
Article
Dual Effects of TARP g-2 o
n Glutamate Efficacy Can
Account for AMPA Receptor Autoinactivation
Graphical Abstract
Highlights
d TARP g-2 reduces desensitization and enhances the gating of

singly liganded AMPARs

d This accounts for biphasic steady-state dose-response

curves (autoinactivation)

d The effects of g-2 are predicted to enhance synaptic spillover

currents

d Desensitization does not lead to functional dissociation of the

AMPAR/TARP complex
Coombs et al., 2017, Cell Reports 20, 1123–1135
August 1, 2017 ª 2017 The Authors.
http://dx.doi.org/10.1016/j.celrep.2017.07.014
Authors

Ian D. Coombs, David M. MacLean,

Vasanthi Jayaraman, Mark Farrant,

Stuart G. Cull-Candy

Correspondence
m.farrant@ucl.ac.uk (M.F.),
s.cull-candy@ucl.ac.uk (S.G.C.-C.)

In Brief

AMPA receptors are regulated by

accessory proteins, including TARP g-2.

Coombs et al. show how g-2 can give rise

to receptor behavior previously attributed

to glutamate-induced dissociation of the

AMPAR/TARP assembly. By favoring the

gating of singly liganded receptors, g-2 is

predicted to facilitate synaptic signaling

by low concentrations of glutamate.

mailto:m.farrant@ucl.ac.uk
mailto:s.cull-candy@ucl.ac.uk
http://dx.doi.org/10.1016/j.celrep.2017.07.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2017.07.014&domain=pdf


Cell Reports

Article
Dual Effects of TARP g-2 on Glutamate Efficacy
Can Account for AMPA Receptor Autoinactivation
Ian D. Coombs,1,3 David M. MacLean,2,3,4 Vasanthi Jayaraman,2 Mark Farrant,1,* and Stuart G. Cull-Candy1,5,*
1Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
2Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston,

Houston, TX 77030, USA
3These authors contributed equally
4Present address: Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY 14642, USA
5Lead Contact

*Correspondence: m.farrant@ucl.ac.uk (M.F.), s.cull-candy@ucl.ac.uk (S.G.C.-C.)

http://dx.doi.org/10.1016/j.celrep.2017.07.014
SUMMARY

Fast excitatory transmission in the CNS is medi-
ated mainly by AMPA-type glutamate receptors
(AMPARs) associated with transmembrane AMPAR
regulatory proteins (TARPs). At the high glutamate
concentrations typically seen during synaptic trans-
mission, TARPs slow receptor desensitization and
enhance mean channel conductance. However,
their influence on channels gated by low glutamate
concentrations, as encounteredduringdelayed trans-
mitter clearance or synaptic spillover, is poorly under-
stood.We report here that TARP g-2 reduces the abil-
ity of low glutamate concentrations to cause AMPAR
desensitization and enhances channel gating at low
glutamate occupancy. Simulations show that, by
shifting the balance between AMPAR activation and
desensitization, TARPs can markedly facilitate the
transductionof spillover-mediatedsynaptic signaling.
Furthermore, the dual effects of TARPs can account
for biphasic steady-state glutamate concentration-
response curves—a phenomenon termed ‘‘autoinac-
tivation,’’ previously thought to reflect desensitiza-
tion-mediated AMPAR/TARP dissociation.

INTRODUCTION

Glutamate receptors of the AMPA subtype (AMPARs) mediate

fast excitatory signaling throughout the mammalian brain (Tray-

nelis et al., 2010). Typically, postsynaptic AMPARs are exposed

to very brief glutamate transients that are thought to reach milli-

molar concentrations (Budisantoso et al., 2013; Clements et al.,

1992), but at some synapses the intersynaptic diffusion of

neurotransmitter results in receptors experiencing slower gluta-

mate waveforms with peak concentrations in the micromolar

range (Barbour and Häusser, 1997; Nielsen et al., 2004; Trussell

et al., 1993). How the receptors respond to these different

spatiotemporal glutamate concentration profiles shapes synap-

tic signaling (Jonas, 2000; Nielsen et al., 2004). The functional

and pharmacological properties of AMPARs reflect the nature
Cell
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of their pore-forming subunits (GluA1–4) (Boulter et al., 1990;

Geiger et al., 1995; Keinänen et al., 1990; Lomeli et al., 1994;

Partin et al., 1996) and that of their associated auxiliary proteins,

including transmembrane AMPAR regulatory proteins (TARPs)

(Tomita et al., 2005), cornichons (Schwenk et al., 2009), cystine

knot proteins (von Engelhardt et al., 2010), andGSG1L (Schwenk

et al., 2012; Shanks et al., 2012). Notably, TARP g-2 (stargazin)

enhances agonist potency and efficacy, increases channel

conductance, slows deactivation and desensitization, and re-

duces the voltage-dependent block of Ca2+-permeable (GluA2-

lacking) AMPARs by intracellular polyamines (Cho et al., 2007;

Milstein et al., 2007; Priel et al., 2005; Soto et al., 2007; Tomita

et al., 2005).

Each subunit of the AMPAR tetramer has a modular structure

with an amino terminal domain, a ligand binding domain (LBD), a

pore-forming transmembrane domain, and an intracellular C-ter-

minal domain (Mayer, 2016; Sobolevsky et al., 2009). Assembled

receptors interact with up to four TARPs (Hastie et al., 2013; Kim

et al., 2010; Shi et al., 2009), primarily through transmembrane

contacts running the length of the pore-forming regions as well

as through contacts with the ligand binding domain (Shaikh

et al., 2016; Twomey et al., 2016; Zhao et al., 2016). AMPAR

interactions with the TARP intracellular C-terminal domain, its

first extracellular loop (Ex1), and the transmembrane (TM) re-

gions can all modulate multiple receptor properties (Ben-Yaacov

et al., 2017; Cais et al., 2014; Dawe et al., 2016; Soto et al.,

2014; Tomita et al., 2005; Turetsky et al., 2005). The clamshell-

like LBDs are arranged as a dimer of dimers. Each LBD is able

to bind a single glutamate molecule (Armstrong and Gouaux,

2000; Rosenmund et al., 1998), which stabilizes a more closed

state of the clamshell (Landes et al., 2011; Ramaswamy et al.,

2012; Zhang et al., 2008), producing tension in linkers connected

to the pore (Kazi et al., 2014). When successive LBDs are

closed, the pore generates subconductance levels of increasing

amplitude, up to a main conductance when the receptor is fully

liganded (Gebhardt and Cull-Candy, 2006; Rosenmund et al.,

1998; Smith and Howe, 2000). In the continued presence of

glutamate, the receptors desensitize because of rupture of the

interface between LBD dimers, which relieves tension on the

pore linkers and allows the channel to close (Armstrong et al.,

2006; Meyerson et al., 2014; Sun et al., 2002). Desensitiza-

tion can be triggered by just a single LBD closure (Robert and
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Figure 1. g-2 Has Opposite Effects on Glutamate Potency for Acti-

