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Abstract

RNA-binding proteins (RBPs) are the primary regulators of all aspects of post-

transcriptional gene regulation. In order to understand how RBPs perform their

function, it is important to identify their binding sites. Recently, new techniques

have been developed to employ high-throughput sequencing to study protein-RNA

interactions in vivo, including the individual-nucleotide resolution UV crosslinking

and immunoprecipitation (iCLIP). iCLIP identifies sites of protein-RNA crosslink-

ing with nucleotide resolution in a transcriptome-wide manner. It is composed of

over 60 steps, which can be modified, but it is not clear how variations in the method

affect the assignment of RNA binding sites. This is even more pertinent given that

several variants of iCLIP have been developed. A central question of my research

is how to correctly assign binding sites to RBPs using the data produced by iCLIP

and similar techniques.

I first focused on the technical analyses and solutions for the iCLIP method. I

examined cDNA deletions and crosslink-associated motifs to show that the starts of

cDNAs are appropriate to assign the crosslink sites in all variants of CLIP, includ-

ing iCLIP, eCLIP and irCLIP. I also showed that the non-coinciding cDNA-starts

are caused by technical conditions in the iCLIP protocol that may lead to sequence

constraints at cDNA-ends in the final cDNA library. I also demonstrated the impor-

tance of fully optimizing the RNase and purification conditions in iCLIP to avoid

these cDNA-end constraints. Next, I developed CLIPo, a computational framework

that assesses various features of iCLIP data to provide quality control standards

which reveals how technical variations between experiments affect the specificity

of assigned binding sites. I used CLIPo to compare multiple PTBP1 experiments



produced by iCLIP, eCLIP and irCLIP, to reveal major effects of sequence con-

straints at cDNA-ends or starts, cDNA length distribution and non-specific contam-

inants. Moreover, I assessed how the variations between these methods influence

the mechanistic conclusions. Thus, CLIPo presents the quality control standards for

transcriptome-wide assignment of protein-RNA binding sites.

I continued with analyses of RBP complexes by using data from spliceosome-

iCLIP. This method simultaneously detects crosslink sites of small nuclear ribonu-

cleoproteins (snRNPs) and auxiliary splicing factors on pre-mRNAs. I demon-

strated that the high resolution of spliceosome-iCLIP allows for distinction between

multiple proximal RNA binding sites, which can be valuable for transcriptome-

wide studies of large ribonucleoprotein complexes. Moreover, I showed that

spliceosome-iCLIP can experimentally identify over 50,000 human branch points.

In summary, I detected technical biases from iCLIP data, and demonstrated

how such biases can be avoided, so that cDNA-starts appropriately assign the RNA

binding sites. CLIPo analysis proved a useful quality control tool that evaluates

data specificity across different methods, and I applied it to iCLIP, irCLIP and EN-

CODE eCLIP datasets. I presented how spliceosome-iCLIP data can be used to

study the splicing machinery on pre-mRNAs and how to use constrained cDNAs

from spliceosome-iCLIP data to identify branch points on a genome-wide scale.

Taken together, these studies provide new insights into the field of RNA biology

and can be used for future studies of iCLIP and related methods.
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”See first, think later, then test. But always see first. Otherwise, you will only see
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- Douglas Adams



Contents

1 Introduction 1

1.1 RNA-binding proteins . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Pre-mRNA splicing . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Alternative splicing and its regulators . . . . . . . . . . . . . . . . 8

1.3.1 Polypyrimidine tract-binding protein 1 . . . . . . . . . . . . 8

1.4 Biological importance of alternative splicing . . . . . . . . . . . . . 10

1.5 Next-generation sequencing . . . . . . . . . . . . . . . . . . . . . 11

1.6 UV crosslinking technologies to study RBPs in the context of RNA

processing on a genome-wide scale . . . . . . . . . . . . . . . . . . 14

1.6.1 Diversity of different techniques to study RNA-protein in-

teractions, gene expression and alternative splicing . . . . . 16

1.6.2 Methods to study gene expression and alternative splicing . 19

1.6.3 Analysis of CLIP-related data . . . . . . . . . . . . . . . . 22

1.6.4 Sequence quality control . . . . . . . . . . . . . . . . . . . 24

1.6.5 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . 25

1.6.6 Mapping to reference genome . . . . . . . . . . . . . . . . 27

1.6.7 Removal of PCR duplicates . . . . . . . . . . . . . . . . . 27

1.6.8 Assignment of protein binding sites . . . . . . . . . . . . . 28

1.6.9 Validation of identified clusters . . . . . . . . . . . . . . . 35

1.6.10 Motif discovery . . . . . . . . . . . . . . . . . . . . . . . . 35

1.6.11 Prediction of protein binding sites . . . . . . . . . . . . . . 37

1.6.12 Differential analysis . . . . . . . . . . . . . . . . . . . . . 37

1.7 Aims of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 39



2 Methods 42

2.1 Computational tools and working environment for data analyses . . 42

2.2 Mapping and pre-processing of high-throughput sequencing data . . 43

2.2.1 CLIP, iCLIP, irCLIP, eCLIP and spliceosome-iCLIP . . . . 43

2.2.2 ENCODE and customised pipeline for eCLIP data analysis . 45

2.2.3 RNA-seq . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.3 Genomic annotations . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.3.1 Definition of Y-tracts . . . . . . . . . . . . . . . . . . . . . 49

2.3.2 Genomic lift over . . . . . . . . . . . . . . . . . . . . . . . 49

2.4 Post-mapping analysis . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4.1 Identification of crosslink clusters from CLIP, eCLIP and

iCLIP datasets . . . . . . . . . . . . . . . . . . . . . . . . 49

2.4.2 Classification of cDNA length . . . . . . . . . . . . . . . . 49

2.4.3 Definition of crosslink-associated motifs . . . . . . . . . . . 50

2.4.4 Definition of Y-rich motifs . . . . . . . . . . . . . . . . . . 50

2.4.5 Assignment of the cDNA-end peak in eIF4A3 iCLIP . . . . 51

2.4.6 Analysis of pairing probability . . . . . . . . . . . . . . . . 51

2.4.7 Normalisation of cDNA-starts/ends for the density graphs . 51

2.4.8 Visualisation of RNA-maps . . . . . . . . . . . . . . . . . 53

2.4.9 Visualisation of crosslink positions around splice sites in

the form of RNA-maps . . . . . . . . . . . . . . . . . . . . 55

2.4.10 Identification of branch points . . . . . . . . . . . . . . . . 56

2.4.11 Analysis of cDNA C to T mutations . . . . . . . . . . . . . 57

2.5 CLIPo analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.5.1 Data complexity . . . . . . . . . . . . . . . . . . . . . . . 58

2.5.2 cDNA-end constrains . . . . . . . . . . . . . . . . . . . . . 58

2.5.3 Specificity of binding sites . . . . . . . . . . . . . . . . . . 59

2.5.4 Motif enrichment inside the clusters . . . . . . . . . . . . . 59

2.5.5 Identification of cDNA-start peaks and tetramer enrichment 59

2.5.6 Heatmap of tetramer enrichment around cDNA-start peaks . 60

xiii



3 Assessing potential biases in protein-RNA binding site assignment with

iCLIP 61

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Crosslink sites are identified by cDNA-starts in iCLIP . . . . . . . . 67

3.3 cDNA-starts assign crosslink sites in iCLIP regardless of the

crosslinking method . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4 Defining the characteristics of readthrough

cDNAs in iCLIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.5 Non-coinciding cDNA-starts result from constrained cDNA-ends . . 82

3.6 PTBP1 binding sites can be assigned correctly despite non-

coinciding cDNA-starts . . . . . . . . . . . . . . . . . . . . . . . . 88

3.7 Adenosine enrichment at RNase I cleavage sites in PTBP1 CLIP

and iCLIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.8 Efficient RNase I-mediated RNA fragmentation minimises the

cDNA-end constraints . . . . . . . . . . . . . . . . . . . . . . . . . 96

3.9 A broad range of cDNA lengths compensates for the constrained

cDNA-ends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

3.10 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

4 CLIPo: a tool to identify the features underlying protein-RNA interac-

tions from CLIP data 118

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

4.2 CLIPo reports on the quality and specificity of CLIP experiments . . 120

4.3 Exploring the PTBP1 ENCODE eCLIP data . . . . . . . . . . . . . 124

4.4 Differentiation of biological and technical features between iCLIP

and eCLIP data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

4.5 Optimal peak calling settings for PTBP1 binding sites in iCLIP data 131

4.6 Assessing the position-dependent principles of splicing regulation

with RNA-maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

xiv



5 Assignment of RNA binding sites for higher-order proteins complexes 148

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.2 iCLIP identifies interactions between spliceosomal proteins and

snRNAs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

5.3 Spliceosome-iCLIP can identify branch point positions genome-wide 153

5.4 The effect of branch point position on spliceosomal interactions . . 158

5.5 Identification of 25 nt upstream peak relative to branch points by

using ENODE eCLIP dataset . . . . . . . . . . . . . . . . . . . . . 160

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6 Conclusion 165

6.1 Future directions for integrating quality control into machine learn-

ing algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

6.2 Cooperative binding of RBPs to non-optimal binding sites . . . . . 168

6.3 Final thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

Bibliography 171

xv



List of Figures

1.1 The schematic representation of pre-mRNA splicing in eukaryotes . 7

1.2 A schematic explaining different scenarios how PTBP1 regulates

splicing of alternative exons . . . . . . . . . . . . . . . . . . . . . 9

1.3 Schematic description of the CLIP-related protocols (HITS-CLIP,

PAR-CLIP and iCLIP/eCLIP/irCLIP) . . . . . . . . . . . . . . . . 21

1.4 Overview of the general analysis workflow for CLIP related methods 23

1.5 Example of PTBP1 iCLIP cDNA-starts and binding sites of

crosslink positions on PTBP2 transcript defined by iCount in UCSC

Genome Browser . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.1 Overview of the workflow for eCLIP data analysis workflow . . . . 46

2.2 Schematic visualisation of the RNA-map pipeline . . . . . . . . . . 55

3.1 Schematic representation of the iCLIP protocol with truncated and

readthrough cDNAs . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.2 Distribution of deletions and crosslink-associated motifs in CLIP

and iCLIP experiments . . . . . . . . . . . . . . . . . . . . . . . . 71

3.3 Crosslink-associated motifs are enriched at cDNA deletions and

cDNA-starts in iCLIP . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.4 Schematic representation of the modified 5’ marker iCLIP protocol . 79

3.5 A modified 5’ marker iCLIP protocol identifies readthrough cDNAs 81

3.6 Proportion of non-coinciding cDNA-starts differs between PTBP1-

iCLIP1 and PTBP1-iCLIP2 experiments . . . . . . . . . . . . . . . 84

3.7 Non-coinciding cDNA-starts are a result of constrained cDNA-ends 87



3.8 Non-coinciding cDNA-starts are required to map the crosslink sites

within Y-tracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.9 PTBP1-binding motif enrichment across PTBP1 crosslink clusters . 92

3.10 Adenosine enrichment at RNase I cleavage sites in PTBP1-CLIP

and PTBP1-iCLIP1 . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.11 Constrained cDNA-ends affect the cDNA-starts at 3’ splice sites . . 98

3.12 Constrained cDNA-ends in eIF4A3 iCLIP . . . . . . . . . . . . . . 101

3.13 Affect of sequence and structure constraints at cDNA-ends in

eIF4A3 iCLIP and CLIP . . . . . . . . . . . . . . . . . . . . . . . 104

3.14 The impact of cDNA-end constraints on cDNA-starts in eIF4A3 iCLIP106

3.15 A broad cDNA length range ameliorates the effects of constrained

cDNA-ends . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.16 Distribution of cDNA sizes in the studied experiments . . . . . . . . 110

3.17 A schematic explaining how different extents of cDNA-end con-

straints affect binding site assignment . . . . . . . . . . . . . . . . 113

4.1 Heatmaps of PTBP1 motifs and cDNA-starts for comparing EN-

CODE narrow peaks and the iCount peak calling pipeline . . . . . . 126

4.2 Scatter plot of tetramer enrichment between PTBP1-eCLIP, mock-

eCLIP and PTBP1-iCLIP2 experiments . . . . . . . . . . . . . . . 129

4.3 Heatmap of tetramer enrichment around cDNA-start peaks . . . . . 130

4.4 PTBP1-binding motif enrichment across PTBP1 crosslink clusters

with different peak calling window sizes . . . . . . . . . . . . . . . 133

4.5 PTBP1-binding motif enrichment across PTBP1 crosslink clusters

with different clustering window sizes . . . . . . . . . . . . . . . . 134

4.6 RNA-map for PTBP1 repressed exons . . . . . . . . . . . . . . . . 137

4.7 RNA-map for PTBP1 enhanced exons . . . . . . . . . . . . . . . . 138

4.8 RNA-map for hnRNPC repressed exons . . . . . . . . . . . . . . . 140

4.9 RNA-map for hnRNPC enhanced exons . . . . . . . . . . . . . . . 141

5.1 Spliceosome-iCLIP identifies the known protein-snRNA interactions 152

xvii



5.2 Analysis of splicesomal interactions with pre-mRNAs in vivo . . . . 154

5.3 Comparison of experimentally and computationally identified BPs . 157

5.4 The effect of branch point position on spliceosomal interactions . . 159

5.5 Proportions of cDNA-starts from eCLIP dataset around 25 nt peak

upstream from the branch points genome-wide . . . . . . . . . . . . 161

xviii



List of Tables

1.1 Overview of available peak calling methods . . . . . . . . . . . . . 34

3.1 Overview of methods and experiments from chapter 3 . . . . . . . . 68

4.1 CLIPo report table for PTBP1 produced by iCLIP, eCLIP, and ir-

CLIP method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.2 Optimal peak calling window size for PTBP1-iCLIP1-2 . . . . . . . 134

4.3 Optimal clustering size for PTBP1-iCLIP1-2 . . . . . . . . . . . . . 135



xx



Chapter 1

Introduction

In this thesis work I will present an overview of CLIP-type data analysis combining

previously available computational pipelines, together with new approaches that I

have developed during my studies. The goal of this thesis is to present computa-

tional methods that will allow to better interpret iCLIP data, while extracting new

insights from iCLIP experiments. This will allow to better address the challenge in

correctly assigning binding sites for RNA-binding proteins (RBPs), a process that

is crucial for RBP characterisation. In this first chapter, I will give a short intro-

duction about RBPs and a quick overview of available computational methods to

study protein-RNA interactions. I will then provide a brief summary of the process

of cellular splicing and of the RBPs that I have been working on during my studies.

One of Britain’s greatest scientists, Francis Crick, was the first to propose the

term ’Central Dogma’ in 1958 in reference to what is now a keystone of molecular

biology: the process flow from genetic information to a functional protein. He went

into greater detail by claiming that this process flow is possible in both directions

between DNA and RNA, but it is not possible from the protein to nucleic acid or to

another protein [1].

Gene expression is a cellular process that allows the genetic information stored

in DNA to be synthetized into a functional gene product, where a part of DNA is

transcribed to RNA to then produce a protein. Protein production in eukaryotes

starts with the transcription of DNA to a precursor mRNA (pre-mRNA), which

undergoes extensive co- and post-transcriptional processing. It is then exported



to the cytoplasm and translated into a protein. The complexity of RNA is much

greater than of DNA as it can form complex structures, controlling the sequence

information together with trans-acting factors. The several steps in regulation of

gene expression are mainly controlled by multiple interactions between RNA cis-

elements and trans-acting factors such as RBPs.

1.1 RNA-binding proteins

RBPs bind to RNA molecules in the nucleus and/or the cytoplasm. RNA/RBP com-

plexes form important ribonucleoprotein (RNPs) complexes involved in polyadeny-

lation, RNA modification, pre-mRNA splicing, mRNA export from the nucleus to

the cytoplasm, localisation, translation, control of mRNA stability and transcript

degradation [2, 3, 4, 5]. In order to understand the post-transcriptional regulatory

mechanisms and their functions, it is important to identify the exact binding site of

RBPs on endogenous transcripts.

Genome sequencing technologies such as next-generation sequencing and pro-

tein mass spectrometry have led to fast research progress in the field of RNA pro-

cessing over the past decade. These technologies allowed discovery of many new

proteins that bind thousands of transcripts via specific binding sites [6]. There are

over 1,500 catalogued genes encoding for RBPs in the human genome [7, 8] but

for most of the RBPs we still have an incomplete understanding of their specificity

and their involvement in cellular processes [9]. Many RBPs do not bind only a

simple contiguous RNA motif, but rather assemble on RNA into a complex with

other RBPs or bind clusters of short motifs that can be dispersed over dozens of

nucleotides [10]. Since they have a major role in gene regulation, it is unsurprising

that perturbations of RBP activity are strongly linked to disease. Mutations within

RBP binding sites or the RBPs themselves can cause misregulation at different lev-

els of RNA processing, such as gene expression or alternative splicing [11]. RNA

regulatory dysfunction or loss is associated with many diseases [9] including cancer

[12] and has become increasingly recognized as a central component in neurolog-

ical disorders [13, 14, 15, 16, 17, 18]. Consequently, studies on the interactions

2



of RBPs with the transcriptome are becoming increasingly popular to understand

cellular function and disease [19, 20, 21].

The discovery of heterogeneous nuclear ribonucleoproteins (hnRNPs) and

other pre-mRNA/mRNA-binding proteins led to the identification of the first amino

acid motifs and functional domains that confer RNA-binding properties [22]. Most

RBP-RNA interactions occur through a variety of single or multiple protein do-

mains, including RNA recognition motifs (RRMs), K homology (KH) domains

and small structural motifs such as zinc fingers [23]. Importantly, cellular RNA

is not naked but it is associated with multiple proteins in RNP complexes, which

are involved in RNA regulation [24]. Early biochemical studies found that the pre-

mRNA transcripts are packaged into heterogeneous nuclear ribonucleoprotein (hn-

RNP) particles by a group of RBPs termed hnRNP proteins [25, 26]. In vitro anal-

ysis is insufficient to understand the characteristics of RBP targets because in vitro

methods do not take into account the effect of the complex cellular environment

in which protein-RNA interactions normally take place. It has been shown in fact

that the most highly enriched RBP motifs detected in vitro are not necessarily the

preferred binding site motifs in vivo, or vice versa [24]. Therefore, it is important

to understand what the characteristics of RNA targets of RBPs are and how their in

vivo binding specificity is achieved. Due to the fact that RNA is single-stranded, it

is able to fold back on itself and form elaborate secondary and even tertiary struc-

tures. These structures have important regulatory roles in RBP-RNA interaction as,

for example, they can mask RBP binding motifs [27]. Although most RBPs prefer

to bind single-stranded regions, there are also proteins that bind structured regions

such as Staufen 1 (STAU1), which is known for binding to double-stranded RNA

duplexes [28]. There are numerous protein domains contained across the genome

that have the potential to bind RNA among other factors, such as secondary struc-

ture and interactions with other complexes, and we may not be fully aware of all

of the protein domains that can mediate interaction. For example, STAU1 protein

can bind in an especially long-range form of RNA duplexes that can only be de-

tected experimentally [29], so it is important to first study RBP specificity through

3



experimental data before using any computational prediction models.

In order to understand these processes, many new methods have been devel-

oped by using techniques involving protein-RNA crosslinking and immunoprecip-

itation of RBPs (CLIP, iCLIP, eCLIP, PAR-CLIP, irCLIP) (see subsection 1.6.1).

All these methods revealed the high coverage of protein-RNA interactions across

all transcripts, which can be precisely defined by the crosslink clusters. But there

are still many unanswered questions about RBP specificity and function in post-

transcriptional regulation. Before we can start asking these questions, it is funda-

mental to first correctly assign the position of the RBPs’ RNA binding sites. So

far, most progress in this direction has been made with combination of in vivo ex-

periments and computational methods [30, 31, 32, 33]. There are many available

computational tools to predict RBPs binding sites based on RBP binding motifs

[30], structured regions and other features [34, 35, 36], but currently they only work

for a limited number of RBPs with strong motif characteristics and only a small

fraction of predicted sites are in fact shown experimentally to be occupied by an

RBP [37]. For example, NOVA protein was one of the first RBPs studied with the

CLIP technology, where it was characterised as a splicing regulator in the mouse

brain that binds to intronic YCAY clusters [38]. Another group was able to follow

up this study by modelling the alternative splicing events that are regulated by the

neuron-specific factor NOVA in the mouse brain [39]. It is certainly a great chal-

lenge to model these interactions but it is important to first learn about each RBP

through experimental data. That is why it is so important that we first correctly

analyse experimental data to precisely map the binding sites, which then allows us

to learn more about RBP specificity and its function.

1.2 Pre-mRNA splicing

During the expression of a gene in eukaryotes, a stretch of DNA is transcribed into

pre-mRNA. The process of creating mature mRNA from pre-mRNA is called splic-

ing, by which introns are removed and exons are spliced together, before the RNA

can be used to produce a correct protein during translation. Richard J. Roberts and
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Phillip A. Sharp first discovered pre-mRNA splicing in the 1970s, and were awarded

the Nobel Prize for their work in 1977. They first noticed unusually long RNA in

the nucleus of vertebrate cells compared with the shorter mRNA that emerged in the

cytoplasm. Gayle Knapp and his colleagues later sequenced a series of tRNAs from

yeast and noticed additional nucleotide sequences within the middle of the gene that

are not present in the mature tRNA. One of the main observations of their study was

that there must be an activity of multiple enzymes that removes these intervening

sequences to produce mature-sized RNA [40]. This process broadens the diversity

of the transcriptome via alternative splicing (see subsection 1.3).

For most eukaryotic genes, splicing occurs in several steps, catalysed by the

spliceosome, a complex and dynamic molecular machinery composed of small nu-

clear ribonucleoproteins (snRNPs). The splicing process requires multiple snRNPs

to contact distant regions of the pre-mRNA, and involves a multitude of remod-

elling steps (Figure 1.1 - [41]). One of the key steps is the recognition of the 3’ and

5’ splice sites, which are located upstream and downstream of exons, respectively.

Splice sites are highly conserved across species with strong sequence motifs that

contribute to the splice site strength. Splice sites can be classified as weak or strong

according to their similarity to consensus sequence [42]. The splice site strength

plays a crucial role in the splicing efficiency by interacting with snRNPs that coor-

dinate and catalyse the splicing reaction. In the early splicing complex (complex E),

U1 and U2 snRNPs bind to the 5’ and 3’ splice site on the pre-mRNA, respectively.

A number of auxiliary factors accompany the binding of these snRNPs including cy-

totoxic granule-associated RBPs TIA1 and TIAL1 at the 5’ splice site, and the U2

auxiliary factor (U2AF) with its subunits U2AF35 (U2AF1) and U2AF65 at the 3’

splice site [43, 44, 45] (Figure 1.1 - [41]). Within this machinery, U2AF forms mul-

tiple RNA-protein interaction together with other RBPs and RBP complexes during

spliceosome assembly [46]. In an early stage of this process, the branch point (BP)

is recognised by a dynamic complex comprising splicing factor 1 (SF1) in the re-

gion upstream of the 3’ splice site, where U2AF35 identifies the AG dinucleotide

at the end of an intron and U2AF65 binds the polypyrimidine tract downstream of
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the BP and upstream of U2AF35 [47, 48] (Figure 1.1 - [41]). U2AF is not only a

crucial factor of the splicing machinery, but it is also a splicing regulator which can

be superseded by other competitive RBPs, particularly around the weak splice sites

in alternative splicing [49]. This competition is usually performed by RBPs with

similar binding motifs such as hnRNPC [50], TIA-1 [51], YB-1 [52] and PTBP1

[53]. In the later complexes (complex B and C), three further snRNPs (U4, U6 and

U5) finish the splicing process in a series of ATP-dependent steps to form a mature

RNA [54].
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Figure 1.1: The schematic representation of pre-mRNA splicing in eukaryotes [41].

At the beginning of the splicing process pre-mRNA contains intronic
and exonic elements. Introns are spliced out and exons are joined together
to form a mature mRNA. The process involves a stepwise binding of small
nuclear ribonucleoprotein (snRNP) complexes formed by small nuclear
RNAs (snRNAs) interacting with proteins. First, the U1 snRNP binds to the
pre-mRNA on the 5’ splice site, while the U2 snRNP binds close to the 3’
splice site on the branch point (BP) sequence encompassing the BP. U2 binding
results in bulging out of the unpaired BP adenosine increasing its propensity to
effectuate a nucleophilic attack on the 5’ splice site during the next catalytic
step. Subsequently, the U4/U5/U6 tri-snRNP binds the intron and leads to the
displacement of U1 and U4 and the formation of a catalytic spliceosome. This
complex catalyzes the transesterification of the BP adenosine 2’-OH group
to the guanosine phosphate of the 5’ splice site resulting in a lasso-shaped
intron (lariat) that is spliced away thereby joining two exons together. The
same process can occur with different combinations of 3’ and 5’ splice sites
resulting in the formation of different isoforms that are regulated by the
splicing machinery [55].
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1.3 Alternative splicing and its regulators
Alternative splicing is a highly regulated mechanism that allows a single gene to

codify for multiple protein variants as well as to regulate gene expression [56]. It

has been shown that the majority of mRNA isoforms in humans are the result of

alternative splicing. About 92 to 94% of human genes are alternatively spliced, of

which 85% have a minor isoform frequency of at least 15% [57]. Alternative splic-

ing plays an important role in development and physiology and is also associated

with several diseases [58, 59]. A number of different RBPs identified as splicing

factors (also called SF proteins) are involved in alternative splicing regulation, co-

ordinating intron removal and the decision of including an alternative exon in the

mature transcript. Some of these SF proteins can either enhance or repress exon

inclusion in a position-dependent manner by assembling at different sites of the in-

tron or the exon, either on the splice sites themselves or on other motifs known as

splicing silencers or enhancers [60]. For example, the RBP PTBP1 mainly works

as a splicing repressor by binding the upstream region of its target alternative exons

(see subsection 1.3.1) [61]. A similar mechanism was first observed for the RBP

NOVA, which mediates regulation of spliceosome assembly and alternative splic-

ing of a subset of exons in neurons [33]. Later, another mode of alternative splicing

regulation was observed for the RBP TDP-43 by discovering deep intronic regions

where the protein binds to repress exon inclusion [62].

