopulation i. The rate
1
ci

is the rate of coalescence of two lineages if both are in subpopulation i. Note
again that, for mathematical and notational convenience, state 2 corresponds
to row and column 3, whereas state 3 corresponds to row and column 2: this
makes Q1 as symmetric as possible, while reserving states 1 and 2 for the
states in which two lineages are present in subpopulation 1 and subpopulation
2 respectively. If τ1 < t ≤ τ0,

Q2 =



(1) (3) (2) (4)

(1) − (1 + M1) M1 0 1

(3) M2
2 −

(
M1+M2

2

)
M1
2 0

(2) 0 M2 −
(

1
b + M2

)
1
b

(4) 0 0 0 0


, (3.2)

where 1 and 1
b are the coalescence rates of two lineages in subpopulation 1 and

subpopulation 2 respectively, M1/2 := lim
N→∞

2Nm21b and M2/2 := lim
N→∞

2Nm12/b.
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Finally, for t > τ0,

Q3 =



(1) (3) (2) (4)

(1) − 1
a 0 0 1

a

(3) 0 − 1
a 0 1

a

(2) 0 0 − 1
a

1
a

(4) 0 0 0 0

 (3.3)

(Kingman, 1982a), where 1
a

is the rate of coalescence of two lineages in the
ancestral population.

The matrix of transition probabilities P(t) of the coalescent under the GIM
model has the following form:

P(t) =


eQ1t for 0 ≤ t ≤ τ1,

eQ1τ1 eQ2(t−τ1) for τ1 < t ≤ τ0,

eQ1τ1 eQ2(τ0−τ1) eQ3(t−τ0) for τ0 < t < ∞,

0 otherwise.

(3.4)

Recall that time and population size parameters are assumed strictly positive. In
section 2.3.1, we prove that, if both migration rates are also strictly positive, the
matrices Q1 and Q2 are diagonalisable and have non-positive, real eigenvalues.
Moreover, the matrix 

1 0 1 0
1 1 0 0
1 0 0 1
1 0 0 0

 (3.5)

contains a set of four independent right eigenvectors of Q3, and the correspond-
ing vector of eigenvalues is (0, −1/a, −1/a, −1/a) , i.e., Q3 is also diagonalisable
and has non-positive, real eigenvalues. Hence, for M1, M2, M ′

1, M ′
2 > 0, P(t) can

be written as:

P(t) =


G−1e−AtG for 0 ≤ t ≤ τ1,

G−1e−Aτ1G C−1e−B(t−τ1)C for τ1 < t ≤ τ0,

G−1e−Aτ1G C−1e−B(τ0−τ1)C D−1e−Γ(t−τ0)D for τ0 < t < ∞,

0 otherwise,

(3.6)
where G, C and D are the matrices of left eigenvectors of Q1, Q2 and Q3

respectively, and −A, −B and −Γ are the corresponding diagonal matrices of
non-positive, real eigenvalues. The entries in the main diagonals of A, B and
Γ contain the absolute values of the eigenvalues, and are represented by the
letters αi = (A)ii, βi = (B)ii and γi = (Γ)ii.
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If a matrix Q is a generator matrix of a migration stage in the GIM model,
with migration parameters M1 = M2 = 0 and subpopulation size parameters
c1 and c2, then its right eigenvectors are those shown in matrix (3.5) and
its vector of eigenvalues is (0, 0, −1/c1, −1/c2) . So when there is no gene flow
between τ0 and τ1, or no gene flow between τ1 and the present, P(t) can still
be decomposed as in equation (3.6).

In addition, for all values of M1 and M2, the characteristic polynomial of
Q, denoted PQ(β), is of the form β × PQ(r)(β), where Q(r) is the three by
three upper-left submatrix of Q. So Q has a zero eigenvalue and its remaining
eigenvalues are the eigenvalues of Q(r). If Q has migration parameters Mi = 0
and Mj > 0 (i, j ∈ {1, 2} and i ̸= j) , Q(r) becomes triangular. The eigenvalues
of Q(r) will be the entries in its main diagonal. Hence the vector of eigenvalues
of Q will be λ = [−1/ci − Mj/2 − (Mj + 1/cj) 0]ᵀ. If there are no repeated
eigenvalues in λ, we can be sure that Q is diagonalisable (and its eigenvalues
are non-positive and real). In other words, even if there is unidirectional
migration between τ1 and the present, or between τ0 and τ1, the probability
transition matrix P(t) can still be decomposed as in (3.6), as long as there
are no repeated entries in λ. Two comments are in order here: first, repeated
eigenvalues will occur if and only if 1/ci = Mj/2 or 1/ci = Mj + 1/cj; second,
the set of parameter values that make these equalities true is negligible when
compared to the whole parameter space, so it is very unlikely that the likelihood
maximisation procedure chooses values from this set (although one should be
careful to avoid using them as initial values).

The probability that, starting in state i (i ∈ {1, 2, 3}), the process has
reached state 4 by time t is given by the entry corresponding to the ith row
and 4th column of P(t). This is also the cumulative distribution function (cdf )
of Ti, the time until coalescence, which we denote FTi

(t). If the initial state is
i, and p

(1)
ij (t), p

(2)
jl (t) and p

(3)
l4 (t) denote transition probability functions of the

Markov chains with generator matrices Q1, Q2 and Q3 respectively, then:

FTi(t) =



p
(1)
i4 (t) for 0 ≤ t ≤ τ1,

4∑
j=1

p
(1)
ij (τ1) p

(2)
j4 (t − τ1) for τ1 < t ≤ τ0,

4∑
j=1

p
(1)
ij (τ1)

4∑
l=1

p
(2)
jl (τ0 − τ1) p

(3)
l4 (t − τ0) for τ0 < t < ∞,

0 otherwise.

(3.7)
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Representing by Amn the (m, n) entry of a matrix A, and by A−1
mn the same

entry of the matrix A−1, we have that p
(1)
ij (t) =

∑4
k=1 G−1

ik Gkj e−αkt, p
(2)
ij (t) =∑4

k=1 C−1
ik Ckj e−βkt and p

(3)
i4 (t) =

∑4
k=1 D−1

ik Dk4 e−γkt .
Differentiating the expression above gives the following density for Ti :

fTi(t) =



f
(1)
i (t) for 0 ≤ t ≤ τ1,

4∑
j=1

p
(1)
ij (τ1) f

(2)
j (t − τ1) for τ1 < t ≤ τ0,

4∑
j=1

p
(1)
ij (τ1)

4∑
l=1

p
(2)
jl (τ0 − τ1) f

(3)
l (t − τ0) for τ0 < t < ∞,

0 , otherwise,

(3.8)

where f
(1)
i (t) =

∑4
k=1 −αk G−1

ik Gk4 e−αkt, f
(2)
i (t) =

∑4
k=1 −βk C−1

ik Ck4 e−βkt and
f

(3)
i (t) =

∑4
k=1 −γk D−1

ik Dk4 e−γkt.

3.2.2 The distribution of the number of pairwise nu-
cleotide differences

Assuming the infinite-sites model, the number of nucleotide differences Si

between two sequences from the same locus, given the time Ti until their
most-recent common ancestor, follows a Poisson distribution with mean θTi

(see section 2.4.1): as before, the parameter θ denotes the scaled mutation
rate of the locus and is defined as twice the expected number of mutations
hitting a lineage in 2N generations. Denoting gs(t) := (θt)s

s! e−θt, we have, for
s ∈ {0, 1, 2, ...},

P(Si = s) = E[gs(Ti)]

=
∫ τ1

0
gs(t) f

(1)
i (t)dt +

4∑
j=1

p
(1)
ij (τ1)

∫ τ0

τ1
gs(t) f

(2)
j (t − τ1) dt

+
4∑

j=1
p

(1)
ij (τ1)

4∑
l=1

p
(2)
jl (τ0 − τ1)

∫ ∞

τ0
gs(t) f

(3)
l (t − τ0)dt , (3.9)

where i is again the initial state of the coalescent, corresponding to the sampling
locations of the two sequences. Changing the limits of integration, equation
(3.9) becomes:

P (Si = s) =
∫ τ1

0
gs(t) f

(1)
i (t)dt +

4∑
j=1

p
(1)
ij (τ1)

∫ τ0−τ1

0
gs(τ1 + t) f

(2)
j (t) dt
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+
4∑

j=1
p

(1)
ij (τ1)

4∑
l=1

p
(2)
jl (τ0 − τ1)

∫ ∞

0
gs(τ0 + t) f

(3)
l (t)dt .

Denoting by Wi, Yj and Zl the random variables with pdf ’s f
(1)
i , f

(2)
j and f

(3)
l

respectively, the above equation can be written as:

P (Si = s) = E[gs(Wi)|Wi ≤ τ1]P[Wi ≤ τ1]

+
4∑

j=1
p

(1)
ij (τ1) E[gs(τ1 + Yj)|τ1 + Yj ≤ τ0] P[τ1 + Yj ≤ τ0]

+
4∑

j=1
p

(1)
ij (τ1)

4∑
l=1

p
(2)
jl (τ0 − τ1) E[gs(τ0 + Zl)] .

Making use of the law of total expectation and rearranging the previous equation
gives:

P (Si = s) = E[gs(Wi)] − E[gs(Wi)|Wi > τ1]P[Wi > τ1]

+
4∑

j=1
p

(1)
ij (τ1) {E[gs(τ1 + Yj)]

− E[gs(τ1 + Yj)|τ1 + Yj > τ0] P[τ1 + Yj > τ0]}

+
4∑

j=1
p

(1)
ij (τ1)

4∑
l=1

p
(2)
jl (τ0 − τ1) E[gs(τ0 + Zl)]

Recall that f
(1)
i (t) =

∑4
k=1 −αk G−1

ik Gk4 e−αkt, f
(2)
i (t) =

∑4
k=1 −βk C−1

ik Ck4 e−βkt

and f
(3)
i (t) =

∑4
k=1 −γk D−1

ik Dk4 e−γkt, and that some eigenvalues of Q1, Q2

and Q3 are equal to zero, i.e. some of the −αk, −βk and −γk are zero. For
those αk, βk and γk that are strictly positive, we let W ∗

k , Y ∗
k and Z∗

k denote
exponentially distributed random variables with rates αk, βk and γk respectively.
The equation above can then be written as:

P (Si = s) = −
∑

k:αk>0
G−1

ik Gk4 {E[gs(W ∗
k )] − E[gs(W ∗

k )|W ∗
k > τ1]P[W ∗

k > τ1]}

−
4∑

j=1
p

(1)
ij (τ1)

∑
k:βk>0

C−1
jk Ck4 {E[gs(τ1 + Y ∗

k )]

−E[gs(τ1 + Y ∗
k )|τ1 + Y ∗

k > τ0] P[τ1 + Y ∗
k > τ0]}
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−
4∑

j=1
p

(1)
ij (τ1)

4∑
l=1

p
(2)
jl (τ0 − τ1)

∑
k:γk>0

D−1
lk Dk4 E[gs(τ0 + Z∗

k)] .