vation and Desensitization

(A) Representative currents (–60 mV) elicited by fast applications of glutamate

to outside-out patches from HEK293 cells transfected with GluA1 (left) or

GluA1/g-2 (right).

(B) Currents elicited by 10 mM glutamate following pre-desensitization by a

range of lower glutamate concentrations.

(C) Pooled data fit with the Hill equation showing opposite g-2-induced shifts in

GluA1 potency for activation (filled circles) and desensitization (open circles).

Symbols indicate mean and error bars indicate SEM.

(D) Pooled data showing glutamate EC50 for peak currents and glutamate IC50

for pre-exposure. Bars show mean and error bars show SEM.

(E) Representative GluA1/g-2 currents. Inset: peak and steady-state concen-

tration-response curves from the illustrated records. Note the inflection in the

steady-state curve.

(F) Pooled data (n = 6 patches). Peak currents were well described by a single

Hill function, and steady-state currents were best described by a double Hill

function. Error bars denote SEM. **p < 0.01, ***p < 0.001 (Welch t test).

See also Figure S1.
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Howe, 2003). Interaction between the AMPAR LBD and the Ex1

loop of the TARP is thought to stabilize the channel open state

and, thus, slow desensitization (Ben-Yaacov et al., 2017; Dawe

et al., 2016; MacLean et al., 2014; Twomey et al., 2016; Zhao

et al., 2016).

Despite the multiple regions of contact between AMPAR and

TARP, it has been suggested that desensitization leads to a

‘‘functional uncoupling’’ of the TARP (Morimoto-Tomita et al.,

2009; Semenov et al., 2012) or even the complete dissociation

of TARP and AMPAR (Morimoto-Tomita et al., 2009). This pro-

posal arose initially from the observation that the steady-state

concentration-response relationship for GluA1 expressed with

TARP g-2 was biphasic, with a decline in current at high gluta-

mate concentrations, a phenomenon termed ‘‘autoinactivation’’

(Morimoto-Tomita et al., 2009; Semenov et al., 2012). The phys-

ical separation of AMPARs and TARPs has been questioned

(Semenov et al., 2012; Shaikh et al., 2016; Tomita, 2010). How-

ever, it has been proposed that desensitization-induced disso-

ciation of AMPARs from synaptically anchored TARPs can

modulate short-term synaptic plasticity by allowing the liberated

receptors to diffuse from the post-synaptic domain and, thus, be

rapidly replaced (Constals et al., 2015; Henley and Wilkinson,

2016; Morimoto-Tomita et al., 2009). Such a mechanism would

have important implications for high-frequency central transmis-

sion, given the importance of AMPAR lateral mobility in maintain-

ing the fidelity of the synaptic response (Heine et al., 2008).

Herewe present an alternativemechanism that can account for

autoinactivationwithout requiring changes inAMPAR-TARP inter-

actions. We examined the effect of TARP g-2 on the occupancy

dependenceofAMPARgatingand theconcentrationdependence

of AMPAR desensitization. We show that g-2 enhances the effi-

cacy of glutamate by facilitating the opening of singly occupied

receptors. Furthermore, we find that g-2 reduces the sensitivity

of GluA1 to desensitization by low concentrations of glutamate,

slowing desensitization across all concentrations of glutamate. A

kinetic model incorporating these dual effects of TARPs on gluta-

mate efficacy that fully replicates our data suggests that TARPs

amplify the transduction of spillover-mediated synaptic signaling

and offers an alternative explanation for AMPAR autoinactivation

with no requirement for desensitization-induced physical or func-

tional uncoupling of the auxiliary subunits.

RESULTS

TARP g-2 Reduces Desensitization of AMPARs by Low
Concentrations of Glutamate
TARPs increase the potency of glutamate to activate AMPARs

(Suzuki et al., 2008; Tomita et al., 2005), but their effects on the

potency of glutamate to promote AMPAR desensitization have

not been established. To address this, we recorded currents

evoked by fast application of glutamate to outside-out patches

from HEK293 cells transfected with GluA1 alone or with GluA1

plus g-2 (GluA1/g-2). From measuring peak current amplitudes

we found, as expected, that g-2 enhanced glutamate potency

(Figures 1A and 1C). By contrast, there was a marked decrease

in the ability of a pre-applied low concentration of glutamate

to induce AMPAR desensitization (‘‘pre-desensitization’’) and

reduce peak currents (Figures 1B and 1C). Thus, although g-2



produced an �4-fold decrease in the glutamate concentration

required for half-maximal peak current (EC50, Pk) (from 1.2 ±

0.2 to 0.27 ± 0.03mM, n = 6 and 7, p = 0.0017), the concentration

of pre-applied glutamate required for half-maximal inhibition

(IC50) was increased 5-fold (from 0.48 ± 0.1 to 2.6 ± 0.3 mM,

n = 7 and 8, p = 0.00019) (Figure 1D).

Steady-State Concentration-Response Relationships
Unlikecells transfectedwithGluA1alone,where steady-state cur-

rents were too small to analyze, those transfectedwithGluA1 and

g-2 exhibited appreciable steady-state currents (Figure 1E). In all

patches examined, the steady-state concentration-response

relationships were biphasic, whereas the corresponding peak

current relationships were sigmoidal (Figure 1F). Specifically,

the steady-state relationships demonstrated a clear inflection at

intermediate concentrations of glutamate, either at 100 mM

(two of six patches) or 300 mM (four of six patches), producing a

‘‘shoulder’’ in the pooled concentration-response curve (Fig-

ure 1F; Figure S1).

