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Abstract. Porous support layers in electrochemical devices ensure mechanical stability of 

membrane assemblies such as solid oxide fuel cells and oxygen transport membranes (OTMs). 

At the same time, porous layers affect diffusive mass transport of gaseous reactants and 

contribute to performance losses at high fuel utilisation and conversion ratios. Microstructural 

characteristics are vital to calculate mass transport phenomena, where tortuosity remains 

notoriously difficult to determine. Here, the tortuosity of tubular porous support layers of OTMs 
is evaluated via high resolution X-ray nano computed tomography. The high resolution reveals 

the complex microstructure of the samples to then execute a selection of image-based tortuosity 

calculation algorithms. Visible differences between geometric and flux-based algorithms are 

observed and have thus to be applied with caution. 

1.  Introduction 

Electrochemical energy devices have the potential to revolutionize distributed low-carbon power supply. 

However, in order to optimise their performance and enhance durability, a much improved 
understanding of the underlying material microstructure is required. In particular, the rate limiting step 

of fuel cells and oxygen transport membranes (OTMs) is governed by mass transport resistance in 

porous media, which, in turn, is a function of microstructural characteristics such as tortuosity, porosity 
and mean pore diameter [1]. These parameters are interrelated in a complicated manner [2]. 

Here, we utilise high resolution X-ray nano computed tomography (X-ray nano CT) to reveal the 

complex microstructure and resolve geometric features affecting the mass transport within tubular 

porous support layers of OTMs. Among the aforementioned parameters, tortuosity remains notoriously 
difficult to calculate [3]. Geometrically, tortuosity (τ) is calculated by dividing the shortest path length 

through a structure (Δl) by the Euclidean distance between the two endpoints of that path (Δx). However, 

in transport problems, the tortuosity in combination with the porosity (ε), is also applied to relate the 
effective transport property (Deff) within a structure to its bulk transport property (Dbulk). Eq. (1) and Eq. 

(2) present both expressions, respectively. 

 

𝜏 =
∆𝑙

∆𝑥
 Eq. (1) 

 𝐷𝑒𝑓𝑓 =
𝜀

𝜏2
𝐷𝑏𝑢𝑙𝑘 Eq. (2) 
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This work compares a wide range of frequently used image-based tortuosity calculation approaches. 

These approaches are subdivided into geometric-based and flux-based algorithms, according to the 

differentiation shown in the above equations. Their suitability for quantifying diffusive mass transport 

in porous structures is then assessed. 
 

2.  Methodology 

Four tubular yttria partially-stabilized zirconia porous support membrane samples for the application in 
OTMs were prepared for X-ray tomography. The samples differed in sintering temperature and wall 

thickness as listed in Table 1. 

 
Table 1: Description of analysed samples. 

Sample ID 
Wall 

thickness 

Sintering 

temperature 

PS 1400 1.3 1.3 mm 1,400 °C 

PS 1400 1.0 1.0 mm 1,400 °C 

PS 1450 1.3 1.3 mm 1,450 °C 

PS 1450 1.0 1.0 mm 1,450 °C 
 

Table 2: Imaging specifications for X-ray nano CT. 

Field of view 65 μm 

Camera binning 1 

Pixel size 63.1 nm 

Exposure time 90 s 

X-ray energy 5.4 keV 

Number of images 901 
 

 

Figure 1: Mounted sample ready 
for X ray CT (A); radiographs (B) 
and image slices (C) comparing 
the phase and absorption imaging 
mode. 

 

 

X-ray nano CT using the Zeiss Xradia 810 Ultra was applied to reconstruct the samples in 3D, where 

the imaging specifications for each sample were identical, as presented in Table 2. The Zeiss Xradia 810 
Ultra achieves a quasi-monochromatic X-ray beam of 5.4 keV by the use of X-ray optics: the 

combination of a capillary condenser and a Fresnel zone plate filter out X-rays with energies above and 

below the K-edge of the chromium target and focus the beam onto the sample and detector. Figure 1A 
shows the small sample size of < 65 μm necessary to avoid artefacts during imaging. The Zeiss Xradia 

Ultra 810 is capable of imaging in absorption as well as in Zernike phase contrast mode [4]. Both modes 

were evaluated for their achieved image quality as shown in Figure 1B and C. It is visible that the edges 

and boundaries of the solid phase are finer and better defined in phase contrast mode. Hence, phase 
contrast imaging was chosen over absorption imaging despite the highly attenuating sample materials. 