Finally, making use of the lack of memory property of the exponential distribu-
tion gives:

P(Si = s) = −
∑

k:αk>0
G−1

ik Gk4
{
E[gs(W ∗

k )] − E[gs(τ1 + W ∗
k )] e−αkτ1

}
(3.10)

−
4∑

j=1
p

(1)
ij (τ1)

∑
k:βk>0

C−1
jk Ck4 {E[gs(τ1 + Y ∗

k )] (3.11)

−E[gs(τ0 + Y ∗
k )] e−βk(τ0−τ1)

}
(3.12)

−
4∑

j=1
p

(1)
ij (τ1)

4∑
l=1

p
(2)
jl (τ0 − τ1)

∑
k:γk>0

D−1
lk Dk4 E[gs(τ0 + Z∗

k)] . (3.13)

To give an explicit statement of the expectations in this probability mass
function, we use the results of equations (16) and (17) in Wilkinson-Herbots
(2012): for a random variable U following an exponential distribution with rate
λ,

E[gs(U)] =
(

θ
λ+θ

)s (
λ

λ+θ

)
(3.14)

and
E[gs(τ + U)] =

(
θ

λ+θ

)s (
λ

λ+θ

)
e−θτ ∑s

l=0
(λ+θ)lτ l

l! . (3.15)

As in section 2.4.2, the assumption of free recombination between loci can
be used to obtain the pmf of a vector of pairwise differences. Redefining θ as
the average mutation rate over all loci in a multilocus data set, we can express
this pmf as ∏

i

p(si ;γ, riθ, ui) ,

where
γ = [ a b c1 c2 τ1 τ0 M1 M2 M ′

1 M ′
2 ] ,

ri = θi/θ is the relative mutation rate of locus i, ui represents the initial state
of the process (two sequences from subpopulation 1 or 2, or one from each),
and p (· ;γ, riθ, ui) is the pmf of Si under the GIM model. As in the IIM model,
the estimation of parameters is based on the estimated likelihood expression
given by ∏

i

L (γ, θ; si, r̂i, ui ) =
∏

i

p(si ;γ, r̂iθ, ui ) , (3.16)
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i.e. on the expression obtained by introducing estimates of the relative mutation
rates ri into the likelihood function. These estimates can be computed using
outgroup sequences and the estimator of Yang (2002) described in section 2.6.1.

3.3 A Cobitis fish data set

As mentioned in section 3.1, in Janko et al. (2016) we were interested in
making inferences about the speciation history of four Cobitis species: C.
elongatoides, C. tanaitica, C. taenia and C. pontica. For each pair of species, we
had approximately 2500 observations available and fitted the models shown in
Figure 3.4. As the sample size was relatively small, and it was not of particular
interest to determine the magnitude of gene flow in each direction, all models
of speciation with gene flow assume symmetric migrations rates. The point
estimates and confidence intervals for the best-fitting models, according to AIC
score, are shown in Tables 3.1, 3.2 and 3.3. In these tables, t1 and t0 denote
time parameters in millions of years ago (Mya). Their estimates are obtained
from the estimates of τ1 and τ0 respectively, using the formulae in section 2.6.4.

Due to the relatively small sample size, the difference between Wald-type
and profile likelihood confidence intervals was not negligible. Only confidence
intervals of this last type are shown in Tables 3.2 and 3.3, since they are, in
any case, more accurate than the ones of Wald type. It was not always possible
to obtain the precise upper or lower bound of the interval (the computational
procedure broke off before the required confidence level was reached). In such
cases the upper or lower bounds of the intervals are indicated as less than (<)
or greater than (>) the nearest value that could be obtained.

Initially, the best-fitting model for all pairs of species was the IIM model,
either in the ‘IIM7’ or the ‘IIM8’ version. However, for those pairs that do not
include C. elongatoides, the estimate of M was above 2, giving an indication
that, between t0 and t1, the mating structure of the population could be better
described by a single panmictic population, rather than by two populations
exchanging genes. This motivated the inclusion of the I6 model in the list of
models to be compared. Further supporting the scenario of divergence without
gene flow in the group C. taenia/C. tanaitica/C. pontica, the I6 model turned
out to have the best AIC score for the pairs C. taenia/C. pontica and C.
tanaitica/C. pontica and the second-best AIC score for the pair C. taenia/C.
tanaitica (see Table 3.1).

In Figure 3.5, we summarise the inference about the speciation history of
the four Cobitis species. It depicts the onset of the speciation process between
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Fig. 3.4 Models fitted to the data of Janko et al. (2016): θa = θa, θb = θb, θc1 = θc1,
θc2 = θc2, V = T0 − T1 = θ(τ0 − τ1) and T1 = θτ1.
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Table 3.1 Results for the data of Janko et al. (2016): best model
fitted to each pair of species and maximum-likelihood estimates.

Species Model θa θ θb θc1 θc2 t1 t0 M

E-T IIM8 0.989 1.336 3.471 0.287 0.122 0.678 8.782 0.137
E-N IIM8 0.827 1.294 7.972 0.474 0.289 1.490 9.151 0.166
E-P IIM7 1.115 1.223 - 0.257 0.315 0.495 8.811 0.055
N-P I6 2.898 1.227 - 0.251 0.370 0.669 5.878 -
T-P I6 2.627 1.149 - 0.080 0.254 0.294 5.518 -
T-N IIM7 2.907 0.713 - 0.113 0.213 0.458 7.898 2.139

Note: E=C. elongatoides, T=C. taenia, N=C. tanaitica, P=C. pontica.

Table 3.2 Results for the data of Janko et al. (2016): profile likelihood
confidence intervals for population sizes.

Data Model θa θ θb θc1 θc2

E-T IIM8 0.530,1.378 0.920,1.910 1.512,35.370 0.190,0.374 0.080,0.161
E-N IIM8 0.189,1.276 0.898,2.015 1.847,>63.289 0.326,0.584 0.193,0.367
E-P IIM7 0.754,1.533 0.968,1.671 - 0.061,0.410 0.081,0.481
N-P I6 2.195,3.976 1.052,1.395 - 0.193,0.316 0.285,0.470
T-P I6 1.874,3.965 0.989,1.307 - 0.049,0.117 0.153,0.380
T-N IIM7 1.990,>3.450 0.554,0.853 - 0.071,0.151 0.142,0.278

Note: E=C. elongatoides, T=C. taenia, N=C. tanaitica, P=C. pontica. It was not always
possible to obtain the precise bounds of the interval. In these cases, the upper or lower bounds
of the intervals are indicated as less than (<) or greater than (>) the nearest value that could
be obtained.

C. elongatoides and the common ancestral species of C. tanaitica, C. taenia,
and C. pontica, around roughly 9 Mya, as well as the relatively recent split
of C. tanaitica, C. taenia and C. pontica, around roughly 0.5 Mya. For the
process of divergence between C. elongatoides and the other species, estimates
of the scaled migration M vary between 0.055 and 0.166. Using the formulae in
section 2.6.4, this translates to estimates between 0.03 and 0.51 for the expected
number of migrant sequences per generation, where the large value at the top
of this range is due to the large estimate of θb obtained for the species pair C.
elongatoides/C. tanaitica. The establishment of reproductive isolation between
C. elongatoides and the group of C. tanaitica, C. taenia, and C. pontica has
estimates ranging from 0.5 to 1.5 Mya, with large confidence intervals, and is
not represented in Figure 3.5.

Our best-fitting model for the species pair C. elongatoides/C. tanaitica was
an IIM model, which reinforces the evidence of ancestral gene flow reported in
Choleva et al. (2014) for this species pair. In addition, the current isolation
of C. elongatoides from the remaining Cobitis species is also supported by
other types of data. In Janko et al. (2016), an analysis of microsatellite and
allozyme data from individuals captured in the C.elongatoides-C. tanaitica
hybrid zone, using the computer programs Structure 2.3.3 (Pritchard et al.,
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Table 3.3 Results for the data of Janko et al. (2016):
profile likelihood confidence intervals for speciation
times and migration rates.

Data Model t1 t0 M

E-T IIM8 0.376,0.997 7.212,10.151 0.050,0.308
E-N IIM8 0.672,2.149 7.811,11.011 0.042,0.576
E-P IIM7 0.066,1.184 7.871,10.165 0.022,0.117
N-P I6 0.485,0.875 4.151,7.964 -
T-P I6 0.166,0.451 3.449,8.269 -
T-N IIM7 <0.362,0.675 <7.447,11.891 <2.139,18.504

Note: E=C. elongatoides, T=C. taenia, N=C. tanaitica, P=C. pon-
tica. It was not always possible to obtain the precise bounds of the
interval. In these cases, the upper or lower bounds of the intervals are
indicated as less than (<) or greater than (>) the nearest value that
could be obtained.

2000) and NewHybrids 1.1 (Anderson and Thompson, 2002), pointed towards
the inexistence of admixed individuals. The same type of analysis of the
C.elongatoides-C. taenia hybrid zone, carried out in Janko et al. (2012), arrived
at the same conclusion. In addition, experimental crossings of C.elongatoides-C.
tanaitica (Janko et al., 2016) and C.elongatoides-C. taenia (Janko et al., 2012)
resulted either in infertile hybrid males or hybrid females unable to produce
recombinant progeny (i.e., that reproduce clonally and hence are unable to
mediate gene flow).

As already mentioned, the best-fitting speciation models for the group C.
tanaitica/C. taenia/C. pontica suggest a relatively recent speciation (≈ 0.5
Mya), followed by an absence of gene flow until the present. This scenario of
speciation agrees well with the fact that there is no record either of range overlap
or of hybrids in nature for these three species (Janko et al., 2007), even though,
at least for the pair C. taenia/C. pontica, no reproductive incompatibility has
emerged (in Janko et al., 2016, artificial crossings between these two species
produced mostly viable and fertile hybrids with recombinant gametes).

The balance hypothesis

The ‘speciation clock’ theory postulates that, as two populations diverge
genetically, their reproductive incompatibilities increase gradually (see, for
example, Coyne and Orr, 1998). It is based on the pervasive observation that
distantly related pairs of taxa are less able to hybridise than closely related
ones (Rykena, 2001; Russell, 2003; Sánchez-Guillén et al., 2014). According to
this theory, postzygotic isolation is first accomplished by hybrid infertility, and
then aggravated by hybrid inviability.
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The analysis of the Cobitis data, as well as the artificial crossing experiments
carried out, suggest that indeed the hybridization capability of the studied
species depends on the genetic distance: hybrids of C. elongatoides-C. tanaitica
and C. elongatoides-C. taenia must have been able to mediate gene flow in the
past, but they can no longer do so in the present (as they are infertile, or fertile
but reproducing clonally); hybrids of the more closely related C. taenia-C.
pontica are still mostly able to mediate gene flow (even though there is no
evidence that gene flow is actually taking place).

In studies of speciation, the loss of sexual reproduction is not commonly
considered as a pathway to reproductive isolation (for example, Coyne and
Orr, 1998; Russell, 2003). However, the analysis of the Cobitis data suggests
that the postzygotic isolation of C. elongatoides from the group C. tanait-
ica/C.taenia/C.pontica began when the genetic distance between populations
was enough to disrupt meiosis, but insufficient to affect the fertility of female
hybrids, resulting in clonally reproducing hybrids unable to mediate gene flow.
In addition, the fact that some (artificially produced) female hybrids of C.
taenia and C. pontica are beginning to reproduce clonally (Janko et al., 2016)
suggests that clonality is likely to become an effective barrier to postzygotic
gene flow between these taxa.

The inferred speciation history of the four species of Cobitis conforms to the
‘balance hypothesis’ of Moritz et al. (1989), according to which the loss of sexual
reproduction is an intermediate step in the divergence process, occurring at
intermediate levels of genetic distance. The relevance of hybrid asexuality as a
reproductive isolation mechanism, although seldom recognised in the literature,
should extend well beyond the Cobitis genus, as suggested by a comparative
study of hybridising fish species included in Janko et al. (2016): for each of
several fish genera, this study found that the genetic distance between species
whose hybrids reproduce asexually is generally lower than the distance between
species producing infertile hybrids of both sexes, and higher than the distance
between (sub)species producing fertile hybrids only.
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Fig. 3.5 Estimated splitting times and gene flow levels for C. elongatoides, C.
tanaitica, C. taenia and C. pontica (Janko et al., 2016).