Biphasicsteady-stateconcentration-responsecurves, including

bell-shaped curves with a clear peak at submaximal concentra-

tions of glutamate, followed by a progressive decline at higher

concentrations, have been reported previously for both native

(Raman and Trussell, 1992) and TARPed recombinant AMPARs

(Morimoto-Tomita et al., 2009; Semenov et al., 2012). This

behavior has been termed autoinactivation and ascribed to a

functional uncoupling of the AMPAR/TARP complex following

desensitization-inducedpartial orcompletedissociationofTARPs

from AMPARs, although this interpretation remains controversial

(Morimoto-Tomitaetal., 2009;Semenovetal., 2012).Thebiphasic

steady-state concentration-response relationship we measured

could conceivably be interpreted as reflecting the presence of

a mixture of TARPed and TARPless receptors rather than auto-

inactivation. However, this is unlikely because the peak concen-

tration-response curve showed no evidence of a similar biphasic

relationship.

Evidence for Maintained AMPAR/TARP Association
If desensitization were to induce functional uncoupling of the

AMPAR/TARP complex, one might predict that this would lead

to changes in multiple TARP-dependent AMPAR properties. To

test this, we examined two such properties for both peak and

steady-state currents—the voltage-dependent block by intra-

cellular spermine (Soto et al., 2007) and the mean channel

conductance (Soto et al., 2009; Tomita et al., 2005; Experimental

Procedures). At steady state, both polyamine block (as judged

by voltage of half-maximal block) and channel conductance

(estimated from fluctuation analysis) were comparable with

values obtained at peak (Figures 2A–2F). This result suggests

that a majority of the steady-state current is mediated by

AMPARs that remain functionally coupled to TARPs. However,

although these experiments found no evidence for functional un-

coupling, they do not refute its existence. The higher steady-

state open probability of TARPed AMPARs would mean that

they could contribute a majority of the equilibrium current even

when they represented a minority of the receptor population.

We next searched for evidence of functional uncoupling under

non-steady-state conditions using a different marker of TARP
association—the enhanced efficacy of kainate at TARP-associ-

ated AMPARs (Tomita et al., 2005). It has been proposed that,

following desensitization-induced functional uncoupling, the re-

covery of receptors from desensitization precedes TARP re-as-

sociation (Morimoto-Tomita et al., 2009). If this is indeed the

case, then the glutamate-evoked peak current (a measure of

all non-desensitized receptors) should recover from desensitiza-

tion more quickly than the kainate-evoked current (an indicator

of TARP-associated non-desensitized receptors). However,

following desensitization of GluA1/g-2 by 10 mM glutamate,

the recovery of both glutamate- and kainate-evoked currents

displayed broadly similar kinetics (time constant of recovery of

glutamate-evoked currents [tGlu] = 150 ± 20 ms, time constant

of recovery of kainate-evoked currents [tKA] = 150 ± 10 ms,

n = 5 and 4, p = 0.99; Figures 2G–2I).

Alternative Origins of Autoinactivation
In the absence of firm evidence to support functional uncoupling

of TARPs from AMPARs, we next asked how else TARP-coupled

receptors could generate biphasic steady-state concentration-

response curves. AMPAR desensitization is known to result

from rupture of the interface between LBD dimers following

agonist binding (Armstrong et al., 2006; Meyerson et al., 2014;

Sun et al., 2002). Indeed, in the absence of TARPs, there is

compelling evidence that this can be triggered by the glutamate

occupation of a single LBD (Robert and Howe, 2003). It has been

proposed that TARPs stabilize LBD dimers, slowing desensitiza-

tion (Priel et al., 2005), possibly mediated by interactions be-

tween the lower lobe of the LBD and the first extracellular loop

of the TARP (Cais et al., 2014; Dawe et al., 2016; MacLean,

2013, 2014; Shaikh et al., 2016; Twomey et al., 2016; Zhao

et al., 2016). We speculated that such g-2-mediated stabilization

might prevent efficient initiation of desensitization when only a

single LBD is bound by glutamate, thereby enhancing occu-

pancy dependence of the desensitization rate. Indeed, the

decreased ability of pre-applied (low-concentration) glutamate

to induce pre-desensitization of GluA1/g-2 might be anticipated

if desensitization became a co-operative process in the pres-

ence of g-2, with singly occupied dimers desensitizing much

more slowly than those that are doubly occupied.

We modeled this principle using a simple kinetic scheme

with two agonist-dependent open, closed, and desensitized

states (Figure 3A, scheme 1). Using rate constants from a previ-

ously proposed model of GluA1 (Robert and Howe, 2003), both

peak and steady-state concentration-response curves were

sigmoidal (Figure 3B). However, when we restricted the desensi-

tization of singly occupied receptors, either by reducing the

desensitization rates or increasing recovery rates, the steady-

state concentration-response became bell-shaped (Figure 3C).

g-2 Influences the Concentration Dependence of
Desensitization and Recovery
To better understand the influence of TARPs on AMPAR desen-

sitization and to determine whether the receptors did indeed

display concentration-dependent properties that could account

for autoinactivation, we next examined the effect of g-2 on

the onset of GluA1 desensitization over a range of glutamate

concentrations. For concentrations of glutamate R10 mM, we
Cell Reports 20, 1123–1135, August 1, 2017 1125
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Figure 2. Measures of Conductance, Polyamine Block, and Kainate Efficacy Suggest Maintained AMPAR/TARP Association following
Desensitization

(A) Representative GluA1/g-2 I-V data. Peak and steady-state currents are scaled between 0 and –60mV.

(B) Conductance-voltage (G-V) plots of peak (GluA1 with- and without g-2) and steady-state responses (GluA1/g-2 only). Symbols indicate mean and error bars

indicate SEM. Dashed lines are fits of the Boltzmann equation (Supplemental Experimental Procedures), fromwhich values of voltage of half-maximal block (V1/2)

were determined. The steady-state current of GluA1 alone was too small to analyze.