1.3.1 Polypyrimidine tract-binding protein 1

Polypyrimidine tract-binding protein 1 (PTBP1) is an RBP that regulates inclusion

of a defined set of alternative exons. It has been extensively studied as a paradigm

for its mechanism of splicing regulation and as an example of a tissue-specific

alternative splicing regulator. PTBP1 is a 57-kDa protein that binds to CU-rich

sequences [63]. It contains four RNA-binding domains, each of which can bind

a pyrimidine-rich (Y-rich) motif to facilitate interactions [64, 65, 66]. Moreover,

PTBP1 proteins can work in clusters to form higher-order complexes when bound

to RNA, and up to eight PTBP1 proteins were observed on a long RNA binding site

[67, 68]. All four RNA-binding domains of PTBP1 are capable of interacting with
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RNA, and its three main isoforms are the result of alternative splicing [69]. PTBP1

is also one of the best-studied RBPs, for which the sequence-specific RNA binding

is understood on an atomic level [66]. One of the main reasons why PTBP1 was

one of the first discovered splicing regulators is because of the large number of its

RNA targets and its efficient ultraviolet light (UV) crosslinking to the polypyrimi-

dine tract [70]. One example of the well-studied mechanism of PTBP1 as a splicing

repressor is its competitive assembly on the binding site of U2AF65 at the 3’ splice

site (Figure 1.2a, b), [71, 72, 73]. In contrast, PTBP1 can also work as a splic-

ing enhancer by assembling at a downstream region away from the alternative exon

(Figure 1.2c) [61]. Besides being a splicing regulator, it is also known to function

in a large number of additional cellular processes such as polyadenylation, mRNA

stability and translation initiation [74].

Figure 1.2: A schematic explaining different scenarios how PTBP1 regulates splicing of
alternative exons.

If PTBP1 binds across a) the 3’ splice site or b) expands over the whole
exon, it represses exon inclusion. PTBP1 can also enhance exon inclusion by
binding over the 5’ splice site c) of an alternative exon.
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1.4 Biological importance of alternative splicing

In order to respond quickly to physiological changes and external stimuli, cells un-

dergo large-scale changes in gene expression that must be coordinated in a precise

spatio-temporal fashion. Alternative splicing provides a fast, reliable and dynamic

tool to tackle some of these major rearrangements. Comparison of expression se-

quence tags (ESTs) data revealed similar levels of alternative splicing in evolution-

arily distinct species, emphasizing the importance of alternative splicing throughout

evolution [75, 76]. Dynamic regulation of different isoforms enables complex cel-

lular responses, which are essential in cellular responses such as regulation of cell

viability, differentiation and apoptosis in response to environmental cues [77, 78].

Alternative splicing isoforms are most prevalent in brain cells compared to other

tissues [79, 80]. Also, numerous diseases have been associated with changes in

alternative splicing [81].

Here, it has been shown that AS mediated by the Sex-lethal (Sxl) RBP, reg-

ulates protein products Sex-lethal itself, transformer, and male specific lethal-2

genes that are needed for sex determination in Drosophila melanogaster [82, 83, 84].

Prominent examples where alternative splicing plays a pivotal role are in cell differ-

entiation, lineage commitment in neuronal progenitors [85] and immune response

[86], suggesting direct involvement in tissue-identity acquisition and organ devel-

opment [87].

RBP expression levels are tightly regulated in mammalian neuronal differenti-

ation, to form different splicing products via regulation of alternative splicing. Sev-

eral brain-specific factors such as PTBP1, PTBP2, NOVA1, NOVA2 and SRRM4

have been identified as important regulators during brain development [87, 88, 89].

For example, a switch between alternative-spliced PTBP1 and PTBP2 proteins is

one of the most important mechanisms in neuronal differentiation [90]. This switch

happens in neural progenitor cells, where PTBP1 protein represses the inclusion of

exon 10 in PTBP2, which in turn leads to exon skipping, forming a transcript with

a premature termination codon (PTC), targeting the transcript to be degraded by

nonsense-mediated decay (NMD) [91, 90]. In contrast, SRRM4 protein enhances
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the PTBP2 exon 10 inclusion when cells exit the cell cycle, allowing the induction

of PTBP2 to promote neuronal development and tissue maintenance [88, 89]. An-

other example of brain-specific regulator is the neuronal splicing factor Nova, which

regulates neuronal pre-mRNA alternative splicing by binding to RNA in a sequence

specific manner [92, 93], and has been identified as a target antigen in patients with

paraneoplastic opsoclonus-myoclonus ataxia (POMA), a human neurological syn-

drome characterized by motor and cognitive deficits [94, 95, 96].

1.5 Next-generation sequencing

Next-generation sequencing (NGS), also known as high-throughput sequencing, is

a series of modern sequencing technologies that allow sequencing of large portions

of DNA and RNA fragments. NGS technology brings faster and low cost sequenc-

ing since it can work with small amounts of material in comparison with the pre-

viously used Sanger sequencing, developed by Frederick Sanger and colleagues in

1977 [97]. NGS technology has revolutionised the study of genomics and molecular

biology, and it has been incorporated into multiple methods such as chromatin im-

munoprecipitation sequencing (ChIP-seq), RNA sequencing (RNA-seq), crosslink-

ing immunoprecipitation (CLIP), whole genome sequencing, de novo genome as-

semby, genome wide structural variation, mutation detection, sequencing of mito-

chondrial genomes and personal genomics. This has also empowered researchers to

detect, among others, causative changes in inherited disorders and complex human

diseases [98, 99].

NGS technology is based on DNA or RNA fragmentation into smaller se-

quences, where millions or billions of them can be processed and sequenced in par-

allel. The length of these fragments can vary among different sequencing platforms.

For example, Illumina HiSeq 2500 supports read lengths of 50, 100 and 150 base

pairs (bp) for single or paired-end reads and Illumina MiSeq supports even longer

reads up to 250 and 300 bp. As new technologies appeared, a number of sequencing

companies emerged. Each developed their own methods and had variable impacts

upon what type of experiments are more feasible. These includes Illumina (Solexa),
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Roche 454, Ion Torrent (Life Technologies product) and SOLiD sequencing [100].

These sequencing platforms can be classified as ’sequencing-by-synthesis’ (SBS)

or ’sequencing by ligation’ (SBL), where the former uses DNA polymerase and the

latter DNA ligase [101].

• Roche 454

The 454 sequencer is one of the first next-generation sequencing technolo-

gies that was introduced by the Roche company in 2005 [102, 103]. It is

a SBS pyrosequencing based sequencer, which relies on generation of light

after nucleotides are incorporated into a growing chain of DNA [104]. The

sequencing preparation starts with ligation of specific sequencing adapters to

DNA fragments. These fragments are then captured in an aqueous droplet,

along with a bead covered with millions of oligomers that are complementary

to ligated adapters. Emulsion-PCR is then used to make multiple copies of

each adapter-ligated DNA fragment, resulting in a chip containing individual

micro wells with beads in which each well contains many cloned copies of

the same DNA fragment [102, 101]. As a dNTP is incorporated into a strand,

an enzymatic cascade occurs resulting in a luminescent signal that triggers

pyrophosphate release, which produces flashes of light that are detected by

a charge-coupled device (CCD). This signal is recorded as a series of light

peaks that can be translated into genomic sequence [105, 102].

• Illumina (Solexa)

This system covers the largest market for sequencing instruments compared

to other available platforms and it was also used for sequencing HT-seq data

presented in this thesis, including RNA-seq and iCLIP related methods. Simi-

lar to Roche 454, Illumina sequencers require a pre-amplification step, which

involves the ligation of specific adapters to DNA fragments on either end.

The surface of a glass flow cell is washed, together with oligos attached that

hybridize to the ends of the fragments [106, 102]. Illumina does not involve

pyrosequencing but it uses the cyclic reversible termination (CRT) instead,

which sequences the template strand one nucleotide at a time through frag-
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ment replication of base incorporation, imaging, washing and cleavage [106].

This approach uses fluorescently labeled 3’-O-azidomethyl-dNTPs to pause

the polymerization reaction of a single nucleotide per cycle and fluorescent

imaging with CCD camera to identify the added nucleotide [107]. After each

imaging cycle, 3’-O-azidomethyl-dNTPs are removed and the molecules are

washed away so the process can be repeated [106].

• Ion Torrent

Similar to 454 sequencer, Ion Torrent also uses a chip containing individual

micro wells with beads to which DNA fragments are attached. However, un-

like 454 which is based on CRT and SNA methods, Ion Torrent approach

relies on a single signal marking the incorporation of a dNTP into an elon-

gating strand. As a consequence, each of the four nucleotides must be added

iteratively to a sequencing reaction to ensure only one dNTP is responsible

for the signal [105]. In addition, the Ion Torrent platform does not use an

enzymatic cascade to generate a signal, but uses a pH sensitive approach that

relies on an electrochemical detection system called an ion-sensitive field-

effect transistor (ISFET), using complementary metal-oxide-semiconductor

(CMOS) microdetectors to detect small changes in pH. These changes are the

result of a hydrogen ion (or proton) release when a nucleotide base is added to

a growing DNA strand, which causes a slight pH change that can be detected

by a CMOS sensor [105, 105].

• SOLiD

SOLiD stands for Small Oligonucleotide Ligation and Detection System

which was developed for parallel sequencing by stepwise ligation process.

The process starts with an emulsion PCR step of DNA fragmented library of

flanked ligated adapters in a similar way as used by 454, but the sequenc-

ing part is entirely different from the previously described sequencing plat-

forms [102]. This one uses SBL approach to utilize DNA ligase, instead

of ’sequencing-by-synthesis’ [108]. Each cycle of sequencing involves the

ligation of octamer probes, where the first two nucleotides represent 16 dinu-
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cleotide combinations including a fluorescent label. There are four different

dinucleotide combinations with a fluorescent tag, enabling labelling of all 16

dinucleotide tags. When a probe anneals adjacent to the adapter, the primer

strands are ligated and fluorescence is captured, corresponding to the ligated

probe. Multiple cycles of ligation, imaging and cleavage are performed us-

ing two ligation events per base, determining the eventual read length, which

significantly decreases the error rates [109].

Due to its cost-effectiveness Illumina is one of the most popular platforms.

Nevertheless, for some applications such as whole genome assembly, other plat-

forms with larger read lengths or lower error rate can be advantageous. All these

sequencing methods use sensitive detectors (CCD, CMOS) and processing systems

that produce raw sequencing data in a textual format known as FASTQ format.

This format contains sequences also known as ’reads’, where each read information

is composed of ID tag, base sequenced, and quality scores for each base [110].

1.6 UV crosslinking technologies to study RBPs in

the context of RNA processing on a genome-wide

scale
Crosslinking with ultraviolet (UV) light is commonly used to create a covalent bond

between proteins and nucleic acid, which can be used to determine contact points

of any nucleobase within DNA or RNA. Absorption of UV light by a molecule in-

troduces energy sufficient to break or reorganize most covalent bonds. When low

intensity light is used, an electron of the nucleobase can absorb a single photon,

which is promoted to the first excited singlet state (Si) [111]. The excited nucle-

obase can either react from singlet state (Si), relax to the ground state, or enhance

intersystem crossing to the first excited triplet state (Ti), which can also react or

decay to the ground state. Crosslinking can happen in both states (Si or Ti) [111].

Different reactions within the protein and the nucleic acid can take place with the

use of continuous UV irradiation. This reaction can occur as amino acid modifi-
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cations (destruction of tryptophan), modifications to the DNA (strand breaks) or

reactions between nucleobases (formation of cyclobutane dimers) [111, 112]. After

the UV light crosslinking, many amino acids can react within a macromolecular

complex. It has been shown that poly A, poly T, poly G, poly C and poly U, with

cysteine, lysine, phenylalanine, tryptophan and tyrosine amino acids are the most

reactive and have the high potential to crosslink to DNA molecules among all com-

mon amino acids [113, 114, 115]. On the individual nucleobases, uridine-cysteine

[116], thymine-lysine [117], 5-methylcytosine-serine, 5-methylcytosine-threonine

[118], and thymidine-tyrosine [119] had the highest crosslinking reactions, which

can also lead to potential biases in the UV crosslinking based methods such as CLIP

[120].

In recent years, there has been great progress and an increase in the number

of methods using UV crosslinking to study protein-RNA interactions. These meth-

ods were first introduced by Gideon Dreyfuss and his group, who used UV light

irradiation to crosslink direct contacts between RNA and proteins that form in vivo

[121]. In order to understand how the binding of RBPs instructs their function, it

is important to identify their binding sites on endogenous transcripts. Many RBPs

bind clusters of short sequence or structural RNA motifs that can be dispersed over

dozens of nucleotides and are therefore difficult to predict computationally [10].

Therefore, experimental methods for transcriptome-wide mapping of protein-RNA

interactions have been developed [6].

For high-throughput sequencing of isolated RNAs it is important to use the

optimal wavelength to efficiently crosslink proteins to RNA and not DNA. For ex-

ample, in iCLIP and other CLIP related methods, it is important that the cells or

tissue samples are irradiated with a ’low energy’ wavelength of 254 nm, and for

PAR-CLIP a wavelength of 365 nm is needed for efficient crosslinking with UV-A

light (see subsection 1.6.1 - PAR-CLIP) [6]. CLIP methods are also based on ’zero-

length’ crosslinking, which allows direct evaluation of contact interactions between

peptides to directly crosslink atoms of the protein to RNA [122].
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1.6.1 Diversity of different techniques to study RNA-protein in-

teractions, gene expression and alternative splicing

• CLIP (also known as HITS-CLIP or CLIP-seq)

The UV crosslinking and immunoprecipitation (CLIP) [38] method was de-

veloped to identify positions of protein-RNA interactions in vivo. CLIP uses

UV light exposure to form a covalent bond between the protein and RNA.

On cell lysis, the protein-RNA complex is immunoprecipitated with an an-

tibody for the RBP of interest [38, 6]. The co-purified RNA molecules are

reverse-transcribed and amplified with the aid of 5’ and 3’ adapters. During

library preparation, the crosslinked RBP is removed through proteinase K di-

gestion, leaving a small peptide on the crosslink site, which impairs reverse

transcription and commonly leads to truncation of cDNAs at the crosslink site.

The original CLIP protocol only amplifies those cDNAs that readthrough the

crosslinked peptide [38] and it was first demonstrated with NOVA proteins

by sequencing cDNA clones with Sanger sequencing [38]. The CLIP method

was later optimised with a more efficient protocol for cDNA amplification and

ligation of barcoded adapters, which enabled amplification of the low concen-

tration of isolated RNA and sequencing of multiplexed libraries. Moreover,

CLIP was combined with high-throughput sequencing (HITS-CLIP), which

allows sequencing of millions of cDNAs in a single run [123] and was later

optimised to a single nucleotide resolution method known as iCLIP [124].

• iCLIP

One disadvantage of the previously mentioned CLIP method is that only those

cDNAs that readthrough the crosslink sites can be amplified. These account

for merely ∼10% of cDNAs [120]. This loss of cDNAs results in less quan-

titative information in the resulting cDNA libraries. To overcome this limita-

tion, individual-nucleotide resolution CLIP (iCLIP) was developed. Reverse

transcriptase can be caused by a crosslinked protein, but also to UV-induced

strand breaks in the RNA, intra-RNA crosslinks, or stuttering of the reverse

transcriptase [125]. The CLIP method purifies short RNA fragments that are
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crosslinked to RBPs, and due to the low amount of UV light used and low ef-

ficiency of UV crosslinking, it is unlikely that additional types of intra-RNA

crosslinks form in the same fragment. Also, given the short size of the RNA

fragments and reverse transcription with efficient transcriptase at 55 degrees,

it is unlikely that stuttering of the reverse transcriptase would lead to many

truncation events. Therefore, cDNAs truncated at the crosslink site, referred

to as ’truncated cDNAs’, are expected to dominate the resulting cDNA library.

The nucleotide on the genome that precedes the mapped cDNAs is thus ex-

pected to correspond to the crosslink site (Figure 1.3). iCLIP also solved

another problem of earlier CLIP approaches, i.e. that PCR over-amplification

of low amount of the sequencing material can generate a high number of

cDNA duplicates. Partly this can be solved by collapsing identical cDNA

reads, but in the more recent version (iCLIP and later) an additional step was

added to the protocol. This allows a better quantification of cDNA molecules,

by including unique molecular identifiers (UMIs) as a random barcode to dis-

criminate unique cDNA products from PCR duplicates [124]. This technique

has now been optimised [126] and broadly accepted for transcriptome-wide

studies of protein-RNA interactions.

• PAR-CLIP

A variant of the CLIP method, Photoactivatable-Ribonucleoside-Enhanced

CLIP (PAR-CLIP), uses point mutations and deletions to identify crosslink

sites of RBPs after the 4SU incubation. Exact crosslink sites are identified

by thymidine-to-cytidine transitions on the cDNAs prepared from immunop-

urified RNPs of 4-thiouridine-treated cells [127] (Figure 1.3). In theory, the

method improves the resolution problem compared to the CLIP method, but

it is limited to cultured cells that are able to incorporate the required ribonu-

cleoside analogs. This method was later optimised for in vivo experiments

known as iPAR-CLIP (in vivo PAR-CLIP) [128]. Among the resolution im-

provements, PAR-CLIP also uses different crosslinking conditions, i.e. UV-A

instead of UV-C light radiation [129] (Figure 1.3).
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• irCLIP

There are many technical challenges that can be improved in available CLIP-

based protocols [130, 131]. One of the main challenges is the standard ra-

dioactive labelling of RBP-RNA complexes that occurs on the 5’ ends of

crosslinked RNA molecules. This can be an obstacle to setup iCLIP in in-

stitutions with restriction on radiation use. Also, the decay of radioactive

reagents can interfere with the signal across experiments [132]. To improve

these limitations, infrared-CLIP (irCLIP) was developed in which an infrared-

dye-conjugated and biotinylated ligation adaptor allows rapid and quantita-

tive analysis of in vivo captured protein-RNA interactions. This step keeps

the same efficiency in ligation reactions as a standard adaptor ligation and re-

duces the time required for protein-RNA complex visualisation [132]. irCLIP

also provides a more stream-lined protocol with a shortened cDNA isolation

process allowing a certain degree of automatisation.

• eCLIP

Enhanced CLIP (eCLIP) was developed to simplify and improve certain tech-

nical steps from the original iCLIP protocol, such as ligation efficiency in li-

brary preparation of RNA fragments and over-amplification of cDNAs. Sim-

ilar to irCLIP, eCLIP skips the radioactivity step and adds two ligation re-

actions to improve ligation efficiency. In the first step, an indexed 3’ RNA

adapter is ligated to the crosslinked RNA fragment, still on the immunopre-

cipitation beads, and in the second step, a 3’ single-stranded DNA adapter

is ligated after reverse transcription [133]. The next advantage of the eCLIP

method is that it decreases the background noise by generating size-matched

input controls called mock eCLIP [134]. A pre-immunoprecipitation RNase-

treated lysate control is prepared in parallel with the main experiment, follow-

ing the same isolation procedure like for the protein of interest. This control

serves as a non-specific background signal that can be used as a normalisation

step in RBP binding site identification [133]. Another difference compared to

other methods is that the eCLIP library is sequenced with paired-end cDNA
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reads. This method was used for the datasets submitted to the Encyclopedia

Of DNA Elements (ENCODE), where eCLIP is systematically applied to all

known RBPs in human HepG2 and K562 cells. The method is quite recent

and therefore there are few publicly available analyses yet.

1.6.2 Methods to study gene expression and alternative splicing

To better understand the mechanism of RBPs, it is important to measure transcript

abundance and alternative splicing.

• Microarrays

Microarrays were first designed to measure gene expression by targeting al-

ready known isoforms through preparation of DNA oligonucleotide probes

that correspond to a specific gene region [135]. This approach did not give any

alternative splicing information: this came later with the annotate method,

which aims to discover new alternative exons [58] and gene annotation of

different isoforms [136]. The limitations of microarrays include their poor

quantification of lowly and highly expressed genes, and the fact they can

only detect a sequence that the array was designed to detect. This means that

unannotated genes will not be detected by microarrays because there is no

complementary sequence on the array [137].

• RNA-seq

The RNA-seq brings robust analysis of gene expression across the transcrip-

tome, which enables us to detect novel features of RNA expression at a high

resolution [109]. RNA-seq describes the full length of known and novel tran-

scripts to investigate all the RNAs present in a sample, including messenger

RNAs (mRNAs), and long noncoding RNAs, along with other untranslated

regions [138]. The method has a number of advantages over microarrays,

such as increased specificity and sensitivity, discovery of single nucleotide

variants (SNVs), detection of different transcript isoforms and RNA splicing

events, and since it does not require reference genome assembly it can be used
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for any organism.

The basic workflow of the RNA-seq protocol involves a collection of the sam-

ple of interest, RNAs isolation, cDNA fragmentation, size selection, adapter

ligation and RT-HT-sequencing, which is followed by computational analy-

sis. In general, RNA is first isolated from tissue and can either be kept as a

whole, including ribosomal-RNA (rRNA), or filtered by poly-dT hybridiza-

tion for 3’ polyadenylated RNA (poly(A)+ RNA). Poly(A) selection requires

a high proportion of mRNA, where the 3’ ends of transcripts are protected

from degradation, leading to a higher number of reads at the end of the tran-

script. In this case rRNAs, which represents over 90% of the RNA in a cell,

and also noncoding RNAs are depleted in the sample [139]. In the next step,

fragmentation and size selection are performed to reverse transcribe the sam-

ple into a library of cDNA fragments with ligated adaptors. The library is

then amplified and sequenced with the NGS to obtain short sequences from

one end (single-end sequencing) or both ends (paired-end sequencing). The

size of the read can vary in length from short (∼30 nt) to hundreds of nu-

cleotides, depending on the sequencing platform (see section 1.5) and library

preparation [138, 140, 141].

Another essential factor in designing an RNA-seq experiment is the number

of replicates. The number of technical and biological replicates in the exper-

iment also depends on the amount of technical and biological variability, as

well the desired type of statistical analysis [142]. Increasing the number of

replicates minimizes the false positives and usually leads to more robust out-

comes, ensuring meaningful biological interpretation of the results [143, 144].
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Figure 1.3: Schematic description of the CLIP-related protocols (HITS-CLIP, PAR-CLIP
and iCLIP/eCLIP/irCLIP).

All protocols are based on crosslinking with ultraviolet light (UV), with
an additional incubation with 4-thiouridine (4SU) for PAR-CLIP. After RNase
digestion and immunoprecipitation (IP), RNA-protein complex is digested
with proteinase K, and the RNA is reverse transcribed with a primer including
barcode. Different types of cDNAs are generated: readthrough in HITS-CLIP,
readthrough with T-to-C mutations in PAR-CLIP and truncated cDNAs in
iCLIP/eCLIP/irCLIP. All cDNAs are then amplified with PCR and sequenced
on a high-throughput sequencing platform.
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1.6.3 Analysis of CLIP-related data

Over the years, CLIP has become a state-of-the-art method to study RNA-protein

interactions. There are certain protocol differences between the CLIP related meth-

ods but the main workflow of data analysis is very similar in all these methods (Fig-

ure 1.4). After the initial quality check and filtering of sequenced cDNAs, they are

pre-processed for adapter removal and trimming of low quality cDNA reads if nec-

essary. Then, pre-processed cDNAs are aligned to the reference genome followed

by the peak-calling step to identify enriched binding sites associated with the RBP

of interest. This may be followed by motif analysis or prediction models to improve

the genome-wide coverage of binding sites [145]. In this section, I will focus on the

data analysis and specifications of CLIP-related methods. There are many different

tools available for each step of analysis, but I will give a short overview of the most

recent ones and focus on those that I used in this thesis.
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Figure 1.4: Overview of the general analysis workflow for CLIP related methods.

The workflow starts with the unprocessed input data (coloured in blue)
and is followed by the essential steps (red boxes) of analysis, together with
optional processing steps (yellow boxes) that are not part of every CLIP related
method. The final step of processed peak calling data can be followed by
additional analysis (grey boxes) such as motif discovery, prediction models or
differential analysis of comparing two datasets with different conditions.
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1.6.4 Sequence quality control

In the first step of data analysis, we want to make sure that the quality of sequencing

data is suitable for further analysis. One of the most popular tools that is used

for all types of high-throughput sequencing data is the FASTQC tool [146]. The

FASTQC tool can be used as a desktop application, or it can be integrated as a part

of the bash script pipeline. It provides simple control steps to check whether the

sequencing data has any errors before further analysis. For example, there can be

some sequence quality drop at the end of sequencing cycles: this can be resolved

with additional trimming steps in the pre-processing part of the analysis. Here are

the main reports from the FASTQC quality check, which are the essential part of

every high-throughput sequencing pipeline.