Chapter 4

Improved inference

In the present chapter, we focus on two inference issues that can have a
substantial impact on estimation and model selection, and which came into
sight during the implementation of IIM and GIM models. The first issue is
that of model misspecification. To be able to gain insight into the behaviour
of very complex systems, we need to rely on models whose assumptions do
not hold exactly and which at best provide good approximations to the true
distribution of the data. In the case of the simplest IM or isolation models, the
approximation may even be quite imprecise. This is what the extremely low
p-values obtained in the likelihood ratio tests for the Wang and Hey (2010)
data (section 2.6.2) seem to suggest. For the sake of caution, we should consider
that none of the models of speciation that we have implemented matches the
reality exactly. Dropping this assumption of correct model specification affects
the large-sample distributions of both the maximum-likelihood estimator and
of the likelihood ratio statistic. Moreover, it changes the definition of the target
value of estimation and the definition of null hypothesis in the likelihood ratio
test. In section 4.1 of the present chapter, we state some results available in
the literature regarding these issues and illustrate their possible impact by
re-computing some confidence intervals and hypothesis tests for the data of
Wang and Hey (2010).

The second inference issue considered in this chapter is that of likelihood
ratio tests when the true parameter vector lies on the boundary of the parameter
space. In chapter 2, in the analysis of the Wang and Hey (2010) data, the use of
the ‘naive’ χ2 distribution, with degrees of freedom equal to the number of linear
constraints imposed by the null hypothesis, was justified by its conservativeness.
For that particular data set, using a conservative distribution, rather than the
true distribution, does not change the result of any of the model comparisons,
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as all the test statistics are significant. In reality, however, this situation is not
ideal: for other data sets, with less extreme p-values, it could easily lead to a
type II error. The distribution of the likelihood ratio statistic when the true
parameter vector lies on the boundary does not have a closed form, but can be
estimated efficiently. In section 4.2, we demonstrate the validity of our own
method and computer program to perform this estimation, by articulating a
number of theoretical results from the literature.

4.1 Model misspecification

4.1.1 Point estimation and Wald confidence intervals

Every statistical inference procedure in the present thesis has relied on the
following two assumptions: a) if loci are chosen appropriately, the actual
history of molecular evolution at a single locus can be seen as an independent
realisation of a stochastic process; and b) this stochastic process is defined
according to a version of the IIM or GIM model. A sequence of random variables
Si, i ∈ {1, 2, ..., n}, where each of them is a function of the molecular evolution
of a different locus, is therefore a sequence of independent random variables.
However, as we have seen in the previous two chapters, if Si represents the
number of nucleotide differences between two sequences from locus i, this
sequence is in general not identically distributed. In particular, the distribution
of Si depends on the mutation rate of the locus and on the origin of the pair of
sequences (subpopulation 1, subpopulation 2 or both subpopulations).

Let Sn denote a random vector of size n, whose elements are the random
variables S1, S2,..., Sn defined in the previous paragraph; similarly, let sn

denote the observed value of Sn with components s1, s2,..., sn. For p ∈ N and
a parameter space Ω = [0, ∞)p, ψ ∈ Ω represents the vector of quantities we
wish to estimate, and

Qn (ψ; sn) = −
n∑

i=1
p (si;ψ, ui, ri)

denotes the negated log-likelihood function, with ui representing the initial
state of the process (two sequences from subpopulation 1 or 2, or one from
each), ri the relative mutation rate of locus i, which is assumed to be known,
and p (· ;ψ, ui, ri) the pmf of Si under the model. Suppose further that the true
pmf of Si is represented by qi(·). If the model is correctly specified, there is a
vector ψ ∈ Ω, termed the true parameter, such that, for all i ∈ {1, 2, ..., n} and
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s ∈ N, qi(s) = p (s;ψ, ui, ri). Denoting this true parameter vector by ψ∗, and
the Hessian of the negated log-likelihood evaluated at ψ∗ by Gn (ψ∗; sn), we
have that, for large n, and under suitable regularity conditions, the distribution
of the maximum-likelihood estimator ψ̂n is approximately multivariate normal
with mean ψ∗ and variance [G∗

n]−1 := {E [Gn (ψ∗; Sn)]}−1 (theorem 6.4 of
White, 1996, with the additional assumption of correct model specification).
The vector ψ∗ can also be defined as the parameter value which reduces to
zero the sum of Kullback-Leibler divergences, i.e.:

n∑
i=1

DKL [ qi (·) ∥ p (· ;ψ∗, ui, ri) ] =
n∑

i=1
E
[
log qi (Si)

p (Si;ψ∗, ui, ri)

]
= 0 .

Let gn (ψ; sn) denote the negated score function. If we allow for model
misspecification, i.e., if we admit as possible that there is no ψ such that
qi (·) = p (· ;ψ, ui, ri) for all i, then the distribution of the maximum-likelihood
estimator is well approximated, for large n, by a multivariate normal distribution
with mean

ψ∗
n := arg min

ψ∈Ω

n∑
i=1

DKL [ qi (·) ∥ p (· ;ψ, ui, ri) ]

and variance

Γn := (G∗
n)−1 Var [gn (ψ∗

n ; Sn)]
[
(G∗

n)−1
]ᵀ

,

where G∗
n is redefined as E [Gn (ψ∗

n; Sn)] (theorem 6.4 of White, 1996). It can
be seen that, once the assumption of correct model specification is dropped,
the mean ψ∗

n of the approximative distribution is allowed to vary with n and
will not in general reduce the sum of Kullback-Leibler divergences to zero (as
also mentioned in section 4 of Freedman, 2006).

The results that have just been stated can be used to build so-called quasi-
Wald confidence intervals. Let (ψ)i denote the ith element of ψ,

(
Γn

)
ii

denote
the (i, i) entry of Γn, and zα/2 denote the 1 − α/2 quantile of the standard
normal distribution. Then, for large n,

P


∣∣∣∣∣∣∣∣∣∣
(
ψ̂n

)
i
−
(
ψ∗

n

)
i(

Γn

) 1
2

ii

∣∣∣∣∣∣∣∣∣∣
≤ zα/2

 ≈ 1 − α ,

and hence

P
{ [(

ψ̂n

)
i
− zα/2

(
Γn

) 1
2

ii
,
(
ψ̂n

)
i
+ zα/2

(
Γn

) 1
2

ii

]
∋
(
ψ∗

n

)
i

}
≈ 1 − α . (4.1)
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Table 4.1 Results for the data of Wang and Hey (2010):
point estimates and confidence intervals under the
model IIM3.

Parameter Estimate 95% Wald CI’s
Fisher Godambe

θa 3.273 (3.101, 3.445) (3.076, 3.470)
θ 3.357 (3.139, 3.575) (3.091, 3.624)
θb 1.929 (0.079, 3.779) (-0.375, 4.232)
θc1 6.623 (6.407, 6.839) (6.382, 6.864)
θc2 2.647 (2.304, 2.990) (2.287, 3.006)
T1 6.930 (6.540, 7.320) (6.249, 7.611)
V 9.778 (9.457, 10.099) (9.347, 10.208)

M2 0.223 (0.190, 0.256) (0.181, 0.276)

In this formula, Γn is unknown and must be replaced by an estimate: the matrix
G∗

n := E [Gn (ψ∗
n; Sn)] is replaced by Gn

(
ψ̂n; sn

)
, which can be obtained by

numerical differentiation of gn (· ; sn) at ψ̂n; and Var [gn (ψ∗
n; Sn)] is replaced

by
n∑

i=1
g(i)

(
ψ̂n; si

) [
g(i)

(
ψ̂n; si

)]ᵀ
,

where g(i)
(
ψ̂n; si

)
is the observed score vector for the ith observation, evaluated

at the maximum-likelihood estimate (section 3.4 of Jesus and Chandler, 2011).
The quasi-Wald confidence intervals shown in the rightmost column of Table
4.1 refer to the best-fitting IIM model for the data of Wang and Hey (2010),
and were computed using formula 4.1 and the estimate of Γn just mentioned:
they appear under the heading ‘Godambe’ since the inverse of Γn is sometimes
called the Godambe information. As can be seen from this table, correcting
for misspecification does not widen substantially the confidence intervals that
were calculated in section 2.6.3 (also shown here for ease of reference, under the
heading ‘Fisher’). The only exception is the parameter θb, most likely because
its estimation relies on the much smaller ‘Hutter subset’ (see section 2.6.1).

4.1.2 Likelihood ratio tests and profile-likelihood confi-
dence intervals

Recall that the vector ψ∗
n is defined as the value of the parameter that minimises

the sum of Kullback-Leibler divergences between the true distributions of the
random variables S1, S2, ..., Sn and their respective distributions according to
a given speciation model. Suppose that we wish to test whether ψ∗

n ∈ Ω0,
where Ω0 = {ψ : Ξψ = ξ0,ψ ∈ Ω}, Ξ is a q × p matrix of rank q ≤ p and
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ξ0 is a column vector of size q. Suppose further that ψ̃n is the vector in Ω0

that minimises the negated log-likelihood, and that, as before, ψ̂n denotes
the (unrestricted) maximum-likelihood estimator. Then, a fundamental large-
sample theoretical result states that, under suitable regularity conditions, the
quantity

2
[
Qn

(
ψ̃n; Sn

)
− Qn

(
ψ̂n; Sn

)]
has approximately the same distribution as ZᵀA−1Z, where A = Ξ [G∗

n]−1 Ξᵀ,
and where Z follows a multivariate normal distribution with mean 0 and
variance ΞΓnΞᵀ (theorem 8.10 (iii) of White, 1996).

If we now define Ξ to be a row vector with a 1 in position i and ze-
ros everywhere else, then assuming a null hypothesis of the form ψ∗

n ∈
{ψ : Ξψ = ξ0,ψ ∈ Ω} is the same as claiming that the true value of

(
ψ∗

n

)
i

is ξ0.
Under such a hypothesis, it follows from the previous result that, approximately,

2
[
Qn

(
ψ̃n; Sn

)
− Qn

(
ψ̂n; Sn

)]
∼

(
Γn

)
ii[

(G∗
n)−1

]
ii

χ2
1 ,

(Jesus and Chandler, 2011, p. 877). A 100 (1 − α) % profile likelihood confidence
interval for

(
ψ∗

n

)
i

is therefore the set of points {ξ0} such that

2
[
Qn

(
ψ̃n; Sn

)
− Qn

(
ψ̂n; Sn

)]
≤

(
Γn

)
ii[

(G∗
n)−1

]
ii

χ2
1 (1 − α) , (4.2)

where χ2
1 (1 − α) is the 1 − α quantile of the χ2

1 distribution (expression 3.7 of
Jesus and Chandler, 2011).

The 95% profile-likelihood confidence intervals for the model IIM3 and the
data of Wang and Hey (2010), based on the estimated inverse of the Godambe
information, are listed in Table 4.2. For ease of reference, we also present point
estimates and profile-likelihood confidence intervals based on the inverse of the
observed Fisher information, as calculated in section 2.6.3. Once more, with the
exception of the confidence interval for θb, adjusting for model misspecification
does not result in substantial changes.

The q-q plot in Figure 4.1 illustrates the impact of model misspecification
on the distribution of the likelihood ratio test of the model IIM1 (null model)
versus the model IIM2, for the data of Wang and Hey (2010). The y-coordinates
of the plot represent the percentiles of the χ2 distribution with two degrees of
freedom: the number of linear constraints imposed on ψ by the null hypothesis.
This is the approximate distribution of the likelihood ratio statistic under
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Table 4.2 Results for the data of Wang and Hey (2010):
point estimates and 95% profile likelihood confidence
intervals under the model IIM3.