(C) Pooled data showing V1/2 of spermine block (one-way ANOVA, F2, 8.7 = 311.53, p < 0.0001). Bars indicate mean and error bars indicate SEM.

(D) Representative averaged glutamate-activated GluA1/g-2 current (82 applications). Non-stationary fluctuation analysis (NSFA) was applied to the first 95% of

the decay (inset, gray shading) and compared with stationary fluctuation analysis (SFA) of steady-state currents (red shading).

(E) Representative current variance plots for the decaying component (NSFA, filled symbols) and steady-state component (SFA, open symbol), yielding the

indicated channel conductance estimates.

(F) Pooled data showing weighted mean channel conductance (one-way ANOVA, F2, 18.9 = 14.51, p = 0.00015). Bars indicate mean and error bars indicate SEM.

(G and H) Representative traces (G) and scaled responses (H) showing 10 mM glutamate- and 1 mM kainate-evoked currents as GluA1/g-2 recovers from

desensitization induced by 10 mM glutamate.

(I) Pooled data from four to five patches showing that the time course of recovery is the same for both agonists. **p < 0.01, ***p < 0.001 (Welch t test).
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A

C

B Figure 3. A Basic Kinetic Scheme Can

Predict Biphasic Steady-State Concentra-

tion-Response Relationships

(A) A simple model, scheme 1, with two agonist

binding steps (R0 / R1/ R2), two desensitized

states (D1 and D2), and two open states (O1 and

O2) with an equal conductance.

(B) Using rates based on previously published

values for GluA1 (Robert and Howe, 2003;

kon = 2 3 107 M�1s�1, koff = 9,000 s�1, a1 = a2 =

3,100 s�1, b1 = b2 = 8,000 s�1, d1 = d2 = 1,800 s�1,

g1 = g2 = 35 s�1), scheme 1 generates sigmoidal

concentration response curves for both peak and

steady-state activation.

(C) Decreasing occupancy of D1 relative to D2

(for example, increasing g1 or d2) or increasing

the occupancy of O1 relative to O2 (for example,

increasing a2 or b1) leads to biphasic steady-

state concentration-response curves with minimal

effects on peak concentration-response curves.
determined the kinetics of desensitization by directly fitting cur-

rent decays (Figure 4A), whereas, for concentrations <10 mM, we

measured the time course of peak current inhibition following

glutamate pre-incubation (Figure 4B). The rate of onset of desen-

sitization appeared to be independent of glutamate concentra-

tion above 300 mM, both for receptors with and without g-2.

However, it slowed markedly at concentrations below 100 mM

(Figure 4C), and, unlike GluA1, GluA1/g-2 desensitization was

barely detectable at glutamate concentrations below 1 mM.

We also examined the effect of g-2 on recovery from desensi-

tization (Figures 4D–4F). The recovery of TARPless AMPARs

from desensitization has been shown previously to exhibit a

delay that can be fitted using Hodgkin-Huxley kinetics, where

an exponent ‘‘m’’ > 1 indicates the occurrence of multiple, con-

current, kinetically similar rate-limiting steps (Robert and Howe,

2003). Consistent with this, our mean GluA1 recovery time

course could be described by a monoexponential Hodgkin-Hux-

ley (H-H) fit (Figure 4E). In the presence of g-2, the recovery did

not show a lag, and data were fitted with a simple double expo-

nential (Figure 4F). Thus, for receptors containing g-2, recovery

from desensitization does not involve the same rate-limiting

steps seen with receptors that lack g-2. Of note, we found very

limited concentration dependence of the recovery from desensi-

tization (Figure 4F, inset). Taken together, these data show

that GluA1/g-2 displays a marked concentration dependence

of entry into, but not recovery from, desensitization. As shown

in Figure 2, such a decreased desensitization rate at low receptor

occupancy is predicted to result in autoinactivation.

GlutamateEfficacyatLowOccupancy Is Increasedbyg-2
To further assess glutamate efficacy at partially occupied

receptors, we recorded glutamate-activated currents following
Cell Re
pre-incubation with a competitive antag-

onist (Clements et al., 1998; Rosenmund

et al., 1998). Although the binding of

glutamate and the gating of AMPARs is

fast (current rise times, �200 ms), the un-
binding of competitive antagonists such as 2,3-dioxo-6-nitro-

1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) is

several orders of magnitude slower (MacLean et al., 2014).

Thus, by saturating receptors with NBQX before fast application

of glutamate, the time course and process of channel activation

can be directly observed as NBQX molecules slowly unbind and

are replaced by glutamate over a period of hundreds of millisec-

onds (Figure 5A).

Patches from cells expressing GluA1 or GluA1/g-2 were

initially exposed to 50 mM NBQX, followed by a rapid switch to

10 mM glutamate, all in the presence of cyclothiazide to prevent

desensitization. We found that this ‘‘NBQX/glutamate’’ protocol

resulted in macroscopic currents that displayed sigmoidal ki-

netics (Figure 5B), as previously reported for AMPAR-mediated

currents evoked in patches from cultured hippocampal neurons

in response to an analogous CNQX/kainate protocol (Clements

et al., 1998). The observed delay in current onset is consistent

with multiple agonist binding events being necessary to activate

AMPARs (Robert and Howe, 2003; Rosenmund et al., 1998).

To describe the rising phase of the responses, we fitted the cur-

rents with a mono-exponential Hodgkin-Huxley function (Exper-

imental Procedures). For GluA1 alone, the currents could be

described with a Hodgkin-Huxley exponent of 2.4 ± 0.1 (n = 6)

(Figures 5B and 5C). This value suggests that more than two

sequential binding events are necessary for full channel opening.

