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Laurent Schmalen, Alex Alvarado, and Rafael Rios-Müller

(Top Scored)

Abstract—In this paper, we compare different metrics to predict
the error rate of optical systems based on nonbinary forward error
correction (FEC). It is shown that an accurate metric to predict
the performance of coded modulation based on nonbinary FEC
is the mutual information. The accuracy of the prediction is veri-
fied in a detailed example with multiple constellation formats and
FEC overheads, in both simulations and optical transmission ex-
periments over a recirculating loop. It is shown that the employed
FEC codes must be universal if performance prediction based on
thresholds is used. A tutorial introduction into the computation
of the thresholds from optical transmission measurements is also
given.

Index Terms—Bit error rate, coded modulation, forward error
correction, generalized mutual information, mutual information,
performance prediction, symbol error rate.

I. INTRODUCTION AND MOTIVATION

MANY optical transmission experiments do not include
forward error correction (FEC). The reasons for this are

that often, FEC development is still ongoing, or FEC developers
are physically remote from the experiment. Often, researchers
would also like to reuse experimental data obtained in expensive
optical transmission experiments to evaluate the performance of
different FEC schemes, without needing to redo the transmission
experiment and/or signal processing. Therefore, thresholds are
commonly used to decide whether the bit error rate (BER) after
FEC decoding is below the required target BER, which can be in
the range of 10−13 to 10−15 . The most commonly used threshold
in the optical communications literature is the pre-FEC BER.

The use of thresholds is also very convenient in practice be-
cause very low post-FEC BER values are hard to estimate. The
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conventional design strategy has therefore been to experimen-
tally demonstrate (or simulate) systems without FEC encoding
and decoding, and to optimize the design for a much higher
BER value, the so-called “FEC limit” or “FEC threshold.” This
approach relies on the strong assumption that a certain BER
without coding can be reduced to the desired post-FEC BER
by previously verified FEC implementations, regardless of the
system under consideration.

Using pre-FEC BER thresholds is very popular in the litera-
ture and has been used for example in the record experiments
based on 2048 quadrature amplitude modulation (QAM) for
single-core [2] and multi-core [3] fibers. This threshold indeed
gives accurate post-FEC BER predictions if three conditions are
satisfied. First, bit-level interleaving must be used to guarantee
independent bit errors. Second, the FEC under consideration
must be binary and universal, and lastly, the decoder is based
on hard decisions (bits) rather than soft decisions. Recently,
however, it was shown in [4], [5] that the pre-FEC BER fails
at predicting the post-FEC BER of binary soft-decision FEC.
This was shown for both turbo codes and low-density parity-
check (LDPC) codes, in the linear and nonlinear regimes, and
in both simulations and optical experiments. Furthermore, [4]
also showed that a better predictor in this case is the general-
ized mutual information (GMI)1 [6, Sec. 3], [7, Sec. 4.3], [8],
[9] and suggested to replace the pre-FEC BER threshold by a
“GMI threshold.”

The rationale for using the GMI as a metric to character-
ize the performance of binary soft-decision FEC is that the
GMI is an achievable information rate (AIR) for bit-interleaved
coded modulation (BICM) [6], [7], often employed as a prag-
matic approach to coded modulation (CM). For square QAM
constellations, BICM operates close to capacity with moderate
effort, and thus, it is an attractive CM alternative. However,
for most nonsquare QAM constellations, BICM results in un-
avoidable performance penalties. For these modulation formats,
other coded modulation (CM) schemes such as nonbinary (NB)
FEC [10] and multi-level coding with multi-stage decoding [11]
can be advantageous. Furthermore, BICM is not expected to
be the most complexity-efficient coded modulation scheme for
short reach and metro optical communications with higher or-
der modulation. The reason is that the digital signal processing
(DSP) implementation needs to work at the transmission baud
rate, but the FEC decoder needs to operate at m times the DSP

1Also known as the BICM capacity or parallel decoding capacity.
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Fig. 1. System model of optical transmission based on NB-CM and the measurement of various system parameters.

rate, if 2m -ary higher order modulation formats are used. For
these applications, multi-level coding [12], [13] or NB-FEC
may be good candidates and for these, the throughput is in
the same order as for the DSP. Although most nonbinary FEC
schemes are considerably more complex to implement than their
binary counterparts, recent advances [14], [15] show that very
low-complexity nonbinary FEC schemes for higher order con-
stellations can be implemented. A numerically stable algorithm
with high parallelism was presented in [16].

In this paper, we investigate the performance prediction of
NB soft-decision FEC (NB-FEC) and show that an accurate
threshold in this case is the mutual information (MI) [17]. The
MI was previously introduced in [18] to assess the performance
of differentially encoded quaternary phase shift keying and
was shown to be a better performance indicator than the
pre-FEC BER. The use of MI as a post-FEC BER predictor for
capacity-approaching nonbinary FEC was also conjectured in
[4, Sec. V] and was previously suggested in [19], [20] in the
context of wireless communications.

The main contribution of this paper is to show that the MI
is an accurate threshold for a CM scheme based on NB LDPC
codes. This is verified in both an additive white Gaussian noise
(AWGN) simulation and in two optical experiments using 8-
QAM constellations. We show that the MI allows us to accu-
rately predict the post-FEC performance of NB LDPC schemes
and also show that other commonly used thresholds (such as
pre-FEC BER, pre-FEC symbol error rate (SER) and bit-wise
GMI) fail in this scenario.

This paper is organized as follows. In Section II we describe
the system model we use and lay down some information theory
preliminaries. Afterwards, in Section III we show what thresh-
olds we should use to predict the performance of NB FEC
schemes. In Section IV, we verify our predictors with a simu-
lation example, a back-to-back experiment and a transmission
experiment over a recirculating loop. Finally, in Section V, we
discuss code universality and give guidelines for using the pro-
posed thresholds.

II. SYSTEM MODEL AND PRELIMINARIES

A. System Model

Fig. 1 shows the NB-CM scheme under consideration. The
data bits are mapped to NB symbols from GF(2m ) using a
one-to-one (i.e., invertible) mapping function, then encoded by

an NB-FEC with rate R, and then mapped to D-dimensional
constellation symbols from the set S := {s1 , . . . , sM }, where
|S| = 2m = M and si ∈ RD . Frequently, D = 2 (with complex
symbols), but in optical communications, also D = 4 [8], [9],
[21], [22] and D = 8 [23], [24] are used. As will become obvious
later, the mapping to symbols is shown in two stages in Fig. 1,
namely first mapping the NB symbols U ∈ {1, 2, . . . ,M} to
bit patterns B of m bits, and mapping these to constellations
symbols X ∈ S. In some cases, we require the combination of
bit mapper and mapper Φ, which we denote by φ(i) = si and
which maps an integer i to a modulation symbol si .