• Per Base Sequence Quality shows a quality overview across all cDNA se-

quences for each position that comes from a raw sequencing FASTQ file.

• Per Sequence Quality Scores checks if there is a subset of sequences that

have lower quality scores compared to other subsets.

• Per Base Sequence Content shows the proportion of bases for each position

across all sequences to see if there are any general sequence biases in the

library.

• Per Base GC Content plots the GC content for each position compared to the

overall GC content calculated from the observed data. An unusually shaped

distribution of GC content at certain positions could indicate that there is a

contamination of an over-represented sequence or a systematic problem dur-

ing the sequencing of the library.

• Per Sequence GC Content measures the total GC content across each se-

quence and compares it with the observed GC distribution. A subset of se-

quences with higher or lower GC content could indicate that there is a con-

tamination from another species.
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• Per Base N Content represents the proportion of unidentified bases (N, any

base) coming from the sequencer at each position across the library.

• Sequence Length Distribution can help to evaluate a length distribution af-

ter trimming or to determine a trimming cut-off if needed depending on the

sequencer, as some generate sequences of the same length and others a variety

of different lengths.

• Duplicate Sequences shows the level of duplicated sequences. If this is high,

it could be a result of PCR over-amplification.

• Overrepresented Sequences allows us to detect if there is a contamination

in our library. This function will also look for matches across a database for

the most common contaminants.

• Overrepresented Kmers will report a positional enrichment of kmers across

the library.

1.6.5 Pre-processing

• Trimming

There are cases in which we have additional adapter sequences at the end

or beginning of cDNAs or when the sequencing quality significantly drops

towards the end of the cDNAs. With trimming, we can remove those parts

if they are consistent across the library or read-wise trimming to increase the

number of mapped cDNA reads. This can be done with (FASTX-Toolkit) or

by any sequence trimming tool.

• Adapter removal

In the third step of the iCLIP protocol there is a on-bead ligation of the 3’

adapter. This sequence needs to be removed before mapping. The adapter

sequence can be found at the end of the FASTA sequence and it can differ

between CLIP-related methods. Two of the most popular tools for adapter re-

moval are the FASTX-Toolkit adapter removal and Cutadapt [147]. FASTX-

Toolkit comes with a lot of functions such as trimming, format converting,
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duplicate removal and even quality control, whereas Cutadapt is strictly for

adapter removal and has many other features such as multi-adapter removal

from 5’ and 3’ in a single run. Cutadapt also supports 454, Illumina and

SOLiD (colour space) datasets and it is also a part of the ENCODE project

pipelines for all high-throughput sequencing datasets [147].

• Random and experimental barcode sequence swap/removal

The 3’ adapter ligation in the standard iCLIP protocol also introduces an ad-

ditional random barcode sequence and an experimental barcode. The experi-

mental barcode is used to demultiplex samples from a single sequencing lane,

and the random barcode is used to identify PCR amplification duplicates. In

the iCLIP protocol, there is a random barcode positioned at the positions 1-4

nt and 9-12 nt and the experimental barcode is positioned at 5-8 nt. Pro-

cessing of this barcode can be done by using a custom script (see Methods)

that removes the experimental barcodes and adds the random barcodes into a

header of the FASTQ file format.

• Ribosomal RNA and transfer RNA removal

Ribosomal RNAs (rRNAs) and transfer RNAs (tRNAs) are types of RNA

molecules that are part of the translation processes from mRNA molecules to

proteins. During the immunoprecipitation (IP) step there are abundant RNAs

such as rRNAs and tRNAs that can bind non-specifically to the Dynabead-

antibody-protein-RNA complexes [148]. In the CLIP and iCLIP protocol,

only RNAs that are crosslinked to the RBP are selected, but there can still

be some contamination of small RNAs such as rRNAs and tRNAs. These

can be filtered out by mapping the cDNA reads directly to the rRNA and

tRNA sequences that can be found in UCSC Table Browser, and removing

hits without any mismatches. Preferably, this is done before the mapping to

the remainder of the reference genome (Figure 1.4).

26

http://cutadapt.readthedocs.io/en/stable/guide.html
https://genome.ucsc.edu/


1.6.6 Mapping to reference genome

Most of the CLIP-related experiments are with well-annotated organisms, such

as humans or mice, and the mapping process can sometimes be the most time-

consuming step for the processing power. There are several mapping tools available

for all kinds of high-throughput sequencing data. One of the most popular and

fast tools is the Bowtie alignment software [149], which allows fast mapping to

the genome or transcriptome. One disadvantage of Bowtie is that it cannot align

cDNA sequences to splicing junctions. If we know that the targeted protein binds

in the nucleus to pre-mRNA, Bowtie will probably be the tool of choice. Mean-

while, the TopHat alignment tool [150] overcomes this limitation by re-mapping all

unmapped cDNAs from Bowtie to the spliced junctions, which is the most time-

consuming step. Recently, the STAR alignment tool became a method of choice for

RNA-seq data [151], and also across other high-throughput datasets that are also

part of the ENCODE project. The STAR alignment tool guarantees the fastest and

most accurate mapping across splice junctions [151, 152]. The only disadvantage

of STAR is that the genome needs to be pre-built. This consumes a lot of time

and memory and needs an enormous amount of pre-allocated memory for mapping

compared to other alignment tools.

Besides using the most suitable tool, it is important to carefully adjust param-

eters to our needs. For example, in my pipeline (see Methods) and most of the

publicly available pipelines, multiple hits are allowed but only one is selected by

using score counts for the best fit. In cases of multiple hits with the same score, a

random one is selected. Some protocols such as eCLIP are also designed with pair-

end cDNA sequencing, so it is important that the alignment tool supports pair-end

mapping.

1.6.7 Removal of PCR duplicates

After the mapping, it is important to remove PCR duplicates resulting from PCR

amplification by collapsing cDNAs that have the same random barcode and map to

the same genomic position. If we swapped the random barcode with the header

of the FASTQ file, we can simply use a bash command from a mapped BED
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file format: cat mapped.cDNAs.BED | sort -k1,1 -k2,2n -k5,5

-k6,6 | uniq. This command will sort mapped cDNAs by genomic positions

and random barcodes that are in the 5th column of the BED file, and every dupli-

cate will be removed. There are other available tools with extra features, such as

considering sequencing errors occurring in the region where the random barcode

is positioned. But this is not the essential part of the analysis, since the random

barcodes are positioned at the beginning of each sequence, whereas the sequencing

errors are increased towards the end of the cDNA sequence [153]. For the EN-

CODE eCLIP pipeline there is a python script ’barcode collapse pe.py’ available

on GitHub. This script will remove PCR duplicates from the BAM file after map-

ping, but it is important that random barcodes are included at the end of the FASTQ

header separated with the ’:’ character. Another popular tool is FastUniq which is a

fast de novo tool for PCR duplicate removal from pair-end cDNA reads. It identifies

duplicates by comparing sequences between read pairs before the data is mapped to

the reference genome. However, it has been shown that the majority of duplicates

(70-80%) are un-mappable or come from the same genomic positions [154].

1.6.8 Assignment of protein binding sites

How to correctly assign a protein-binding site is one of the most important and chal-

lenging parts of the CLIP data analysis. Firstly, there is no standardisation for a neg-

ative control for the CLIP-related methods. For comparison, some other traditional

RNA immunoprecipitation and sequencing methods such as RIP-seq use a non-

targeted approach to measure the background noise as control. A similar approach

is taken for chromatin immunoprecipitation and DNA sequencing (ChIP-seq) meth-

ods where the affinity of the RBP is independent from the transcript abundance be-

cause they look at DNA binding of RBPs. However, normalisation is crucial to

separate specific and unspecific bindings from the high signal to noise ratio data

[155]. This can also be problematic in the CLIP methods since we do not know if a

high enrichment comes from strong RBP-RNA interactions or from artefacts such

as PCR over-amplification or from high gene expression which means that bind-

ing sites with low occupancy can outnumber highly occupied binding sites in terms
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of sequencing reads. One option to overcome this limitation of detecting binding

sites with low occupancy on highly expressed transcripts, is by using RNA-seq data

in parallel to correct for the transcript abundance or by performing an unspecific

control experiment such as mock eCLIP in the eCLIP protocol [133].

Thus, a large proportion of CLIP cDNAs still represent protein-RNA interac-

tion sites, and highly occupied binding sites appear as clusters of crosslink events

if the CLIP library is of sufficient complexity, which makes it easier to identify true

binding events [6]. Approaches to identify such clusters are based on peak calling

algorithms to discriminate high-affinity binding sites from unspecific binding sites

in a genome-wide manner. This is done after pre-processing the raw data, where

we want to first discard unspecific peaks from the background noise and cluster

the enriched ones into significant clustered regions over a certain threshold. This

signal-to-noise ratio can be improved by avoiding PCR amplification artefacts [6],

normalising to input RNA or RNA-seq [156, 6, 134], using different controls such

as non-crosslinked control samples for background RNA [155], and by increasing

the number of biological replicates.

There are different types of publicly available tools for CLIP/iCLIP/eCLIP/irCLIP

or PAR-CLIP data analyses with different peak calling approaches (see Table 1.1):

• Piranha

Piranha is a method for binding site identification that can be applied to all

CLIP-related methods as well as RIP-seq data. It supports a nucleotide reso-

lution by using cDNA-starts as crosslinking positions with external covariant

data support of measured transcript abundances, which can improve the peak

identification process [157]. Piranha assumes the majority of sites to be noise,

so the sum of all sites can be used to fit a background model [155]. An ap-

propriate binning window size needs to be defined by the user, into which

Piranha adds cDNA counts. After the binning of cDNA counts, it models

the cDNA count within bins by using a zero-truncated negative binomial dis-

tribution or a zero-truncated negative binomial regression model if external

covariant data such as RNA-seq are included [157]. It can also perform a sta-
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tistical analysis to measure p-values without any control data but it does not

support any statistical measurements together with biological replicates.

• CLIPper

CLIPper was first developed to identify clusters representing binding sites

for Rbfox1 and Rbfox2 [158] and later became a part of the ENCODE stan-

dard pipeline. The program requires genome annotation to correctly separate

thresholds on a gene level. The peak significance is defined by the number

of cDNAs and gene length, relative to the number of other cDNAs from the

same gene. There is one additional feature to improve significance: the user

can pre-define whether the targeted RBP binds to mRNAs or pre-mRNAs.

For this purpose, there are pre-compiled regions of mRNAs and pre-mRNAs

from Ensembl annotation for mouse and human [134, 159]. Like Piranha,

CLIPper supports a statistical approach on a single dataset but there is no

option to incorporate biological replicates.

• JAMM

JAMM (Joint Analysis of NGS replicates via Mixture Model clustering) is a

universal peak calling bash script implemented by R and Perl. It can integrate

information from multiple replicates in order to find consensus peaks, de-

termine accurate peak widths and resolve neighbouring narrow peaks [160].

JAMM contains six peak finding steps: Extended cDNA reads count, Esti-

mate Optimum Bin Size, Scan Chromosome in Non-overlapping Bins, Merge

Enriched Bins into Enriched Windows, Determine Peak Width, Peak Scoring

and Filtering. The main finding step searches for enriched windows com-

pared to the background noise clusters. Clusters are normalised locally and

can adapt peaks to different lengths by using the cost function that optimises

the bin width [161]. For the clustering, it uses multivariate Gaussian models

[162]. These models support peak calling across biological replicates [160]

but do not support differential analysis across different conditions and do not

take into account mappability-related features, such as GC content. JAMM

was originally designed for the ChIP-Seq method and was tested on ENCODE
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data among other available tools [160]. It can be applied to any other related

datasets or protocols with the additional step of separating the data into two

datasets by their strand orientation, and then running it separately for each

strand.

• Pyicoclip

Pyicoclip is another implementation of a peak calling tool that uses a False

Discovery Rate algorithm (FDR) to discover significant clusters from mapped

cDNA reads across the genome [163]. Originally the method was designed

for CLIP data, but it can be applied to any CLIP-related method. One dis-

advantage is that it uses whole cDNA coverage for peak discovery, which

lowers the resolution for methods in which RBP interactions are determined

by truncated cDNAs such as iCLIP. The peak calling algorithm also supports

custom genomic regions from the input file and comes with a pyicoregion

function which generates exploratory regions from current annotation into in-

tergenic, intragenic, exonic, intronic and TSS sides of any genome that is in

GFF format by Sanger Institute standards [164].

• ASPeak (an abundance sensitive peak detection algorithm)

ASPeak (Abundance Sensitive Peak Detection Algorithm) is a peak calling

pipeline implemented in Perl to identify binding sites [165]. The algorithm is

sensitive to differential expression datasets that uses RNA-seq data for the ex-

pression measure as an additional input which increases the sensitivity of peak

detection from low-abundance transcripts. Originally it was tested to success-

fully detect binding sites for the exon junction complexes in the predicted -24

nt position upstream from exon-exon junctions [166]. It uses genomic inter-

vals that can come from a custom BED format annotation or additional source

such as RefSeq to regions separated into coding exons, 5’ untranslated region

(5’ UTR), 3’ untranslated region (3’ UTR) and introns. For each genomic

interval a negative binomial distribution is used to detect significant binding

sites with dynamic window sizes. For peak calling without RNA-seq input

the algorithm uses a local window approach, the size of which can be defined
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by users. All the input data needs to be in BED or BAM format from any

variant of CLIP, RIP-seeq or RNA-seq datasets. ASPeak can run locally or it

can be parallelized to multiple cores or cluster computers for advanced users

[165].

• PIPE-CLIP

PIPE-CLIP was built on a Galaxy online framework as part of the complete

pipeline to reliably identify binding sites and process the raw CLIP, PAR-

CLIP and iCLIP data. It can be used just as a peak finding tool that only

accepts the BAM file format. PCR duplicate removal can also be applied in

the peak finding step that uses a zero-truncated negative binomial model for

identifying the significantly enriched peaks [167].

• CLIP Tool Kit (CTK)

CTK is a software package of tools for CLIP data analysis from pre-

processing raw reads including PCR duplicate collapse. However, its main

function is to define clusters and peaks from all variants of the CLIP method

and it works on single-nucleotide resolution. It also supports the PAR-CLIP

method that detects the crosslinking position by T-to-C transitions across cD-

NAs. For the peak calling step, it uses a ’valley seeking’ algorithm. The first

stage of the algorithm looks for the local maximum peaks of overlapping cD-

NAs. Two local peaks are considered to be significant only when they are

separated by a valley of depth d=h-v, where h is the smallest peak and v is

the cDNA coverage at the valley position [168]. The threshold for the valley

depth can be set by the user to adjust the stringency of peak discovery.

• iCount

iCount is a Python module and works as command-line interface and as a

web-based platform. It provides a large number of functions to process the

iCLIP data: demultiplexing and adapter removal, mapping to a reference

genome, identifying protein-RNA crosslink sites by using a False Discov-

ery Rate (FDR) algorithm to discover significant peaks and merging them
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into crosslink clusters (Figure 1.5), and grouping of individual experiments

into large datasets. As downstream analyses, it offers RNA-map visualisa-

tion showing the positional distribution of crosslink sites relative to genomic

landmarks and kmer enrichment analysis. It supports two types of normalisa-

tion across the genome, one at the transcript level and the other by genomic

regions. The window size for peak calling and clustering needs to be set in

advance, and iCount does not support differential analysis between conditions

[169].

Figure 1.5: Example of PTBP1 iCLIP cDNA-starts (peaks) and binding sites (clusters) of
crosslink positions on PTBP2 transcript defined by iCount in UCSC Genome
Browser.

The crosslinking positions were identified by iCount with peak calling
tool using 0.05 FDR threshold within 15 nt window size and were merged into
crosslink clusters within 15 nt window size. The number on y-axis represents
a maximum number of raw cDNA-starts.
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1.6.9 Validation of identified clusters

It is very difficult to say which of the peak calling approaches is the most suitable

since there are no standard ways to validate the results. Mostly they are validated

by the number of significantly detected clusters or by reproducibility between repli-

cates. But these approaches lack biological validation, instead they are telling us

which statistical model better fits the data. Another way to validate the data is to

include a motif enrichment across identified clusters [167, 134, 168] but first we

need to know what the binding motifs of our target RBPs are.

1.6.10 Motif discovery

After the binding site assignment, it is important to understand the specificity of the

RBP. One way is by first discovering motifs that are specifically recognised by the

protein of interest. This step is very challenging since it is highly dependent on the

previous peak calling step, and so far only about 15% of motifs from known RBPs

have been discovered [170]. The number of discovered motifs is even lower in other

studied organisms [156].

• DREME

DREME (Discriminative Regular Expression Motif Elicitation) is a software

package and also a web-based platform to discover motifs from FASTA se-

quences. It is part of the MEME Suite, which collects software packages

for all kind of motif-based sequence analysis. The basic input is a positive

(target) and negative (control) set of sequences, but it can also work without

controls by shuffling the target set to provide a control set. For the statistics,

it uses Fisher’s Exact Test, which determines significance of each discovered

motif from the positive set compared to the control set with the significance

threshold that can be set by user. It was designed to discover short motifs (up

to 8 nt) in a very short time. When we analyse the RNA sequence data, it

is important that we use the -norc option, which searches the given primary

sequences in a single direction and also to set the minimum and maximum

lengths of motifs to optimise the processing time [171].
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• Homer

HOMER (Hypergeometric Optimization of Motif Enrichment) is a software

package for next-generation sequencing or microarray data analysis from

genome-wide experiments, such as ChIP-Seq, GRO-Seq, RNA-Seq, DNase-

Seq, Hi-C, CLIP, iCLIP and more. It is based on a Unix platform written in

Perl and C++, and its primary function is to discover de novo motifs from

large datasets. The motif discovery algorithm uses two types of inputs. The

first is a target sequence of interest, and the second is a background sequence.

The background sequence can also be produced by HOMER from a random

collection of nucleotides, but this can be very biased since the real distribu-

tion in the genome/transcriptome is not random and will find motifs that may

not be significant. Therefore, the compilation of an appropriate set of back-

ground sequences is very important and can be either done with other tools or

using another dataset as control data [172]. HOMER supports a discovery of

extremely long motifs (up to 20 nt) but to optimise its processing power for

our needs, it is better to specify the maximum length in advance. The motif

enrichment is measured by the cumulative hypergeometric distribution or the

cumulative binomial distribution when using a large dataset. Originally it was

designed for DNA analysis but it can also be applied for RNA motifs. It has

been used to determine miRNA seeds from mRNAs and RNA binding motifs

from CLIP data. For the CLIP data, it can search for motifs directly from

the RNA sequences by using ’-rna’ option which results in strand-specific

analysis and replaces ’T’ with ’U’ in the motif results [173].

• Zagros

Zagros is a motif discovery software that was designed to characterize the

RBP binding sites from CLIP-related methods. Previous studies showed that

RNA secondary structure plays an important role in RBP binding site selec-

tion [174, 175]. In comparison to other motif discovery methods, Zagros

uses secondary structure from input sequences to improve the accuracy of

motif discovery. It has been shown that RBP binding sites show less struc-
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tural constraints for RBPs with highly specific sequence motifs compared to

RBPs with less specific motifs [176]. Zagros is using McCaskill’s algorithm

[177] to measure pairing probability around crosslink sites. These predic-

tions of pairing probabilities are then included into a final model together

with crosslink events to perform the expectation maximization algorithm for

motif discovery. So far it has been tested on CLIP, iCLIP and PAR-CLIP

methods for 40 RBPs from human and mouse [176].

1.6.11 Prediction of protein binding sites

• GraphProt

GraphProt is a computational framework that uses machine learning models

to identify RBP binding sites from experimental data. Like any other machine

learning tool, it first needs to build a training set from the input data. But it

also includes the RNA sequence and structure characteristics into a graph-

kernel strategy to obtain a large set of features from the dataset [156]. The

core of the model is to extend a similarity of kmer motifs and structures into

graphs that can be applied to Support Vector Machine (SVM) [178] and Sup-

port Vector Regression (SVR) [179] for classification and regression analysis

[34]. For the correct classification of binding site predictions, the tool requires

two sets of training data: one needs to be the positive dataset of bound sites

and the negative of truly unbound sites [156]. This method has been tested on

CLIP, PAR-CLIP and iCLIP for several RBPs including PTBP1.

1.6.12 Differential analysis

• DESeq/DESeq2

DESeq/DESeq2 is an R package from Bioconductor (open source software

for bioinformatics) for the analysis and comprehension of high-throughput

genomics data (bioconductor.org) [180]. DESeq estimates the variance mean

dependence that needs to be provided by the count dataset from high-

throughput sequencing assays [155]. It was originally designed to test for

differential expression based on a model using the negative binomial distribu-
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tion from RNA-seq data, but the same model can also be applied to any type

of CLIP data. This can be done with a few additional steps to prepare the

CLIP data in the right format. The input count table can be generated with

the htseq-count software that uses crosslink positions as the input and clusters

of binding sites as genomic regions. The essential part of differential analysis

is also to have multiple biological replicates in order to measure significant

changes [180].

• Pyicoenrich

Pyicoenrich is a part of Pyicoteo software package and supports enrichment

analysis on any type of sequencing data from two conditions. Pyicoenrich

will report basic scores between conditions and the significance of the differ-

ence by comparing the overlap of sequences between enriched regions. It also

supports multiple replicates and presents the data conditions with MA-plots

with a log2 ratio of normalised cDNAs in a similar way as DESeq (Pyicoen-

rich online reference).
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1.7 Aims of the Thesis

In recent years CLIP methods have become a state-of-the-art technique for

transcriptome-wide studies of protein-RNA interactions. It is thus crucial to un-

derstand the technical aspects of the method that need to be taken into account

when interpreting the data. The main focus of my thesis is to first explore variants

between different CLIP and iCLIP techniques to better understand technical biases

behind the methods. My aim is to provide a comprehensive assessment of the in-

tricacies of a ’good’ CLIP dataset, and stream lined computational analysis, which

are required to correctly assign protein-RNA binding sites.

In iCLIP, the start positions of cDNAs identify the protein-RNA crosslink

sites, but the correct assignment of binding sites through iCLIP remains challeng-

ing [29, 181, 182]. A recent study found that the positions of cDNA-starts de-

pend on cDNA length in several iCLIP datasets and proposed two alternative in-

terpretations: the first recommended use of cDNA-centres due to a hypothetical

prevalence of readthrough cDNAs, while the second proposed that non-coinciding

cDNA-starts still correctly assign the crosslink sites [181]. The second hypothe-

sis was mentioned in the discussion but was not examined, and the study focused

on the first interpretation. Since the previous analyses show that non-coinciding

starts are present in most, if not all of datasets produced by iCLIP and its variant

methods (CITS-CLIP, eCLIP, FAST-iCLIP), and thus it was unclear if cDNA-starts

or cDNA-centres should be used for analysing resulting data, I decided to inves-

tigate the second hypothesis in depth. Previous studies used a limited analysis of

cDNA deletions to support the use of cDNA-starts [29]. In this thesis, I under-

took a more systematic comparative analysis of many different features in cDNA li-

braries, which provided more thorough evidence that non-coinciding sites are valid

crosslinking positions. Through this detailed analysis, I developed experimental

and computational solutions to improve binding site assignment from iCLIP data.

I focus on polypyrimidine tract-binding protein 1 (PTBP1), and the exon junction

complex protein eIF4A3, but the findings are relevant to iCLIP studies of all RNA-

binding proteins. The two studied proteins are particularly challenging, as pointed
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out by a recent study showing that the start positions of long and short iCLIP cDNAs

do not always coincide in their iCLIP data [181].

1. I assessed the mechanisms for this alignment discrepancy, and presented the

following findings:

1.1 I used a new a modified iCLIP protocol developed in our lab to experimen-

tally identify the readthrough cDNAs, which shows that only a minor portion of

our PTBP1 iCLIP cDNAs read through the crosslink site, and therefore they do

not explain the cause of the non-coinciding cDNA-start sites. I further used the

insights gained from analysis of PTBP1 data to examine the binding regions of the

exon-junction complex (EJC) by using four different publicly available and newly

generated iCLIP or CLIP datasets.

1.2 I examined the ends of cDNAs to discover that the non-coinciding cDNA-starts

are caused by constrained cDNA-ends, which result from the RNA sequence and

structure constraints of RNase cleavage. Therefore two experimental aspects of

iCLIP are crucial for correct assignment of binding sites: broad distribution of

RNase cleavage sites, and a cDNA library containing a broad range of cDNA sizes. I

discussed how this is achieved in iCLIP, and showed that by following these iCLIP

guidelines, a more comprehensive set of crosslink sites of eIF4A3 and PTBP1 is

identified.

1.3 I analysed exon-junction complex (EJC) that binds upstream of exon-exon

junctions with nucleotide precision, by using two independent methods (CLIP and

iCLIP) to find precise crosslinking peaks that align to exon-exon junctions across all

exons. I then demonstrated that EJC also forms additional crosslinks over a broader

surrounding region.

2. I developed CLIPo, a computational tool for quality control of iCLIP, which

reveals how technical variations between experiments affect the specificity of as-

signed binding sites. I examined multiple datasets for proteins produced by dif-

ferent variants of CLIP or iCLIP to reveal major effects of sequence constraints at

cDNA ends or starts, cDNA length distribution and non-specific contaminants.

2.1 I tested whether CLIPo can detect constraints across different experiments that
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were already identified through previous analysis. For this purpose, I developed new

computational pipelines to visualise the impact of these features on the sequenced

cDNA libraries, which helps to correctly interpret the assigned binding sites.