On co-expression of g-2, the required exponent was reduced

to 1.4 ± 0.05 (n = 6, p < 0.0001), suggesting that fewer agonist

binding events are necessary to gate AMPARs in the presence

of TARPs (Figure 5C). A similar effect of g-2 was seen when

co-expressed with GluA2(Q) homomers or GluA1/2(R) hetero-

mers (Figure 5C) and with the tandem construct GluA1_g-2

(data not shown). Thus, association with g-2 not only reduces
ports 20, 1123–1135, August 1, 2017 1127
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Figure 4. Concentration Dependence of GluA1/g-2 Entry into and Exit from Desensitized States

(A) Representative normalized GluA1/g-2 currents (–60 mV) showing markedly slowed desensitization at low glutamate concentrations (time constant of

desensitization [tdes] is 2.8 ms with 10 mM glutamate and 8.9 ms with 30 mM).

(B) Representative records showing the time course of entry into desensitization (jumping between control, 10 mM glutamate, and 10 mM glutamate). Three

selected pulse protocols are illustrated. The dashed line is an exponential fit, giving a time constant of 26.6 ms.

(C) GluA1 (blue) and GluA1/g-2 (black) desensitization kinetics measured using protocols of the type shown in (A) or (B) (n = 5–8; filled or open symbols,

respectively). Symbols indicate mean and error bars indicate SEM.

(D) Recovery from desensitization by 10 mMglutamate measured using a two-pulse protocol. Three selected pulse protocols are illustrated. The dashed line is an

exponential fit, giving a time constant of 119 ms.

(E) Monoexponential Hodgkin-Huxley fits of pooled averaged time courses of GluA1 recovery from desensitization by 10 mM, 100 mM, or 10mM glutamate (n = 7).

Recovery profiles are fitted with a single time constant (120 ms) with a variable m (Experimental Procedures).

(F) GluA1/g-2 recovery from desensitization by a range of glutamate concentrations. Data were globally fitted with a double exponential function, giving fast time

constant of recovery (tf) = 74ms and slow time constant of recovery (ts) = 390ms. Inset: the kinetics of recovery from desensitization; the weighted time constant

of recovery (tw) is not markedly concentration-dependent.
desensitization but also substantially lowers the barrier to chan-

nel opening, resulting in enhanced gating of partially occupied

AMPARs.

In four patches from cells expressing GluA1_g-2 or GluA2(Q)/

g-2, where only a single channel was active and the background

noise was sufficiently low, we were able to analyze in detail the

subconductance levels. This allowed us to assign conductance

values to the different states of occupancy (Figure 5D). Unlike

TARPless receptors, which show three conductance steps in

response to fast glutamate application following pre-incuba-

tion with NBQX (Rosenmund et al., 1998), with the TARPed

receptors, we could resolve up to four sequential openings of

increasing conductance (O1, O2, O3, and O4). Based on their

position within the ‘‘staircase-like’’ sequence, we identified O4

in 100% of 134 sweeps, O3 in 93%, O2 in 83%, and O1 in

42%. That we were unable to identify O1 in all sweeps is to be

expected, given that O1 has the lowest conductance, is the

shortest-lived state, and can be identified unambiguously only

when all three other states are resolved. The final weighted all-
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point amplitude histograms (Experimental Procedures) yielded

conductances for O1–O4 of 3.7, 16.1, 30.6, and 38.6 picosie-

mens (pS) (Figure 5E). Incorporating these four conductance

values into the NBQX-unbinding scheme (Figure 5A) provided

an excellent fit to the macroscopic NBQX/glutamate responses

(Figure 5F). Of note, for macroscopic currents from GluA1/2(R)/

g-2 heteromers, the Hodgkin-Huxley exponent (m) was less

than that of homomeric receptors (Figure 5C). We performed

simulations (Figure S2) that revealed that a reduced value of m

can be indicative of an increased relative conductance of state

O1. Thus, for the four states of GluA1/g-2 (3.7, 16.1, 30.6, and

38.6 pS), the simulation yields an m of 1.38. However, if each

state displays a conductance proportional to its occupancy (for

example 5, 10, 15, and 20 pS), then m is precisely 1. Further, if

the relative contribution of O1 is increased, then m can even

be less than 1 (Figure S2). Although directly discerning modest

differences in single-channel conductance states is not techni-

cally feasible for GluA1/2(R) heteromers (because of their low

conductance), our macroscopic data suggest that O1 may
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Figure 5. g-2 Increases the Efficacy of Glutamate at Partially Liganded AMPARs

(A) Schematic of slow NBQX unbinding, which allows the time course of channel activation by glutamate to be observed.

(B) Normalized representative currents recorded following 50 mM NBQX/10 mM glutamate exchange (with 50 mM cyclothiazide). g-2 speeds the current onset

(enlargement of the highlighted section), reducing the Hodgkin-Huxley exponent (m) required to fit the records (dashed red lines).

(C) Pooled data from H-H fits. g-2 accelerated the onset of NBQX/glutamate currents for each AMPAR subtype. Two-way ANOVA indicated significant main

effects for AMPAR type (F2, 31 = 48.43, p < 0.0001) and for g-2 (F1, 31 = 187.97, p < 0.0001) but no interaction between AMPAR type and TARP (F2, 31 = 0.41, p =

0.67). **p < 0.01, ***p < 0.001 (Welch t test). Symbols indicate mean and error bars indicate SEM.

(D) Representative single-channel NBQX/glutamate records displaying four discrete conductance levels. Measured conductance values are indicated.

(E) Normalized probability densities for closed, O1, O2, O3, and O4 conductance states, pooled from 560 identified conductances in 134 NBQX/glutamate

sweeps. The dashed red lies are Gaussian fits.

(F) Normalized, pooled GluA1/g-2 NBQX/glutamate current (n = 6). Data are fit (dashed red line) using the scheme shown in (A) (kNBQX, 19 s–1), with the mean

estimates of the four conductance states (O1, 3.7 pS; O2, 16.1 pS; O3, 30.6 pS; O4, 38.6 pS).

See also Figure S2.
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Figure 6. A Revised Kinetic Scheme Can

Approximate Multiple Aspects of GluA1/

g-2 Behavior

(A) Scheme 2 is a modified form of scheme RH,

with mechanistic changes highlighted (red) and

assigned conductance levels (green).