After reconstruction using a standard filtered back projection algorithm (XRM Reconstructor), the 

image datasets were segmented using threshold segmentation and two volumes of different dimensions 
were cropped for each sample to verify the consistency of results: a cube with a side length of 6.31 μm 

and a cuboid with the side lengths of 6.31 μm × 6.31 μm × 12.62 μm. The tortuosity was then calculated 
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via a range of computational algorithms executed across these volumes: the fast marching method 

(FMM) [5], the built-in Avizo (FEI) module “Centriod Path Tortuosity” [6], by simulating the heat flux 

in StarCCM+ (CD-adapco) [7–9] and mass flux in COMSOL Multiphysics (COMSOL Inc.) as well as 

via a MATLAB based Laplace equation solver called “TauFactor” [10, 11]. While the first two 
calculation algorithms calculate tortuosity geometrically by applying Eq. (1), the latter three approaches 

simulate a flux and correlate the effective transport properties to the bulk transport properties via Eq. 

(2). These algorithms arrive at distinct tortuosity values along each axis of the volume and, hence, the 
characteristic tortuosity (τC) [7] was calculated for each sample. Moreover, well-known 

porosity-tortuosity relationships, including the Bruggeman relationship [12] and the Maxwell 

relationship [13], were used for comparative reasons. 

 

3.  Results and Discussion 

Table 3 compares microstructural characteristics for each of the eight extracted sample volumes. The 

porosity was calculated via the pixel counting method while the pore diameter was achieved using the 
continuous pore size distribution code from [14]. It is evident that samples with lower sintering 

temperature feature larger pore diameter and porosity, favouring diffusive mass transport. 

 
Table 3: Microstructural characteristics of each sample volume. 

Sample ID  dP [μm] ε [-] 

PS 1400 1.3 
Cube 0.73 0.31 

Cuboid 0.74 0.32 

PS 1400 1.0 
Cube 0.71 0.34 
Cuboid 0.70 0.32 

PS 1450 1.0 
Cube 0.66 0.25 

Cuboid 0.65 0.24 

PS 1450 1.3 
Cube 0.63 0.23 

Cuboid 0.63 0.21 

 

Figure 2: Comparison of 
tortuosity calculation 
algorithms which show the 

difference in geometric and flux-
based algorithms. Empirical 
relationships such as the 
Bruggeman and Maxwell 
relation are unfit for the 
analysed microstructure treated 
here. 

 

 

Figure 2 shows the characteristic tortuosity values of both geometric-based algorithms and of all 
three flux-based algorithms, similar as in [7]. The FMM achieved the lowest tortuosity values among 

all algorithms with the pore centroid method results slightly above. However, the former approach has 

the least significance in analysing the tortuosity of the porous phase. The algorithm locates the pore 

centroid of each slice and follows it in the in-plane direction. Hence, this algorithm is considered only 
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as an indicator for the homogeneity of the porous phase within the sample: the centroid of a 

homogeneous sample will be located closer to the centre of each image slice and thus, the resulting 

tortuosity will be closer to unity. The low porosity samples feature a higher pore centroid tortuosity, 

suggesting a higher heterogeneity in the microstructure. Both empirical relationships form the lower 
boundary of tortuosity, where the FMM achieved values around the Bruggeman correlation. All 

tortuosity algorithms broadly followed the trend of decreasing tortuosity with increasing porosity. 

The results of the three flux-based algorithms were very close to each other, with values around 2.3 
for the low porosity samples and around 1.9 for the high porosity samples. The Laplace equation solver 

achieved slightly higher values compared to the other simulation-based algorithms, which might be 

caused by some minor smoothing effects during mesh generation for the flux simulations. 

The visible differences between the FMM and the flux-based algorithms were caused by the lack of 
the FMM to account for constrictions and bottlenecks while only considering the minimal Euclidean 

distance between two planes. Hence, any pore connection, even a single pixel, was included in the 

calculation and thus, the geometric definition of tortuosity is closely followed. However, a migrating 
flux is affected by the variation of pore diameters within the sample and choses the path of least 

resistance and constriction. As a consequence, flux-based tortuosity calculation algorithms always result 

in a higher tortuosity value. In the presented study, this difference amounts to almost a factor of two. 
Thus, when calculating the effective transport property of a transport phenomenon following Eq. (2), a 

flux-based tortuosity computation algorithm has to be applied to correctly cater for the effect of the 

microstructure on the transport process. Among the included flux-based tortuosity calculation methods, 

the Laplace equation solver produced consistent results and is easiest to execute, as the binarized image 
sequence is sufficient as input file, making the generation of a volume mesh unnecessary. 

4.  Conclusions 

X-ray nano CT was used to reveal the complex microstructure of porous support membranes and 
evaluate the effect of microstructural characteristics on transport phenomena. The high resolution 

allowed the execution of a wide range of tortuosity calculation approaches, where the high number of 

different algorithms is testimony of the importance of tomography techniques in analysing transport 

processes in porous structures. Significant differences between geometric and flux-based algorithms 
were observed. The reason for this is that geometric approaches do not take constrictions and bottlenecks 

into account, which affect the migration path of a flux. Consequently, care must be taken when 

comparing tortuosity values calculated via algorithms following different concepts. 
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