The constellation symbol si ∈ S is transmitted with a pri-
ori probability P (X = si) := λi through an “optical channel.”2

Most communication systems transmit equiprobable symbols,
i.e., λi = 1/M , ∀i. However, in the case of probabilistic shap-
ing [25]–[27], the probabilities of occurrence of the symbols
may differ. The optical channel3 takes a sequence of Nm con-
stellation symbols xNm

1 := (x[1], x[2], . . . , x[Nm ]) and maps
them to a waveform w(t) by means of a pulse shaping function
ρ(t) with

w(t) =
Nm∑

κ=1

x[κ] · ρ(t − κTs)

with Ts being the symbol period and κ the discrete-time index.
The optical channel further includes digital-to-analog converters
(DACs), filtering, transmission including amplification, analog-
to-digital converters (ADCs), and DSP to remove effects of
chromatic dispersion, polarization mode dispersion, polar-
ization rotation, phase noise, frequency offset, etc. It fur-
ther includes matched filtering, equalization and possibly
(de-)interleaving.

At the receiver, for each sampled symbol y[κ], the soft symbol
demodulator (see Fig. 1) computes M scaled likelihoods (which
are proportional to the a posteriori probabilities) qY |X (y|si)λi ,
where qY |X (y|si) is a function that depends on the received
D-dimensional sampled symbol y and the constellation sym-
bol si ∈ S. These scaled likelihoods are passed to an NB-
FEC decoder. Note that usually, for numerical reasons, a vec-

2We use upper-case letters (e.g., X ) to denote random variables and lower-
case letters (e.g., x) to denote realizations of this random variable. We use
boldface upper-case letters (e.g., X) to denote sequences of random variables
and boldface lower-case letters (e.g., x) for their realizations. Sets are denoted
by calligraphic letters (e.g., S). ‖ · ‖ is used to denote the L2 norm.

3Also referred to as “discrete-time (noisy) channel” in [28].
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Fig. 2. System model of optical transmission based on BICM.

tor of M − 1 nonbinary log-likelihood ratios (LLRs) is com-
puted for each D-dimensional received symbol y instead. These
(nonbinary) LLRs4 are given by

Li(y) = ln
(

qY |X (y|si)
qY |X (y|s1)

)
+ ln

(
λi

λ1

)
, ∀i ∈ {2, . . . , M}.

(1)

Ideally, the receiver knows the (averaged) optical channel tran-
sition probability density function (PDF) pY |X (y|si), applies
sufficiently long interleaving, and sets qY |X (y|x) = pY |X (y|x)
in (1). Usually, however, the exact channel transition PDF is not
known at the receiver, or the computation of the LLRs is too
involved using the true PDF, which is why often approxima-
tions are used. In this case qY |X (y|x) �= pY |X (y|x), and thus,
we say that the receiver is mismatched [30]. Often, for instance,
the (multivariate) Gaussian PDF is assumed at the receiver, i.e.,
qY |X (y|si) = qawgn(y|si), where

qawgn(y|si) :=
exp

(− 1
2 (y − si)T Σ−1(y − si)

)
√

(2π)D |Σ| .

In [22], different approximations are compared for D = 4 and
it was found that the circularly symmetric Gaussian approxima-
tion with diagonal covariance matrix Σ reliably approximates
the true PDF unless the input power is increased to very high
levels. Besides, the Gaussian PDF has also been shown to be a
good approximation for the true PDF in case of uncompensated
fiber links with coherent reception [31]. Furthermore, using a
Gaussian PDF also simplifies the numerical computation of the
LLRs.

A predominant case is D = 2 (e.g., QAM constellations de-
tected independently in each polarization) with circularly sym-
metric noise (diagonalΣ) and variance σ2

n per dimension. This is
the case on which we focus on this paper and which is also domi-
nant in coherent long-haul dispersion uncompensated links [22].
In this case

qawgn(y|si)
∣∣
D=2 =

1
2πσ2

n

exp

(
−‖y − si‖2

2σ2
n

)
. (2)

Assuming equally likely symbols (λi = 1/M ), the LLRs in (1)
are given by

Li(y) =
1

2σ2
n

(‖y − s1‖2 − ‖y − si‖2). (3)

After LLR computation, the NB soft-decision FEC decoder
(e.g., a nonbinary LDPC decoder) takes these LLRs and es-

4Strictly speaking, the quantities in (1) are log-a posteriori probability (log-
APP) ratios. However, in the FEC literature, the log-APP ratios are typically also
called LLRs, which is why we follow this latter convention here (see also [29,
Sec. 4.5.3] and [7, p. 58]).

timates the transmitted NB symbols, which are later converted
into decoded bits. Here we only assume that the nonbinary FEC
is matched to the constellation, i.e., each nonbinary symbol of
the FEC code can be mapped to m = log2(M) bits. This allows
us to consider nonbinary LDPC codes defined over either the
Galois field GF(2m ) or the ring ZM of integers modulo M . We
further assume that soft decision decoding is carried out, see,
e.g., [16]. For other, low complexity versions of that algorithm,
we refer the interested reader to the references in [16].

B. Bit-Interleaved Coded Modulation (BICM)

In optical communications, often the pragmatic BICM
scheme is used. The system model of BICM is shown in Fig. 2.
We only describe a simplified version here. For more details,
we refer the interested reader to [7], [11] and references therein.
BICM is based on a binary FEC code. The binary output of the
FEC encoder is interleaved5 by a permutation function Π. The
resulting interleaved bit stream B is then mapped to modulation
symbols X using the mapper Φ described above.

At the receiver, we use a bit metric decoder (BMD) to compute
LLRs L̃ for the individual bits of the bit stream B. In Fig. 2,
the BMD is denoted LLR Calculator. The LLRs computed by
the BMD are given by

L̃i(y) = log

(∑
s∈S0 , i

qY |X (y|s)λφ−1 (s)∑
s∈S1 , i

qY |X (y|s)λφ−1 (s)

)
, ∀i ∈ {1, . . . , m}

(4)

where Sb,i is the set of constellation symbols where the i-bit of
the binary label takes on the value b. In the practically dominant
case with equiprobable symbols (λi = 1/M ), we get

L̃i(y) = log

(∑
s∈S0 , i

qY |X (y|s)
∑

s∈S1 , i
qY |X (y|s)

)

The stream of LLRs L̃ is then de-interleaved by the inverse
permutation Π−1 and then fed to a conventional soft-decision
binary FEC decoder.