2.2 The assignment of the RBP binding site is the crucial step to characterize RBPs

and their functions. Here, I focused on optimal peak calling algorithm window

sizes by using motif enrichment and RNA-map approach to measure specificity for

PTBP1.

2.3 In addition to the technical insights, I provided mechanistic insights into PTBP1-

dependent splicing regulation. Past studies examined PTBP1 binding at narrowly

defined positions when attempting to explain its position-dependent mechanisms of

splicing regulation [53, 61]. I now find that PTBP1 most often regulates splicing in

three distinct modes of its position-dependent activity.

3. To investigate the spliceosomal interactions with other RBPs on pre-mRNA, I

examined a new dataset from spliceosome-iCLIP method.

3.1 I hypothesise that cDNAs that end at the end of introns are truncating at the

branch point (BP) position during splicing.

3.2 I developed a new pipeline to detect BPs genome wide and validate these results

with comparison of predicted BP, sequence motifs, RNA-maps with other RBPs.

3.3 I applied a large dataset of eCLIP data to identify known and novel RBP targets

that are interacting with BPs.

To summarise, I present several technical advances that aid the assignment

of RNA binding regions of RBPs from CLIP and iCLIP-related data, and described

how such binding regions can provide insights into the function of PTBP1. Applica-

tion of these approaches will be particularly useful for studies of RBPs that regulate

splicing. I also demonstrate the importance of conditions of library preparation that

can lead to constrained cDNA-ends, which result in non-coinciding cDNA-starts.

More importantly, I demonstrated how these effects can be minimised by optimis-

ing iCLIP conditions, and how they should be taken into account during computa-

tional analysis to ensure correct assignment of binding sites. Finally, I examined a

spliceosome-iCLIP method to gain new insight of splicing machinery.
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Chapter 2

Methods

All the source codes used for the analyses in this thesis are available at the following

GitHub repository: https://github.com/nebo56/PhD-Thesis.

2.1 Computational tools and working environment

for data analyses

All the data analyses were mainly performed by the usage of following software

and packages.

• Programming languages: R (3.1.0), Python (2.7), Unix based bash scripting

• Software: Samtools, Bedtools, Bowtie, Tophat, Cufflinks, STAR, Cutadapt,

FASTXtools, FASTQC

• Bioconductor packages: DESeq, DEXseq, JunctionSeq

• Other R packages: ggplot2, smoother, heatmaps2

• Integrated development environments: Aptana, R-studio

• Operating System: Ubuntu Linux (16.04 LTS), CentOS Linux (release 6.5)

https://github.com/nebo56/PhD-Thesis
https://github.com/nebo56/PhD-Thesis


2.2 Mapping and pre-processing of high-throughput

sequencing data

2.2.1 CLIP, iCLIP, irCLIP, eCLIP and spliceosome-iCLIP

The data produced by modified iCLIP protocol with additional 5’ marker for PTBP1

and eIF4A3 experiment in chapter 3 was analysed separately. I separated cDNA

reads containing ’CAGTCCGACGATC’ sequence from Illumina 5’ adapter at the

beginning of each read. These sequences were marked as ’readthrough cDNAs’ and

were analysed separately.

1. Trimming of the adapter sequences

Before mapping the cDNAs, I removed unique molecular identifiers (UMIs)

and trimmed the 3’ Solexa adapter sequence. Adapter sequences were

trimmed with the FASTX-Toolkit (version 0.0.13) adapter removal soft-

ware, using the following parameters: fastx clipper -Q 33 -a

AGATCGGAAG -c -n -l 26 -i INFILE -o OUTFILE. For reads

that did not contain parts of the adapter sequence (incomplete cDNAs), the

’-C’ parameter was used, and they were analysed separately. All sequences

shorter than 26 nt (17nt sequence + 4 nt experimental barcode + 5 nt random

barcode) were isolated from the analysis to avoid multiple mapping bias.

2. Random barcode removal

I used a custom python script that removes experimental barcodes and in-

cludes the random barcodes into the read names within the FASTQ file (see

GitHub).

3. Mapping with Bowtie alignment software

To map CLIP, iCLIP, irCLIP and eCLIP sequence data for PTBP1 and

U2AF65 (in all chapters), I used the UCSC hg19/GRCh37 genome assembly

and the Bowtie2 (version 2.1) alignment software with default settings. More

than 80% of all cDNAs from the published and newly generated iCLIP data

mapped uniquely to a single genomic position. The first 9 nt of the sequenced
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iCLIP read correspond to the barcode. This is composed of the experimental

identifier, which allows to separate experimental replicates, and the unique

molecular identifiers (UMIs), which allow the avoidance of artefacts caused

by PCR over-amplification of different cDNAs [124]. I used these UMIs to

quantify the number of unique cDNAs that mapped to each position in the

genome or transcriptome (for eIF4A3 iCLIP dataset) by collapsing cDNAs

with the same UMI that mapped to the same starting position to a single

cDNA. For the analysis described in chapter 3, I have separated cDNAs into

four different length classes to retrieve a similar number of cDNAs per each

class: <30 nt, 30-34 nt, 35-39 nt or >40 long after adapter trimming.

4. Mapping with STAR alignment software

In chapter 5, to map eCLIP sequencing data for all RBPs, I used

GENCODE (GRCh38.p7) genome assembly and the STAR alignment

(version 2.4.2a) with the following parameters taken from the EN-

CODE pipelines section: STAR --runThreadN 8 --runMode

alignReads --genomeDir GRCh38 Gencode v25 --genomeLoad

LoadAndKeep --readFilesIn read1, read2, --readFilesCommand

zcat --outSAMunmapped Within --outFilterMultimapNmax

1 --outFilterMultimapScoreRange 1 --outSAMattributes

All --outSAMtype BAM Unsorted --outFilterType

BySJout --outFilterScoreMin 10 --alignEndsType EndToEnd

--outFileNamePrefix outfile.

5. Custom mapping to CDS transcripts

To improve mapping of iCLIP sequence data for eIF4A3 that binds on mRNA

exon-exon junctions, I extracted all the transcripts CDS sequences from En-

sembl Genes 79 BioMart. Then, I compiled a set of the longest mRNA

sequence available for each multi-exon gene. I mapped the eIF4A3 pre-

processed iCLIP sequences with the Bowtie2 (version 2.1) alignment soft-

ware directly to the longest mRNA sequence, allowing a maximum of two

mismatches. To keep the gene information and position of each exon-exon
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junction I added information to the FASTA header for each transcript se-

quence separated with ’|’ symbol.

2.2.2 ENCODE and customised pipeline for eCLIP data analy-

sis

In chapter 4, I used ’narrow peaks’ for PTBP1 eCLIP data that is available online at

ENCODE eCLIP data section. The pipeline uses Cutadapt tool for adapter removal,

RepBase database to remove consensus sequences of repetitive elements and peak

calling CLIPper tool to define final peaks, together with control mock-eCLIP data.

In the second part of analysis, I used a modified custom pipeline (Figure 2.1), where

-1 nt upstream from the cDNA-start position were considered as crosslinking posi-

tion and used as input for the iCount clustering algorithm.
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Figure 2.1: Overview of the workflow for eCLIP data analysis workflow.

ENCODE pipeline uses control mock-eCLIP data for normalisation of
final narrow peaks and RepBase database to remove consensus sequences of
repetitive elements. The custom pipeline does not use any additional data
for normalisation and keeps all repetitive elements. It uses a bash command
for PCR duplicates removal and iCount peak calling algorithm to define final
clusters.
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2.2.3 RNA-seq

The following pipeline was used for RNA-seq data of hnRNPC knock down (KD)

in chapter 4.

1. Trimming of the adapter sequences

Before mapping the cDNAs, I removed the adapter sequence by using

Cutadapt tool (version 2.7), with following command: -cutadapt -a

GATCGGAAGAGCACACGTCTGAACTCC -m 17. Sequences shorter than 17

nucleotides were removed from the downstream analysis to increase the num-

ber of uniquely mapped cDNAs.

2. Mapping with STAR

RNA-seq from ENCODE presented in chapter 4 for hnRNPC KD and control

samples were mapped to GENCODE (GRCh38.p7) genome assembly, using

the STAR alignment (version 2.4.2a), with the following command: STAR

--runThreadN 8 --genomeDir genomeDir --readFilesIn

RNA-seqFile.fq --winAnchorMultimapNmax 101

--outFilterMultimapNmax 100 --outFileNamePrefix path

--outSAMtype BAM SortedByCoordinate --outWigType

wiggle --quantMode GeneCounts.

3. Count tables for differential analysis

Count tables for differential analysis of mapped RNA-seq data were gen-

erated by using QoRTs (Quality of RNA-seq Tool-Set), with the following

command: java -Xmx8G -jar QoRTs.jar QC --minMAPQ 255

--stranded --singleEnded --runFunctions

writeKnownSplices, writeNovelSplices, writeSpliceExon

Aligned.sortedByCoord.out.bam GRCh38.gtf QoRTs-results.

4. Differential analysis of regulated exons

Exons that are regualted by hnRNPC were identified by JunctionSeq R pack-

age by using two biological replicates of hnRNPC KD and control data. Reg-
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ulated exons were selected with a log2 fold change +1.0 for down and -1.0 for

up regulated exons, and adjusted p-value lower than 0.01. The control exons

were selected with p-adjusted value higher than 1.0.

The following pipeline for RNA-seq data was used in chapter 5 for filtering

genes with low expression. This data was performed in parallel with spliceosome-

iCLIP experiment.

1. Trimming of the adapter sequences

Adapter sequences were trimmed with the FASTX-Toolkit (version 0.0.13)

adapter removal software, using the following command: fastx clipper

-Q 33 -a ATCTCGTATGCCGTCTTCTGCTTG -n 17 -i INFILE

-o OUTFILE.

2. Mapping with Tophat alignment software

To map RNA-seq from the spliceosomal experiment in chapter 5, I used

the UCSC hg19/GRCh37 genome assembly and the Tophat2 (version 2.0.9)

alignment software allowing a maximum of 2 mismatches and uniquely

mapped reads.

3. Measuring gene expression

For the introns selection of branch point (BP) analysis from chapter 5, I used

only introns coming from expressed genes with a median Fragments Per Kilo-

base of transcript per Million mapped reads (FPKM) higher than 10 across all

4 replicates. The threshold of 10 FPKM was set by the visually examining

the density distribution (data not shown) and selecting a reasonable number

of expressed introns (35,056 introns). FPKM values were generated with cuf-

flinks version 2.1.1 with default settings and the same annotation that was

used for mapping.
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2.3 Genomic annotations

2.3.1 Definition of Y-tracts

I obtained genomic positions of all TC-rich and T-rich low complexity sequences in

the human genome using the UCSC table browser.

2.3.2 Genomic lift over

For characterisation of spliceosomal interactions from upstream region (-50 to -10

nt) of identified branch points in chapter 4, I used UCSC lift over tool to convert

genomic positions from hg19 to hg38 genome builds.

2.4 Post-mapping analysis

2.4.1 Identification of crosslink clusters from CLIP, eCLIP and

iCLIP datasets

The crosslink clusters were identified by a False Discovery Rate (FDR) peak finding

algorithm implemented in iCount, which considers the crosslink sites as significant,

with minimum half-window spacing of 3 nt (iCount2 default settings), by assessing

the significance of cDNA enrichment under the FDR <0.05 threshold compared to

shuffled data [183]. Then, all the significant crosslink sites also known as peaks,

are merged into final clusters separated by 3 nt, 15 nt, 25 nt, 50 nt and maximum

100 nt (see Chapter 6). In iCLIP, eCLIP and irCLIP data I used the -1 position from

cDNA-start as a crosslinking position and the middle position for the CLIP data.

2.4.2 Classification of cDNA length

Only cDNAs that mapped to a unique genomic position were considered. These

were separated into cDNAs that either did or did not contain parts of the 3’ Solexa

primer adapter. For libraries sequenced with the 50 cycle Illumina kit, the cDNAs

with the adapter sequence were further separated into length groups of <30 nt, 30-

34 nt or 35-39 nt after trimming. The length groups were defined by the cDNA

length distribution of all cDNAs to keep the similar number of cDNAs per group.

For other libraries with more than 50 cycles and untrimmed cDNAs were considered
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as a group of >40 nt.

2.4.3 Definition of crosslink-associated motifs

I reasoned that sequence motifs enriched directly at the cDNA-starts of the mock-

eCLIP cDNAs could uncover preferences of UV crosslinking, since they are thought

to represent a mixture of crosslink sites for many different RBPs and they should not

reflect sequence specificity of any specific RBP [134]. I therefore examined occur-

rence of tetramers that overlapped with the nucleotide preceding the cDNA-starts

(position 1 nt) in comparison with the ones overlapping with the 10th nucleotide

preceding the cDNA-starts (position 10 nt) in PTBP1 mock input eCLIP. I excluded

the TTTT tetramer from further analyses, since it is often part of longer tracts of

uridines (Ts), and its inclusion results in a decrease of the resolution of analysis.

Thus, the tetramers that are enriched over 1.5-fold at position -1 compared to -

10 to select the top ten tetramers including TTTG, TTTC, TTGG, TTTA, ATTG,

ATTT, TCGT, TTGA, TTCT and CTTT, and were considered for all analyses of

’CL-motifs’.

2.4.4 Definition of Y-rich motifs

To identify the Y-rich motifs bound by PTBP1, I searched for pentamers enriched in

the 10 nt region around the cDNA-start peaks identified in each crosslink cluster de-

fined by PTBP1-iCLIP2. 69 pentamers showed enrichment z-score >299 and were

used as PTBP1-target pentamers for the analyses. Their sequences are: TCTTT,

CTTTC, TCTTC, CTTCT, TCTCT, CTCTC, TTTCT, TTCTC, TTCTT, TTTTC,

TCCTT, CTCTT, ATTTC, TTCCT, CTTCC, TTTCC, CCTTT, CTTTT, CCTTC,

TCTGT, TTCTG, TCCTC, CTTCA, ATCTT, TGTCT, TCTGC, CTCCT, CCTCT,

GTCTT, TCTAT, TCTCC, ATTCC, TTCTA, CTTTG, TATCT, ACTTC, TTATC,

CTTAT, CTATT, TTCAT, TTCCA, TCTTG, TTGTC, TTGCT, CTCTA, CTCTG,

TATTT, TCCCT, TCATT, TTCCC, CATTT, ATTCT, TTTAC, GTTCT, CTATC,

TCATC, CTTTA, TGTTC, TATTC, CATCT, TACTT, CTGTT, CTTGC, ACCTT,

TTTCA, TTTGT, TGTTT, CTTGT, ACTTT. All of these pentamers are enriched in

pyrimidines, which is in agreement with the known preference of PTBP1 for UC-
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rich binding motifs [66]. Therefore, these pentamers were also referred to as Y-rich

motifs.

2.4.5 Assignment of the cDNA-end peak in eIF4A3 iCLIP

For cDNA-end peak assignment in eIFA3 iCLIP data, I used exons longer than 100

nt to avoid the enrichment of neighbouring exons. I used the top 50% of the distri-

bution of exons based on cDNA coverage to avoid transcripts with low expression.

This ensured that sufficient cDNAs were available for assignment of the putative

binding sites. I then summarised all cDNA-end positions in the 20 nt upstream and

25 nt downstream region around exon-exon junctions, where cDNA-ends are highly

enriched and selected the position with the maximum cDNA count as the ’cDNA-

end peak’. The putative eIF4A3 RNA binding regions were then defined by using

the region between the cDNA-end peak and the start of the longest cDNA that ends

precisely at the cDNA-end peak.

2.4.6 Analysis of pairing probability

All computational predictions of the secondary structure were performed by

RNAfold (Vienna Package) software with default parameters and no post script-

ing (’–noPS’ option) to shorten computational power and processing time [184]. I

used the following command:

RNAfold -noPS < input.fasta > output.RNAfold.fasta.

The RNAfold results are provided in a customised format, where brackets are rep-

resenting the double stranded region on the RNA and dots are used for unpaired

nucleotides. I measured the density of pairing probability by implementing a cus-

tom python script ’RNAfold-sum.py’ (see GitHub). This script creates an array with

the size of the FASTA sequence, where brackets are counted as one and dots as ze-

roes representing a density of double stranded nucleotides from the fasta sequence

file. Final density plots were generated in R, using ggplot2 package.

2.4.7 Normalisation of cDNA-starts/ends for the density graphs

All normalisations were performed in R (version 3.1.0) by using the ’ggplot2’ and

the ’smoother’ package for the final graphical output. For the analysis of eIFA3
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iCLIP, each density graph shows a distribution of cDNA-starts and cDNA-ends rel-

ative to positions of exon-exon junctions or end peaks in mRNAs. To avoid any

border effects, I examined only exon-exon junctions within coding regions, exclud-

ing the first or the last junction. The number of cDNAs starting or ending at each

position on the graph was normalised by the number of all cDNAs mapped to rep-

resentative mRNAs, the mRNA length, and the number of examined exon-exon

junction positions, as described below:

RNAmap[n] =
(cDNAs[n]/sum(cDNAs))∗ length(mRNAs)

count(exon junctions)
, (2.1)

where [n] stands for a specific position on the density graph.

To draw the graph, I then used the Gaussian method for smoothing with a 5

nt sliding window. For the analysis of PTBP1 iCLIP and CLIP, each density graph

shows a distribution of cDNA-starts and cDNA-ends relative to positions of its bind-

ing sites, which were defined using the position of Y-tracts. I obtained genomic po-

sitions of all TC-rich and T-rich low complexity sequences that are present in introns

inside protein-coding genes on the human genome using the UCSC table browser.

To avoid the effects of variable abundance of intronic RNAs (and occasional pres-

ence of highly abundant non-coding transcripts, such as snoRNAs), I normalised

cDNA-starts at each position by the density of cDNAs in the same region. For this

purpose, I examined the binding region, as well as 120 nt flanking regions, to find

the nucleotide with the largest count of cDNA-starts or ends (according to whether

starts or ends were plotted on the graph), which is referred to as ’MaxCount’. I

thus obtained ’MaxCount-normalised cDNA counts’ at each position (which were

between 0 and 1). For drawing RNA density maps, I examined the enrichment of

cDNA counts within binding sites compared to nearby regions outside of binding

sites. I therefore calculated the average ’MaxCount-normalised cDNA counts’ at

each position across the evaluated binding sites, and divided each position by the

average ’MaxCount-normalised cDNA counts’ in the region between 50 and 100 nt

downstream of the binding site, as described in the formula below:

52



RNAmap[n] =
average normalised cDNAs[n]

average normalised cDNAs[50 to 100 nt downstream of the binding site]
,

(2.2)

where [n] stands for a specific position on the density graph.

2.4.8 Visualisation of RNA-maps

This method takes into account predefined crosslink cluster positions, exonic posi-

tions that are regulated by the RBP of our interest, together with unregulated con-

trol exons and motif sequences. The pipeline can also be used with non-regulated

control exons or with out motifs (RBP kmers), which are used for visualisation pur-

poses. In the first step it employs bedtools intersect function to select all the neigh-

bouring clusters in 300 nt flanking region around regulated exons, and then sort

them by the distance from exon starts. In the second step, it extracts the genomic

sequences around the splice site regions and creates a matrix based on cluster po-

sitions and motif enrichment (Y-rich motifs were used for PTBP1 and hnRNPC).

This part of the process is written in Python and it takes each nucleotide position

around regulated exons to set a value based on their cluster position and motif en-

richment: -1 value is for exon start or end position, value 1 is each position that

overlaps with any of the motifs, 2 is for cluster positions, 3 is for the motif coverage

that is inside of a cluster region and every other position is set to 0 value. These val-

ues are stored as a matrix in a comma-separated values (CSV) format and are then

visualised with R script, where the matrix is plotted as a heatmap, a density plot of

cluster enrichment and a table (Figure 2.2). In the heatmap, every row represents

a regulated exon with the cluster position and the motif coverage in surrounding

region 300 nt upstream and downstream from the regulated exons and 50 nt inside

of an exon. The second plot is a density plot of clusters enrichment compared to the

enrichment in control exons. The last result of this pipeline is a table with crosslink

cluster enrichments with distances and ratios between control exons and regulated

exons in 3’ splice site region, inside of exons and 5’ splice site region (Figure 2.2).

53

http://bedtools.readthedocs.io/en/latest/content/tools/intersect.html


Analysed RBPs:

• PTBP1

Dataset of exons regulated by PTBP1 was identified by the previous micro

array study [185]. Three subsets of exons were used: 6419 control exons,

359 exons that are enhanced by PTBP1 and 419 silenced exons.

• hnRNPC

I used publicly available RNA-seq data from the ENCODE project to identify

exons that are regulated by hnRNPC.

54

https://www.encodeproject.org/experiments/ENCSR470PRV/


Figure 2.2: Schematic visualisation of RNA-map pipeline.

The first part of the diagram shows the input datasets for the RNA-map
pipeline. It is a schematic figure of the output which creates a heatmap of
clusters around regulated exons (repressed and enhanced), density figure of
crosslink clusters compared to control exons and a table of ratios and distances
of crosslink clusters between regulated and control exons in the surrounding
region.

2.4.9 Visualisation of crosslink positions around splice sites in

the form of RNA-maps

RNA-maps were produced by summarising the cDNA-start counts at significant

crosslink sites at all exon/intron and intron/exon boundaries and branch points (BPs)

on pre-mRNAs. The definition of intronic start and end positions was based on

Ensembl annotation version 75. Only introns longer than 300 nt were used to draw

RNA-maps, since they enabled best normalisation of data by the intronic abundance

with the following procedure:
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1. For each intron, calculate the total count of cDNAs that identify crosslink

sites in the deep intronic region (from 50 nt downstream from exon-intron

junction to 100 nt upstream of exon-intron junctions).

2. If the count is more than 10, then I proceed with the analysis of this intron.

The average cDNA count per nt in the deep intronic regions is used as a

normalisation factor.

3. Divide the counts at each position in the intron and flanking exons by the

normalisation factor of this intron.

4. Sum up the normalised values from step 2 for each position relative to splice

site across the examined introns, and divide this value by the number of ex-

amined introns. For all analyses in Cal51 cells from Spliceosomal iCLIP, I

only assessed protein-coding genes with FPKM more than 10 in RNA-seq

data.

2.4.10 Identification of branch points

For the branch point (BP) identification, I used the spliceosome-iCLIP data pro-

duced under mild and medium stringency conditions from Cal51 cell line. In the

first step of analysis, I used the spliceosome-iCLIP cDNAs that ended precisely at

the ends of introns (I considered only introns terminating with an AG dinucleotide)

after removal of the 3’ adapter sequence and defined the position where these cD-

NAs started. The nucleotide preceding the cDNA-start corresponds to the position

where cDNAs truncated during the reverse transcription, and I selected the adenine

ribonucleotide that had the highest number of truncated cDNAs as the best BP can-

didate. If two positions with equal number of cDNAs were found, I selected the one

closer to the 3’ splice sites. This identified 35,056 intronic positions within genes

with FPKM higher than 10. The sequence composition around these positions cor-

responded to the previously reported sequence around BPs. I then proceeded to

the second step of the analysis, where I considered all cDNAs (regardless where

they ended), but including trimming of the first nucleotide if there was a mismatch
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within the the adenine. I then overlapped cDNA truncation sites with computation-

ally predicted BPs in the last 100 nt of introns [186]. If this analysis identified a

position with a higher cDNA-start count than the initial analysis (or if the initial

analysis did not identify any BPs in the same intron), then the newly identified po-

sition was assigned as the BP. For introns without any BPs identified by either first

or second steps in the analysis, I assessed computationally predicted BPs located

further than 100 nt from the 3’ splice sites, and if any of these overlapped with a

truncating cDNA, I assigned the position closest to the 3’ splice sites as the BP. As

a result, I identified 50,812 BPs within genes with FPKM higher than 10. These

BPs were used for all analyses in the manuscript, and their coordinates were used

for BP positioning in RNA-maps. I additionally identified 13,496 BPs in introns of

lowly expressed genes, but these were not used for the analyses.

Computational prediction of the secondary structure around BPs (see Chapter

6) was performed using the RNAfold program with default parameters [184], as

described previously but considering 40 nt flanking region around identified BPs. I

also examined the overlap with BPs identified by previous studies [187, 188], using

bedtools intersect tool to compare it with BP coordinates identified by spliceosome-

iCLIP data.

2.4.11 Analysis of cDNA C to T mutations

Mapped cDNAs in BAM format from Tophat/Bowtie mapping tool were used as the

pipeline input. In the first step I used the ’valmd’ function from samtools software

with ’-e’ parameter. This function compares each cDNA sequence with genomic

sequence, where only mutations are reported and every match is replaced by ’=’.

In the next step I use a custom script get positions of transitions density.py that

creates a numeric vector of summed mutations that were transitioned from C to T

across all cDNAs. Final results were plotted as a density graph by using costume R

script coverage of C to T transitions.R and ggplot2 package (see GitHub).
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2.5 CLIPo analysis
Results from the CLIPo table in chapter 4 were calculated with the following anal-

ysis.

2.5.1 Data complexity

Library size of uniquely mapped cDNAs after PCR duplicate removal.

2.5.2 cDNA-end constrains

I only focus on cDNAs that had a full length sequenced by looking at those which

are less than 40 nt long, which is the longest sequencing length for most datasets

used in this thesis.

• Length constraints

For the narrow distribution of cDNA length constraints, I used a sliding win-

dow approach to detect the most enriched cDNA length density in a 10 nt

window frame. This value tells us if there are some strong cDNA length

constraints such as narrow cDNA lengths group across the library.