(B–D) A single set of rates within scheme 2 can

simultaneously approximate (dashed red lines) the

three concentration response relationships (B),

desensitization kinetics (C), and recovery kinetics

(D) of GluA1/g-2. Symbols indicate mean and error

bars indicate SEM. The following rate constants

were used: k1 = 1.33107M–1s–1, k–1 =3,000 s–1,a=

1,000 s–1, b = 6,000 s–1, d1 = 1,200 s–1, g1 = 16 s–1,

d2 = 1,300 s–1, g2 = 3,900 s–1, d3 = 250 s–1, d0 =

0.48 s–1, g0 = 4.4 s–1, k–2 = 63 s–1, and k–3 = 630 s–1.

See also Figure S3.
make a greater contribution to currents from heteromeric GluA1/

2(R) receptors than from homomeric GluA2(Q).

Kinetic Modeling of GluA1/g-2
We next attempted to mimic our data by modifying the full ki-

netic scheme previously developed for GluA1 (scheme RH, Fig-

ure S3A; Robert and Howe, 2003). Using this scheme, and

allowing the published rates to vary by %20%, we were able

to replicate our GluA1 concentration-response curves for peak

activation and desensitization as well as the observed kinetics

of desensitization and recovery (Figures S3B–S3D).

To accommodate our GluA1/g-2 data, we modified scheme

RH. To reflect the TARP-dependent reduction in desensiti-

zation by low concentrations of glutamate, we decreased the

rate of desensitization of mono-liganded TARPed receptors

(R1 / D1). We also included an additional open state, O1,

and assigned O1–O4 the measured subconductances from Fig-

ure 5. Finally, for improved estimation of our steady-state dose-

response curves, we assigned doubly and triply liganded recep-

tors equal opening rates. With these changes, our modified

scheme (scheme 2, Figure 6A) was able to approximate all

three concentration-response relationships, notably reducing

the separation between desensitization sensitivity and channel

activation, and replicating the shoulder of the steady-state

data (Figure 6B). The same set of rate constants was also able

to describe the kinetics of desensitization (Figure 6C) and recov-

ery (Figure 6D) at multiple glutamate concentrations. Of note,

modest changes to rate constants in our model were able

to generate bell-shaped steady-state concentration-response

curves (Morimoto-Tomita et al., 2009; Semenov et al., 2012;

data not shown). Overall, scheme 2 is capable of accommoda-

ting and explaining key functional properties of GluA1/g-2,
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including the biphasic concentration-

response curves previously suggested

to arise from the functional uncoupling

of TARPs and AMPARs.

Modeling of Synaptic Currents
It seemed likely that the behavior we

observed for GluA1/g-2 at low glutamate
concentrations would be expected to result in a decreased

desensitization of synaptic receptors by prolonged low concen-

trations of transmitter of the sort that can occur during spillover

(Carter and Regehr, 2000; DiGregorio et al., 2002; Nielsen

et al., 2004) or delayed synaptic clearance (Trussell et al.,

1993). Using either scheme RH (for GluA1) or scheme 2 (for

GluA1/g-2), we simulated brief receptor activations (two 1-ms

pulses, 10 mM glutamate, 10-ms interval) with or without

the continued presence of 1 mM glutamate. Scheme RH pre-

dicted that this concentration of background glutamate would

inhibit GluA1-mediated charge transfer by 66%. By contrast,

scheme 2 predicted only an 18% reduction in GluA1/g-2-medi-

ated charge transfer. These predictions were borne out by

experiments in which 1 mM glutamate resulted in a 56% ± 3%

inhibition of GluA1 (n = 4) but only 14% ± 5% inhibition of

GluA1/g-2 (n = 5, p = 0.00039) (Figures 7A–7C).

Having demonstrated that g-2 reduces the inhibitory effects

of background glutamate on GluA1 charge transfer and that

scheme 2 is capable of replicating these properties, we next

used scheme RH and scheme 2 to model GluA1 and GluA1/

g-2 responses to glutamate spillover waveforms. To this end,

as an exemplar, we used a previously developed diffusion model

of the cerebellar mossy fiber to granule cell (MF-GC) synapse

(Nielsen et al., 2004), allowing us to model AMPAR activation

by local vesicular release or spillover from distant release sites

(DiGregorio et al., 2002). We first modeled the influence of g-2

on responses to single-vesicle fusion events (Figure 7D). As ex-

pected, the peak channel conductance following local release

was increased by g-2, and the total charge transfer (measured

over 3 ms) was �5-fold larger than that modeled with GluA1

alone. However, when we simulated the response to vesicle

fusion at the nearest neighboring synapse, charge transfer was
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Figure 7. Co-expression of g-2 Reduces Inhibition of GluA1-Mediated Charge Transfer by Background Glutamate and Is Predicted to

Enhance Charge Transfer by Spillover

(A) Simulated responses of GluA1 (scheme RH, left) and recorded GluA1 currents (right) in response to two 1-ms pulses of 10 mM glutamate (100 Hz), with and

without background application of 1 mM glutamate. Charge transfer was measured as the area under the curve.

(B) As for (A) but for GluA1/g-2, simulated using scheme 2, and for GluA1/g-2 currents.

(C) Bar chart showing that simulations and data are in agreement, with�4-fold less glutamate-mediated reduction in charge transfer for g-2-containing receptors

than for GluA1 alone. Bars indicate mean and error bars indicate SEM.

(D and E) Responses of GluA1 (scheme RH) and GluA1/g-2 (scheme 2) to simulated synaptic glutamate waveforms (Nielsen et al., 2004). The concentration

profiles used represent (D) fusion of a single vesicle either locally or at the nearest-neighbor active zone or (E) action potential-evoked release causing prolonged

spillover, either with or without local release. Spillover or nearest-neighbor charge as a percentage of direct or local charge is indicated. ***p > 0.001 (Welch t test).

See also Figure S4.
increased >20-fold by g-2. Indeed, for GluA1/g-2, the total pre-

dicted charge transfer from nearest-neighbor release was over

half of that elicited by local release.