The comparison of (4) with (1) clearly shows the difference
between nonbinary CM and BICM. In the nonbinary case, we
compute a vector of LLRs containing M − 1 values for each
channel observation Y . In contrast, for BICM, we only compute
m = log2(M) LLRs per channel observation. Clearly, there is
a compression of information which is available for the FEC
decoder. Fascinatingly, the loss of information from this com-
pression can be made negligible in many practical cases, e.g.,
with square QAM constellations and Gray mapping [7], [11].

5Often, the interleaver is considered to be part of the FEC encoder, for instance
if random LDPC codes are used.
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The loss of information may however become important for
other constellations.

C. FEC Universality

When assessing and comparing the performance of different
modulation formats and different transmission scenarios (e.g.,
fiber types, modulators, converters, etc.) based on thresholds,
it is important to understand the concept of FEC universality.
A pair of FEC code and its decoder are said to be universal if
the performance of the code (measured in terms of post-FEC
BER or SER) does not depend on the nonbinary channel (with
input U and output Z when referring to Fig. 1), provided that
the channel has a fixed mutual information I(U ;Z).

When we refer to “the channel”, we consider the whole trans-
mission chain between the NB-FEC encoder output U and the
decoder input Z including modulation and demodulation, DSP,
ADCs and DACs, optical transmission and amplification in-
cluding noise. We say that the channel changes if any of the
components in the chain between U and Z changes. This can
be for instance the noise spectrum, the optical signal-to-noise
ratio (SNR), but also the modulation format or the DSP algo-
rithms. We provide a rigorous definition of universality later in
Section V.

Unfortunately, not much is known about the universality of
practical coding schemes. It is conjectured that many practical
(binary) LDPC codes are approximately universal [32] which
has been shown to be asymptotically true under some relatively
mild conditions [33]. Guidelines for designing LDPC codes that
show good universality properties are highlighted in [34]. The
class of spatially coupled LDPC codes, recently investigated
for optical communications [35], has been shown to be asymp-
totically universal [36]. An example of non-universal coding
schemes are the recently proposed, capacity-achieving polar
codes [37], which need to be redesigned for every different
channel. Most of these results are for binary codes and even less
is known for nonbinary codes.

Although most practical LDPC codes are asymptotically
universal, we wish to emphasize a word of caution: practical,
finite-length realizations of codes may only be approximately
universal. For instance, [32, Fig. 3] reveals that for some practi-
cal LDPC codes, the performance at a BER of 10−4 significantly
differs for different channels. This difference is expected to be
even larger at very low BERs due to the different slopes of the
curves. We will address this difference in detail in Section V.

D. Channel Capacity and Mutual Information

Consider an information stable, discrete-time channel with
memory [38]–[40], which is characterized by the sequence of
PDFs pY N

1 |XN
1

(yN
1 |xN

1 ), for N = 1, 2, . . .. The maximum rate
at which reliable transmission over such a channel is possible is
defined by the channel capacity [38]–[40]

C := lim
N →∞

sup
p

XN
1

1
N

I(XN
1 ;Y N

1 ) (5)

where the maximization is over pXN
1

(·), which is the PDF of

the sequence XN
1 = (X[1],X[2], . . . ,X[N ]) under a given in-

put constraint (e.g., power constraint). For a fixed pXN
1

(·), the

mutual information (MI) between the input sequence XN
1 and

the output sequence Y N
1 is given by

I(XN
1 ;Y N

1 ) = Ep
XN

1
, Y N

1

{
log2

pY N
1 |XN

1
(Y N

1 |XN
1 )

pY N
1

(Y N
1 )

}

where EpR
{f(R)} :=

∫
dom(R) pR (r)f(r)dr denotes expecta-

tion with respect to a random variable R.
The capacity C in (5) is the maximum information rate that

can be achieved for any transmission system, requiring carefully
optimized, infinitely long input sequences. Usually, in most of
today’s systems, the channel input sequence is heavily con-
strained (e.g., by the use of QAM constellations) to simplify the
transceiver design. Furthermore, often symbol sequences with
independent and identically distributed (IID) elements are used
such that we have

pXN
1

(xN
1 ) =

N∏

i=1

PX (x[i]) =
N∏

i=1

λφ−1 (x[i]) . (6)

IID symbol sequences are obtained if a memoryless mapper
is used (as we do in this paper, see, e.g., Φ in Fig. 1) and if
sufficiently long interleaving is applied after FEC encoding.
Under these conditions, an achievable information rate (AIR) is
given by

Imem = lim
N →∞

1
N

I(XN
1 ;Y N

1 ) ≤ C (7)

which is a lower bound to the capacity C due to the constraints
imposed on the transmitted sequences. In the remainder of this
paper, we limit ourselves to IID channel input sequences gener-
ated via (6).

The numerical evaluation of the MI in (7) is in general not
practical. The reasons are as follows: First, numerically evaluat-
ing I(XN

1 ;Y N
1 ) is hard, even for for relatively short input and

channel output sequences (small memory lengths N ). Second,
most of today’s transceivers do not exploit memory but instead
use long interleavers to remove all effects of memory to keep
decoding simple with symbol-by-symbol detection. Hence, it
would not be fair to provide thresholds based on memory, which
give a performance that could be achieved at some point in the
future, provided that all memory is adequately exploited at the
transceiver. Instead, we neglect all memory effects and obtain
thresholds that indicate a performance achievable with today’s
systems.

Therefore in this paper, we focus on symbol-by-symbol detec-
tion (see Fig. 1). Under these constraints, we can further lower
bound the MI in (7) (see [41, Sec. III-F] for an in-depth proof) by
employing a memoryless channel transition PDF pY |X (·|·) that
is obtained by averaging the true channel PDF. This approach
gives

I(X;Y ) = EpX , Y

{
log2

p(Y |X)
p(Y )

}
≤ Imem ≤ C (8)
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or equivalently

I(X;Y ) =

M∑

i=1

λi

∫

y∈RD

pY |X (y|si) log2

(
pY |X (y|si)∑M

j=1 pY |X (y|sj )λj

)
dy.