Parameter Estimate 95% profile likelihood CI’s
Fisher Godambe

θa 3.273 (3.100, 3.444) (3.074, 3.468)
θ 3.357 (3.097, 3.578) (3.096, 3.627)
θb 1.929 (0.672, 5.010) (0.493, 6.508)
θc1 6.623 (6.415, 6.843) (6.389, 6.871)
θc2 2.647 (2.331, 3.021) (2.317, 3.040)
T1 6.930 (6.542, 7.319) (6.252, 7.611)
V 9.778 (9.456, 10.098) (9.347, 10.207)

M2 0.223 (0.186, 0.259) (0.181, 0.276)

the assumption that the data were generated from the IIM1 model. The x-
coordinates correspond to the percentiles of the distribution of 1.39 X + 0.08,
where X ∼ χ2

1.81, which approximates the large-sample distribution of the
likelihood ratio statistic for the same model comparison, under the weaker
assumption that

arg min
ψ∈Ω

n∑
i=1

DKL [ qi (·) ∥ p (· ;ψ, ui, ri) ] ∈ Ω0 ,

i.e. that, within the set of IIM1 and IIM2 models, the one closest to the
true unknown model of the data is an IIM1 model. This approximation is
based on formula 3.6 of Jesus and Chandler (2011). The plot clearly suggests
that using the naive χ2

2 distribution is likely to lead to the underestimation of
p-values. For the Wang and Hey (2010) data, however, there is overwhelming
evidence to reject the IIM1 model in favour of the IIM2 even if we correct for
misspecification: the p-value of the likelihood ratio statistic is extremely small
using the naive χ2

2 distribution (1.187 E-74), and increases to a larger, but still
extremely small, p-value under the corrected χ2 distribution (2.589 E-54).

4.2 Parameters on the boundary

4.2.1 Setting

Theorems 6.4 and 8.10 of White (1996), which were invoked in the previous
section, rely on the standard assumption that the true parameter ψ∗ (or, more
generally, the ‘target’ vector ψ∗

n) is an interior point of the parameter space
Ω. However, when performing pairwise comparison of models, by means of
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Fig. 4.1 A q-q plot of the percentiles of the χ2
2 distribution against the percentiles

of the distribution of 1.39 X + 0.08, where X ∼ χ2
1.81. The χ2

2 distribution is the
large-sample distribution of the likelihood ratio statistic of IIM1 (H0) versus IIM2
(H1) when the true model is IIM1. The distribution of 1.39 X + 0.08 approximates
the large-sample distribution of the likelihood ratio statistic for the same model
comparison, under the weaker assumption that the IIM1 model is closer to the true
unknown model of the Wang and Hey (2010) data than the IIM2 model, in the sense
of the Kullback-Leibler divergence.

the likelihood ratio statistic, this assumption must sometimes be dropped. For
some model comparisons, the null hypothesis actually states that ψ∗ is on the
boundary of Ω. This is the case if, for example, we wish to compare the model
‘ISO’ as the null model against the model ‘IM1’ as the alternative model (see
Figure 2.9). Here the vector of parameters is

ψ =
[
M1 M2 V θa θ θb

]ᵀ
,

and the parameter space is Ω = [0, ∞)2 × (0, ∞)4. According to the null
hypothesis, ψ∗ ∈ Ω0, with Ω0 = {0}2×(0, ∞)4, and, according to the alternative
hypothesis, ψ∗ ∈ Ω1, with Ω1 =

{
[0, ∞)2 \ {0}2

}
× (0, ∞)4. The parameters

V , θa, θ and θb are thus nuisance parameters.
The present section has two main goals. One is to state the main large-

sample results regarding the distribution of the likelihood ratio statistic in
settings as the one just described. To the best of our knowledge, analytic
expressions are only available for the simplest cases, involving at most two
parameters of interest on the boundary (see, for example, Self and Liang, 1987;
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Liang and Self, 1996; Chen and Liang, 2010). The limiting distribution can
always be represented as a mixture of χ2 distributions, but, for more than two
parameters of interest on the boundary, the mixing coefficients of this mixture
need to be estimated by simulation. The other goal, very closely related to
the first, is to demonstrate the validity of a simulation method we developed
to estimate this limiting distribution. We start from the large-sample results
described in Self and Liang (1987), which extend the work of Chernoff (1954),
and hence assume the regularity conditions stated in their paper (in the last
paragraph of the introduction). Of these conditions, the only one we shall use
explicitly concerns the positive-definiteness of the Fisher information matrix.
For our models and data, the setting and the assumptions described in Self
and Liang (1987) are not the most realistic, as they do not allow for model
misspecification and non-identically distributed observations. An extension
to this more general setting should be possible but would involve redoing the
derivations in Self and Liang (1987) and Chernoff (1954) under more general
conditions. This had to be left for future work.

Suppose that, for q, r ≥ 1, ψ is a vector of size p = q + r taking values in
Ω = [0, ∞)q × (0, ∞)r. When comparing two speciation models, the problem
of parameters on the boundary arises when we have a null hypothesis of the
kind ψ∗ ∈ Ω0 = {0}q × (0, ∞)r. Recall that

ψ̂n := arg min
ψ∈Ω

Qn (ψ; Sn)

and
ψ̃n := arg min

ψ∈Ω0

Qn (ψ; Sn) .

From Self and Liang (1987), the likelihood ratio statistic

2
[
Qn

(
ψ̃n; Sn

)
− Qn

(
ψ̂n; Sn

)]
is asymptotically equivalent to

min
ψ∈Ω0

[ W − ψ]ᵀ M0 [ W − ψ] − min
ψ∈Ω

[ W − ψ]ᵀ M0 [ W − ψ] , (4.3)

where M0 is the Fisher information matrix, W follows a multivariate normal
distribution with mean 0 and variance M−1

0 , and Ω and Ω0 are redefined
respectively as [0, ∞)q ×Rr and {0}q ×Rr. If PΛPᵀ is the eigen-decomposition
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of M0, expression (4.3) can be rewritten as

D (Z) := min
θ∈Ω̃0

[ Z − θ]ᵀ [ Z − θ] − min
θ∈Ω̃

[ Z − θ]ᵀ [ Z − θ] , (4.4)

where Z is a standard normal random vector of size p, Ω̃ =
{
Λ

1
2 Pᵀψ : ψ ∈ Ω

}
and Ω̃0 =

{
Λ

1
2 Pᵀψ : ψ ∈ Ω0

}
(Self and Liang, 1987).

4.2.2 An alternative description of the parameter space

More insightful representations of the limiting distribution of the likelihood
ratio statistic have been given in the literature. To understand how they
follow from the results in Self and Liang (1987) just given, it is helpful to use
an alternative description of the parameter space and to clarify some of its
properties.

Let Cq denote the matrix composed of the q leftmost columns of Λ
1
2 Pᵀ,

and Cr denote the matrix with its r rightmost columns. The set Ω̃0 is then
simply the subspace of Rp spanned by the columns of Cr, which we shall denote
as S(Cr). The set Ω̃ can be rewritten as

Ω̃ = {[Cq | Cr] ψ : ψ ∈ [0, ∞)q ×Rr}

=
{
[Cq | Cr | − Cr] ρ : ρ ∈ [0, ∞)q+2r

}
,

where [Cq | Cr] denotes a matrix built by setting matrices Cq and Cr side by
side. It becomes clear that Ω̃ consists of the non-negative linear combinations of
a finite set of column vectors, and hence it makes up a polyhedral cone (Borovik
and Borovik, 2010, p. 25, for the definition of polyhedral cone). We shall denote
a polyhedral cone generated by the non-negative linear combinations of the
columns of a matrix A by C(A), so, for example, Ω̃ = C([Cq | Cr | − Cr]). As
M0 = PΛPᵀ is symmetric, Pᵀ has full rank; since M0 is also positive definite,
the diagonal of Λ contains only strictly positive eigenvalues (Strang, 2009, pp.
334, 342). To obtain the matrix [Cq | Cr] = Λ

1
2 Pᵀ, each row vector of Pᵀ is

multiplied by one of the strictly positive elements in the diagonal of Λ 1
2 . Hence

[Cq | Cr] must have full rank as well.
Suppose also that from each column vector of Cq we subtract its projection

onto S(Cr). We obtain the matrix X = Cq − Pq, where Pq is a p × q matrix
whose column vectors are the projections onto S(Cr). Each column vector of X
is the error vector of a projection onto S(Cr), and is by definition orthogonal
to this subspace (Strang, 2009, pp. 209-210). Let x denote any one of these
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column vectors, and let the matrices X, Cq and Pq be partitioned to give

X = [Xq−1 | x] = [Cq−1 | c] − [Pq−1 | p] .

The matrix X has rank lower than q if and only if we can pick a column x such
that, for some b ∈ Rq−1,

x = Xq−1b
⇔ c − p = [Cq−1 − Pq−1] b

⇔ c = [Cq−1 | Pq−1 | p]


b

−b
1


⇒ c ∈ S [Cq−1 | Pq] .

(4.5)

Since the column vectors of Pq are projections onto S(Cr), the last line of
(4.5) implies that c ∈ S [Cq−1 | Cr], which could only happen if [Cq−1 | c | Cr] =
[Cq | Cr] had less than full rank. Hence X has rank q, i.e. full column rank.

The set
Ω̃ = {[Cq | Cr] ψ : ψ ∈ [0, ∞)q ×Rr}

can also be written as

{[X | Cr] ψ : ψ ∈ [0, ∞)q ×Rr} .

To see why this is true, consider a vector θ ∈ Rp. If θ ∈ Ω̃, then it can be
expressed, for some a ∈ [0, ∞)q and for some b, c ∈ Rr, as

θ = [Cq] a + [Cr] b
= [Cq − Pq] a + [Cr] b + [Pq] a
= Xa + [Cr] c ,

where [Cr] c = [Cr] b + [Pq] a: there is always a vector c ∈ Rr that satisfies
this equality, since [Cr] b + [Pq] a belongs to S(Cr). Conversely, any vector θ
belonging to

{[X | Cr] ψ : ψ ∈ [0, ∞)q ×Rr} ,

can be expressed, for some a ∈ [0, ∞)q and b, c ∈ Rr, as

θ = Xa + [Cr] b
= [Cq − Pq] a + [Cr] b
= [Cq] a + [Cr] c ,
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since again there is always a c ∈ Rr that satisfies [Cr] c = [Cr] b − [Pq] a.
It should also be noted that the subspaces S(X) and S(Cr) are mutually

orthogonal, and that their sum, i.e., the vector space S [X | Cr], is equal to Rp.
In other words, the subspace spanned by the columns of Cr is the orthogonal
complement of the subspace spanned by the columns of X, and vice-versa
(Gentle, 2007, p. 23). We shall therefore refer to Cr as X⊥ and write

Ω̃ =
{[

X | X⊥
]
ψ : ψ ∈ [0, ∞)q ×Rr

}
=

{[
X | X⊥ | − X⊥

]
ψ : ψ ∈ [0, ∞)q+2r

}
.