• Sequence constraints at cDNA-ends

In the same way as for definition of crosslink-associated motifs, I used the

ratio of the top 10 tetramers that are positioned around cDNA-ends (from less

than 40 nts long cDNAs) compared to the top 10 tetramers from central region

between -15 to -5 nt upstream from cDNA end.

R =
(∑ top10 at cDNA.end)∗6
(∑ top10 at cDNA.centre)

(2.3)

• Structure constraints at cDNA-ends

Ratio of single strandedness around cDNA-ends (from less than 40 nt long

cDNAs) compared to the central region between -15 to -5 nt upstream from

cDNA end. Single strandedness was measured same as above in a 30 nt sur-

rounding region (see subsection 2.4.6).

58



2.5.3 Specificity of binding sites

• Number of crosslink clusters

The number of crosslink clusters was obtained with iCount peak calling tool.

The clusters were identified as described earlier, by considering all crosslink

sites that were significant with a FDR lower than 0.05 but with a maximum

spacing of 15 nt between crosslink sites.

• Percentage of cDNA-starts in the clusters

Measured percentage of cDNA-starts that are inside of identified crosslink

clusters.

2.5.4 Motif enrichment inside the clusters

Enrichment of tetramer coverage between identified clusters and 300 nt control re-

gions downstream from the clusters. Top 10 tetramers were selected from those

identified around cDNA-starts in 10 nt surrounding region.

2.5.5 Identification of cDNA-start peaks and tetramer enrich-

ment

I processed each mapped PTBP1 iCLIP, eCLIP and mock-eCLIP dataset with the

iCount pipeline to define crosslink clusters with 3 nt spanning window, 20 nt cluster

merging and with the threshold lower than 0.05 FDR to identify significant crosslink

clusters at the high resolution. I only selected cDNAs that were inside of those clus-

ters and then I selected position with the highest cDNA-start count for each cluster

and defined it as a cDNA-start peak for further analysis. Next, I ranked all tetramers

that were enriched in 20 nt flanking region around the maximum peaks. The enrich-

ment of each tetramer was measured in comparison with the control frequency of

tetramers from non-overlapping region of 200 to 300 nt downstream from cDNA-

start peaks. I used the same peaks with the same surrounding region and controls to

measure the enrichment of pairing probability using RNAfold software and a python

script as described before. For the correlation between tetramer enrichments I used

Pearson correlation. I calculated the individual upper and lower quartile of cDNA-
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start peaks for the most common tetramers and used them for further analysis. The

same conditions were used for the pairing probability analysis.

2.5.6 Heatmap of tetramer enrichment around cDNA-start

peaks

For each PTBP1 iCLIP, eCLIP and mock-eCLIP dataset, I used a top quartile

tetramers from the PTBP1-eCLIP experiment that were enriched around cDNA-

start peaks. For each tetramer, I plotted a heatmap of the enrichment across a 50

nt flanking region around cDNA-start peaks. The rows represent the tetramer en-

tries, and they are ranked by enrichment from top to bottom and normalised by the

maximum enrichment score. The tetramer sequence is reported on the right side.
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Chapter 3

Assessing potential biases in

protein-RNA binding site assignment

with iCLIP

Individual-nucleotide resolution ultraviolet crosslinking and immunoprecipitation

(iCLIP) identifies the RNA crosslink sites of RNA-binding proteins (RBPs) with

the use of cDNA-starts. However, a recent study found that positions of cDNA-

starts depend on cDNA length in several iCLIP datasets and proposed two alter-

native solutions: the first recommends use of middle position of the cDNA due

to a hypothetical prevalence of readthrough cDNAs, while the second suggests

that non-coinciding cDNA-starts are caused by constrained cDNA-ends and thus

it was unclear if cDNA-starts or cDNA-centres (middle positions) should be used

for analysing resulting data [181]. Here I present in-depth computational compar-

isons of multiple experiments performed with CLIP, iCLIP and eCLIP methods for

three different RNA-binding proteins (PTBP1, U2AF65 and eIF4A3) to determine

which of these two solutions is more appropriate.

3.1 Introduction
CLIP is principally composed of eight experimental and two computational steps,

each of which can affect the assignment of protein-RNA binding sites (Figure 3.1 -

protocol). The first step relies on irradiation of cells or tissues with ultraviolet light



(UV), which creates a covalent bond between proteins and RNAs that are in direct

contact. After cell lysis, RNA is then fragmented with the use of RNase to remove

the bound RNA excess (Figure 3.1, step 2). The time of incubation and concentra-

tion of RNase affect the length of RNA fragments, and can thereby affect the cDNA

length distribution in the final cDNA library. The crosslinked RNA fragments are

co-immunoprecipitated with antibodies targeting the RBP of interest and ligated to

an oligonucleotide adapter at their 3’ end (Figure 3.1, step 3). Due to sequence pref-

erences of some RNases and of the RNA ligase, steps 2 and 3 can lead to sequence

biases at the 3’ end of RNA fragments also known as sequence constraints [189]

at cDNA-ends in the final cDNA library. The main difference between CLIP and

other immunoprecipitation-based methods, such as chromatin immunoprecipitation

(ChIP) [190] or RNA immunoprecipitation (RIP) [191], is that the immunoprecip-

itated complexes are separated and visualised by SDS-PAGE (Figure 3.1, step 4)

[38, 192]. With the use of appropriate controls, this crucial experimental quality

control step ensures high specificity, while incomplete optimisation enhances the

background signal. When this step is fully optimised, non-specific background is

absent, ensuring that only the RNA fragments crosslinked to the purified RBP are

obtained. The crosslinked RNA affects the migration of the RBP on SDS-PAGE,

and therefore visualisation of the protein-RNA complex also ensures that conditions

of RNA fragmentation resulted in an appropriately broad RNA length distribution

[126, 192]. The protein-RNA complex is then isolated in a size-specific manner,

and the RBP is removed through proteinase K digestion, leaving a small peptide

at the crosslink site (Figure 3.1, step 5). This peptide impairs reverse transcription

and commonly leads to truncation of cDNAs at the crosslinked peptide. Changes

in the conditions of proteinase digestion and reverse transcription could affect the

ratio between cDNAs that truncate or readthrough the crosslink site [181, 120].

Therefore, individual-nucleotide resolution CLIP (iCLIP) was developed to

amplify the truncated cDNAs, which can identify the protein-RNA crosslink sites

with nucleotide resolution [193]. Thus, the main difference between CLIP and

iCLIP (and its variants such as FAST-iCLIP, HITS-CLIP or eCLIP) is that iCLIP
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amplifies truncated cDNAs in addition to the readthrough cDNAs that are ampli-

fied in CLIP [194]. The primer used for reverse transcription contains a unique

molecular identifier (UMI, also referred to as randomer or random barcode), which

can separate unique cDNAs from artefacts of PCR amplification (Figure 3.1, step

8). After mapping the sequenced library to the genome, the number of different

UMIs among cDNAs that map to the same genomic position is considered as the

’cDNA count’ (Figure 3.1, step 9). Analysis of these cDNA counts within tran-

scripts is then examined to identify crosslink clusters, which are used to assign the

RNA binding sites (Figure 3.1, step 10). It has been shown that the positions of

crosslink sites needs to be interpreted with caution during binding site assignment

[195, 65] (see Chapter 1). Analysis of cDNA libraries of several RBPs indicated

that UV crosslinking has a slight uridine preference, which can affect the efficiency

of crosslinking at different positions within the RNA binding site [195, 65]. Amino

acids can also vary in their crosslinking efficiencies, which together can restrict

crosslinking to specific positions within the protein-RNA binding sites. For in-

stance, the binding sites of the Unkempt protein consist of a UAG triplet followed

by a U-rich motif and CPSF-160/CPSF-30 proteins bind to AAUAAA flanked by

U-rich motifs, but only the U-rich motifs crosslink to both proteins [196, 197]. Re-

cently, new variants of CLIP that rely on amplification of truncated cDNAs were

developed, including BrdU-CLIP [198], eCLIP [134] and irCLIP [199]. Therefore,

understanding the characteristics of readthrough cDNAs in these methods is essen-

tial, since their presence could erroneously shift the boundaries of predicted RBP

binding sites to positions upstream of the true binding sites.

Moreover, a recent study observed that the starts of long and short iCLIP cD-

NAs do not fully coincide across iCLIP libraries for several RBPs, including PTBP1

and eIF4A3 [181]. This non-coinciding cDNA-starts can now be detected by the

iCLIPro tool [181]. Accordingly, it is important to fully understand the technical

aspects of iCLIP that need to be taken into account during binding site assignment.

To further investigate this phenomenon, I focused on experiments produced on the

polypyrimidine tract binding protein 1 (PTBP1), the eukaryotic initiation factor 4A-
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III (eIF4A3), which is a component of the exon junction complex (EJC) that binds

the region between 20 and 24 nt upstream of the exon-exon junction [200, 201, 166],

and the splicing factor U2 auxiliary factor 65 kDa subunit (U2AF2), which repre-

sents an example of non-coinciding or coinciding cDNA-starts in introns or exons.

The Exon Junction Complex (EJC) is a set of proteins forming a complex

that is deposited on mRNAs at the junction sites between exons after they have

been joined together during the splicing process. The EJC is involved in vari-

ous cellular processes such as nucleo-cytoplasmic mRNA export, subcellular lo-

calisation, quality control and translation [202, 203]. There are four core proteins:

eIF4A3 (DDX48), MAGOH, Y14(RBM8A) and Barsentz (BTZ, CAC3 or MLN51)

[204, 203, 205]. The RNA sequence plays only a marginal role in defining the po-

sition of EJC binding, and therefore it is not yet possible to computationally predict

the binding sites without experimental data. Rather than sequence specificity, EJC

binding is established by distance from the exon-exon junction. This interpretation

was presented in the first CLIP study of the EJC complex [200], where the authors

used eIF4A3 protein to identify EJC binding sites across the human genome. It has

been previously shown that the EJC complex protects the region between 20 and 24

nt upstream of the exon-exon junction from cleavage by RNase H [200, 201, 166].

Further studies also showed that the sequence and structure of a nascent mRNA

can shift EJC deposition as far as 10 nt away from this expected site [206]. The

iCLIP study of eIF4A3 found that the non-coinciding iCLIP cDNA-starts mapped

upstream of this expected region (-24 to -20 nt), while cDNA-centres were located

closer to this region. This suggests that non-coinciding cDNA-starts might reflect

a high prevalence of readthrough cDNAs. An alternative hypothesis, however, pro-

posed that non-coinciding cDNA-starts are unrelated to readthrough cDNAs [181].

Understanding the cause of non-coinciding starts is therefore crucial to ensure cor-

rect analysis and interpretation of iCLIP and related protocols that can amplify trun-

cated cDNAs, such as BrdU-CLIP, eCLIP and irCLIP [198, 134, 199].

To identify the characteristics of readthrough cDNAs and their potential in-

fluence on the iCLIP data, we first developed a modified iCLIP protocol that en-
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ables direct identification of such cDNAs. This showed that sequence features

at the starts of readthrough cDNAs are different from the majority of cDNAs in

PTBP1 and eIF4A3 iCLIP. To further argue against predominance of readthrough

cDNAs in iCLIP, I analysed the iCLIP data with high frequency of non-coinciding

cDNA-starts, where I first examined the position and prevalence of crosslink-

induced mutations. In agreement with previous findings, I showed that crosslink-

induced mutations are generally more than 5-fold less common within iCLIP than

in ’readthrough’ CLIP cDNAs, regardless of the presence of non-coinciding cDNA-

starts [120].

Next, I identified RBP motifs that are commonly associated with crosslink

sites and found them highly enriched at cDNA deletions in CLIP, and cDNA-starts

in iCLIP, eCLIP and irCLIP method. This enrichment was observed in coincid-

ing and non-coinciding cDNA-starts. Interestingly, I observed that in a modified

iCLIP protocol where the UV radiation was performed with the photoactivatable

4-thiouridine (4SU)-based crosslinking, the motifs were more highly enriched at

cDNA-starts than at T-to-C transitions. These results demonstrate that the cDNA-

starts can reliably be used to determine crosslink sites in iCLIP, regardless of the

crosslinking method.

By continuing with my research, I discovered that the non-coinciding cDNA-

starts result from sequence and structural constraints that are present at cDNA-

ends. To follow up on that finding, more experimental iCLIP data was produced

for PTBP1 and eIF4A3 to demonstrate that the prevalence of the non-coinciding

cDNA-starts is directly correlated with the extent of cDNA-end constraints. Finally,

I demonstrated that the broad size range of iCLIP cDNAs in these new experiments

allows the cDNA-starts to assign binding sites that align with the expected bind-

ing motifs (for PTBP1) or binding regions (for eIF4A3). I conclude that the use of

the iCLIP cDNA-starts is appropriate to assign the protein-RNA crosslink sites in

iCLIP and other related methods.
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Figure 3.1: Schematic representation of the iCLIP protocol with truncated and readthrough
cDNAs.

First, cells or tissues are irradiated with UV light, which creates cova-
lent bonds between proteins and RNAs that are in direct contact (step 1).
After lysis, the crosslinked RNA is fragmented by limited concentration of
RNase I, and RNA fragments are then co-immunoprecipitated with the RBP
(step 2), followed by ligation of a 3’ adapter (step 3). After SDS-PAGE
purification (step 4), the crosslinked RBP is removed through proteinase K
digestion and RNA fragments are purified; since the ligation reaction is not
100% efficient, only a subset of the fragments contain the 3’ adapter (step
5). Reverse transcription is performed with a primer that includes a barcode
(orange) containing both an experimental identifier and a unique molecular
identifier (UMI) (step 6). The peptide that is on the crosslink site impairs
reverse transcription and commonly leads to truncation of cDNAs at the
crosslink site. Therefore, two types of cDNAs are generated: truncated cDNAs
and readthrough cDNAs. In iCLIP, the cDNA library is prepared in such a way
that both truncated and readthrough cDNAs are amplified (step 7). After PCR
amplification and sequencing (step 8), both truncated and readthrough cDNAs
are present.
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3.2 Crosslink sites are identified by cDNA-starts in

iCLIP
There are eight primary experimental steps in the original iCLIP protocol (Figure

3.1). In the first step, cells are exposed to ultraviolet light irradiation, which can

create a covalent bond between RBPs and RNA. Cell lysates are then treated with

RNAse, and the crosslinked RNA fragments are co-immunoprecipitated with the

RBP. In the third step, an oligonucleotide adapter is ligated to the 3’ end of the RNA

fragments. The immunoprecipitated complexes are then separated and visualised

by SDS-PAGE, the protein-RNA complex is isolated in a size-specific manner, and

the RBP is removed through proteinase K digestion, leaving a small peptide at the

crosslink site. This peptide stops the reverse transcription that commonly leads

to the truncation of cDNAs at the crosslinked peptide. Therefore, iCLIP cDNA-

start positions are at the nucleotide downstream of the crosslinked peptide and the

cDNA-ends at the site of RNase cleavage.
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Protein
Method and
experiment
number

(PMID) Source Cell line Total number of
unique cDNAs

eIF4A3 CLIP 23085716 GSM1001330 HeLa 11,690,349
eIF4A3 iCLIP1 26260686 E-MTAB-2599 HeLa 7,148,538
eIF4A3 iCLIP2 new E-MTAB-3618 HEK293 14,454,772
eIF4A3 iCLIP3 new E-MTAB-4000 HeLa 11,935,788
PTBP1 CLIP 23313552 GSE19323 HeLa 1,779,318
PTBP1 iCLIP1 25599992 E-MTAB-3108 HeLa 8,447,229
PTBP1 iCLIP2 new, 4SU-crosslinked E-MTAB-5027 HEK293 9,211,541
PTBP1 iCLIP3 new, -3’deP E-MTAB-5026 HeLa 3,275,592
PTBP1 iCLIP4 new unpublished HeLa 90,098
PTBP1 eCLIP new, Encode ENCSR981WKN K562 6,060,266
mock eCLIP new, Encode ENCSR445FZX K562 5,669,907

PTBP1 irCLIP 27111506 CSR981WKN HeLa 65,593,070
U2AF2 CLIP 25326705 GSM1509288 HeLa 4,702,278
U2AF2 iCLIP 23374342 E-MTAB-1371 HeLa 116,771,612

Table 3.1: Overview of methods and experiments in chapter 3.
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To analyse how binding sites can be affected by variations in experimen-

tal conditions, I compared published and newly produced experimental data for

eIF4A3, PTBP1 and U2AF2. For simplicity reasons I labelled each experiment

with a unique number after the protein and methods name (see Table 3.1). For the

eIF4A3 protein, eIF4A3-iCLIP1 refers to data produced in a previous study [181]

and so does eIF4A3-CLIP [201], while eIF4A3-iCLIP2 and eIF4A3-iCLIP3 were

newly produced by the Le Hir and Ule labs respectively. For the PTBP1 protein,

the PTBP1-iCLIP1 also refers to data produced in a previous study [185], while

PTBP1-iCLIP2, PTBP1-iCLIP3 and PTBP1-iCLIP4 were newly produced with the

protocol modifications for the purpose of this study. Specifically, 4SU was used to

induce crosslinking and RNase I conditions were adjusted in PTBP1-iCLIP2, while

the 3’ dephosphorylation step was omitted in PTBP1-iCLIP3. For eIF4A3-iCLIP3

and PTBP1-iCLIP4 experiments, the 5’ ligation was added (Figure 3.4) to separate

readthrough cDNAs from truncated ones. I compared all these datasets to the pub-

lished PTBP1-CLIP [207], PTBP1-eCLIP [134] and PTBP1-irCLIP [199], together

with U2AF2-CLIP [49] and U2AF2-iCLIP [50] datasets (Table 3.1).

A recent study proposed that the presence of non-coinciding cDNA-starts in-

dicates that these cDNAs could be an outcome of readthrough from the crosslink

site during reverse transcription [181]. One feature that can serve as an identifier

of crosslink sites within readthrough cDNAs is the presence of deletions, which

are often introduced into cDNAs at the position of the crosslink site during reverse

transcription [120, 208]. I therefore compared the proportion of cDNAs with dele-

tions in the eIF4A3 datasets used in the present study (Table 3.1). Some datasets

were prepared by different sequencing protocols, where some of the libraries con-

tained longer RNA fragments. For this reason, I only examined cDNAs shorter than

40 nt since the rate of sequencing errors increases with increasing cDNA length.

Even though the proportion of deletions is lower in eIF4A3 iCLIP compared to

CLIP, a bimodal distribution of deletions is apparent in all datasets, with one peak

of deletions close to the cDNA-starts (5th to 8th nt) and the second one close to

the cDNA-centres (22nd to 27th nt) (Figure 3.2a). Thus, the deletions present in
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iCLIP show the same features as in CLIP and likely inform on the presence of

readthrough cDNAs. More importantly, the proportion of deletions is lower by a

factor of 5 or more in all eIF4A3 iCLIP experiments compared to CLIP, indicating

that readthrough cDNAs represent a minor proportion of iCLIP data (Figure 3.2a).
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Figure 3.2: Distribution of deletions and crosslink-associated (CL)-motifs in CLIP and
iCLIP experiments.

(continued)
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Figure 3.2: a) Proportion of eIF4A3 cDNAs with deletion at each position relative to the
cDNA-start. Only cDNAs shorter than 40 nt are examined.
b) Proportion of PTBP1 cDNAs from each experiment that overlap with a CL-
motif at each position relative to the cDNA-start.
c) Proportion of U2AF2 cDNAs from each experiment that overlap with a CL-
motif at each position relative to the cDNA-start.
d) Proportion of eIF4A3 cDNAs from each experiment that overlap with a CL-
motif at each position relative to the cDNA-start. e) Proportion of PTBP1-
iCLIP1 cDNAs that overlap with a CL-motif at each position relative to the
cDNA-start. Only cDNAs shorter than 40 nt are examined; they are divided
into those lacking deletions or containing a deletion within the first 7 nt or any-
where in the remaining portion of the cDNA.
f) Same as e), but for U2AF2-iCLIP.
g) Proportion of PTBP1-CLIP cDNAs that overlap with a CL-motif at each po-
sition relative to the cDNA-start. Only cDNAs shorter than 40 nt are examined;
they are divided into those lacking deletions or containing a deletion within the
first 7 nt or anywhere in the remaining portion of the cDNA.

A second feature that can serve as an identifier of crosslink sites is the poten-

tial nucleotide preference of crosslinking, and therefore I defined these sequence

motifs based on analysis of eCLIP mock input data. The mock eCLIP co-purified

RNA fragments that were crosslinked to a random mixture of RBPs, and thus the

enrichment of motifs at cDNA-starts in this experiment indicates that these motifs

represent crosslinking preferences common to most RBPs [134]. To identify these

common motifs, I used the kmer analysis (see Methods 2.4.3), where I distinguished

10 tetramers that were enriched by 1.5 factor at cDNA-start positions compared to

the region 10 nucleotides preceding the cDNA-starts. Thus, I assume that these

tetramers represent preference of UV crosslinking motifs, and therefore I refer to

them as ’CL-motifs’ (for UV crosslink-associated motifs). All of these CL-motifs

are rich in uridines (see Methods 2.4.4), in agreement with the previous finding

that crosslinking tends to have preference for uridines [120]. The CL-motifs also

contain polypyrimidine (polyY) sequences that are preferentially bound by PTBP1

and U2AF2, and thus it is expected that their enrichment should be even higher at

the crosslink sites of these proteins. Next, I examined the occurrence of CL-motifs

around the starts of all cDNAs in each experiment, including PTBP1 CLIP, iCLIP,

eCLIP and its mock control and U2AF65 CLIP and iCLIP [134, 185, 50, 49, 207].
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Notably, the CL-motifs are enriched at cDNA-starts of all eIF4A3, PTBP1 and

U2AF2 iCLIP and eCLIP experiments (Figure 3.2b-d). This agrees with the pres-

ence of ’truncated cDNAs’ in iCLIP and eCLIP but not CLIP. However, CL-motifs

have an almost identical distribution around cDNA-starts in the PTBP1 eCLIP and

mock eCLIP experiments, which is somewhat surprising (Figure 3.2b). While no

further increase in CL-motif enrichment is seen at cDNA-starts of PTBP1-eCLIP,

it is reassuring to find their increased enrichment at cDNA-starts of all PTBP1 and

U2AF2 iCLIP experiments (Figure 3.2b, c). Taken together, analysis of CL-motifs

indicates that the incidence of readthrough cDNAs is low, and that the majority of

cDNAs truncate at crosslink sites in iCLIP and its variants, such as eCLIP.

Significant CL-motif enrichment at cDNA-starts is present in all eIF4A3

iCLIP experiments (Figure 3.2d, Figure 3.3a). This protein is not thought to bind

RNA with sequence specificity according to biochemical and transcriptomic studies

[200, 201, 166], and its sequence-independent interaction with RNA is consistent

with the properties of DEAD-box proteins [209]. Moreover, I did not find any

generic enrichment of CL-motifs at nucleotides 20 to 24 upstream of the exon-exon

junctions, where EJC normally binds [201]. Thus, it is most likely that CL-motifs

only reflect crosslinking preferences in the case of eIF4A3 iCLIP. In contrast to their

enrichment at cDNA-starts of all iCLIP experiments, CL-motifs are depleted from

the cDNA-starts of all CLIP experiments and instead they are enriched within the

sequence of CLIP cDNAs (Figure 3.2b-d). This agrees with the expected prevalence

of truncated cDNAs in iCLIP and readthrough cDNAs in CLIP.

To validate the CL-motifs, I exploited the bimodal distribution of deletions

in cDNAs shorter than 40 nt. I separated these cDNAs into three classes: those

with deletions in the first 7 nts, those with deletions elsewhere, and those with no

deletions. In iCLIP and CLIP datasets of all examined RBPs, enrichment of CL-

motifs closely followed the position of the deletions. If cDNAs contain a deletion

in PTBP1 and U2AF2 iCLIP, CL-motifs are most highly enriched at the position

of deletion, but not at cDNA-starts, which confirms that they represent readthrough

cDNAs (Figure 3.2e, f). Analysis of cDNAs without deletions reveals a striking dif-
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ference between CLIP and iCLIP in the positions of CL-motifs. These cDNAs con-

tain CL-motif enrichment almost exclusively at cDNA-starts in iCLIP, and unlike

the cDNAs with deletions, CL-motifs are not enriched downstream of cDNA-starts

(Figure 3.2e, f and Figure 3.3a, e). Interestingly, even the cDNAs with deletions

also contain some CL-motif enrichment at their starts, and this is most apparent

in eIF4A3 iCLIP, indicating that the readthrough cDNAs often readthrough one

crosslink site and truncate at another crosslink site (Figure 3.3b). In contrast, occur-

rence of CL-motifs decreases at the start of cDNAs lacking deletions in CLIP, and

thus these cDNAs are similar to those containing deletions (Figure 3.2g), which is

expected given that all cDNAs in CLIP are readthrough cDNAs. In conclusion, the

overlap with the deletions confirms that the CL-motifs can be used to estimate the

general distribution of crosslink sites within CLIP and iCLIP cDNAs.
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Figure 3.3: Crosslink-associated (CL)-motifs are enriched at cDNA deletions and cDNA-
starts in iCLIP.

a) Proportion of eIF4A3-CLIP3 cDNAs that overlap with a CL-motif at
each position relative to the cDNA-start. Only cDNAs shorter than 40 nt are
examined; they are divided into those lacking deletions or containing a deletion
within the first 7 nt or anywhere in the remaining portion of the cDNA.
b) The cDNAs of eIF4A3-CLIP3 containing a deletion within the first 7 nt
are further sub-divided into three categories. First, cDNAs with CL-motifs
between the 1st and 10th nucleotide of the cDNA. Second, the remaining
cDNAs that contain CL-motifs at the position 0. And third, all remaining
cDNAs. The proportion of cDNAs that overlap with a CL-motif at each
position relative to the cDNA-start is then plotted for each sub-category.