(9)

Note that I(X;Y ) is an AIR for systems employing optimum
decoding, i.e., when the LLR computation uses qY |X (y|x) =
pY |X (y|x), and if sufficiently long symbol-wise interleaving is
applied (within the equivalent “optical channel”) and sufficiently
long capacity-achieving nonbinary FEC codes are used.

III. THRESHOLDS FOR NONBINARY FEC

Based on the discussion in Section II-C, here we propose
to use the MI as performance thresholds for NB-FEC. After
a discussion on how to compute these thresholds, we describe
some other commonly used thresholds.

A. Thresholds Based on Mutual Information

In order to estimate the performance of NB-FEC, motivated
by the universality argument in Section II-C, we would like to
use the MI I(U ;Z) as performance threshold. I(U ;Z) is the
MI between the FEC encoder output U and FEC decoder input
Z (see Fig. 1) and characterizes the nonbinary channel. Unfor-
tunately, the MI I(U ;Z) is not easy to compute immediately,
which is why we define a threshold that is directly related to
the input X and output Y of the optical transmission experi-
ment, to which we usually have access. This also allows us to
avoid including soft symbol demodulation in the transmission
experiment.

In the previous section, we have seen that Imem is a maximum
AIR if all memory effects are taken into account and is an upper
bound on I(X;Y ), which is an AIR under optimum decoding
with an averaged channel PDF. As a consequence of the data
processing inequality, we have

Imem ≥ I(X;Y )
(a)
≥ I(U ;Z)

where we have equality in (a) only in some special cases de-
scribed below. Due to this inequality, we cannot always directly
use I(X;Y ) as a proxy for estimating I(U ;Z). We resort to
the theory of mismatched decoding [42][30] and propose to use
I(X;Y ) as estimate of I(U ;Z), where

I(X;Y ) :=

sup
ν≥0

EpX , Y

{
log2

(
[qY |X (Y |X)]ν

∑M
j=1 λj [qY |X (Y |sj )]ν

)}
. (10)

We have I(X;Y ) ≥ I(X;Y ) ≥ I(U ;Z), where the second in-
equality is due to [30], [42]. However, we found in numerical
simulations and in transmission experiments that, in the context
of optical communications, I(X;Y ) ≈ I(U ;Z). Hence, we use
I(X;Y ) as an accurate estimate of I(U ;Z) and of the NB-FEC
performance.

Even (10) is demanding to evaluate in general, as the ex-
pectation is taken over PY,X (y, x) = pY |X (y|x)λφ−1 (x) , which
is often not known. However, we can replace the expectation
in (10) by the empirical average, as done for instance in [25,
Sec. III]. We denote this empirical approximation of I(X;Y )
by INB, which can be computed from an optical transmission ex-
periment with a measurement database of Nm measured values
x[κ] ∈ S and their corresponding received y[κ] by

INB :=
1

Nm
sup
ν≥0

Nm∑

κ=1

log2

(
[qY |X (y[κ]|x[κ])]ν

∑M
j=1 λj [qY |X (y[κ]|sj )]ν

)
,(11)

where qY |X (y|x) is the same PDF used for computing the LLRs
in (1), e.g., the D = 2-dimensional Gaussian PDF. The variance
of this distribution can for instance be estimated from the mea-
surement database (or a subset thereof), see, e.g., [25, Sec. III].
Later, in Example 2, we show how we can jointly estimate the MI
and the noise variance, avoiding an extra variance estimator. As
the optimization in (10) and (11) is over a strictly unimodal (∩-
convex) function in ν [7, Thm. 4.22], the maximization can be
efficiently carried out using, e.g., the Golden section search [43].

B. Detailed Description of the Proposed Threshold I(X;Y)

In the following, we describe in detail the steps that lead us
to the performance metric in (11) starting from I(U ;Z). The
remainder of this section may be skipped in a first reading.
The input Z to the FEC decoder consists of vectors of M − 1
dimensional LLRs, whose distributions are hard to estimate,
especially if M becomes large. Therefore, we would like to
relate I(U ;Z) to X and Y , to which we have immediately
access as input and output parameters of the optical transmission
experiment. Using the data processing inequality [44], we can
bound I(U ;Z) as follows

I(U ;Z)
(a)
≤ I(X;Z)

(b)
≤ I(X;Y )

where we have equality in (a), if the mapper Φ is a one-to-one
function (this is not the case for many-to-one mappings, used in,
e.g., some probabilistic shaping implementations [45]). In this
paper, we only consider one-to-one mapping functions and thus
have I(U ;Z) = I(X;Z). We have equality in (b) if and only if
Z constitutes a sufficient statistic for X given Y [46], i.e., if X
is independent of Y given Z.

While equality in (a) is obtained in most communication sys-
tems, we do not necessarily have equality in (b), especially if we
employ a mismatched decoder, i.e., when the PDF qY |X (y|x)
assumed in the decoder does not exactly correspond to the aver-
age channel PDF pY |X (y|x). Therefore, we cannot directly use
I(X;Y ) but need to find a more accurate estimate of I(U ;Z)
based on X and Y .

Unfortunately, in general, pY |X is not known and must be
estimated from the experiment. As the noise in uncompensated
coherent optical fiber communication tends to be Gaussian [31],
a good choice is to approximate pY |X (y|x) by a Gaussian PDF,
with different levels of refinement [22]. In most cases, circu-
larly symmetric Gaussian PDFs are enough, which is what
we have used in (2). To get a more accurate estimate of the
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conditional channel PDF, we can also use a kernel density esti-
mator (KDE) [47] to approximate the PDF.

As estimating the PDF pY |X (y|x) is not always straight-
forward and because we may use a mismatched decoder with
I(U ;Z) ≤ I(X;Y ), we propose to use I(X;Y ) ≤ I(X;Y )
given in (10) as performance predictor, which originates
from [42], and which we found to accurately predict I(U ;Z)
and hence the NB-FEC performance.

In the optical communications literature, the auxiliary chan-
nel lower bound [48], is frequently used to estimate the MI [22]
[25, Sec. III] [49, Sec. 2] [50] and which is given by

I(X;Y ) := EpX , Y

{
log2

(
qY |X (Y |X)

∑M
j=1 qY |X (Y |sj )λj

)}
(12)

≤ I(X;Y ).

The expectation in (12) is taken over the actual (averaged) joint
channel PDF pX,Y (·, ·) and qY |X (·|·) is an auxiliary PDF. If
qY |X (y|x) = pY |X (y|x), we have I(X;Y ) = I(X;Y ). Note
that (12) is just a special case of (10) with ν = 1 and hence

I(X;Y ) ≤ I(X;Y ) ≤ I(X;Y ) ,

where the first inequality is obvious as I(X;Y ) is recovered for
ν = 1 in (10) and the second inequality is shown in [42].