4.2.3 The asymptotic distribution of the likelihood ratio
statistic

Suppose that Y is a standard normal random vector with p components,
partitioned as

[
Yᵀ

q | Yᵀ
r

]ᵀ
, where Yq has length q and Yr has length r. Suppose

further that X̄ and X̄⊥ are orthonormal bases for the subspaces spanned by
X and X⊥ respectively. Since the p × p matrix

[
X̄ | X̄⊥

]
is orthonormal, i.e.,

since it belongs to the group of rotations of Rp, and Y is rotation invariant,
the random vector Z =

[
X̄ | X̄⊥

]
Y is also a standard normal random vector

with p components (Bryc, 1995, proof of theorem 4.1.2). Defining Z = Zq + Zr,
where Zq = X̄ Yq and Zr = X̄⊥ Yr, the first term in expression (4.4) can be
rewritten as

min
θ∈S(X⊥)

∥ Z − θ∥2 = min
θ∈S(X⊥)

∥ Zq + Zr − θ∥2

= ∥ Zq∥2 + min
θ∈S(X⊥)

∥ Zr − θ∥2

= ∥ Zq∥2

= ∥ Yq∥2 ,

where the second equality follows from the fact that Zq and Zr−θ are orthogonal.
To simplify the second term in expression (4.4), Ω̃ is rewritten as

Ω̃ =
{[

X | X⊥
]
ψ : ψ ∈ [0, ∞)q ×Rr

}
=

{
Xψq + X⊥ψr : ψq ∈ [0, ∞)q , ψr ∈ Rr

}
=

{
θq + θr : θq ∈ C (X) , θr ∈ S(X⊥)

}
.



4.2 Parameters on the boundary 83

We then get

min
θ∈Ω̃

∥ Z − θ∥2 = min
θq∈C(X), θr∈S(X⊥)

∥ Zq − θq + Zr − θr∥2

= min
θq∈C(X)

∥ Zq − θq∥2 + min
θr∈S(X⊥)

∥ Zr − θr∥2

= min
θq∈C(X)

∥ Zq − θq∥2 ,

where the second equality follows from the fact that Zq − θq and Zr − θr are
orthogonal. Expression (4.4) then becomes

D (Z) = D (Yq) = ∥ Yq∥2 − min
θq∈C(X)

∥ Zq − θq∥2 . (4.6)

If X = UΣVᵀ is the reduced singular value decomposition of X (Strang, 2009,
p. 363-364), and X̄ is set equal to U, expression (4.6) can be rewritten as

D (Z) = D (Yq) = ∥ Yq∥2 − min
η∈C(K)

∥Yq − η∥2 , (4.7)

where K := ΣVᵀ. The vector η ∈ C(K) that minimises ∥Yq − η∥2 is the
unique minimum-distance projection of Yq onto C (K) (Dattorro, 2005, p. 576),
and we shall represent it by p(Yq). Since the collection of the relative interiors
of the faces of C (K) forms a partition of C (K) (Luc, 2016, corollary 2.3.7),
p(Yq) must lie on the relative interior of one (and only one) of these faces.
If Fk denotes the union of the relative interiors of all k-dimensional faces of
C(K), the asymptotic distribution of the likelihood ratio statistic can thus be
written as

P [D (Yq) ≤ d] =
q∑

k=0
P [D (Yq) ≤ d | p (Yq) ∈ Fk] P [p (Yq) ∈ Fk]

which, from theorem 3.4.2 and proposition 3.6.1.1 in Silvapulle and Sen (2011),
is equivalent to

P [D (Yq) ≤ d] =
q∑

k=0
P
(
χ2

k ≤ d
)

P [p (Yq) ∈ Fk] . (4.8)

Also from Silvapulle and Sen (2011, p. 78), the probability in (4.8) can
be estimated by simulating D (Yq), typically thousands of times, and then
finding the proportion of times that it turns out to be smaller than d. Each
simulated value of D (Yq) is obtained by first generating a random vector Yq,
then finding its projection p(Yq) onto C(K), and finally evaluating expression



4.2 Parameters on the boundary 84

(4.7). The mixing probability of each χ2
k distribution in (4.8) can also be

estimated by the proportion of times that p(Yq) happens to lie on the relative
interior of a k-dimensional face of C(K) (Silvapulle and Sen, 2011, p. 79).
Our program for estimating the mixing probabilities in (4.8), available at
https://github.com/ruibarrigana/boundary, does not compute the dimension
of the face of C(K) containing Yq, nor finds the projection p(Yq). Instead, it
partitions Rq into subsets R0, R1, ..., Rq, where Rk, k ∈ {0, 1, 2, ..., q}, contains
the vectors whose projections lie on the relative interior of any of the k-
dimensional faces of C(K). The mixing probability associated with χ2

k is thus
estimated by the proportion of times that Yq ∈ Rk rather than the proportion
of times that p(Yq) ∈ Fk . To define the subsets Rk, we use the following
argument.

Let the q column vectors of K be labelled ρ1, ρ2,..., ρq. Since X = UΣVᵀ

has full column rank, V is a q ×q orthonormal matrix, and Σ is a q ×q diagonal
matrix with positive values on the main diagonal (Strang, 2009, p. 363). Hence
K = ΣVᵀ is non-singular and C(K) is a simplicial cone in Rq (Borovik and
Borovik, 2010, p. 30). Denote by K∗ a q × q matrix whose column vectors ρ∗

1,
ρ∗

2,..., ρ∗
q belong to Rq and satisfy the conditions

(ρi)
ᵀ ρ∗

j =

 −1 if i = j,
0 if i ̸= j.

(4.9)

Then C (K∗) is the polar cone of the simplicial cone C (K) (Borovik and
Borovik, 2010, pp. 30-31). To describe the faces of C(K) and C(K∗), we let
ρ0 = ρ∗

0 denote the origin of Rp, and represent the power set of I = {1, 2, ..., q}
by P(I). For any set J ∈ P(I), let J0 = J

⋃ {0} and denote by KJ0 the matrix
composed of the column vectors ρi, i ∈ J0. Similarly, denoting I0 = I

⋃ {0},
the matrix K∗

I0\J is composed of the column vectors ρ∗
i , i ∈ I0 \ J . Suppose

now that F is a subset of Rp. We know that F is a face of C(K) if and only if it
can be defined, for some J ∈ P(I), as C (KJ0); similarly, F is a face of C(K∗)
if and only if it can be defined, for some J ∈ P(I), as C(K∗

I0\J) (Borovik and
Borovik, 2010, section 4.5). Furthermore, the face C (KJ0) has dimension equal
to the cardinality of J , denoted |J |, just as the face C(K∗

I0\J) has dimension
q − |J |. The relative interior of C(KJ0) is denoted ‘relint C(KJ0)’ and consists
of all vectors of the form ∑

i∈J0 aiρi, where the scalars ai are strictly positive
(Dattorro, 2005, definition 2.13.6.0.1).

https://github.com/ruibarrigana/boundary
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A point b is the unique minimum-distance projection of yq onto C(K),
denoted p(yq), if and only if

b ∈ C(K) , (4.10)

[yq − b] ∈ C(K∗) (4.11)

and
[yq − b]ᵀ b = 0 (4.12)

(Dattorro, 2005, p. 580). Since any vector in the cone C(K) must belong to
the relative interior of one (and only one) of its faces, requiring that b satisfies
condition (4.10) is equivalent to requiring that

for some set J ∈ P(I) , b ∈ relint C(KJ0) , (4.10a)

or that

for some set J ∈ P(I) and ai > 0 , b =
∑
i∈J0

aiρi . (4.10b)

Thus if condition (4.10)/(4.10a)/(4.10b) holds, b satisfies condition (4.12) if
and only if, for the same set J and the same scalars ai that make (4.10a)/(4.10b)
true, ∑

i∈J0

ai [yq − b]ᵀ ρi = 0 .

Furthermore, if both condition (4.10)/(4.10a)/(4.10b) and condition (4.11)
hold, then b satisfies condition (4.12) if and only if, for the same set J and the
same scalars ai that make (4.10a)/(4.10b) true,

[yq − b]ᵀ ρi = 0

for all i ∈ J0: this must be the case because the dot product between a vector
in C(K∗) (such as [yq − b]) and a vector in C(K) (such as ρi) is always non-
positive (Luc, 2016, p. 31). Summarising, we have that b = p(yq) if and only
if, for some set J ∈ P(I),

b ∈ relint C(KJ0) , (4.10a)

[yq − b] ∈ C(K∗) (4.11)
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and
[yq − b]ᵀ ρi = 0 for all i ∈ J0 . (4.13)

Requiring that, for i ∈ J0, the dot product [yq − b]ᵀ ρi is equal to zero is
the same as requiring that [yq − b] belongs to the orthogonal complement of
S(KJ0) in Rq, i.e., that it belongs to the subspace containing all the vectors in
R

q that are orthogonal to the subspace spanned by {ρi}i∈J0
. Hence we have

that b = p(yq) if and only if, for some set J ∈ P(I),

b ∈ relint C(KJ0) (4.10a)

[yq − b] ∈ C(K∗) (4.11)

and
[yq − b] ∈ S(KJ0)⊥ , (4.14)

where S(KJ0)⊥ denotes the orthogonal complement of S(KJ0) in Rq. A final
reformulation of these conditions is possible if we take into account that
C(K∗

I0\J) is composed precisely of those vectors that belong both to C(K∗)
and S(KJ0)⊥ (Borovik and Borovik, 2010, p. 32). Therefore b = p(yq) if and
only if

b ∈ relint C(KJ0) (4.10a)

and
[yq − b] ∈ C(K∗

I0\J) (4.15)

for some set J ∈ P(I).
Using this last definition of projection, it is not difficult to show that, for

any J ∈ P(I), the set

{a : a ∈ Rq, p(a) ∈ relint C(KJ0)}

can also be defined as
{
a : a = b + c, b ∈ relint C(KJ0), c ∈ C(K∗

I0\J)
}

.

Suppose indeed that a ∈ R
q and p(a) ∈ relint C(KJ0). Then [a − p(a)] ∈

C(K∗
I0\J) from condition (4.15), and a = b + c, with b = p(a) ∈ relint C(KJ0),

and c = [a − p(a)] ∈ C(K∗
I0\J). The converse is also true: if there is a

b ∈ relint C(KJ0) and a c ∈ C(K∗
I0\J) such that a = b + c , then, because all

the columns of K and K∗ are in Rq, the vector a must also belong to this
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subspace. In addition, because b ∈ relint C(KJ0) and a − b = c belongs to
C(K∗

I0\J), it follows that b = p(a), and hence p(a) ∈ relint C(KJ0) .
Recall that Fk denotes the union of all the relative interiors of k-dimensional

faces of C(K), and that p : Rq → C(K) is the minimum-distance projection
function. We can then write:

p−1(Fk) = p−1

 ⋃
J∈P(I),|J|=k

relint C(KJ0)


=
⋃

J∈P(I),|J|=k

p−1 { relint C(KJ0) }

=
⋃

J∈P(I),|J|=k

{ a : a ∈ Rq, p(a) ∈ relint C(KJ0) }

=
⋃

J∈P(I),|J|=k

{
a : a = b + c, b ∈ relint C(KJ0), c ∈ C(K∗

I0\J)
}

=: Rk ,

where the second equality follows from the properties of the inverse image (see,
for example, proposition 1.6 of McDonald and Weiss, 1999). This finally allows
us to rewrite the asymptotic distribution of the likelihood ratio statistic given
above in (4.8) as

P [D (Yq) ≤ d] =
q∑

k=0
P
(
χ2

k ≤ d
)

P [ p(Yq) ∈ Fk ]

=
q∑

k=0
P
(
χ2

k ≤ d
)

P [ Yq ∈ Rk ] .