(continued)
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Figure 3.3: c) Proportion of PTBP1-iCLIP2 cDNAs that overlap with a CL-motif at each
position relative to the cDNA-start. Only cDNAs shorter than 40 nt are exam-
ined and are divided into those lacking T-to-C transitions or containing a tran-
sition within the first 7 nt or anywhere in the remaining portion of the cDNA.
d) The cDNAs of PTBP1-iCLIP2 containing a T-to-C transition within the first
7 nt are further sub-divided into three categories. First, cDNAs with CL-motifs
overlapping the position 0. Second, the remaining cDNAs that contain CL-
motifs between the 1st and 10th nucleotide of the cDNA. And third, all remain-
ing cDNAs. Visualisation as in (d).
e) Same as a), but for PTBP1-iCLIP2.
f) Same as b), but for PTBP1-iCLIP2.

3.3 cDNA-starts assign crosslink sites in iCLIP re-

gardless of the crosslinking method

Even when cDNAs contain deletions in eIF4A3-iCLIP3 experiment, an enrichment

of CL-motifs can still be seen at cDNA-starts (Figure 3.3a). The most likely ex-

planation for this dual enrichment is that some of the deletions were introduced by

sequencing errors from truncated cDNAs that originally lacked deletions. To follow

up this explanation, I separated cDNAs with deletions in 8 nt upstream region from

cDNA-starts and grouped them into three classes: cDNAs that have CL-motif over-

lapping with deletion (56%), cDNAs that have CL-motif at cDNA-start (13%) and

remaining cDNAs (31%) (Figure 3.3b). Thus, the dual enrichment of CL-motifs

indicates that the majority of the iCLIP reads with deletions and CL-motifs con-

tains a mixture of truncated cDNAs, and that the other cDNAs are more likely a

result of sequencing errors within truncated cDNAs, rather than readthrough cD-

NAs. This analysis of deletions and CL-motifs further indicates that the incidence

of readthrough cDNAs is low, and the majority of cDNAs truncate at crosslink sites

in iCLIP.

Since cDNAs with deletions are rare in iCLIP, I included another modified

iCLIP experiment (PTBP1-iCLIP2) to examine the affect of 4SU incubation that

is used to induce crosslinking. In PTBP-iCLIP2 experiment, cells were incubated

with 4SU, crosslinking was induced with UV-A and RNase conditions were opti-

mised. One characteristic of 4SU-mediated crosslinking is the presence of C-to-T
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(thymidine to cytidine) transitions that can be used to identify crosslinking posi-

tions and it was originally introduced in the PAR-CLIP method [210]. I used the

same CL-motif analysis to examine the alignment of cDNA truncations and C-to-T

transitions to crosslink sites across different experiments. Even though CL-motifs

are similar to the known PTBP1 binding motifs [211], I expect that the CL-motifs

correspond to the crosslinking sites of PTBP1, independently of the fact that they

also overlap with its binding preferences. Interestingly, just like in PTBP1-iCLIP1

there is a similar pattern in PTBP1-iCLIP2 experiment, where 57% of cDNAs con-

tained transitions, but CL-motifs were mainly enriched at cDNA-starts (Figure 3.3c,

d). In 67% of cDNAs with transitions, the position of the transition mapped to the

first few nucleotides close to the cDNA-start. To further explore these group of cD-

NAs in more detail, I used the same type of analyses as before by dividing them

into three classes (Figure 3.3d): cDNAs that have CL-motif overlapping with dele-

tion (46%), cDNAs that have CL-motif at cDNA-start (18%) and remaining cDNAs

without any CL-motifs (36%). One potential explanation for this enrichment could

be that a quarter of transitions correspond to the crosslink sites and the majority

could be a result of some other causes. Taken together, the presence of transitions

does not faithfully separate readthrough from truncated cDNAs in iCLIP experi-

ments since CL-motifs are evenly enriched at cDNA-starts in cDNAs that contain

or lack transitions.

Interestingly, in PTBP1-iCLIP2 experiment with 4SU incubation there was

only a small proportion (1.4%) of PTBP1-iCLIP2 cDNAs that contained deletions

(Figure 3.2e), a greater proportion contain CL-motifs at the position of the deletion

than at cDNA-starts (Figure 3.2f). This indicates that deletions are more reliable

than transition to identify crosslink sites in readthrough cDNAs, even when 4SU is

used for crosslinking in iCLIP. Taken together, the analysis of deletions, transitions

and CL-motifs indicates that the incidence of readthrough cDNAs is generally low

and that the majority of cDNAs truncate at crosslink sites in iCLIP regardless of the

crosslinking method.
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3.4 Defining the characteristics of readthrough

cDNAs in iCLIP
Assignment of protein-RNA crosslink sites from iCLIP data relies on the start posi-

tions of truncated cDNAs. Previous computational comparisons of CLIP and iCLIP

cDNAs estimated that over 80% of iCLIP cDNAs truncate at the crosslink sites of

NOVA, TIA1, TIAL1, hnRNP C and TDP43, and 57% of cDNAs at the crosslink

sites of the RBFOX protein [120]. In order to correctly assign protein-RNA binding

sites from iCLIP, it is important to understand the contribution of readthrough and

truncated cDNAs [120, 181]. However, it has not been possible to experimentally

distinguish readthrough from truncated cDNAs.

Therefore, a new modified iCLIP protocol with an additional ligation step was

designed in Ule lab in a manner that enables direct identification of readthrough

cDNAs (Figure 3.4). This additional ligation step was included to add a ’marker’

oligonucleotide to the 5’ end of RNA fragments (Figure 3.4, step 3b, green). The 5’

marker will become part of only those cDNAs that readthrough the crosslink site.

The sequence of the 5’ marker is not complementary to the PCR primers, and thus

is present in the sequencing read. As a consequence, only the readthrough cDNAs

will contain the sequence of the new 5’ marker (Figure 3.4, step 6 and step 8, green).

The library was prepared with the low concentration of RNAse according to the

iCLIP guidelines [126, 192] with cDNAs that were between 20 and 140 nt long. The

sequenced reads were produced in size 150 nt using the Illumina HiSeq platform

for eIF4A3-iCLIP2 and MiSeq platform for PTBP1-iCLIP4, which after removal

of adapters obtained complete sequences for cDNAs up to a length of 140 nt. The

first 9 nt of the sequenced iCLIP read correspond to the barcode, which contains the

experimental identifier that allows to separate experimental replicates, and the UMI,

which allows to avoid artefacts caused by variable PCR amplification of different

cDNAs (Figure 4, step 6, orange) [124]. I used these UMIs to quantify the number

of unique cDNAs that mapped to each position in the transcriptome [124].
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Figure 3.4: Schematic representation of the modified 5’ marker iCLIP protocol.

A schematic description of the modified iCLIP protocol. Before, cells
or tissues are irradiated with UV light, which creates a covalent bond between
proteins and RNAs that are in direct contact (step 1). After lysis, the
crosslinked RNA is fragmented by limited concentration of RNase I, and RNA
fragments are then co-immunoprecipitated with the RBP (step 2). Ligation of
a 3’ adapter (step 3a) is followed by ligation of a 5’ marker that is unique to
the modified protocol (red balloon, step 3b). After SDS-PAGE purification
(step 4), the crosslinked RBP is removed through proteinase K digestion
and purification of RNA fragments; since the ligation reaction is not 100%
efficient, only a subset of the fragments contain both the 3’ adapter and the 5’
marker (step 5). Reverse transcription is performed with a primer that includes
a barcode (orange) containing both an experimental identifier and a unique
molecular identifier (UMI) (step 6). The peptide that is on the crosslink site
impairs reverse transcription and commonly leads to truncation of cDNAs at
the crosslink site. Therefore two types of cDNAs are generated: truncated
cDNAs (which never contain the 5’ marker) and readthrough cDNAs (some of
which contain the 5’ marker). In iCLIP, the cDNA library is prepared in such a
way that both truncated and readthrough cDNAs are amplified (step 7). After
PCR amplification and sequencing (step 8), the 5’ marker sequence is present
only at the beginning of readthrough cDNAs.
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Using this modified iCLIP protocol, I produced iCLIP datasets for PTBP1-

iCLIP4 and eIF4A3-iCLIP3 (Table 3.1), 3.4% and 0.2% of the resulting reads con-

tained the 5’ marker at their start, respectively (Figure 3.5a, c). Since the effi-

ciency of the 5’ marker ligation is unknown, some readthrough cDNAs could also

be present in the remaining pool of cDNAs, but I can be confident that those contain-

ing the 5’ marker correspond to readthrough cDNAs. Nevertheless, the nucleotide

composition at starts of readthrough cDNAs (Figure 3.5a, c) is quite different from

the remaining cDNAs, which suggests that readthrough cDNAs represent a minor

portion of the remaining cDNAs (Figure 3.5b, d).

The readthrough cDNAs most often contain adenosine as their first nucleotide.

Since the start of readthrough cDNAs marks the position of RNase I cleavage, this

suggests that RNase I may have a sequence preference for cutting upstream of

adenosines. In contrast, the nucleotide before the start of the remaining cDNAs

is enriched in thymidine (T), which likely reflects a combination of binding prefer-

ence of the studied RBPs and the potential preference of UV crosslinking at uridines

[120]. Importantly, the sequence characteristics at the starts of readthrough cDNAs

are quite different from the remaining cDNA pool, which implies that they do not

represent a major proportion of the iCLIP cDNA libraries.
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Figure 3.5: A modified 5’marker iCLIP protocol identifies readthrough cDNAs.

a-d) The composition of genomic nucleotides around iCLIP cDNA-starts
that were generated using the modified protocol. These include 3.4% of the
mapped PTBP1-iCLIP4 cDNAs a) and 0.2% of the mapped eIF4A3-iCLIP2
cDNAs c) that were preceded by the 5’ marker (readthrough cDNAs), as well
as 96.6% of the mapped PTBP1-iCLIP4 cDNAs b) and 99.8% of the mapped
eIF4A3-iCLIP2 cDNAs d) that lacked the 5’ marker sequence.
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3.5 Non-coinciding cDNA-starts result from con-

strained cDNA-ends
The previous study [181] also discussed an alternative model in addition to the

argued model based on readthrough cDNAs. In the alternative model the non-

coinciding cDNA-starts could be derived from constraints on RNase cleavage, par-

ticularly when these are combined with the presence of long binding sites [181].

All previous analyses in this study showed that in spite of non-coinciding starts, the

prevalence of readthrough cDNAs appears low in iCLIP, and therefore I decided

to study this alternative model in more detail. First, I examined the prevalence of

non-coinciding cDNA-starts with the CLIPro tool that was developed by the pre-

vious study together with PTBP1-iCLIP1 cDNA library which was also produced

as part of the previous study [181]. CLIPro is a tool that compares different cDNA

length groups by plotting heat maps of overlapping cDNA-start positions compared

to long cDNAs. For this purpose, I examined cDNAs longer than 16 nt, which

is the minimum cDNA length after trimming the 3’ adapter sequence, and shorter

than 40 nt, which is the longest cDNA length after the random and experimental

barcode removal (see Methods 1). In the CLIPro analysis I compared trimmed cD-

NAs (between 17 nt and 39 nt) with the reference cDNAs longer than 39 nt since

we do not know their exact length because of the maximum sequencing length. I

was able to reproduce the same results (Figure 3.6a) of non-coinciding cDNA-starts

as in the previous study [181]. Next, I focused on cluster regions where cDNA-

starts are significantly enriched and performed the same CLIPro analysis on cD-

NAs coming from short (5 to 30 nt) and long (more than 30 nt) clusters to see if the

non-coinciding cDNA-starts depends on the length of binding sites. Interestingly,

the ratio of non-coinciding cDNA-starts increases in clusters that are longer than 5

and shorter than 30 nt but this ratio is even more visible in clusters that are longer

than 30 nt (Figure 3.6c). This analysis reveals that the non-coinciding cDNA-starts

originate mainly from the long binding sites.

To follow up the alternative model of RNase cleavage constraints, another

modified iCLIP experiment (PTBP1-iCLIP2) was performed by Ule lab. In this
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modified PTBP1-iCLIP2 experiment, RNAse treatment conditions were optimised

by including an inhibitor of endogenous RNases into the lysis buffer (antiRNase

which does not inhibit RNase I), and by slightly increasing the concentration of

RNase I compared to PTBP1-iCLIP1. This condition could potentially ensure that

RNase I, which does not to have any sequence specificity, was responsible for frag-

menting the RNAs. Notably, the ratio of non-coinciding cDNA-starts decreased in

PTBP1-iCLIP2, especially in cDNAs coming from long clusters (Figure 3.6e, f).

In addition to overlapping cDNA-starts, the cDNA-ends in PTBP1-iCLIP2 also of-

ten overlap with cDNA-starts (diagonal enrichment in Figure 3.6d-f). Both RNase

I and UV crosslinking require single-stranded RNA, and thus their similar RNA

structure preferences could increase their possibility of overlap. Taken together, our

results show that the prevalence and position of non-coinciding cDNA-starts can

vary greatly between different iCLIP experiments performed for the same RBP, and

thus they are most likely a result of technical differences between these experiments.
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Figure 3.6: Proportion of non-coinciding cDNA-starts differs between PTBP1-iCLIP1 and
PTBP1-iCLIP2 experiments.

(continued)
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Figure 3.6: a) Heatmap for PTBP1-iCLIP1 generated using the previously developed soft-
ware iCLIPro [181] to show the relative positioning of cDNA-starts of shorter
iCLIP cDNAs (17-39 nt) compared to cDNA-starts of long cDNAs (longer than
39 nt).
b) As in a), but for cDNAs of PTBP1-iCLIP1 that overlap with 5-30 nt long
crosslink clusters.
c) As in a), but for cDNAs of PTBP1-iCLIP1 that overlap with >30 nt long
crosslink clusters.
d) As in a), but for PTBP1-iCLIP2.
e) As in a), but for cDNAs of PTBP1-iCLIP2 that overlap with 5-30 nt long
crosslink clusters.
f) As in a), but for cDNAs of PTBP1-iCLIP2 that overlap with >30 nt long
crosslink clusters.

In order to understand these technical differences, I focused on non-coinciding

cDNA-starts in PTBP1-iCLIP1 and PTBP1-iCLIP2 experiments, particularly in

long clusters (more than 30 nt), where cDNAs with non-coinciding cDNA-starts

are the most dominant (Figure 3.6c, f). To ensure that I have high enough cover-

age for this analysis, I selected cDNAs from the top 1000 enriched clusters. First,

I identified the maximum peak of cDNA-start (cDNA-start peak) and cDNA-end

(cDNA-end peak) positions within each cluster. Then, I separated cDNAs into five

length categories and compared their cDNA-starts and cDNA-ends density around

cDNA-start (Figure 3.7a) and cDNA-end (Figure 3.7b) peaks in 50 nt surrounding

region. In both experiments cDNA-starts are broadly distributed around cDNA-

start peaks (Figure 3.7a, c) but more interesting, the distribution of different cDNA

length categories has a much stronger effect on cDNA-start distribution in PTBP1-

iCLIP1 (Figure 3.7a) than in PTBP1-iCLIP2 (Figure 3.7c) experiment. These dif-

ferences of cDNA-start distributions around cDNA-start peaks between these two

experiments is even more obvious by looking at measured empirical cumulative dis-

tribution (Figure 3.7e, f). Next, I examined distribution of cDNA-ends of different

cDNA length categories around cDNA-end peaks. Strikingly, in PTBP1-iCLIP1

cDNA-ends overlaps exactly with cDNA-end peaks (Figure 3.7b), while they are

much more evenly distributed in PTBP1-iCLIP2 (Figure 3.7d). The sharp peak

of cDNA-ends at cDNA-end peaks in both experiments corresponds to cDNA-start

peaks of different cDNA length categories in upstream region (Figure 3.7b, d), while
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they are much stronger in PTBP1-iCLIP1, where the fold change of cDNA-end is

increased by two-fold (Figure 3.7g). Taken together, I conclude that reduced con-

straints of cDNA-ends decreases the presence of non-coinciding cDNA-starts in

PTBP1-iCLIP2.
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Figure 3.7: Non-coinciding cDNA-starts are a result of constrained cDNA-ends.

a) The cDNA-starts (solid lines) and cDNA-ends (dotted lines) of PTBP1-
iCLIP1 are plotted around the cDNA-start peak that was identified within each
of the 1000 clusters that have the highest total cDNA crosslink count and are
more than 30 nt long. cDNAs are divided into four length categories: 17-29 nt,
30-34 nt, 35-39 nt and >39 nt.

(continued)
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Figure 3.7: b) As in a), but plotted around the cDNA-end peak that was identified within
the 30 nt downstream of each of the 1000 clusters that have the highest total
cDNA crosslink count and are more than 30 nt long.
c) As in a), but for PTBP1-iCLIP2.
d) As in b), but for PTBP1-iCLIP2.
e) The empirical cumulative distribution from all four length categories in the
region between -25 nt and 25 nt around cDNA-start peaks for PTBP1-iCLIP1.
f) as in a) but for PTBP1-iCLIP2.
g) The ratio of cDNA counts (log2) between PTBP1-iCLIP1 and PTBP1-
iCLIP2 at the position 0 (overlapping with cDNA-end peak at Figure 3.7b,
d) compared to the average count of cDNAs in the region from 5 nt to 25 nt
downstream of the cDNA-end peak (marked by horizontal arrow).

3.6 PTBP1 binding sites can be assigned correctly de-

spite non-coinciding cDNA-starts
For PTBP1-iCLIP1 and PTBP1-iCLIP2 I demonstrated that the non-coinciding

cDNA-starts are the most dominant within long clusters. Interestingly, the pre-

vious study [181] did not detect non-coinciding cDNA-starts for U2AF65 protein

with their iCLIPro tool.

To further investigate the phenomenon of non-coinciding cDNA-starts, I asked

if their prevalence may depend on the location of cDNAs within transcripts. For

this purpose, I examined CLIP and iCLIP data for PTBP1 and U2AF2, two RBPs

that bind to polypyrimidine tracts (Y-tracts). To define the coordinates of potential

PTBP1 and U2AF65 binding sites independently of iCLIP data, I made use of the

Y-tracts that are annotated in human genome as T-rich or TC-rich ’low complexity

sequences’, and are located at multiple locations within transcripts [50, 49, 211].

While PTBP1 preferentially binds intronic Y-tracts further away from splice sites,

U2AF2 primarily binds to Y-tracts at 3’ splice sites (see subsection 1.2). Never-

theless, PTBP1 does also bind at some 3’ splice sites to repress alternative splicing

(see subsection 1.3.1), while U2AF2 also binds to deep intronic regions. In both

experiments all cDNA-starts are enriched within the Y-tracts, which these proteins

are known to bind (Figure 3.8a, b, e, f). Interestingly, the cDNA-starts of differ-

ent cDNA length categories do not coincide towards the end of Y-tracks, the short

iCLIP cDNAs identify the crosslink sites close to the 3’ region of the Y-tracts, while
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longer cDNAs identify crosslink sites that are located further towards the 5’ region

(Figure 3.8a, b).

Since I noticed before that the non-coinciding cDNA-starts are the outcome

of cDNA-end constraints, I was interested in the cDNA-end distribution around Y-

tracks. As expected, in both PTBP1-iCLIP1 and U2AF54-iCLIP experiments the

cDNA-ends are constrained to downstream positions of the Y-tracks (Figure 3.8c,

d). Importantly, the cDNA-ends of PTBP1-iCLIP1 and U2AF65-iCLIP cDNAs of

all length categories align at the end of the Y-tracts, demonstrating that RNase cleav-

age sites are constrained to positions just downstream of Y-tracks, where RNAse

cleavage seems to be inefficient within Y-tracks (Figure 3.8c, d). In order to under-

stand how the choice of method may affect the assignment of binding sites, I also

examined the positioning of cDNA-starts and cDNA-ends identified by PTBP1-

CLIP and U2AF65-CLIP experiments (see Table 3.1). Surprisingly, the enrichment

of CLIP cDNAs is extremely low across Y-tracts for both experiments (Figure 3.8a-

i). This agrees with the findings of a previous study, which showed that CLIP

of NOVA proteins was not well suited for identifying the YCAY-tracts that repre-

sent high-affinity binding sites of NOVA [120]. As shown before, the presence of

non-coinciding cDNA-starts in iCLIP experiments reflects constrained positions of

cDNA-ends. To avoid the artefacts that could be caused by the RNase cleavage con-

straints, a broad range of cDNA sizes is required to identify crosslink sites across

the full binding sites. In particular, the long cDNAs are most important to overcome

these constraints, since they can truncate at crosslink sites that are located far from

the site of RNase cleavage.

89



Figure 3.8: Non-coinciding cDNA-starts are required to map the crosslink sites within Y-
tracts.

(continued)
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Figure 3.8: a) The cDNA-starts of PTBP1-iCLIP1 and CLIP experiments are plotted
around the ends of >35 nt Y-tracts that are annotated as T-rich or TC-rich low-
complexity sequence in the human genome (hg19). cDNAs of PTBP1-iCLIP1
are divided into four length categories: 17-29 nt, 30-34 nt, 35-39 nt and >39
nt.
b) Same as a), but using U2AF2-iCLIP and CLIP cDNAs.
c) Same as a), but showing the positions of cDNA-ends.
d) Same as b), but showing the positions of cDNA-ends.
e) The cDNA-starts of PTBP1-iCLIP1 and CLIP experiments are plotted
around the starts of >35 nt Y-tracts that are annotated as T-rich or TC-rich
low-complexity sequence in the human genome (hg19). cDNAs of PTBP1-
iCLIP1 are divided into four length categories: 17-29 nt, 30-34 nt, 35-39 nt,
and >39 nt.
f) Same as e), but using U2AF2-iCLIP and CLIP cDNAs.
g) Same as e), but showing the positions of cDNA-ends.
h) Same as b), but showing the positions of cDNA-ends.
i) Same as a), but for the cDNA-centres around the ends of Y-tracks.
j) Ratio of cDNA-starts and cDNA-centres that are inside of Y-tracks compared
to the downstream region (schematic description at the bottom). Statistical test
for cDNAstarts and cDNA-centres enrichment in Y-tracks region was done by
Fisher’s Exact Test with p-value <2.2e-16.

To examine the effect of non-coinciding cDNA-starts in assigned binding sites,

I examined PTBP1 motif enrichment across crosslink clusters that were defined by

the iCount peak finding tool (see Methods 2.4.1) for PTBP1-iCLIP1 and PTBP1-

iCLIP2 experiments. The PTBP1 motifs were identified from PTBP1-iCLIP2 ex-

periment by selecting the most highly enriched tetramers around cDNA-starts com-

pared to the downstream control regions (see Methods 2.5.4). To visualise the en-

richment of selected tetramers, I grouped clusters of similar lengths and plot them

as a heatmap with the surrounding region for iCLIP, eCLIP or irCLIP experiments

(Figure 3.9). In all three experiments, the enrichment correctly overlaps crosslink

clusters, regardless of which type or which variant of library preparation protocol

was used. Taken together, I conclude that the use of cDNA-starts is appropriate for

the computational analysis of data produced by iCLIP or any related method that is

capable of efficiently amplifying truncated cDNAs.
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Figure 3.9: PTBP1-binding motif enrichment across PTBP1 crosslink clusters.

Heatmap showing the coverage of PTBP1-binding motifs at the PTBP1-
iCLIP1, PTBP1-iCLIP2, PTBP1-eCLIP or PTBP1-irCLIP crosslink clusters
that were defined with a 3 nt clustering window. Each row shows the average
coverage for 300 clusters of similar length, sorted from shortest to longest
clusters. The white line marks the nucleotide preceding the start and the
nucleotide following the median end of all clusters that were combined in
each row. A colour key for the coverage per nucleotide of the PTBP1-binding
motifs is shown on the right.
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3.7 Adenosine enrichment at RNase I cleavage sites

in PTBP1 CLIP and iCLIP
The cDNA-ends of PTBP1 and U2AF65 CLIP and iCLIP experiments of all cDNA

length categories align at the end of the Y-tracts, demonstrating that RNase cleav-

age sites are constrained to positions just downstream of their binding sites (Figure

3.8c, d, e, f). In order to understand how the choice of method may affect the

assignment of binding sites, I also examined the positioning of cDNAs identified

by PTBP1-CLIP and compare it to PTBP1-iCLIP1. PTBP1-CLIP cDNA-ends are

slightly enriched in the last portion of Y-tracts (grey dotted line in Figure 3.8c). This

agrees with the findings of a previous study, which showed that CLIP of NOVA pro-

teins was not well suited for identifying the YCAY-tracts that represent high-affinity

binding sites of NOVA [120]. To gain additional insight into the different classes

of cDNAs, I further examined the enrichment of Y-rich motifs. Y-rich motifs are

most enriched at the beginning of PTBP1-iCLIP1 cDNAs, consistent with these cD-

NAs truncating at crosslink sites (Figure 3.10a). In contrast, Y-rich motifs are most

enriched in the centre of CLIP cDNAs, consistently with these being readthrough

cDNAs that contain crosslink sites within them (Figure 3.10c). Y-rich motifs are

also enriched within the iCLIP cDNAs, which is expected given that cDNAs end

downstream of the Y-rich binding sites (Figure 3.10a). To understand the reasons for

RNase cleavage downstream of PTBP1 binding sites, I examined the sequence com-

position around the cDNA-ends that are shorter than 40 nt. Interestingly, there is a

high enrichment of adenosine at the RNase I cleavage sites (cDNA-ends) in PTBP1-

iCLIP1 and PTBP1-iCLIP3 but not in PTBP1-iCLIP2, where different RNase con-

ditions were used (Figure 3.10e, b, f). An even stronger enrichment of the ARRW

motif is seen at cDNA-ends in PTBP1-CLIP data (Figure 3.10d). Whereas AA and

ARRW motifs are enriched at the cDNA-ends of PTBP1-iCLIP1 and PTBP1-CLIP

cDNAs, respectively, the Y-rich motifs recognised by PTBP1 are depleted from the

cDNA-ends (Figure 3.10a, c). This suggests that lack of purines within the PTBP1

binding sites could prevent the different RNases from cleaving.