We next simulated GluA1 and GluA1/g-2 responses to evoked

release. The MF-GC synaptic model consists of a 7 3 7 array of

synaptic connections, with the central synapse beingmonitored,

and, following an action potential, the probability of vesicular

release at any one site is 0.46 (Nielsen et al., 2004). We simulated

two glutamate waveforms: with the presence of local release
(direct + spillover) and in the absence of local release (spillover

only). Again, g-2 greatly influenced the predicted response,

increasing total charge transfer by >5-fold for direct activation

but by 12-fold for spillover only. In this case, GluA1/g-2 spill-

over-mediated charge transfer was predicted to reach nearly

70% of that resulting from direct activation. For both local and

evoked release, increased charge transfer in the presence of

g-2 is to be expected, given the known action of TARPs on

AMPAR conductance and deactivation. The dual effects of
Cell Reports 20, 1123–1135, August 1, 2017 1131



TARPs on the desensitization and conductance of singly occu-

pied AMPARs make only a limited contribution to the increase

in charge following direct release (<10%), but they contribute

�40% of charge transfer for evoked spillover currents and

�65% of charge transfer from nearest-neighbor single-vesicle

release (Figure S4). Accordingly, our findings suggest that the

behavior of synaptic receptors during glutamate spillover will

be profoundly influenced by the presence of TARPs.

DISCUSSION

One of the canonical properties of TARPs is their ability to reduce

AMPAR desensitization (Priel et al., 2005; Tomita et al., 2005;

Turetsky et al., 2005). Surprisingly, despite the importance

of desensitization during spillover and delayed clearance of

transmitter following an excitatory postsynaptic current (EPSC)

(DiGregorio et al., 2007; Trussell et al., 1993), the influence of

TARPs on AMPAR desensitization at low concentrations of

glutamate has not been described previously. By determining

the glutamate concentration dependence of TARP action, we

have revealed three fundamental features of AMPAR behavior.

First, we find that g-2 induces opposite shifts in glutamate po-

tency for AMPAR desensitization (�5-fold increase in IC50) and

activation (�4-fold reduction in EC50). Second, for g-2-contain-

ing receptors, we find a marked concentration dependence of

entry into, but not recovery from, desensitization, revealing a

TARP-induced increase in the steady-state efficacy of low con-

centrations of glutamate. Third, we find that g-2 also enhances

the efficacy of glutamate by promoting the opening of singly

occupied receptors. Together, our data indicate that g-2 shifts

the balance of GluA1 gating at low agonist concentrations from

desensitization to activation. Our experiments and simulations

suggest that this altered AMPAR gating, rather than a functional

uncoupling of TARPs, is likely to account for the phenomenon

of autoinactivation. Moreover, we propose that this TARP-

dependent behavior at low glutamate concentrations will greatly

enhance the response of AMPARs during transmitter spillover.

Using the kinetic scheme of Robert and Howe (2003), we were

able to replicate our concentration response and kinetic data by

introducing an open state for the singly occupied receptor, slow-

ing its rate of entry into the desensitized state (R1 / D1), and

incorporating the occupancy-dependent conductance values

from our single-channel patches. However, this scheme does

not generate ‘‘superactivation,’’ a slow ‘‘run-up’’ of AMPAR/

TARP currents on a timescale of �1 s (Carbone and Plested,

2016). As with autoinactivation, superactivation has been pro-

posed to result from a state dependence of the functional

interaction between AMPAR and TARP. This is potentially re-

flected in single-channel records as a high open probability

‘‘mode’’ (Zhang et al., 2014) that contributes to ‘‘steady-state’’

currents seen during trains of glutamate application (Devi et al.,

2016). We did not observe superactivation in our recordings,

perhaps because the phenomenon appears to be less pro-

nounced for g-2 than for other TARPs (Kato et al., 2010) and is

most evident when AMPARs are saturated with TARPs (Carbone

and Plested, 2016).

Our model accommodates all of our experimental data

and suggests an alternative explanation for the phenomenon of
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autoinactivation that does not require functional uncoupling

of AMPAR and TARP. Of note, markedly biphasic steady-state

concentration-response curves are characteristic of kainate

receptors (KARs), fellow members of the ionotropic glutamate

receptor (iGluR) superfamily, and occur independent of auxiliary

subunits. For heteromeric KARs containing low-affinity (GluK1–

3) and high-affinity (GluK4–5) subunits, only the high-affinity

subunit of each LBD dimer is occupied at low glutamate concen-

trations, and this is sufficient to cause channel openings of

maximal conductance (Mott et al., 2010; Smith and Howe,

2000) but not receptor desensitization (Fisher and Mott, 2011;

Mott et al., 2010). Only at high glutamate concentrations, when

the low-affinity subunit is also occupied, can desensitization be

triggered. Although the full gating and minimal desensitization

at low occupancy are more pronounced for KARs, we propose

that TARPed AMPARs behave in a comparable manner.

Using three different approaches we found no evidence for

AMPAR/TARP uncoupling. However, we cannot exclude that

desensitized AMPARs (for example, those in state D4) are func-

tionally or physically uncoupled from TARPs but then rapidly

re-associate (in state R4). Nevertheless, biochemical evidence

supporting the concept of functional uncoupling—AMPAR

agonist-triggered reduction in AMPAR and TARP co-immuno-

precipitation (Morimoto-Tomita et al., 2009; Tomita et al.,

2004)—was not observed in other studies (Nakagawa et al.,

2005; Semenov et al., 2012). Further, although three different

AMPAR_TARP tandem constructs were originally shown not to

autoinactivate (Morimoto-Tomita et al., 2009), a subsequent

study observed autoinactivation of the GluA4_g-2 tandem, sug-

gesting that this phenomenon can occur in the absence of phys-

ical dissociation (Semenov et al., 2012).