(4.16)

4.2.4 Tests on simulated data

To verify that the asymptotic cdf of the likelihood ratio statistic can be
expressed as in equation (4.16), we repeated the following procedure. First, we
randomly generated a positive definite matrix to serve as M0, the variance-
covariance matrix of the score statistic; second, we generated thousands of
observations from W in expression (4.3); third, for some parameter space of
the form [0, ∞)q × Rr, we found the minimum of expression (4.3) for each
observed value of W; fourth, we generated thousands of observations from
Yq, and estimated P {Yq ∈ Rk} using the proportion of observations of Yq in
Rk; fifth, we generated approximately one million observations from a mixture
of χ2 distributions with the estimated mixing probabilities; finally, we built
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q-q plots of the sample percentiles of the simulated minima of expression (4.3)
against the sample percentiles of the observations simulated from the mixture
of χ2 distributions. The R code used to perform these tasks can be found in
https://github.com/ruibarrigana/boundary .

We found that regardless of the matrix M0 used to perform the procedure
just described, the q-q plot would show that the estimated distributions of
expression (4.3) and of ∑q

k=0 1
(
Yq ∈ Rk

)
χ2

k are extremely close. This is
illustrated through the following two examples. In the first example, for a
randomly generated matrix

M0 =


4.169 −1.454 0.059 0.060

−1.454 0.865 −0.276 0.095
0.059 −0.276 2.426 −0.534
0.060 0.095 −0.534 1.433

 , (4.17)

for Ω = [0, ∞)3 × (0, ∞) and Ω0 = {0}3 × (0, ∞), we estimated expression (4.3)
to be asymptotically equivalent to 0.04 χ2

0 + 0.27 χ2
1 + 0.46 χ2

2 + 0.23 χ2
3. The

associated q-q plot is shown in Figure 4.2. In a second example, we took the

Fig. 4.2 A q-q plot of the sample percentiles of simulated observations from expression
(4.3) against the sample percentiles of simulated observations from

∑q
k=0 1

(
Yq ∈

Rk

)
χ2

k. The matrix M0 is given by equation 4.17, Ω = [0, ∞)3 × (0, ∞) and Ω0 =
{0}3 × (0, ∞).

https://github.com/ruibarrigana/boundary
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variance of the score statistic to be

M0 =



2.678 0.085 1.824 −2.445 −0.571
0.085 4.023 1.015 −0.182 0.174
1.824 1.015 6.245 −1.677 −2.136

−2.445 −0.182 −1.677 2.589 1.783
−0.571 0.174 −2.136 1.783 5.525


, (4.18)

and defined Ω and Ω0 respectively as Ω = [0, ∞)4 × (0, ∞) and Ω0 = {0}4 ×
(0, ∞). In this case, expression (4.3) was estimated to be asymptotically
equivalent to 0.010 χ2

0 + 0.203 χ2
1 + 0.454 χ2

2 + 0.299 χ2
3 + 0.034 χ2

4. Once more,
the q-q plot confirms the theoretical results (Figure 4.3).

Fig. 4.3 A q-q plot of the sample percentiles of simulated observations from expression
(4.3) against the sample percentiles of simulated observations from

∑q
k=0 1

(
Yq ∈

Rk

)
χ2

k. The matrix M0 is given by equation 4.18, Ω = [0, ∞)4 × (0, ∞) and Ω0 =
{0}4 × (0, ∞).

In our code to estimate the mixture of χ2 distributions, the matrix M0 is
an essential input. It defines the cone C(K), its polar cone C(K∗), as well
as the regions Rk. Given that M0 is known, the asymptotic distribution of
the likelihood ratio statistic can be estimated very accurately – this is what
Figures 4.2 and 4.3 show. In a real inference problem, because we must rely on
an estimate of M0, our method will provide an approximation to a mixture of
χ2 distributions which is not exactly the limiting distribution. In addition, this
limiting distribution may be more or less distant from the actual distribution
of the likelihood ratio statistic, which is based on a finite sample size. To
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provide an illustration of how well the estimated mixture of χ2 distributions
may approximate the true distribution of the likelihood ratio statistic, we
resorted to simulated data once more. We generated 1000 data sets from a
simple isolation model with equal population sizes (model ISO from Figure
2.9 with θa = θ = θb), each set containing 40,000 independent observations
on the number of nucleotide differences between a pair of sequences. To each
set, both the true model and an IM model with bidirectional migration (but
also a single population size) were fitted and the likelihood ratio statistic was
computed. Using the sample of 1000 likelihood ratio statistics thus obtained
and the function quantile in R, we estimated the percentiles of the likelihood
ratio statistic distribution. These estimated percentiles correspond to the
y-coordinates of the q-q plot of Figure 4.4. In addition, using the observed
Fisher information for a single data set, divided by n, as an approximation to
M0, we also estimated the limiting mixture of χ2 distributions. The estimates
of the percentiles of this mixture of χ2 distributions, computed from a sample of
1000 simulated observations, correspond to the x-coordinates of the q-q plot of
Figure 4.4. Clearly the estimated percentiles of both distributions agree quite
well. This suggests that, in a real statistical inference scenario, our method can
estimate with precision the limiting distribution of the likelihood ratio statistic,
as long as the sample size is large enough to enable an accurate estimate of M0,
and as long as this matrix is positive definite. For comparison, in Figure 4.5
we include a q-q plot whose y-coordinates are the same as in Figure 4.4, but
whose x-coordinates represent the theoretical percentiles of a χ2 distribution
with degrees of freedom equal to the number of linear constraints imposed by
the null hypothesis (i.e. two degrees of freedom).

4.2.5 The data of Wang and Hey (2010)

In chapter 2, in the analysis of the data of Wang and Hey (2010), there were two
likelihood ratio tests in which the true parameter vector is assumed to be on the
boundary. In the case of IM1 versus IIM1, no simulation is needed, as we are
just testing the assumption that T1 = 0. The true limiting distribution is simply
0.5 χ2

0 + 0.5 χ2
1, from ‘case 5’ of Self and Liang (1987). This means that if we

use the naive χ2
1 distribution instead, the p-value of any given likelihood ratio

statistic will be twice as large as the p-value according to the true distribution
under the null hypothesis.

Unfortunately, the limiting distribution of the other likelihood ratio test
with a true parameter vector on the boundary, the one of the ISO model versus
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Fig. 4.4 A q-q plot of estimated percentiles of a likelihood ratio statistic distribution,
against the estimated percentiles of 0.251 χ2

0 + 0.504 χ2
1 + 0.245 χ2

2 . The likelihood
ratio statistics refer to the comparison between the ISO model with θa = θ = θb

(true model) and the IM1 model with θa = θ = θb (see Figure 2.9). The χ2 mixture
was estimated using the observed Fisher information (for a single data set), divided
by the number of observations, as an approximation to M0.

the IM1 model, cannot be estimated by any method or theoretical result relying
on the positive-definiteness of the Fisher information (such as our own). This is
because the observed Fisher information divided by the number of observations,
which replaces the unknown Fisher information, happens to be non-positive
definite in this particular case. In fact, when the vector of estimated parameters
lies on the boundary of the parameter space, the positive-definiteness of the
observed Fisher information is not guaranteed (Gill and King, 2004).
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Fig. 4.5 A q-q plot of estimated percentiles of a likelihood ratio statistic distribution,
against the theoretical percentiles of the χ2

2 distribution. The likelihood ratio statistics
refer to the comparison between the ISO model with θa = θ = θb (true model) and
the IM1 model with θa = θ = θb (see Figure 2.9).



Chapter 5

Discussion

5.1 Notes on our method and results

We have described a fast method to fit a range of demographic models to large
data sets of pairwise nucleotide differences at a large number of independent
loci. This method relies essentially on the eigendecomposition of the generator
matrix of the process during the migration stages of the model: for each set of
parameter values, the computation of the likelihood involves this decomposition.
Nevertheless, the whole process of estimation takes no more than a couple of
minutes for a data set of tens of thousands of loci such as that of Wang and
Hey (2010), and it does not require high-performance computing resources.

Using the estimation methods developed in the present thesis, along with
formal procedures of model comparison such as hypothesis tests and AIC scores,
we are able to tell which of four gene flow scenarios is most consistent with a
set of pairwise nucleotide differences. In addition to the scenario of divergence
with continuous gene flow until the present, and divergence under complete
isolation, we can hope to identify two other important evolutionary scenarios:
divergence with ancestral gene flow and divergence with secondary contact. A
model of divergence with ancestral gene flow, as represented by the IIM model
of chapter 2, is clearly useful when it is known, or at least suspected, that
present-day subpopulations have achieved reproductive isolation. A model of
divergence with secondary contact, as represented in figure 5.1, is of special
interest when trying to determine whether the formation of two sympatric
subspecies, which are presently still exchanging genes, could have been caused by
a period of isolation in the past, rather than by disruptive selection alone. The
importance of being able to fit models representing these divergence scenarios
while allowing for unequal subpopulation sizes is illustrated in the robustness
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analysis of chapter 2: substantial deviations from reality in this respect can
translate into inadequate estimates of gene flow levels and splitting times. As
to the ability of estimating the level of gene flow in each direction, it should
help us understand how prevalent asymmetric gene flow is, how it relates to
the sizes of subpopulations, and its effect on the observed patterns of genetic
variation.

Fig. 5.1 A model of divergence in which current gene flow is preceded by a period of
isolation (a GIM model with m12 = m21 = 0). Such a scenario may have been caused,
for example, by climatic changes leading to habitat fragmentation and subsequent
reconnection of populations.

Due to the number of parameters, it is not feasible to assess the performance
of our method systematically over every region of the parameter space. However,
our experience with simulated data sets suggests that the variances of the
estimators associated with a given period of gene flow may become inflated
in two particular cases. One of such cases arises when it is very unlikely that
the genealogy of pair of sequences is affected by events that occurred during a
given period of gene flow. For example, under the full IIM model, whenever V

is very small or T1 is very large, the precision of M̂1, M̂2, θ̂, θ̂b and V̂ is likely
to be affected. The second case arises when the values of the scaled migration
rates are greater than one, so that the two subpopulations during the period of
gene flow resemble a single panmictic population. In either of these cases, the
very process of model fitting can become unstable, that is, the algorithm of
maximisation of the likelihood may have difficulty converging.

It should also be noted that, for sample sizes of just a few thousand loci, the
distribution of migration rate estimates may still be far from Gaussian (Figure
2.8). In such cases, computation of confidence intervals should be based on
bootstrap methods or on the likelihood (profile likelihood confidence intervals)
rather than on the observed Fisher information (Wald confidence intervals).
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Table 5.1 Comparison of converted estimates obtained with IM and IIM models

IMwh IM1 IIM3

Time since onset of speciation 3.040 3.240 3.624
Time since isolation - - 1.503

Size of ancestral population 3.060 4.310 3.549
Current size of D. sim. population 5.990 6.120 7.182
Current size of D. mel. population 2.440 2.700 2.871
Size of D. sim. population during IIM gene flow period - - 3.640
Size of D. mel. population during IIM gene flow period - - 2.092

Migration rate (D. sim. → D. mel.) 0.013 0.012 0.064
Migration rate (D. mel. → D. sim.) 0.000 0.000 -

Note: Times are given in millions of years; population sizes are given in millions of individuals; the
migration rates stated represent the number of sequences that migrate per generation, forward in time.
The model IMwh is the IM model fitted by Wang and Hey (2010).

How many loci are needed to obtain good estimates and confidence intervals
will also depend on the region of the parameter space concerned.