It is often claimed in the above-mentioned references that one
should use the same qY |X (y|x) as we use in the decoder (e.g., to
compute the LLRs in (1)) to estimate the MI via (12). However,
we found in numerical experiments that I(X;Y ) can signif-
icantly underestimate I(U ;Z) in many practical applications.
We illustrate this discrepancy by means of an example.

Example 1: Consider the following toy example for D = 1
where pY |X (y|x) = N (x, σ2

n ), i.e., is Gaussian distributed with
variance σ2

n and mean x and where qY |X (y|x) = N (x,K),
i.e., the receiver assumes a Gaussian distribution with differ-
ent variance K �= σ2

n . In this case, we can show that I(X;Y ) =
I(U ;Z), as we can represent pY |X (y|x) = a(x, z)b(y) [46, Sec.
1.10] [46, Lem. 4.7]. The random variable Z is an M − 1
dimensional vector with entries Zi and realizations zi . Let

zi = log
(

qY |X (y |si )
qY |X (y |s1 )

)
. We can thus write, for i ∈ {1, . . . M},

qY |X (y|x) =

qY |X (y|s1) exp

(
(1 − 1{x=s1 })

M∑

i=2

zi−11{x=si }

)

where 1{·} is the binary indicator function. Relating pY |X (y|x)
to qY |X (y|x) yields

(
√

2πσ2
n )

σ 2
n

K −1

√
σ2

n

K

[
pY |X (y|x)

] σ 2
n

K

= qY |X (y|s1) exp

(
(1 − 1{x=s1 })

M∑

i=2

zi−11{x=si }

)

which allows us to write

pY |X (y|x) = exp

(
K

σ2
n

(1 − 1{x=s1 })
M∑

i=2

zi−11{x=si }

)

︸ ︷︷ ︸
=:a(x,z )

×

×
(

K

σ2
n

) K

2 σ 2
n
(√

2πσ2
n

) K

σ 2
n
−1 [

qY |X (y|s1)
] K

σ 2
n

︸ ︷︷ ︸
=:b(y )

and hence we have I(X;Y ) = I(X;Z). However, if we eval-
uate I(X;Y ) from (12) for K �= σ2

n , we inevitably have
I(X;Y ) < I(X;Y ).

If we employ for example LDPC codes with the widely used
min-sum decoder or the less known linear programming de-
coder [51], the decoding performance does not depend on K > 0
used for computing the LLRs and hence, I(X;Y ) will not be
an adequate performance estimate and may even largely un-
derestimate the performance, if used as performance prediction
threshold. �

We therefore propose to use the generalization (10) of (12),
which we found to accurately predict I(U ;Z) and hence the NB-
FEC performance. A convenient byproduct of using I(X;Y ) is
the fact that it can be used to jointly estimate the MI I(U ;Z)
and the variance of the noise. We illustrate this application in
the following example.

Example 2: For the case of uncompensated links, we know
that the Gaussian PDF is a good approximation of the channel
PDF [31]. However, in general, as we do not know a priori
the variance of the noise PDF, we need to estimate it. In [25,
Sec. III], it is for instance proposed to estimate the noise variance
from the measurement database. Here we propose to directly use
the MI estimate to obtain the noise variance. As the variance is
unknown, we first fix σ2

n = 1
2 in (2) and then evaluate (11) as

INB

∣∣∣
awgn

=
1

ln(2)Nm
sup
ν≥0

Nm∑

κ=1

(
− ν ‖y[κ] − x[κ]‖2 −

log

⎛

⎝
M∑

j=1

λj exp
(
−ν ‖y[κ] − sj‖2

)
⎞

⎠

⎞

⎠ .

(13)

After carrying out the optimization over ν (for example, as high-
lighted above, using the Golden section search), we immediately
get an estimate of the noise variance as σ̂2

n = 1
2ν̂ , where ν̂ is the

ν that maximizes (13). �

C. Other Thresholds

In the remainder of this paper, the accuracy of the MI as a de-
coding threshold will be compared against predictions based
on other performance thresholds. If BICM, as explained in
Section II-B and shown in Fig. 2, is used as CM scheme, the
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bit-wise GMI is a good metric [4]. The GMI is computed as

GMI ≈ − 1
Nm

Nm∑

κ=1

log2(λφ−1 (y [κ ])) −

1
Nm

m∑

i=1

Nm∑

κ=1

log2

(
1 + exp

(
(−1)ci [κ ]L̃i(y[κ])

))
,

where ci [κ] is the bit at bit position i (i ∈ {1, . . . , m}) mapped
to symbol x[κ] and L̃i(y[κ]) are the bit-wise LLRs computed
according to (4). In the practically prevalent case where all
symbols are equiprobable (λi = 1/M ), we have

GMI ≈ m − 1
Nm

m∑

i=1

Nm∑

κ=1

log2

(
1 + exp

(
(−1)ci [κ ]L̃i(y[κ])

))
.

We assume from now on for simplicity that all constellation
symbols are equiprobable, i.e., λi = 1/M . Computing the GMI
in a nonbinary transmission scheme necessitates the use of an
extra LLR Calculator implementing (4), which is shown in the
bottom branch of Fig. 1.

Second, we use the pre-FEC BER 1
m

∑m
i=1 P (B̂i �= Bi), and

the pre-FEC SER P (X̂ �= X). These quantities are schemati-
cally shown at the bottom of Fig. 1. We immediately see that
only the MI is directly connected to the NB-FEC decoder, and
thus is the most natural threshold choice. In particular, the trans-
mitter in Fig. 1 uses a GF(2m )-to-bit mapper followed by a
bit-to-symbol mapper Φ(b) = x, which maps the vector of bits
b = (b1 , b2 , . . . , bm ) to a constellation symbol x ∈ S. These
blocks are included only so that the GMI and pre-FEC BER
can be defined (and calculated) but have no operational signif-
icance for the NB-CM system under consideration, as U can
be directly mapped to X . The bit labeling used in the mapper
Φ affects both the GMI and pre-FEC BER, but has no impact
on the actual performance of the system. At the receiver side,
additionally logarithmic likelihood ratios (LLRs) are calculated
(L̃), and a hard-decision on the symbols is made (X̂), which
leads to a hard-decision on the bits (B̂).