In conclusion, the RNase cleavage sites identified by the cDNA-ends of
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PTBP1-CLIP and PTBP1-iCLIP1 cDNAs generally locate to a narrow region im-

mediately downstream of the PTBP1 binding sites. To avoid artefacts that could

be caused by these RNase cleavage constraints a broad range of cDNA sizes is re-

quired to identify crosslink sites across binding sites. In particular, the long cDNAs

are most important to overcome these constraints, since they can be truncated at

crosslink sites that are located far from the site of RNase cleavage.
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Figure 3.10: Adenosine enrichment at RNase I cleavage sites in PTBP1-CLIP and
PTBP1-iCLIP1.

a) The percentage of cDNAs overlapping with Y-rich motifs at each
nucleotide around cDNA-starts is plotted for different cDNA categories from
published PTBP1 iCLIP data [185]: long cDNAs (dashed green line) as well
as short (less than 40 nt) cDNAs that were divided into three length categories
(35-39 nt , 30-34 nt, 17-29 nt; different shades of blue). In addition, the
dotted lines show the positional frequency of adenosine dinucleotides (AA),
demonstrating that their enrichment is mutually exclusive with Y-rich motifs
in the region of cDNAs ends.
b) The composition of genomic nucleotides around the ends of short cDNAs
from the published PTBP1-iCLIP1 data.

(continued)
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Figure 3.10: c) The percentage of cDNAs overlapping with Y-rich motifs at each nucleotide
around cDNA-starts is plotted for different cDNA categories from published
PTBP1-CLIP data [207]. Length categories and colour labelling is as in c).
In addition, the dotted lines show the positional frequency of ARRW motifs,
demonstrating that their enrichment is mutually exclusive with Y-rich motifs
in the region of cDNAs ends.
d) Same as b) but for PTBP1-CLIP data.
e) Same as b) but for PTBP1-iCLIP2 data.
f) Same as b) but for PTBP1-iCLIP3 data.

3.8 Efficient RNase I-mediated RNA fragmentation

minimises the cDNA-end constraints

To further investigate the phenomenon of cDNA-end constraints, I decided to com-

pare PTBP1-iCLIP1 and PTBP1-iCLIP2 experiments in more details. The cDNA-

end positions correspond to the position of the RNA fragments that were cleaved by

the RNase treatment (Figure 3.1). To ensure that RNase 1 is the primary cause

of RNA framgentation, the RNase treatment conditions were fully optimised in

the PTBP1-iCLIP2 experiment. The sharp cDNA-end peak in PTBP1-iCLIP1 and

PTBP1-iCLIP2 (Figure 3.7b, d) indicates that the RNA fragmentation could be

caused by some other factors. To further investigate possibilities of other factors,

I wanted to know if the prevalence of cDNA-end constraints depends on the loca-

tion of cDNAs within transcripts, for example relative to intron-exon junctions,

since these are subject to endogenous RNA cleavage by the spliceosome. For

this purpose, I examined CLIP and iCLIP data of PTBP1 and U2AF2, two RBPs

that bind to polypyrimidine tracts (Y-tracts) at multiple locations within transcripts

[50, 49, 211]. While PTBP1 preferentially binds intronic Y-tracts further away

from splice sites, U2AF2 primarily binds to Y-tracts at 3’ splice sites. Neverthe-

less, PTBP1 does also bind at some 3’ splice sites to repress alternative splicing,

while U2AF2 also binds to deep intronic regions. As observed previously [181],

the cDNA-starts of all cDNA length classes mainly coincide at the 3’ splice sites for

U2AF2-iCLIP, while they do not coincide well for PTBP1-iCLIP1 (Figure 3.11a, d).

Strikingly, the analysis of cDNA-ends uncovered an unusually sharp peak at the last
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intronic nucleotide, which is more pronounced for the PTBP1-iCLIP1 data (Figure

3.6d), but is also visible for the U2AF2-iCLIP data, even though most cDNA-ends

are in the exonic sequence (Figure 3.11a, b). Here, the cDNA-ends of all cDNA

length categories directly overlap, indicating that cDNA-ends are often constrained

to the last position of an intron. To test whether constrained cDNA-ends in the in-

tron are indeed the cause of non-coincidng cDNA-starts, I separated the cDNAs in

U2AF2-iCLIP into two classes depending on the position of their cDNA-end. When

the cDNA-end is present in the intron, the cDNA-starts are non-coinciding (Figure

3.11b), while the cDNAs ending in the exon have fully coinciding cDNA-starts (Fig-

ure 3.11c). Thus, prevalence of non-coinciding cDNA-starts is not a generic feature

of a specific iCLIP dataset, but instead it depends on the position in transcripts.

Thus, the cDNAs in U2AF2-iCLIP and PTBP1-iCLIP1 have similar features; both

proteins contain a mixture of cDNAs with coinciding and non-coinciding starts, and

the proportion of those with non-coinciding cDNA-starts is higher at 3’ splice sites

in PTBP1 due to increased proportion of cDNAs ending within the intron.
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Figure 3.11: Constrained cDNA-ends affect the cDNA-starts at 3’ splice sites.

a) The cDNA-starts (solid lines) and cDNA-ends (dotted lines) of U2AF2-
iCLIP are plotted around intron-exon junctions (position 0 being the first
nucleotide of the exon). cDNAs are divided into three length categories:
17-29 nt, 30-34 nt and 35-39 nt; the distribution of all cDNAs together is
shown in grey.
b) Same as a), but using only cDNAs that end in the intron.
c) Same as a), but using only cDNAs that end in the exon.

(continued)
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Figure 3.11: d) Same as a), but showing PTBP1-iCLIP1 cDNA-starts (full lines) and
cDNA-ends (dotted lines).
e) Same as a), but showing PTBP1-iCLIP2 (using 4SU and optimised RNase
conditions) cDNA-starts (full lines) and cDNA-ends (dotted lines).
f) Same as a), but showing PTBP1-iCLIP3 (omitting 3’ dephosphorylation)
cDNA-starts (full lines) and cDNA-ends (dotted lines).
g) Proportions of cDNAs that map to introns which contain cDNA-ends at
positions overlapping the last two nucleotides of introns. PTBP1-iCLIP1 and
PTBP1-iCLIP2 are compared to PTBP1-iCLIP3 iCLIP, which was performed
without using PNK to dephosphorylate RNAs in step 2. This enriches for
RNAs that contain a 3’ OH, which can occur when they are cleaved at their 3’
end independently of RNase I, such as the 3’ ends of intron lariats.

I speculated that the cDNAs that end at the last intronic nucleotide were gener-

ated from RNA fragments that originated from the 3’ end of intronic lariats, which

are produced when introns are spliced out from pre-mRNAs. The stronger peak of

cDNA-ends at the last intronic nucleotide would suggest that PTBP1 more com-

monly remains bound to the intron lariat, while U2AF2 is released before splicing

is completed. To test this hypothesis another PTBP1 iCLIP experiment (PTBP1-

iCLIP3) was performed by Ule lab, with the exploited fact that intron lariats lack a

phosphate at their 3’ end, and therefore no 3’ dephosphorylation would be needed

in the iCLIP protocol (Figure 3.1 - step 2). For that reason, the PTBP1-iCLIP3

was prepared with omitting dephosphorylation from step 2 and continuing directly

to the ligation of the 3’ adapter in step 3 (Figure 3.1) and therefore only those

RNA fragments cleaved by other means were amplified in PTBP1-iCLIP3. No-

tably, both in PTBP1-iCLIP1 and PTBP1-iCLIP3, the cDNA-ends at 3’ splice sites

are strongly constrained at the introns end, while these constraints are minor in

PTBP1-iCLIP2 (Figure 3.11d-f). Thus, non-coinciding cDNA-starts predominate

at 3’ splice sites in PTBP1-iCLIP1 and PTBP1-iCLIP3, while in PTBP1-iCLIP2

most cDNA-starts coincide in the region of 20 nt to 5 nt upstream of the intron-exon

junction. This suggests that the RNAs overlapping with the 3’ splice sites were frag-

mented by spliceosome-mediated cleavage in PTBP1-iCLIP1 and PTBP1-iCLIP3

and by RNase I in PTBP1-iCLIP2 and in U2AF2-iCLIP. It is this difference that

appears to explain the variation in the prevalence of non-coinciding cDNA-starts at
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3’ splice sites.

To further compare the characteristics of cDNA-ends between the PTBP1

iCLIP experiments, I visualised the sequence composition of cDNA-ends. As

mentioned before, I observed almost no sequence biases at cDNA-ends in PTBP1-

iCLIP2 only (Figure 3.10e). This could be explained by the lack of sequence speci-

ficity of RNase I, since it was performed with the optimal RNase conditions. In

contrast, a preference for adenosines was observed at the cDNA-ends in PTBP1-

iCLIP1 and PTBP1-iCLIP3, suggesting that this preference results from an RNase I-

independent fragmentation of RNAs (Figure 3.10b, d, e, f). Spliceosome-mediated

RNA cleavage contributes to only about 0.1% of these fragments (Figure 3.11g)

and therefore the primary cause of RNase I-independent fragmentation remains to

be identified. Nevertheless, it is clear to conclude that the efficient use of RNase I

avoids the constraints at cDNA-ends in iCLIP and this decreases the incidence of

non-coinciding cDNA-starts.
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Figure 3.12: Constrained cDNA-ends in eIF4A3 iCLIP.

a) The distribution of cDNA-starts (solid lines) and ends (dotted lines)
relative to the cDNA-end peaks that were identified at each exon-exon
junction in eIF4A3-iCLIP1. cDNAs are divided into four length categories:
17-29 nt, 30-34 nt, 35-39 nt and more than 39 nt.
b) Same as a), but for eIF4A3-iCLIP2.
c) The cDNA-starts of eIF4A3 iCLIP and CLIP experiments are plotted
around the 1000 exon-exon junctions with the highest number of cDNAs.
d) Same as c), but showing cDNA-ends.
e-g) Distribution of cDNA-starts (solid lines) and ends (dotted lines) in
eIF4A3-iCLIP2 relative to exon-exon junctions. Junctions were divided into
three different classes according to the position cDNA-end peaks at: -7 to 2
nt e), 3 to 12 nt f), or 13 to 25 nt g) relative to exon-exon junctions. cDNA
length categories and labelling as shown on top.
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Next, I examined three different iCLIP and one CLIP experiments produced for

eIF4A3 protein (see Table 3.1). Surprisingly, the distribution of cDNA-starts varies

considerably between eIF4A3 experiments (Figure 3.12c). As observed by the pre-

vious study, the cDNA-starts in eIF4A3-iCLIP1 are shifted to positions upstream of

the expected EJC-binding region (yellow rectangle in Figure 3.12c) [181]. However,

there is an overlap between eIF4A3-iCLIP2 and eIF4A3-iCLIP3 in the expected

binding region of EJC (yellow rectangle in Figure 3.12c), where the cDNA-starts

in the eIF4A3-CLIP experiment are shifted upstream from expected region, which

agrees with the likely prevalence of truncated cDNAs in iCLIP and readthrough

cDNAs in CLIP. To see if the non-coinciding cDNA-starts are also influenced by

cDNA-end composition, I examined cDNA-ends across all exon-exon junctions. In-

terestingly, the distribution of cDNA-ends is highly enriched in a broad downstream

region from exon-exon junction (-17 nt to 0 nt relative to exon-exon junction) only

in eIF4A3-iCLIP1 (Figure 3.12d). Depending on the position of cDNA-ends, dif-

ferent lengths of cDNAs identify crosslink sites within the expected region. This

is also evident if assessing cDNAs of multiple length categories at distinct classes

of exon-exon junctions with different cDNA-end peak positions (Figure 3.12e-g).

Even though the cDNA-starts are fully defined by the constrained position of cDNA-

ends, at least one length category in eIF4A3-iCLIP2 has its cDNA-starts in the ex-

pected EJC-binding region in each class of junctions (yellow rectangle in Figure

3.12e-g).

To further understand how cDNA-ends are constrained, I grouped all exon-

exon junctions that had the same distance between the cDNA-end peak and the

junction. Then I classified all exon-exon junctions by the distance between the

maximum cDNA-end peak and the junction position. Strikingly, this confirmed that

each junction has a single dominant position of cDNA-ends, which differs from

junction to junction (Figure 3.13a, c, e). In eIF4A3-iCLIP2, I observe a second

peak of cDNA-ends precisely at the end of the exon (Figure 3.13c), which prob-

ably reflects the co-splicing deposition of eIF4A3 on the splicing intermediate, in

agreement with previous reports [212, 213, 214]. Moreover, the cDNA-end peak
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in eIF4A3-iCLIP2 and less in eIF4A3-iCLIP3 coincides with a strong decrease in

pairing probability (Figure 3.13b, d, f). This is consistent with the preference of

RNase I to cleave single-stranded RNA. Absence of these features from eIF4A3-

iCLIP1 suggests a difference in the RNase conditions between the experiments,

which remains to be fully understood. All three eIF4A3 iCLIP experiments have

enriched adenosine at the position following the cDNA-end peak, but with stronger

enrichment in eIF4A3-iCLIP2 and eIF4A3-iCLIP3 (position 1 in Figure 3.13g, h,

i). Moreover, a third eIF4A3-iCLIP3 experiment that was conducted in the Le Hir

laboratory (eIF4A3-iCLIP3 in Table 3.1), had a similar sequence enrichment of

adenosine after the cDNA-end peak as eIF4A3-iCLIP2 (Figure 3.13i). This prefer-

ence for adenosine after the cleavage site might be an indication that RNase I has

a nucleotide bias. Interestingly, the sequence signature at cDNA-end peaks is dif-

ferent in the published eIF4A3-CLIP data [201], which used RNase T1 rather than

RNase I, which is used in iCLIP protocol (Figure 3.13j). It is known that RNase T1

preferentially cuts after guanosine, and guanosine is indeed strongly enriched at the

position preceding the cDNA-end peaks in this dataset (position 0 in Figure 3.13j).

This suggests that the preference of the corresponding RNase for specific RNA

structure and sequence motifs explains why cDNA-ends favour a specific position

around exon-exon junctions. In conclusion, I find that the non-coinciding cDNA-

starts in eIF3A3 iCLIP datasets result from the constrained cDNA-ends, arising

from technical features such as RNase sequence and structure preferences.
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Figure 3.13: Affect of sequence and structure constraints at cDNA-ends in eIF4A3 iCLIP
and CLIP.

a) Heatmap showing the position of cDNA-ends around exon-exon junctions
in eIF4A3-iCLIP1. Junctions are sorted according to their cDNA-end peak
position. Each row shows the average of cDNA counts at all junctions with a
cDNA-end peak at the indicated position. The values are normalised against
the maximum value across all rows.

(continued)
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Figure 3.13: b) Heatmap of summarised pairing probability around exon-exon junctions in
eIF4A3-iCLIP1. Junctions are sorted according to their cDNA-end peak po-
sition. Each row shows the average pairing probability of all junctions with a
cDNA-end peak at the indicated position. The positions of cDNAs end peak
coincide with decreased pairing probability, as indicated by the arrow.
c) Same as a), but for eIF4A3-iCLIP2.
d) Same as b), but for eIF4A3-iCLIP2.
e) Same as a), but for eIF4A3-iCLIP3.
f) Same as b), but for eIF4A3-iCLIP3.
g) Genomic nucleotide composition around cDNA-end peaks in eIF4A3-
iCLIP1.
h) Same as g), but for eIF4A3-iCLIP2.
i) Same as g), but for eIF4A3-iCLIP3.
j) Same as g), but for eIF4A3-CLIP.

To understand the constraints at cDNA-ends in more detail, I examined the

exon-exon junctions with highest coverage of cDNAs in greater detail for eIF4A3-

iCLIP1 and eIF4A3-iCLIP3, where I first identified the maximum cDNA-end peaks

(Figure 3.14a, b) in a similar way as I did for PTBP1-iCLIP1 and PTBP1-iCLIP2

(see Methods 2.4.5). For this purpose, I focused on the 1000 junctions with the

highest cDNA count to minimise the noise of genome wide analysis. This demon-

strates that the cDNA-ends are largely restricted to a single position in the eIF4A3-

iCLIP3 experiment, while they are more variable in eIF4A3-iCLIP1 (Figure 3.14a,

b). Then, I selected 3 individual examples of eIF4A3-iCLIP1 and eIF4A3-iCLIP3

from the top 15 exon-exon junctions with the highest cDNA count, to see the con-

straints at cDNA-ends at the level of individual exon-exon junction. As a result,

the cDNA-starts often coincide in eIF4A3-iCLIP1, but are fully non-coinciding in

eIF4A3-iCLIP3 (Figure 3.14c-h). This again demonstrates that the cDNA-end con-

straints are the primary cause of non-coinciding cDNA-starts in iCLIP. These con-

straints therefore need to be considered when interpreting the position of binding

sites assigned by iCLIP and related methods.
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Figure 3.14: The impact of cDNA-end constraints on cDNA-starts in eIF4A3 iCLIP.

a) The distribution of cDNA-starts (solid lines) and ends (dotted lines)
relative to the cDNA-end peaks that were identified at top 1,000 exon-exon
junctions contain the highest number of cDNAs in eIF4A3-iCLIP1. cDNAs
are divided into three length categories: 17-29 nt, 30-34 nt, and 35-39 nt. b)
Same as a), but for eIF4A3-iCLIP3.
c) Same as a), but for the junction that ranks 8th by the number of cDNAs in
eIF4A3-iCLIP1.

(continued)
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Figure 3.14: d) Same as b), but for the junction that ranks 1st by the number of cDNAs in
eIF4A3-iCLIP3.
e) Same as a), but for the junction that ranks 14th by the number of cDNAs in
eIF4A3-iCLIP1.
f) Same as b), but for the junction that ranks 4th by the number of cDNAs in
eIF4A3-iCLIP3.
g) Same as a), but for the junction that ranks 10th by the number of cDNAs in
eIF4A3-iCLIP1.
h) Same as b), but for the junction that ranks 5th by the number of cDNAs in
eIF4A3-iCLIP3.

3.9 A broad range of cDNA lengths compensates for

the constrained cDNA-ends
To understand how the cDNA-end constraints effect the cDNA-start positions in

eIF4A3, I grouped all exon-exon junctions that had the same distance between the

maximum cDNA-end peak and the junction position, focused on the 1000 junc-

tions with the highest cDNA count. Next, I visualised the density of cDNA-start

positions for all the groups in eIF4A3-iCLIP1, eIF4A3-iCLIP2 and eIF4A3-iCLIP3

(Figure 3.15a, b, c). As expected, the cDNA-start enrichment has a strong effect on

the cDNA-end composition (marked as blue rectangle in Figure 3.15a, b, c). Par-

ticularly, this effect is even stronger for eIF4A3-iCLIP1, which can be seen by the

narrow enrichment of cDNA-starts within the same distance relative to cDNA-end

peaks (Figure 3.15a). To investigate the difference between eIF4A3 iCLIP libraries,

I analysed the cDNA length distribution for the examined experiments. Notably,

the analysis of cDNA length distribution shows that of the examined experiments,

eIF4A3-iCLIP1 has the largest proportion (58%) of cDNAs that are shorter than 39

nts, in comparison to eIF4A3-iCLIP3 that has only 36% and 46% in eIF4A3-iCLIP2

(Figure 3.16a). In addition to the large proportion of short cDNAs in eIF4A3-

iCLIP1, there is also a dominant range of cDNAs that are between 27 and 38 nt

long (Figure 3.16a) in comparison to other libraries with more even size distribu-

tion (Figure 3.16b, c). The narrow range of cDNA-starts in eIF4A3-iCLIP1 rarely

identify crosslink sites within the expected EJC-binding region (marked by the yel-

low rectangle in Figure 3.15a).
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Figure 3.15: A broad cDNA length range ameliorates the effects of constrained cDNA-
ends.

a) Heatmap showing the position of cDNA-starts in eIF4A3-iCLIP1
around the 1000 exon-exon junctions with the highest number of cDNAs.
Junctions are sorted according to their cDNA-end peak position. Each row
shows the average of cDNA counts at all junctions with a cDNA-end peak
at the indicated position. The values are normalised against the maximum
value across all rows. On the right, the arrows mark parts of the figure in
which binding site assignment corresponds to the schematic shown in (Figure
3.17d). Coloured rectangles mark the main region of eIF4A3 crosslinking
(green), the expected EJC-binding region (yellow) and the position of the
cDNA-end peak (blue).

(continued)

108



Figure 3.15: b) Same as a), but for eIF4A3-iCLIP2. The arrow in the figure marks the 17 nt
minimal distance between cDNA-starts and the expected EJC-binding region
that is required for cDNA-starts to be able to identify crosslink sites within
the binding site. On the right, the arrows mark sections that correspond to the
schematics shown in (Figure 3.17c, b).
c) Same as a), but for eIF4A3-iCLIP3. The arrow in the figure marks the 17 nt
minimal distance between cDNA-starts and the expected EJC-binding region
that is required for cDNA-starts to be able to identify crosslink sites within
the binding site. On the right, the arrows mark sections that correspond to the
schematics shown in (Figure 3.17c, b).

In comparison with eIF4A3-iCLIP1 experiment, eIF4A3-iCLIP2 and eIF4A3-

iCLIP3 have a broad range of cDNA lengths, where majority of cDNAs are longer

than 40 nts of their sequencing length (Figure 3.16a). The broad range of cDNA

lengths identifies a broad area of crosslink positions upstream from cDNA-end

peaks, including the expected 24 nt EJC-binding upstream region relative to exon-

exon junction in both eIF4A3-iCLIP2 and eIF4A3-iCLIP3 (marked as yellow and

green rectangle in Figure 3.15b, c). Notably, there is a 17 nt distance of low

crosslink enrichment between cDNA-end peaks and crosslinks, that can be ex-

plained by the iCLIP procedure. In the computational pipeline of iCLIP analysis

(see Methods 1), cDNAs shorter than 17 nt are removed from the pipeline, since

they rarely map to a unique genomic position. For this reason, the cDNA-ends

should ideally be at least 17 nt away from the RBP binding region.

The majority of cDNA-ends are present more than 17 nt downstream of the ex-

pected EJC-binding region in eIF4A3-iCLIP2 and eIF4A3-iCLIP3 (Figure 3.15b,

c), which decreased the cDNA-end constraints. Another potential explanation for

better overlap of crosslink sites over the EJC binding region in eIF4A3-iCLIP2

and eIF4A3-iCLIP3 could be the broad range of cDNA lengths (Figure 3.16a). In-

deed, most crosslinking in eIF4A3-iCLIP2 and eIF4A3-iCLIP3 is seen within the

expected EJC-binding region, as well as approximately 10 nt on each side of this

region (marked with green rectangle in Figure 3.15b, c). In conclusion, the broad

range of cDNA lengths can overcome the cDNA-end constraints by producing the

non-coinciding cDNA-starts that can more comprehensively identify crosslink sites

(marked by the yellow rectangle in Figure 3.15a).
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Figure 3.16: Distribution of cDNA sizes in the studied experiments.

a) Distribution of cDNA sizes in eIF4A3 CLIP and iCLIP experiments
of cDNAs that are shorter than 39 nt. The number above the lines reports
the % of cDNAs shorter than 39 nt. For longer cDNAs, it is not possible to
draw the distribution as their precise lengths are unknown due to the limited
length of sequencing. Thus, both the distribution and the % needs to be taken
into account to estimate if there is a narrow distribution of cDNA sizes. For
example, the distribution shows preferred lengths for both eIF4A3-iCLIP1
and eIF4A3-iCLIP3, but in case of eIF4A3-iCLIP3 only 36% of cDNAs are
shorter than 39 nt, while in eIF4A3-iCLIP1 approximately 50% of cDNAs
are in the length range of 27-37 nt. Thus, only eIF4A3-iCLIP1 has a strong
potential for the cDNA distribution to affect binding site assignment.

(continued)
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Figure 3.16: b) Same as a), but for PTBP1 CLIP experiments, showing the % of cDNAs
shorter than 34 nt due to the shorter sequencing length.
c) Same as b), but for U2AF2-iCLIP which shows a trend for shorter cDNA
size distribution, with 54% of cDNAs <39 nt. However, this is not a major
problem due to the lesser cDNA-end constraints in this experiment.

3.10 Discussion

This chapter demonstrates that use of iCLIP cDNA-starts is appropriate for assign-

ment of crosslink sites. Moreover, it shows that assessing cDNA lengths and cDNA-

ends can help to understand any biases that can limit assignment of crosslink sites

to specific regions of binding sites, particularly in long binding sites (Figure 3.17a).