It is not the goal of this thesis to draw conclusions regarding the evolutionary
history of Drosophila species. We used the data of Wang and Hey (2010) with
the sole objective of demonstrating that our method can be applied efficiently
and accurately to real data. In Table 5.1, we list both our estimates and those
of Wang and Hey (2010) for a six-parameter isolation-with-migration model
(the IM1 model – see Figure 2.9). The same table contains the estimates for
our best-fitting IIM model. Our parameter estimates for the IM model agree
well with those of Wang and Hey (2010). The reason that they do not match
exactly lies in the fact that we have omitted the ‘screening procedure’ described
in Wang and Hey (2010) and have therefore not excluded some of the most
divergent sequences in the data set. It should also be borne in mind that our
model of mutation is the infinite-sites model, whereas Wang and Hey (2010)
have worked with the Jukes-Cantor model. Furthermore, our choice of sequence
pairs was somewhat different: Wang and Hey (2010) randomly selected a pair
of sequences at each locus, whereas we followed the procedure described in
section 2.6.1 above. There are some notable differences between the estimates
for both IM models and those for the IIM model: under the IIM model, the
process of speciation is estimated to have started earlier (3.6 million years ago
instead of 3.0 or 3.2 million years ago), to have reached complete isolation
before the present time (1.5 million years ago), and to have a higher rate of
gene flow (0.064 sequences per generation instead of 0.013 or 0.012 sequences)
during a shorter period of time (2.1 million years of gene flow instead of 3.0
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or 3.2 million years). As might be expected, the estimates of each descendant
population size (D. simulans and D. melanogaster) in the IM models lie in
between the estimates of the corresponding current population size and its size
during the gene flow period in the IIM model.

The purpose of presenting the Cobitis fish case study in Chapter 3 was to
provide an example of how our methods can be applied to specific research
questions. Whether or not clonality can be a primary reproduction barrier falls
beyond the scope of the present thesis. We also wished to stress the fact that
polymorphism-based statistical inference is not a stand-alone research tool. On
the contrary, a given evolutionary hypothesis becomes plausible when inferences
based on different sources (field observations, laboratory experiments, fossil
records, polymorphism data) are in agreement.

The method we used assumes that relative mutation rates are known (see
section 2.4.2). In reality, we must deal with estimates of these rates, and
this introduces additional uncertainty which is not reflected in the standard
errors and confidence intervals obtained. In principle, this uncertainty can be
reduced by increasing the number of ingroup and outgroup sequences used to
compute the average number of pairwise differences at each locus in equation
(2.15). Ideally, estimates of the relative mutation rates should be based on
outgroup species only, to avoid any dependence between these estimates and
the observations on ingroup pairwise differences (Wang and Hey, 2010).

5.2 Violation of assumptions

Some assumptions of our models, such as the infinite-sites assumption and the
assumption of free recombination between loci and no recombination within
loci, may not be sensible for some real data sets. The appropriateness of other
assumptions, for example those regarding the constant size of populations
or the constant rate of gene flow, will depend on the actual evolutionary
history of the species or populations involved. Whilst a systematic, in-depth
robustness analysis of our method (similar to, for example, the robustness
studies by Becquet and Przeworski, 2009, and Strasburg and Rieseberg, 2010,
for commonly used IM methods) is beyond the scope of this thesis, we will in
this section informally examine the impact of possible violations of some of the
main assumptions made.
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Misspecification of the demographic model

In order to explore the potential effect of misspecification of the demographic
model on inference accuracy, we first simulated 20 data sets of 40,000 loci each
from a somewhat more complex evolutionary scenario, depicted in the left-hand
side diagram of Figure 5.2, where subpopulation sizes gradually increase and
gene flow gradually declines. The precise parameter values assumed for the true
model were chosen arbitrarily and are also shown in the left-hand side diagram;
in accordance with the reparameterisation used in section 2.5, divergence times
are measured on a mutational scale by twice the expected number of mutations
per sequence (as an average over all loci), population sizes are represented by
scaled mutation rates, and rates of gene flow by scaled migration rates. We then
applied our method to fit isolation, IM, IIM and GIM models to each of the
simulated data sets and selected the best-fitting model by means of likelihood
ratio tests – for 18 out of the 20 data sets generated this was found to be the
full IIM model. The average point estimates obtained for each parameter under
the full IIM model are shown on the right-hand side diagram of Figure 5.2.
In each diagram, the widths of the boxes are proportional to the population
sizes and the heights are proportional to the durations of the time periods
concerned. It is readily seen that the IIM model reflects the dynamics of the
true model quite well. Population sizes, migration rates and splitting times are
all estimated at intermediate values.

We also repeated the simulation and estimation procedure for an evolution-
ary scenario involving a period of secondary gene flow, depicted in the left-hand
side diagram of Figure 5.3. Again, for 18 out of 20 simulated data sets, the
full IIM model provides the best fit amongst the models considered (isolation,
IM, IIM and GIM). Comparing the two diagrams in Figure 5.3 (where the IIM
parameter values in the right-hand side diagram are once more the averages
of the estimates obtained), we see that the IIM model obtained provides a
reasonable approximation to the true model, though of course our method
did not detect the initial period of isolation. The estimates of the time since
the onset of speciation and the time since complete isolation are, on average,
close to the true values, whilst the average estimates of the migration rate and
population size parameters are again at intermediate values, compared to the
range of true values over time.
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Fig. 5.2 Violation of demographic assumptions. Left-hand side diagram: true model.
Right-hand side diagram: best-fitting model. Divergence times are measured by twice
the expected number of mutations per sequence, population sizes are represented by
scaled mutation rates, and rates of gene flow by scaled migration rates.

Fig. 5.3 Violation of demographic assumptions. Left-hand side diagram: true model.
Right-hand side diagram: best-fitting model. Divergence times are measured by twice
the expected number of mutations per sequence, population sizes are represented by
scaled mutation rates, and rates of gene flow by scaled migration rates.
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Intra-locus recombination

In common with other methods mentioned in this thesis (for example, Wang and
Hey, 2010; Lohse et al., 2011), our method assumes free recombination between
loci and no recombination within loci. The second of these two assumptions
is the most important one, without which our method would not be valid.
Recombination within loci mixes up the genealogies of DNA sequences on
which our method relies, making pairs of sequences more equidistant: intra-
locus recombination does not affect the mean number of nucleotide differences
in a pair of sequences but the variance decreases with increasing recombination
(Griffiths, 1981; Hudson, 1983; Schierup and Hein, 2000), resulting in data
sets which contain more intermediate values and fewer extreme values. This
can be expected to lead to overestimation of the current population sizes and
underestimation of the ancestral population size, whilst the effect on estimates
of the other parameters is intuitively somewhat less obvious. The impact of
intra-locus recombination on the variance of the number of pairwise differences,
and hence on the accuracy of our method, may be expected to be less severe in
cases of recombination rate heterogeneity within loci (see Figure 1 in Hudson,
1983, for the extreme case of recombination hotspots separating completely
linked regions) .

A simulation study by Strasburg and Rieseberg (2010) found that even
relatively low levels of intra-locus recombination can cause substantial bias
in estimates of the IM model parameters obtained using the program IMa
(Hey and Nielsen, 2007), with highest posterior density intervals failing to
contain the true parameter values far more often than would be expected by
chance. In IM simulations allowing a minimal but realistic amount of intra-
locus recombination, Lohse et al. (2016) found that the bias in their parameter
estimates was small. Although our method and models are different from those
of Hey and Nielsen (2007) and Lohse et al. (2016), the effect of recombination
on the underlying genealogies remains the same, and therefore similar biases
will occur if the assumption of no intra-locus recombination is violated.

For the Drosophila data considered in section 2.6, Wang and Hey (2010)
assessed the impact of potential intra-locus recombination on their estimates
of the parameters of an IM model by comparison with the estimates obtained
from the same sequences but halved in length (i.e. approximately halving the
expected number of intra-locus recombination events). Their estimates of the
ancestral population size and the migration rate from the half-length data were
about 30% larger than those from the full-length data, whilst the differences for
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the other parameter estimates were small. In the same spirit, we repeated our
previous analysis of the Drosophila data but now using the trimmed version
of the Wang subset prepared by Lohse et al. (2011), in which the average
locus length was reduced by approximately a factor of 3; the Hutter subset
(approximately 1% of the total number of loci) was retained in its entirety as
we could not afford to further reduce this already very small data set of D.
melanogaster pairs. Applying the estimation and model selection procedures
described in section 2.6 to this trimmed version of the data, the likelihood ratio
test of the models IIM1 versus IIM2 was no longer significant, i.e., there was
no longer significant evidence of an increase in population size at time T1, and
the best-fitting model was a unidirectional version of IIM1 (i.e. with M1 = 0).

Table 5.2 shows the estimates obtained from the trimmed data; the estimates
obtained in section 2.6 from the full data are also listed again for comparison.
In line with our expectations regarding the potential effect of intra-locus
recombination, it is seen that the full data gave a larger estimate of the current
population size of D. simulans and a smaller estimate of the ancestral population
size; the estimated size of D. simulans during the gene flow stage was also
smaller than that obtained from the trimmed data. The estimated time since
the onset of speciation is nearly identical for the two data sets, but the full data
placed the end of gene flow substantially further back into the past (1.5 million
years ago compared to 0.93 million years) and estimated a somewhat higher
number of migrant sequences per generation (0.064 compared to 0.051) during a
shorter period of gene flow (2.12 compared to 2.68 million years). This suggests
that, in addition to the impact on population size estimates already discussed,
intra-locus recombination may lead to an overestimate of the time since the end
of gene flow in an IIM model and (possibly as a consequence) an overestimate
of the migration rate. Nevertheless, for both versions of the Drosophila data,
the likelihood ratio tests of non-zero migration rate and non-zero time since
the end of gene flow were significant.

The above considerations imply that, when preparing data for use with
our method (or any other method relying on the assumption of no intra-locus
recombination), loci should be chosen carefully to try to keep the amount of
intra-locus recombination negligible, and some caution may be needed in the
interpretation of results. For data sets showing signs of recombination within
loci, it may be possible to reduce its effect by trimming or breaking up such
loci to form shorter, apparently non-recombining segments of DNA sequence
(Hey and Nielsen, 2004; Strasburg and Rieseberg, 2010). An extension of our
method to account for recombination within loci would be of interest but is
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Table 5.2 Converted estimates for the data of Wang and Hey (2010):
full sequences and trimmed sequences.

trimmed full
IIM∗

1 IIM3 IIM∗
3

Time since onset of speciation 3.614 3.634 3.624
Time since isolation 0.934 0.997 1.503
Size of ancestral population 4.264 4.237 3.549
Current size of D. sim. population - 6.024 7.182
Current size of D. mel. population - 2.984 2.871
Size of D. sim. population during gene flow - 5.956 3.640
Size of D. mel. population during gene flow - 1.891 2.092
Size of D. sim. population 5.998 - -
Size of D. mel. population 2.795 - -
Migration rate (D. sim. → D. mel.) 0.051 0.038 0.064
Migration rate (D. mel. → D. sim.) 0.000 0.000 0.000

Note: Times are given in millions of years; population sizes are given in millions of individu-
als; the migration rates stated represent the expected number of sequences that migrate per
generation, forward in time. The best-fitting model for each data set is marked with an (*).

challenging. An extension to a finite-sites model for use with shorter fragments
of DNA sequence would also be of interest – such an extension is relatively
straightforward but is yet to be implemented in our method (but see Wang
and Hey 2010 and Andersen et al. 2014 for the IM model).