D. Performance Prediction for BICM-ID and Multi-Level
Coding

An alternative to BICM is to use BICM with iterative demap-
ping (BICM-ID), a concept introduced in [52], [53]. The idea
is to use iterative demapping to compensate for the information
loss from non-ideal BMD. BICM-ID for optical communica-
tions has been studied for instance in [54]–[56], [8, Sec. 3],
[57, Sec. 3], [58, Sec. 4]. In BICM-ID, iterations between the
decoder and demapper are added to a possibly already iterative
FEC decoder. To keep the number of iterations low, however,
one can trade FEC decoder iterations for demapper iterations.
The design of BICM-ID is more complex than BICM, however,
BICM-ID is expected to perform very close to a maximum like-
lihood (ML) sequence detector, and thus, to outperform BICM.

The MI, as described in this section, is supposedly also a good
performance estimator for BICM-ID systems. However, while
BICM schemes with commonly used FEC implementation be-
have fairly universal (see also Section II-C and V), we found that

Fig. 3. Four different 8-QAM constellations used in the numerical results
taken from [63]. The numbers adjacent to the constellation points give the GMI-
maximizing bit labeling. The markers used for the constellation points will be
subsequently used to distinguish the constellations.

this is not the case with BICM-ID. Even small changes in the
channel or the modulation format can cause severe differences
in the performance of BICM-ID schemes. For example, in [59],
[60], we have shown that in systems with iterative differential
detection for optical systems affected by phase slips, even a
change of the phase slip probability can lead to significant per-
formance differences. In BICM-ID, generally, the FEC code has
to be optimized for every modification of channel and modula-
tion format, i.e., the universality is not guaranteed. Therefore,
we suggest to always explicitly carry out decoding in BICM-ID
systems, as shown in, e.g., in [61] or to use MI thresholds that
have been obtained with a simulation reflecting exactly the setup
of the experiment.

Recently, we have shown that the use of spatially coupled
(SC) LDPC codes [35] can lead to a more universal behavior
when used as FEC schemes in BICM-ID [59], [60], [62]. These
results are however still preliminary and mostly based on asymp-
totic arguments. First simulations successfully demonstrated the
improved universality of SC LDPC codes.

The same argument also applies to multi-level coding (MLC)
with multi-stage decoding (MSD) [12]. This scheme is capacity-
achieving and hence, the MI is a good performance estimator.
However, MLC with MSD is intrinsically nonuniversal and the
selection of code rates has to be adapted for every change of
channel, modulation format, and bit mapping [12], which is why
we also recommend either to carry out decoding or to use an MI-
based threshold which has been obtained from simulations of a
setup identical to the one used in the transmission experiment.

IV. EXPERIMENTAL VERIFICATION

To experimentally verify the proposed method, we con-
sider the four 8-QAM constellations shown in Fig. 3, where
the bit-mapping that maximizes the GMI is also shown [63]
[64]. For illustration purposes, we use five quasi-cyclic NB-
LDPC codes with rates R ∈ {0.7, 0.75, 0.8, 0.85, 0.9} (FEC
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Fig. 4. Post-FEC SER as a function of three different performance metrics (pre-FEC SER, pre-FEC BER and GMI) for three NB-LDPC codes.

TABLE I
CODE PARAMETERS AND MI THRESHOLDS TR FOR DIFFERENT CODE RATES R

Rate R 0.7 0.75 0.8 0.85 0.9

Var. degree dv 3 3 3 3 3
Check degree dc 10 12 15 20 30
MI threshold TR 2.31 2.43 2.55 2.67 2.79
Normalized MI

0.77 0.81 0.85 0.89 0.93threshold TR /m

overheads of ≈ 43, 33, 25, 18, 11%) defined over GF(23) with
regular variable node degree of dv = 3 and regular check node
degrees dc ∈ {10, 12, 15, 20, 30} of girth 8 (R < 0.9) or girth 6
(R = 0.9), respectively. Each code has length of around 5500,
i.e., always 5500 8-QAM symbols are mapped to one LDPC
codeword. The parameters of the codes are summarized in Ta-
ble I. As the Galois field over which these codes are defined is
rather small, the decoding complexity is relatively small as well.
Decoding takes place using 15 iterations with a row-layered be-
lief propagation decoder. These codes are conjectured to be
approximately universal, i.e., their performance is expected to
be independent of the actual channel (see also Section II-C).

Note that in the following we often use only a subset of
constellations and code rates to keep the visualization of results
simple and as we reuse previously recorded measurements. Note
that the main purpose of this paper is to show that we can
reuse previously recorded experimental data and evaluate the
performance of NB-FEC for these experiments which is why
we avoid redoing experiments.

A. AWGN Simulation Results

The performance of the five NB-LDPC codes was first tested
in an AWGN channel. To this end, we first calculated the MI
for the four constellations in Fig. 3. These results are shown as
a function of the average symbol energy-to-noise ratio Es/N0
in Fig. 5 and show a clear superiority of the constellation C4 in
terms of MI.

In Fig. 5, we also show the required Es/N0 for the different
NB-LDPC codes to achieve a post-FEC SER of 10−4 and plot

Fig. 5. MI (lines) and throughput (lines with markers) for the four 8-QAM
constellations in Fig. 3 and the five NB-LDPC codes in Table I. The AWGN
capacity is also shown for comparison (thick red line).

that together with the corresponding net rate, given by the
number of bits per constellation symbol. The obtained results
show that the NB-LDPC codes follow the MI predictions quite
well, although we do observe an increasing performance gap
as the code rate decreases. We attribute this loss to the nonideal
code design based on the fact that we only use regular codes.
Optimized irregular NB-LDPC codes [65] would be necessary
for constructing better NB-LDPC codes at low rates.

In Fig. 4, we show the post-FEC SER as a function of the three
performance metrics described in Section III-C for code rates
R ∈ {0.7, 0.75, 0.8}. Changing the constellation for a given
code can be interpreted as changing the nonbinary channel in
Fig. 1. Additionally, in Fig. 6, we show the proposed nonbinary
MI estimate I(X;Y ) as performance metric for all four con-
stellations and all five code rates. The results in Figs. 4 and 6
clearly show that only the MI can be used as a reliable threshold.
In particular, for a post-FEC SER of 10−4 (horizontal lines in
Figs. 4 and 6), the obtained MI thresholds are summarized in
the third row of Table I.
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Fig. 6. Use of MI as performance metric for NB-LDPC codes.