Recent cryoelectron microscopy (cryo-EM) structures of

GluA2/g-2 reveal extensive intra-membrane contacts between

AMPAR and TARP (Twomey et al., 2016; Zhao et al., 2016), and

these appear to be important both for AMPAR/TARP assembly

and function (Ben-Yaacov et al., 2017). Although the cryo-EM

structures are of channels in their closed states, the conformation

of AMPAR transmembrane regions are predicted to be similar

following desensitization (Dong and Zhou, 2011; D€urr et al.,

2014; Meyerson et al., 2014; Sobolevsky et al., 2009). Therefore,

one might expect that, in the desensitized state, TARPs maintain

a close association with the AMPAR. By contrast, the AMPAR

extracellular domains undergo large rotational rearrangements

following desensitization (D€urr et al., 2014; Herguedas et al.,

2016; Meyerson et al., 2014), which would be expected to break

the charge-mediated interactions between the AMPAR LBD and

TARP Ex1 (Dawe et al., 2016; Twomey et al., 2016; Zhao et al.,

2016) in at least one subunit. Even so, although alteration of the

charges in the LBD has been shown to greatly diminish TARP-

induced slowing of deactivation and desensitization, other

TARP-associated effects persisted (increased kainate efficacy

and decreased block by intracellular spermine) (Dawe et al.,

2016), suggesting that, even when LBD/Ex1 interaction is elimi-

nated, TARPs and AMPARs remain functionally coupled.

Our results suggest that the dual effects of TARPs on gluta-

mate efficacy will have the greatest effect on native receptors

during prolonged exposure to low concentrations of glutamate,

as occurs, for example, during transmitter spillover (Carter and



Regehr, 2000; DiGregorio et al., 2002, 2007; Nielsen et al., 2004),

delayed synaptic clearance (Kinney et al., 1997; Otis et al., 1996;

Trussell et al., 1993; Zampini et al., 2016), or volume transmis-

sion (Szapiro and Barbour, 2007). Specifically, TARP-associ-

ated AMPARs will be able to pass appreciable current when

exposed to low-micromolar glutamate and will remain respon-

sive to high concentrations of glutamate resulting from vesic-

ular release. Our synaptic simulations demonstrate that g-2

imparts a marked resistance to desensitization by glutamate

spillover and allows significant postsynaptic responses even

in the absence of local release. Generalizing this action of

g-2 to the GluA2/4 heteromers present in cerebellar granule

cells would account for the large steady-state currents gener-

ated by synaptic AMPARs in these cells (DiGregorio et al.,

2007). Activation of AMPARs via glutamate spillover accounts

for the majority of the charge injected into granule cells during

high-frequency mossy fiber stimulation (Saviane and Silver,

2006) and underlies the primary excitatory drive of granule

cells during locomotion (Powell et al., 2015). Thus, resistance

to desensitization of TARP-associated AMPARs appears to be

key for synaptic signaling in the input layer of the cerebellum

and is likely important at other sites where glutamate spillover

occurs.

EXPERIMENTAL PROCEDURES

Heterologous Expression

HEK293 cells were transfected with recombinant AMPAR subunits and TARPs

(plus EGFP). AMPAR subunit cDNAs (rat) were ‘‘flip’’ splice variants, and the

GluA2 forms were additionally arginine/glycine (R/G)-edited. The GluA1_g-2

tandem consisted of full-length GluA1 and a nine-amino acid linker (GGGG

GEFAT) before the start codon of full-length g-2. For further details, see the

Supplemental Experimental Procedures.

Rapid Agonist Application to Excised Patches

Voltage-clamp recordings were made from outside-out patches. Rapid

agonist application was achieved by switching between continuously flowing

solutions using piezoelectric translation of an application tool made from either

theta glass or custom triple-barreled glass, as described in the Supplemental

Experimental Procedures.

Data Analysis and Kinetic Modeling

Records were analyzed using Igor Pro 6.35 (Wavemetrics) with Neuromatic

2.8 (http://www.neuromatic.thinkrandom.com). Kinetic simulations were per-

formed in Scilab 5.5.0. (Scilab Enterprises; http://www.scilab.org). For further

details, see the Supplemental Experimental Procedures.

Data Presentation and Statistical Analysis

Summary data are presented in the text as mean ± SEM (from n patches).

Comparisons involving two datasets only were performed using a two-

sided Welch two-sample t test that did not assume equal variance

(normality was not tested statistically but gauged from quantile-quantile

[Q-Q] plots and/or density histograms). Analyses involving data from three

or more groups were performed using one- or two-way ANOVA (Welch het-

eroscedastic F test), followed by pairwise comparisons using two-sided

Welch two-sample t tests with Bonferroni correction where appropriate.

Differences were considered significant at p < 0.05. Exact p values are pre-

sented to two significant figures, except when p < 0.0001. Differences were

considered significant at p < 0.05. Statistical tests were performed using

R (3.3.2, the R Foundation for Statistical Computing; http://www.r-project.

org/) and R Studio (1.0.143, RStudio). No statistical test was used to prede-

termine sample sizes; these were based on standards of the field. No

randomization was used.
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10.1016/j.celrep.2017.07.014.

AUTHOR CONTRIBUTIONS

I.D.C., D.M.M., M.F., and S.G.C.C. designed the experiments. I.D.C. and

D.M.M. performed the experiments. I.D.C., D.M.M., and M.F. analyzed the

data. I.D.C., D.M.M., V.J., M.F., and S.G.C.C. interpreted the results. I.D.C.

and M.F. prepared the figures and wrote the manuscript with input from all

authors.

ACKNOWLEDGMENTS

This work was supported by the MRC (MR/J002976/1 to S.G.C.C. and M.F.

and MR/J012998/1 to M.F. and S.G.C.C.), the Wellcome Trust (086185/Z/

08/Z to S.G.C.C. and M.F.), and the NIH (K99NS094761 to D.M.M. and R01

GM113212 and 1R35GM122528 to V.J.). We thank Jason Rothman for assis-

tance with diffusion models and Angus Silver for comments on themanuscript.

Received: March 23, 2017

Revised: June 12, 2017

Accepted: July 9, 2017

Published: August 1, 2017

REFERENCES

Armstrong, N., and Gouaux, E. (2000). Mechanisms for activation and antag-

onism of an AMPA-sensitive glutamate receptor: crystal structures of the

GluR2 ligand binding core. Neuron 28, 165–181.

Armstrong, N., Jasti, J., Beich-Frandsen, M., and Gouaux, E. (2006). Measure-

ment of conformational changes accompanying desensitization in an iono-

tropic glutamate receptor. Cell 127, 85–97.
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