Linkage disequilibrium

If the assumption of free recombination between loci does not hold, then loci are
not independent, in which case the likelihood in equations (2.14) and (3.16) is
in fact a composite marginal likelihood (also called the ‘independence likelihood’
in Chandler and Bate, 2007) rather than an ordinary full likelihood (see Varin,
2008, for an overview of composite marginal likelihood methods; see also the
Discussion of Lohse et al., 2016). Statistical theory indicates that in that case
the maximum composite likelihood estimator (MCLE) is still consistent (Cox
and Reid, 2004; Wiuf, 2006, with some minor modifications to account for our
slightly different assumptions; Varin, 2008), provided the relative mutation
rates at the different loci are bounded. Thus, if linkage between loci cannot be
ignored, the MCLE of the parameters of a model obtained with our method will
still be approximately unbiased if the number of loci is sufficiently large, and if
all our other assumptions hold (including the assumption of no recombination
within loci). However, if linkage between loci is not negligible, then standard
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errors and confidence intervals computed using the observed Fisher information
(as was done in section 2.6.3) will underestimate the true uncertainty about
the parameter estimates obtained (Baird, 2015); instead, standard errors and
confidence intervals should be based on an estimate of the Godambe information
(Godambe, 1960). For a data set made up of a single string of correlated loci, or
a small number of such strings, obtaining an accurate estimate of the Godambe
information presents some difficulties (see Varin, 2008, and Varin et al., 2011,
for a discussion and some possible strategies). A much simpler situation arises
if the data consist of a sufficiently large number of ‘clusters’ of loci, where loci
within clusters are correlated but where different clusters can be considered
independent. This may be the case, for example, if different clusters of loci are
chosen from different chromosomes, or are separated by recombination hotspots
or by a large enough distance along the genome. For such data, an empirical
estimate of the Godambe information can easily be computed as described in
Chandler and Bate (2007) or Varin (2008).

To try to quantify the effect of linkage on the standard errors of our
parameter estimates, we conducted the following analysis of a suitable subset
of the Wang and Hey (2010) data. We partitioned the 30247 loci of the Wang
subset into blocks of 100 consecutive loci and discarded every other block, so
that 151 blocks were retained of 100 loci each. Since the individual loci are
approximately 500 bp in length and separated by at least 2 kb, this leaves a
distance of at least 0.25 Mb between different blocks, and we can reasonably
assume that any effect of linkage between blocks of loci this far apart is negligible
compared to that within blocks. In the Hutter subset the distance between
consecutive loci is on average about 50 kb, and we retained these 378 loci in
order to enable estimation of the D. melanogaster population size parameters.

To examine the effect of linkage we analysed this reduced data set in two
ways in order to compare the results: (i) assuming that loci are independent,
and (ii) accounting for any linkage between loci within blocks, i.e. accounting
for the bulk of the linkage in the data. In case (i), the model selection procedure
described in section 2.6.2 was carried out on the reduced data set. As was
the case for the full data, the model IIM3 provided by far the best fit also for
the reduced data set. The p-values computed as part of the model selection
procedure were all smaller than 10−42 and are shown in the left-hand side
column of Table 5.3. The parameter estimates for the best-fitting model, IIM3,
are shown in Table 5.4 and are very close to the estimates obtained from the full
Wang and Hey (2010) data (see Table 2.3). Standard errors of the parameter
estimates, based on the observed Fisher information, are also shown in Table 5.4
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for the reduced data set. As expected, these standard errors are larger than
those for the full data set (by a factor of approximately

√
2), except those of

the D. melanogaster population size parameters, which are largely unchanged.
In case (ii), i.e., in order to account for any linkage within blocks of loci,

both the model selection procedure and the computation of standard errors
were performed using theoretical results for composite marginal likelihoods.
The hypothesis tests in the model selection procedure were carried out using
Result 3.5 and approximation (3.6) of Jesus and Chandler (2011), by which the
null distribution of the composite likelihood ratio test statistic is approximated
by a scaled and shifted χ2 distribution (see also the comments regarding the
distribution of the independence likelihood ratio test statistic in Chandler and
Bate, 2007, p.170-171). The p-values obtained in this way for the tests in the
model selection procedure are shown in the right-hand side column of Table 5.3.
As expected, these p-values are not as small as those obtained when ignoring
linkage, and in fact they differ by many orders of magnitude. Nevertheless,
they are all still smaller than 10−20, and the model IIM3 still gives by far
the best fit for the reduced Wang and Hey (2010) data (note however that,
to the best of our knowledge, it has not been established in the literature
whether the approximate null distribution used for the composite likelihood
ratio test statistic is still conservative in the case of tests involving parameters
on the boundary, although this would seem plausible). Standard errors of
the parameter estimates of the IIM3 model were computed by obtaining an
empirical estimate of the inverse of the Godambe information matrix using
the method for clustered data described in Chandler and Bate (2007): the
covariance matrix of the score vector evaluated at the true parameter vector
was estimated by

V̂ =
∑

j

UjU′
j

where Uj is the score of the jth block of loci, evaluated at the MCLE, and the
sum is over all blocks; an estimate of the inverse of the Godambe information
matrix (also referred to as the ‘robust’ variance estimator) was then computed
as

Ĝ−1 = Ĥ−1V̂Ĥ−1

where H is the negated Hessian matrix of the log-likelihood function, evaluated
at the MCLE. The resulting standard errors are shown in the right-hand
side column of Table 5.4. It is seen that, on average, the standard errors
based on the Fisher information account for about 80% of the uncertainty



5.3 Further work 104

given by the ‘robust’ standard errors, though this percentage is different for
different parameters. The strongest impact is on the standard error of θc1 (the
‘current size’ parameter of D. simulans), for which the standard error ignoring
linkage is only 59% of that which does account for linkage between loci within
blocks – one would indeed expect the impact of linkage to be strongest on
the standard errors of parameters relating to more recent events, as a shorter
time allows less opportunity for recombination between loci (no such effect is
seen on the standard error of θc2 as we continued to treat the Hutter subset as
independent loci). An alternative method to account for linkage disequilibrium
is by means of a parametric bootstrap (for example, Lohse et al., 2016), but
this is computationally intensive and the results will inevitably depend on
the recombination rate assumed, and on any other assumptions made such as
homogeneity of the recombination rate along the genome.

The ‘robust’ standard errors in the right-hand side column of Table 5.4 were
computed accounting for linkage whilst assuming that all our other assumptions
hold. If the latter is not the case, then the individual factors in equations
(2.14) and (3.16) may be misspecified so that their product no longer defines a
composite marginal likelihood. Instead, the derivative of its logarithm can be
regarded as an ‘estimating function’ and the corresponding statistical theory
applied. In that case, our ‘robust’ calculations of standard errors and p-values
in (ii) above still apply (Jesus and Chandler, 2011, Section 3), so that the
results in the right-hand columns of Tables 5.3 and 5.4 are still valid. Thus the
differences between the left- and right-hand side columns of standard errors
and p-values in Tables 5.3 and 5.4 should be interpreted as upper bounds on
the impact of linkage, since part of these differences may be due to other forms
of model misspecification, including from any of the potential sources discussed
above: inaccurate estimates of the relative mutation rates, misspecification of
the mutation model, misspecification of the demographic model, and intra-locus
recombination. In other words, when we allow for the fact that other forms
of misspecification, apart from linkage between loci, may exist, the present
adjustment is essentially the same as the one described in section 4.1 (model
misspecification): the difference is that, in that section, we had not dropped
the assumption that the full data consist of completely unlinked loci.

5.3 Further work

In population genetics, as in other areas of probability theory, there is a trade-
off between mathematical convenience and realism. Methods that implement



5.3 Further work 105

Table 5.3 Results for the data of Wang and Hey (2010), reduced
version: p-values for (composite) likelihood ratio tests in model
selection.

H0 H1 p-values
(i) χ2 null distribution (ii) ‘robust’ null distribution

ISO IM1 2.60 E-129 1.39 E-110
IM1 IIM1 8.40 E-57 2.11 E-21
IIM1 IIM2 1.62 E-43 7.86 E-28

Note: in (i) the usual χ2 distribution with the appropriate number of degrees of freedom
was used as the null distribution; in (ii) the null distribution used is a scaled and shifted χ2

distribution (Jesus and Chandler, 2011, equation 3.6).

Table 5.4 Results for the data of Wang and Hey
(2010), reduced version: point estimates and esti-
mated standard errors under the model IIM3.

Parameter Estimate Standard Errors
(i) Fisher (ii) Godambe

θa 3.217 0.130 0.146
θ 3.259 0.155 0.168
θb 1.934 0.998 1.251
θc1 6.833 0.161 0.271
θc2 2.643 0.174 0.182
T1 7.118 0.273 0.435
V 9.826 0.228 0.286

M2 0.250 0.026 0.035
Note: ‘Fisher’ and ‘Godambe’ standard errors are based on the ob-

served Fisher and on the estimated Godambe information matrices
respectively.

more complex models are normally less efficient, but they can also provide
more reliable and accurate inferences – as long as there is enough information
in the data to estimate the additional parameters. There are many ways of
extending and generalising both the GIM model and the infinite-sites model
of mutation, making them more realistic. Below we consider some extensions
whose implementation is likely to be possible using methods similar to the ones
described in the present thesis.

The assumption that relative mutation rates are known is one that could be
dropped in the future. If we do so, the likelihood of the parameters under any
of the models in this thesis becomes what it actually is: an estimated or pseudo-
likelihood. It should then be possible to incorporate the uncertainty about the
relative mutation rates, by applying, for example, the asymptotic results derived
by Gong and Samaniego (1981). Furthermore, an extension of our method
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to the Jukes-Cantor model of mutation would also be of interest. Under this
model of mutation, the pmf of the number of pairwise nucleotide differences
can be written as a sum of moment generating functions of the coalescence time
between two lineages (see Lohse et al., 2011, equation 3). Hence, an explicit
expression for this pmf, under any of our models of speciation, is likely to be
attainable.

If the period between the split of the ancestral population and the present is
divided into three or more two-island models with potential migration, instead
of just two, the derivations in chapter 3 (GIM model) will still be applicable
with minor modifications. Such an extension would allow us to fit, for example,
a model of secondary contact followed by a period of isolation, similar to the one
depicted in the left-hand side diagram of Figure 5.3. In terms of demographic
assumptions, another generalisation of interest would be the inclusion of more
subpopulations/species. Our analysis of the Cobitis data, together with the
other independent evidence mentioned in chapter 3, suggest that there was no
gene flow between more than two Cobitis species at the same time. In general,
however, substantial gene flow with a third species is enough to compromise
the accuracy of estimates (Strasburg and Rieseberg, 2010). An extension of
our method to models with three subpopulations, and simultaneous gene flow
between them, may be challenging, even for data sets consisting of pairwise
nucleotide differences; and it can happen that, even in a large data set as that
of Wang and Hey (2010), there is not enough information to fit such complex
models.

The results presented in section 4.2 also suggest the need of further in-
vestigations. The simulation method described in that section can estimate
efficiently the asymptotic distribution of the likelihood ratio statistic when the
true parameter lies on the boundary of the parameter space. However, it relies
on an assumption which would be of interest to drop, namely the assumption
of correct model misspecification. Instead of the results in Chernoff (1954)
and Self and Liang (1987), an extension of our method to this more general
setting could be based on the more complex theory in Liang and Self (1996)
and Chen and Liang (2010). Recall also that the simulation method relies on
the positive-definiteness of the observed Fisher information. Hence it would
be useful to know what can be done, if anything, to solve the problem of not
always obtaining a positive-definite observed Fisher information, when the
maximum-likelihood estimate happens to lie on the boundary of the parame-
ter space (see section 4.2.5). For example, it should be investigated whether
adequate estimates of the asymptotic distribution can still be obtained when
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a non-positive definite observed Fisher information is replaced by the nearest
positive definite matrix (which can be computed, for example, using the R
package ‘Matrix’).
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