Instead of the MI, Fig. 4 suggests that the pre-FEC SER could
also potentially serve as a performance indicator, although not
as reliable as the MI. With the exception of constellation C1 ,
the pre-FEC SER (which depends on the distance spectrum,
i.e., the distances between constellation points) could be an
indicator as well. Furthermore, for high rate codes, the pre-
FEC SER becomes a better indicator. This is in line with the
findings of [4], where it was shown that the GMI is the proper
performance indicator for systems with BICM but for high rate
codes, the pre-FEC BER can still be used with a reliability that
may be good enough for some applications.

B. Back-to-Back Transmission of 8-QAM Formats

To validate the AWGN results in Fig. 4, we now consider a
dual-polarization 41.6 Gbaud system. The three 8-QAM con-
stellations of Fig. 4 were generated and tested using a high-speed
DAC in a back-to-back configuration. A root-raised cosine pulse
shaping (roll-off factor 0.1) signal was generated as described
in [63] and two code rates (R = 0.7 and R = 0.8) were consid-
ered, giving net data rates of approximately 174 and 200 Gbit/s.

The empirical MI estimate INB as a function of the OSNR for
the three constellations C1 , C2 and C3 is shown in Fig. 7, where
the constellation C3 shows a clear superiority in terms of MI.
In this figure, we also show the MI thresholds T0.7 = 2.31 and
T0.8 = 2.55 from Table I. These MI thresholds are then used to
determine equivalent OSNR thresholds for all three modulation
formats (see vertical lines in Fig. 7). The measured data was then
used to perform NB-LDPC decoding using a combination of the
methods presented in [66] (scramblers) and [67] (interleavers).
The obtained results are shown in Fig. 8 with solid markers.
Additionally, from the estimated MI values, we interpolated the
estimated post-FEC SER values using the AWGN simulations
of Fig. 6, which are given by thin dashed (constellation C1),
solid (constellation C2), and dotted (constellation C4) lines. We
observe a very good agreement between the predicted post-FEC
SER and actual post-FEC SER values and thus a good match

Fig. 7. Empirically obtained (green markers) and interpolated (lines) MI
curves.

Fig. 8. Results after actual decoding with an NB-LDPC decoder with solid
markers representing actual results after FEC decoding and lines representing
interpolated post-FEC SER estimates taken from the estimated MI.

between the MI thresholds obtained for the AWGN channel and
the actual performance of the codes in the experiment.

C. Transmission Experiment

In order to show that the proposed method also works for a
transmission over a link, we apply the method to a transmission
experiment using constellations C2 and C4 over a re-circulating
loop, described in detail in [64]. We recapitulate the experimen-
tal setup in the following. The transmission test-bed is depicted
in Fig. 9 and consists of one narrow linewidth laser under test
at 1545.72 nm, and additionally 63 loading channels spaced by
50 GHz. The output of the laser under test is sent into a PDM I/Q
modulator driven by a pair of DACs operating at 65-GSamples/s.
Multiple delayed-decorrelated sequences of 215 bits were used
to generate the multi-level drive signals. Pilot symbols and a
sequence for frame synchronization are additionally inserted.

The symbol sequences are oversampled by a factor of ≈ 1.56
and pulse shaped by a root-raised cosine function with roll-
off of 0.1. The load channels are separated into odd and even
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Fig. 9. WDM experimental setup with one channel under test, 63 WDM load channels, a recirculating loop consisting of four 100 km spans of SSMF and hybrid
Raman-EDFA amplication.

sets of channels and modulated independently with the same
constellation as the channel under test using separate I/Q mod-
ulators. Odd and even sets are then polarization multiplexed by
dividing, decorrelating and recombining through a polarization
beam combiner (PBC) with an approximate 10 ns delay. The test
channel and the loading channels are passed into separate low-
speed (<10 Hz) polarization scramblers (PS) and spectrally
combined through a wavelength selective switch (WSS). The
resulting multiplex is boosted through a single stage Erbium-
doped fiber amplifier (EDFA) and sent into the recirculating
loop. The loop consists of four 100km-long dispersion uncom-
pensated spans of standard single-mode fiber (SSMF). Hybrid
Raman-EDFA optical repeaters compensate the fiber loss. The
Raman pre-amplifier is designed to provide ≈ 10 dB on-off
gain. Loop synchronous polarization scrambling (LSPS) is used
and power equalization is performed thanks to a 50-GHz grid
WSS inserted at the end of the loop.

At the receiver side, the channel under test is selected by
a tunable filter and sent into a polarization-diversity coherent
mixer feeding four balanced photodiodes. Their electrical sig-
nals are sampled at 80GS/s by a real-time digital oscilloscope
having a 33-GHz electrical bandwidth. For each measurement,
five different sets of 20 μs are stored. The received samples
are processed off-line. The DSP includes first chromatic disper-
sion compensation, then polarization demultiplexing by a 25-tap
T/2 spaced butterfly equalizer with blind adaptation based on a
multi-modulus algorithm.

Frequency recovery is done using 4th and 7th power peri-
odogram for constellations C2 and C4 , respectively. Phase re-
covery is done using the blind phase search (BPS) algorithm for
both constellations. Equally-spaced test phases in the interval
[− π

4 ; π
4 ) (constellation C2) or in the interval [− π

7 ; π
7 ] (constella-

tion C4) are used. The phase unwrapper is modified accordingly.
We consider the transmission over 8 round trips in the recir-

culating loop, corresponding to a distance of 3200 km. Fig. 10
shows the estimated MI INB as a function of the input power Pin

per wavelength division multiplex (WDM) channel, see also [64,
Fig. 3-a] using the Gaussian PDF qawgn

∣∣
D=2 of (2). Using a PDF

estimate obtained with a KDE does not lead to noteworthy dif-
ferences in the MI estimate, as predicted in [22]. Additionally,
we show the MI thresholds TR for R ∈ {0.8, 0.85, 0.9}. The
thresholds give us the region of launch powers at which trans-
mission is possible.

Fig. 10. Estimated mutual information for varying input power per channel
for constellations C2 and C4 after transmission over 8 loops (3200 km).

To be precise, whenever the estimated MI lies above the
threshold TR , it means that successful transmission is possi-
ble, where successful is defined in the same way as for finding
the threshold, i.e., with a post-FEC SER below 10−4 . For exam-
ple, consider the red horizontal line in Fig. 10 corresponding to
T0.9 . We can see that with constellation C2 , we are just barely
above the line for Pin ∈ {−2 dBm,−1 dBm}, which means that
decoding is also only barely possible. In contrary, with con-
stellation C4 , we have a larger MI margin to the threshold and
therefore, reliable communication is possible over a wider range
of Pin.

In Fig. 11, we use the post-FEC SER results of Fig. 6 to
estimate the post-FEC performance of the transmission system
by interpolation. The interpolated curves are given by the solid
(constellation C2) and dash-dotted (constellationC4 ) lines. Addi-
tionally, we carried out actual decoding using the LDPC codes
introduced before. The post-FEC SER results after decoding
are given by the solid markers in the figure. We can see that the
estimates from interpolation match the actual decoding perfor-
mance quite well, confirming the applicability of the proposed
method.

V. UNIVERSALITY REVISITED

In the previous sections of this paper, we have seen that
MI-based thresholds can be used to accurately predict the
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Fig. 11. Estimated post-FEC SER obtained by interpolation (curves) of the MI
versus post-FEC SER obtained by actual decoding (markers) with LDPC codes
of rate R ∈ {0.8, 0.85, 0.9} for constellations C2 and C4 after transmission
over 8 loops (3200 km).

Fig. 12. Definition of universality of FEC schemes according to [34].

performance of different modulation formats with the same NB-
FEC code, for which we have computed in an offline simulation
an MI-threshold. However, we want to emphasize that caution
must be taken: this approach assumes that the code is universal
(see also Section II-C). We know from [32] that practical codes
with finite block lengths are not necessarily universal.

First, we give a precise definition of the concept of univer-
sality. We can define universality of FEC schemes as in [34]
with the help of Fig. 12. Consider an NB-FEC encoder that
generates a codeword consisting of n symbols. We consider two
different communication channels with different (memoryless)
channel transition PDFs pZ1 |U1 (z1 |u1) and pZ2 |U2 (z2 |u2), but
with identical MI IC := I(U1 ;Z1) = I(U2 ;Z2). A fraction γn
of the symbols is transmitted over the upper channel 1, while
the remaining (1 − γ)n symbols are transmitted over the lower
channel 2, where γ ∈ [0, 1], i.e., γ can be any real number in the
unit interval, such that γn is integer. We say that a code is uni-
versal for channels 1 and 2 if the post-FEC SER is independent
of γ. We can extend this definition to a sequence of channels and
say that a code is universal if the post-FEC SER is independent
of the distribution to the channels and the channels themselves.

In the previous examples of Section IV, we have not experi-
enced any issue with universality, as the only changes we made
in the channel were a change of the modulation format, but
the underlying channel (AWGN or optical transmission, which
can be modeled accurately as AWGN) remained fixed. In this
section, we show by means of an example the impact of a more
drastic change of the nonbinary channel. We now modify the

channel in the AWGN simulation by adding a hard decision to
the output of the optical channel. We assume that this hard deci-
sion output is based on the Euclidean distance decision metric,
i.e., the output is

ŷ[κ] = sı̂ with ı̂ = arg min
i=1,...,M

‖y[κ] − si‖ .

Although the outputs of the channel are NB hard symbols, we
can still carry out soft decision decoding. In soft-decision de-
coding, the soft symbol demodulator calculates LLRs based on
the channel statistics and the received values. Assume a memo-
ryless optical channel and let

Wj,k := PŶ |X (sj |sk )

denote the channel transition probability of receiving symbol
sj provided that symbol sk has been sent. We can interpret this
channel as a nonbinary version of the classical binary symmetric
channel (BSC), often also called discrete memoryless channel
(DMC). We can then compute a set of NB LLRs with

Li(ŷ) = ln
(

Wφ−1 (ŷ ),i

Wφ−1 (ŷ ),1

)
+ ln

(
λi

λ1

)

where φ(i) = si is the symbol mapping function. We can then
use these LLRs to feed a conventional soft-decision decoder.
This situation may seem at a first glance counter-intuitive, as we
first make a decision and then regenerate soft-decision LLRs to
use in a soft-decision NB-FEC. However, such a situation may
arise when designing NB-FEC schemes for updating legacy
systems that include a hard decision on symbol level which
cannot be changed. The MI for this scheme is computed as

Ihd := I(X; Ŷ ) =
M∑

i=1

M∑

j=1

Wj,iλi log2

(
Wj,i∑M

k=1 Wj,kλk

)
.

For illustration, we consider this scheme with the NB-LDPC
codes specified in Table I and carry out a simulation over the
AWGN channel with the four 8-QAM constellations shown in
Fig. 3.

Figs. 13 and 14 show the post-FEC SER as a function of the
pre-FEC SER after 15 LDPC decoding iterations with exactly
the same decoder setup as used in Fig. 6. We can clearly see
that the pre-FEC SER is again not a good performance indicator
while the MI is. For comparison, we also plot in Fig. 14 the MI
thresholds for the different codes from Table I. We can see that
the thresholds are not as precise as previously but still reflect the
actual decoding performance. We attribute this offset to the fact
that the utilized LDPC codes are not exactly universal and the
length of the codes is relatively small, which is an effect that has
also been observed in [32]. Furthermore, we use off-the-shelf
NB-LDPC codes with regular, unoptimized degree distributions.
If we are allowed to increase the length of the codes and optimize
the degree distributions, as highlighted for instance in [34], the
performance prediction becomes more accurate again.

We hence conclude that the MI is still an accurate estimate of
the NB-FEC decoding performance, even if we introduce drastic
changes into the channel (like, e.g., a hard decision, going from
dispersion uncompensated to dispersion compensated link, or
even from coherent transmission to direct detection systems).
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Fig. 13. Post-FEC SER as a function of the pre-FEC SER for the five LDPC
codes of Table I using the four constellations of Fig. 3 after transmission over
an AWGN channel with hard symbol decision at the output.

Fig. 14. Post-FEC SER as a function of the hard-decision MI Ihd for the five
LDPC codes of Table I using the four constellations of Fig. 3 after transmission
over an AWGN channel with hard symbol decision at the output.

We can improve the accuracy if the channel that is used to
compute the threshold is fairly close to the channel of the system.

VI. CONCLUSION

Different performance metrics for coded modulation based on
capacity-approaching nonbinary codes were compared. It was
shown in simulations and experiments that an accurate predictor
of the performance of these codes is the mutual information,
even under severe changes of the channel. Uncoded metrics
such as pre-FEC BER and pre-FEC SER were shown to fail.
The GMI also fails for nonbinary codes, but still remains a good
performance indicator for BICM with binary soft-decision FEC.
We have further discussed that it is necessary that the utilized
codes are universal, which is however the case for most popular
FEC schemes used in optical communications.
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