I present the computational approaches to visualise these technical features in the

sequenced cDNA libraries. I find that cDNA-ends are often constrained in CLIP

and iCLIP libraries, most likely a result of preferred RNase cleavage, which leads

to the non-coinciding cDNA-starts (Figure 3.12a, b). For example, pre-mRNAs are

cleaved during the splicing process within cells, which explains the peak of cDNA-

ends at exon-exon junctions in eIF4A3-iCLIP2, eIF4A3-iCLIP3 (Figure 3.12d), and

at intron-exon junctions in PTBP1 iCLIP experiments (Figure 3.12b, d, e, f). I

also show that the RNases used in iCLIP and CLIP can have preference for single-

stranded RNA or for specific sequence motifs, which can also lead to cDNA-end

constraints (Figure 3.13b, d, f, g-j). When cDNA-ends are located at least 17 nt

(minimum cDNA length for mapping after trimming, see Methods 1) downstream

of the binding site, then a broad distribution of cDNA lengths can compensate for

the cDNA-end constraints to ensure that the assigned binding sites are correctly as-

signed by crosslink cDNAs (Figure 3.16d and Figure 3.17b). However, if an iCLIP

library contains a narrow distribution of cDNA sizes, the cDNA-end constraints

can lead to an overly narrow assignment of binding sites (Figure 3.15a and Figure

3.17d). Similarly, only the 5’ region of the binding sites is assigned if cDNA-ends

are constrained to positions very close to the binding sites (Figure 3.16b, c and Fig-

ure 3.17c). Since cDNA fragments can also be too long to be isolated from the gel

(Figure 3.17b in grey) or too short (Figure 3.17c in grey) to be uniquely mapped
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to genomic position, it would be very challenging to identify crosslink sites closer

than 17 nt from the cDNA-ends, which is the minimum length for mapping iCLIP

cDNA reads (see Methods 1).
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Figure 3.17: A schematic explaining how different extents of cDNA-end constraints affect
binding site assignment.

(continued)
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Figure 3.17: a) If the iCLIP library contains a broad range of cDNA lengths and uncon-
strained positions of cDNA-ends, then crosslink sites are identified in an un-
biased manner, allowing assignment of the full binding site (RNA-map at
the bottom). The crosslink sites assigned by cDNA-starts are marked in red
bars and a grey bar marks a crosslink site that is incorrectly assigned by a
readthrough cDNA.
b) If cDNA-ends are constrained, most likely as a result of biased RNase
cleavage, then the resulting cDNA-starts do not coincide. Nevertheless, if
a broad distribution of cDNA lengths is available and the cDNA-ends are
placed far enough from the binding site, then crosslink sites can still be iden-
tified across the full binding site, allowing correct assignment, as was seen in
the case of eIF4A3-iCLIP2 (Figure 3.15b). If a broad distribution of cDNA
lengths is used there can also be too long fragments to be isolated from the
SDS gel (long cDNAs in grey).
c) If cDNA-ends are constrained to a position very close to the binding site,
then those cDNAs that truncate at crosslink sites in the 3’ region of the bind-
ing site are too short to be isolated and mapped to the genome (short cDNAs
in grey). Therefore, crosslink sites are identified only in the 5’ region of the
binding site, leading to an overly narrow assignment of binding sites, as was
seen in some of the sites identified by eIF4A3-iCLIP1, eIF4A3-iCLIP2 and
eIF4A3-iCLIP3 (Figure 3.15a, b, c).
d) If cDNA-ends are constrained and an iCLIP library contains a narrow dis-
tribution of cDNA sizes, then cDNA-end constraints lead to an overly narrow
assignment of binding regions, as was seen in the case of eIF4A3-iCLIP1
(Figure 3.15a).

I provide several pieces of evidence to argue against the previous hypothe-

sis that the non-coinciding cDNA-starts reflect a high prevalence of readthrough

cDNAs. First, I analyse the iCLIP library from a modified iCLIP protocol to iden-

tify readthrough cDNAs with the use of an additional 5’ marker ligation step (Fig-

ure 3.4). The purpose of this method is not to define the precise proportion of

readthrough cDNAs; that would require a more specialised protocol. Instead, it ex-

amines the sequence characteristics at the starts of readthrough cDNAs as part of the

standard iCLIP protocol, and without loss of any cDNAs. This confirmed that the

detected readthrough cDNAs have distinct characteristics from most other cDNAs

in iCLIP (Figure 3.5a-d). Second, I observe lower proportion of crosslink-induced

deletions in eIF4A3 iCLIP compared to CLIP, in agreement with the previous study

[120]. Third, I show that in spite of non-coinciding cDNA-starts, CL-motifs are

enriched mainly at cDNA-starts in iCLIP, but not in CLIP and this also applies to
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the PTBP1-iCLIP2 experiment in which 4SU was used for crosslinking. Moreover,

I show that readthrough and truncation at crosslink sites are not mutually exclusive,

since many readthrough cDNAs in iCLIP appear to also truncate at crosslink sites,

as evident by CL-motif enrichment both at position of deletions and cDNA-starts

(Figure 3.2g). This could occur when two separate crosslinking events are present

in a single RNA fragment, allowing the cDNA to readthrough the first event but

truncate at the second. Fourth, I show that non-coinciding cDNA-starts in iCLIP

are caused by constrained cDNA-ends, which can be caused by the RNase used for

RNA fragmentation, or by in vivo RNA cleavage, for example during production of

intron lariats (Figure 3.11). Fifth, while cDNA-starts of readthrough cDNAs could

lead to spurious assignment of crosslink sites upstream of the expected binding

regions, I find that the expected EJC binding region locates at the centre of cDNA-

starts in eIF4A3-iCLIP2 and eIF4A3-iCLIP3 (Figure 3.15b, c), and similarly the

Y-tracts overlap well with cDNA-starts in PTBP1 and U2AF2 (Figure 3.8a, b, e, f).

Collectively, I believe the presented evidence is sufficient to reject the hypothe-

sis that non-coinciding starts are caused by a high prevalence of readthrough cDNAs

as it was proposed by the previous study [181]. Instead, I find that crosslink sites are

correctly assigned by cDNA-starts even if non-coinciding cDNA-starts are present,

and instead the non-coinciding cDNA-starts are a result of cDNA-end constraints

that can be explained by multiple causes (Figure 3.17).

Based on the readthrough hypothesis, non-coinciding cDNA-starts served as

an argument for using cDNA-centres instead of cDNA-starts, since use of cDNA-

centres corrected the shift in the EJC-binding sites assigned by eIF4A3-iCLIP1

[181]. I now show that eIF4A3-iCLIP1 experiment is unique due to its narrow

position of cDNA-ends immediately next to the expected EJC-binding region (Fig-

ure 3.12d) and its relatively narrow cDNA size distribution (Figure 3.16a), both

of which lead to assignment of overly narrow binding sites (Figure 3.15a and Fig-

ure 3.17d). The newly-generated eIF4A3-iCLIP2 and eIF4A3-iCLIP3 experiments

demonstrate that these problems can be addressed experimentally, and therefore

experimental optimisations of iCLIP would be more appropriate instead of use of
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cDNA-centres (Figure 3.8i, j).

My findings and computational approaches will help users to optimise iCLIP

conditions towards a broad range of cDNA lengths and unconstrained positions of

cDNA-ends. They demonstrate the importance of optimised conditions in iCLIP

to avoid cDNA-end constraints such as 3’ dephosphorylation of RNA fragments

needs to be efficient (Figure 3.1, step 2), since this is necessary for efficient 3’

adapter ligation to the RNA 3’ ends produced by RNase I (Figure 3.1, step 3).

Ideally, most RNA fragments would be ligated to the 3’ adapter, which minimises

potential biases. Another important aspect of iCLIP protocol optimisation is the

purification of cDNAs, that should be performed in a way that maintains a broad

range of cDNA lengths in the final amplified library. This should ideally include

isolation of both short and long cDNAs to maximise mapping of crosslink sites

that are located either close or far from the site of RNase cleavage, respectively

(Figure 3.17a). Moreover, it indicates that special procedures for genomic mapping

of short cDNAs may be beneficial; for example, due to the problem that short cDNA

reads often map at multiple genomic positions, mapping of short cDNAs could be

narrowed down to the genomic regions where longer cDNAs map. Taken together,

it is important to ensure that RNase I is the primary source of RNA fragmentation,

that 3’ dephosphorylation of RNA fragments is efficient and that the cDNA library

has a broad range of cDNA sizes.

This chapter provides insights into the design, analysis and interpretation of

iCLIP data. It demonstrates the importance of a broad cDNA length distribution

and optimised RNase fragmentation conditions, according to published guidelines

[126, 124, 192]. These analysis confirms that cDNA-starts are the correct input for

the computational analysis of iCLIP data, even if non-coinciding cDNA-starts are

present. Finally, it informs about the interpretation of binding sites that are assigned

with cDNA-starts. For example, even though the non-coinciding cDNA-starts in

iCLIP identify contacts with 10 nt on each side of the expected EJC-binding region,

this is compatible with the finding that the sequence and structure of a nascent

mRNA can shift EJC deposition as far as 10 nt away from this expected site [206].
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It also agrees with finding of previous transcriptomic studies, which have shown

that the precise position of EJC binding can vary between different junctions, and

can be influenced by RNA structure or by other RNA-binding proteins that bind in

the vicinity [201, 166].

I conclude that non-coinciding cDNA-starts are not a cause for concern in

iCLIP, and instead they reflect the capacity of broad cDNA length distribution to

compensate for constrained cDNA-ends (Figure 3.17b). This allows the cDNA-

starts in iCLIP to identify crosslink sites across the complete RNA binding sites of

RBPs, ensuring that the binding sites are correctly assigned.
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Chapter 4

CLIPo: a tool to identify the features

underlying protein-RNA interactions

from CLIP data

4.1 Introduction

Analysis of endogenous RNA binding sites of RBPs has been aided by the devel-

opment of UV crosslinking and immunoprecipitation (CLIP) [38], and its succes-

sor, individual nucleotide resolution crosslinking and immunoprecipitation (iCLIP)

[124]. iCLIP employs UV crosslinking and immunoprecipitation to identify sites of

protein-RNA crosslinking with nucleotide resolution in a transcriptome-wide man-

ner. Moreover, many other variations of CLIP method have been developed, includ-

ing eCLIP and irCLIP, each of which modify multiple enzymatic steps from the

CLIP protocol that can affect the quality of the resulting cDNA library [120] and

binding site assignment. However, the ways that variations in the method affect the

assignment of RNA binding sites are unclear.

Tools such as FASTQC exist that can examine the sequenced library to assess

the potential effects of poor sequencing quality, but no tools are available to exam-

ine the quality of preceding steps in the preparation of CLIP cDNA libraries. The

development of such a tool was hampered by a lack of high-quality cDNA libraries

produced for the same RBP in different laboratories using different protocols. Re-

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/


cently, such libraries have become available for several proteins, which provides the

basis for comparing the technical features affecting each cDNA library systemati-

cally.

In this chapter, I will present CLIPo (CLIP optimisation tool), a newly devel-

oped computational pipeline that assesses features that can affect the correct iden-

tification of binding sites (see GitHub). CLIPo examines three general features of

cDNA libraries that can inform on the quality of the steps during library prepara-

tion. As a proof of principle, I examined these features in multiple datasets for

PTBP1 produced by iCLIP, eCLIP and irCLIP to demonstrate the impact of several

biases, such as sequence constraints, narrow cDNA length distribution and back-

ground noise that can affect the assignment of binding sites. CLIPo can assess tech-

nical features in all variants of iCLIP, and thus offers the quality control standards

for the transcriptome-wide assignment of protein-RNA binding sites.

In the first part of this chapter, I will focus on the effects of technical features

that differ between CLIP methods and assess in detail the binding pattern of PTBP1,

which binds to well-defined polypyrimidine-rich RNA motifs [66, 47]. In addition

to providing novel technical insights such as the optimal clustering conditions for

PTBP1, I will give new mechanistic insight into PTBP1 splicing regulation. With a

new RNA-map pipeline, which is a part of the CLIPo package, I will demonstrate

that PTBP1 regulates splicing mostly in a position-dependent manner.

In this chapter, I will refer to local accumulations of significantly enriched crosslink

sites as peaks, and to clusters as regions of merged peaks. Both clusters and peaks

are identified by iCount, such that the user can adjust the window size for their

assignment.
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4.2 CLIPo reports on the quality and specificity of

CLIP experiments
In the previous chapter, I showed that iCLIP data contain non-coinciding cDNA-

starts, which are caused by constrained cDNA-ends resulting from the RNA se-

quence and structure constraints of RNase cleavage. I provided new computational

approaches to visualise the impact of these features on the sequenced cDNA li-

braries to interpret the assigned binding sites correctly. Here, I will focus on the

quality controls for the PTBP1 dataset from the eCLIP, iCLIP and irCLIP methods,

and show how the constraints can be measured based on the findings of cDNA-end

constraints from the previous chapter (see Chapter 3).

CLIPo is a computational pipeline that examines three general features of se-

quencing libraries (see Methods 2.5) that inform on the quality of the principal

library preparation steps in CLIP (Figure 3.1). First, it examines the cDNA com-

plexity, or the total number of unique cDNAs in the library. This cDNA count

depends on the sequencing depth and reflects the complexity of the library, since

the cDNAs mapping at the same genomic position need to have distinct UMIs and

hence are removed as PCR duplicates. High cDNA complexity shows that a suffi-

cient amount of RNA was co-purified with the RBP, which depends on the amount

of starting material (cells or tissue), the abundance of the RBP, and the crosslinking

and immunoprecipitation efficiency. Moreover, it reflects the efficiency of linker

ligation, cDNA circularisation and reverse transcription, and the loss of RNAs or

cDNAs at each step in the protocol.

Secondly, CLIPo examines the level of cDNA-end constraints by analysing

the cDNA length distribution and the sequence at cDNA-starts and cDNA-ends.

The distribution of cDNA lengths informs on the conditions of RNA fragmentation

(Figure 3.11, step 2), size-selection of protein-RNA complexes (Figure 3.1, step 4)

and cDNA library preparation and amplification (Figure 3.1, step 7). Sequence con-

straints at cDNA-starts can result from the sequence preferences of UV crosslinking

(Figure 3.1, step 1) and from the conditions of adapter ligation to cDNA-starts (Fig-

ure 3.11, step 7). To examine length distribution, CLIPo reports the proportion of
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cDNAs that are shorter than 40 nt (see Table 4.1) and the highest percentage of

cDNA lengths that are in the 10 nt length window are marked as length constraints

(see Table 4.1). To examine the sequence constraints, CLIPo examines a sequence

composition around cDNA-ends to measure the enrichment of all tetramers. It cal-

culates a numerical value that estimates the constraints (see Table 4.1) by comparing

the enrichment of the 10 most highly enriched tetramers directly at cDNA-ends rel-

ative to a region 10 nt upstream. A high enrichment of these motifs shows that

the sequence of cDNA-ends is different from the surrounding sequence, and thus

indicates high sequence constraints (Figure 3.10b, d, f).

Thirdly, CLIPo examines the specificity of cDNAs (see Table 4.1). To examine

the capacity of the cDNA library to assign binding sites, CLIPo reports the number

of significant crosslink clusters. Since it applies the same clustering algorithm for

all data (except the the so-called ’narrow peaks’ for eCLIP-NarrowPeaks, which

are predefined clusters by ENCODE) by using iCLIP, irCLIP and eCLIP cDNA-

starts as an estimated position of crosslink sites; this method allows comparative

analysis. To examine the specificity for these clusters, it reports the proportion of

cDNAs that identify crosslink sites within the clusters. Sequence specificity of the

assigned binding sites is analysed through identification of the ten most enriched

tetramers within the clusters and the enrichment of these tetramers is compared

to the genomic sequence preceding the clusters. These specificity features can also

reflect the nature of protein-RNA interaction: in case of RBPs that do not bind RNA

with high specificity, values will be low regardless of the quality of cDNA library.

In order to understand how variations in specificity features of different ex-

periments influence binding site assignment, I examined these features for PTBP1

across different methods. These experiments have similar cDNA complexity be-

tween 6 and 10 million uniquely mapped cDNAs, and thus they are among the most

complex CLIP cDNA libraries published to date (see Table 4.1). As expected, I

detected several cDNA constraints, some of which have been highlighted in the

previous chapter (see Chapter 3). For example, there are pronounced sequence

constraints at cDNA-ends in PTBP1-CLIP, PTBP1-iCLIP1 and PTBP1-iCLIP3 that
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have been investigated in the previous chapter (see Chapter 3), in which I demon-

strated the adenosine enrichment at cDNA-end positions. There are also length

constraints in the PTBP1-iCLIP5 experiment, similar to the ones discussed in the

previous chapter 3, in which I show that the eIF4A34-iCLIP1 experiment had a nar-

row distribution of cDNA lengths (Figure 3.16a). However, enrichment in clusters

from the top 10 most enriched tetramers is lower in PTBP1-iCLIP5 and PTBP1-

NarrowPeaks compared to other experiments (see Table 4.1). Moreover, the num-

ber of assigned clusters and the percentage of cDNAs within them is very low in the

PTBP1-eCLIP data compared to other experiments (see Table 4.1). The PTBP1-

irCLIP experiment has ten times more uniquely mapped cDNAs and identified clus-

ters compared to other experiments, but there is a much lower motif enrichment

inside those clusters (see Table 4.1), suggesting that this experiment might have a

large proportion of background noise. There are also strong structure constraints at

cDNA-ends in PTBP1-irCLIP that could be related to the low specificity of the data.

Interestingly, the PTBP1-eCLIP experiment shows much less structure constraints

around cDNA-ends (see Table 4.1), which could be explained by the difference in

the library preparation compared to the standard iCLIP, as eCLIP uses long frag-

ments and paired-end read sequencing.

In summary, CLIPo predicts that PTBP1-iCLIP1 and PTBP1-iCLIP2 have the

highest specificity compared to other experiments (see Table 4.1). More generally,

I conclude that specificity features vary between experiments performed with the

same RBP, suggesting that they provide information on the quality of the different

cDNA libraries (see Table 4.1). This tool will now be a useful as a quality control

of RBPs from different variants of CLIP method.
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4.3 Exploring the PTBP1 ENCODE eCLIP data

The ENCODE project chose eCLIP as the method of choice for a study of 300

RBPs. Since January 2016, all the datasets are available online, including mapped

cDNAs and final clusters known as ’narrow peaks’ produced with the peak calling

tool CLIPper (see subsection 1.6.8). I first analysed the ENCODE processed data by

using the narrow peaks from CLIPper, which have been normalised with the mock

eCLIP controls and filtered as significantly enriched crosslink clusters (see PTBP1-

Narrow Peaks in Table 4.1). I focused my study on the PTBP1 protein since it has

been the main example used in this thesis (see Chapter 3). Surprisingly, the CLIPo

quality measures of the protein specificity, such as coverage of cDNA-starts and

motif enrichment, seem to be particularly low in narrow peaks compared to other

experiments including the total number of detected crosslink clusters (see Number

of crosslink clusters in PTBP1-NarrowPeaks in Table 4.1). A simple approach to

explore the RBP specificity is to look at the motif enrichment across identified clus-

ters and their surrounding region. For this purpose, I stratified clusters into length

categories and produced a heatmap of motif enrichment including the surrounding

region (see Methods 2.5.4).

Interestingly, there is a significant enrichment of PTBP1 motifs in the region

upstream of detected clusters (Figure 4.1a). To further assess the validity of the

PTBP1-eCLIP data, I looked at the distribution of cDNA-starts for the same cluster

groups. As expected, the cDNA-start positions show an upstream shift away from

the narrow peak clusters with a similar pattern as the heatmap of motif enrichment

(Figure 4.1a, b). This shift in the coverage of cDNA-starts and the motif enrichment

could be explained by the use of complete cDNAs, rather than cDNA-starts, in the

ENCODE narrow peak calling.

The eCLIP protocol [134] proposed that eCLIP data maintains the single-

nucleotide resolution, and so it is important that we use the appropriate software

for peak analysis that exploits such resolution by the use of cDNA-starts. There-

fore, I analysed the PTBP1-eCLIP data with the iCount peak calling algorithm (see

Methods 2.4.1) that I also used for all the iCLIP and irCLIP experiments. I anal-
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ysed the data using a 3 nt window size setting and FDR threshold lower than 0.05 to

merge peaks that are within 15 nt surrounding region into crosslink clusters, which

is also the default setting of the CLIPper tool. This comparison of two different

pipelines showed a clear difference in the CLIPo results table (see Table 4.1), with

twice as many clusters identified in PTBP-eCLIP and an over 2-fold increase of

motif enrichment compared to the PTBP1-NarrowPeaks. The low number of iden-

tified clusters by eCLIP is unexpected, since the number of eCLIP cDNAs is similar

to iCLIP, and it might reflect increased noise of non-specific cDNAs in eCLIP. Im-

portantly, in both iCLIP and eCLIP, motifs and cDNA-starts are enriched in the

expected region of the clusters defined by the iCount pipeline, demonstrating that

analysis of cDNA-starts is more appropriate than the use of complete cDNAs by

CLIPper (Figure 4.1).
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Figure 4.1: Heatmaps of PTBP1 motifs and cDNA-starts for comparing ENCODE narrow
peaks and the iCount peak calling pipeline.

a) Heatmap showing the coverage of PTBP1-binding motifs at the PTBP1-
eCLIP1 narrow peak clusters that were downloaded from the ENCODE
website. Each row shows the average coverage for 300 clusters of similar
length, sorted from the shortest to longest clusters. The white line marks the
nucleotide preceding the start and the nucleotide following the median end of
all clusters that were combined in each row. A colour key for the coverage per
nucleotide of the PTBP1-binding motifs is shown on the top left.
b) Heatmap showing the density of normalised cDNA-starts around PTBP1-
eCLIP1 narrow peak clusters that were downloaded from ENCODE website.
Each row shows the average coverage for 300 clusters of similar length,
sorted from shortest to longest clusters. The white line marks the nucleotide
preceding the start and the nucleotide following the median end of all clusters
that were combined in each row. A colour key for the coverage per nucleotide
of the PTBP1-binding motifs is shown on the top left.
c) Same as a) but showing the motif coverage of PTBP1-eCLIP1 clusters
identified by iCount.
d) Same as a) but showing the normalised cDNA-starts of PTBP1-eCLIP in
PTBP1-eCLIP1 clusters identified by iCount.
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4.4 Differentiation of biological and technical fea-

tures between iCLIP and eCLIP data
One of the differences between the iCLIP and eCLIP methods is that eCLIP comes

with an additional mock-eCLIP control experiment, which represents a mixture of

crosslink sites for many different RBPs. Thus this mock-eCLIP should not reflect

the sequence specificity of any specific RBP [134]. CLIPo analysis showed a similar

specificity for the PTBP1-eCLIP and PTBP1-iCLIP2 experiments, when I used the

same pipeline for identification of crosslink binding clusters without any additional

normalisation. To explore differences in the data further, I investigated whether

there were any technical or biological differences between these two experiments by

analysing tetramer enrichment around cDNA-start peaks together with the control

mock-eCLIP experiment. I measured the tetramer enrichment for each experiment

compared to the controlled region (see Methods 2.5.5) and compared the enrich-

ment between experiments (Figure 4.2a, b, c). Indeed, there is a high correlation

of tetramer enrichment between PTBP1-iCLIP2 and PTBP1-eCLIP (Figure 4.2c)

and very low correlation between PTBP1-iCLIP2 and control mock-eCLIP (Figure

4.2a). Interestingly, there is much higher correlation between PTBP1-eCLIP and

control mock-eCLIP compared to PTBP1-iCLIP2 and control mock-eCLIP (Fig-

ure 4.2a, b), suggesting that PTBP1-iCLIP2 identified more protein-specific motifs

compared to PTBP1-eCLIP. Next, I looked at how tetramers are enriched and posi-

tioned relative to the cDNA-start peaks. First, I identified the position within each

crosslink cluster with the highest count of cDNA-starts for all three experiments and

visualised the enriched tetramers, which were sorted by the PTBP1-eCLIP tetramer

enrichment from top to bottom with its sequence on the right side (see Figure 4.2).

I noticed that the tetramer enrichment from all three experiments is positioned be-

tween -2 and 10 nt relative to the cDNA-start peak, which agrees with my previous

findings (see Chapter 3), where I concluded that cDNA-start positions should be

used for the data analysis of iCLIP and other related methods.

Next, I noticed a high enrichment of GACG, ACGG, CGGA tetramers in

PTBP1-eCLIP and also in mock-eCLIP but not in PTBP1-iCLIP2 (orange rectangle

127



in Figure 4.3). These motifs are not specific for PTBP1 protein which preferentially

binds to pyrimidine tracts (Y-tracts) [66, 211]. Since these motifs are also enriched

in the control mock-eCLIP experiment, I assumed these to be parts of technical fea-

tures of the eCLIP method and that they can potentially be minimised or filtered

with the mock eCLIP normalisation pipeline [134]. Taken together, there is no need

for additional controls such as the mock eCLIP experiment for the iCLIP method

if the quality of the library is high enough and prepared by following the recom-

mended protocol [126]. More importantly, even though the PTBP1-eCLIP data has

a much lower complexity (number of uniquely mapped cDNAs, number of iden-

tified clusters in Table 4.1), it can still detect a correct set of motifs that correlate

with PTBP1-iCLIP2 experiment. Overall, it is important to distinguish technical

from biological features and this type of tetramer visualisation around cDNA-start

peaks (Figure 4.3, see Methods 2.5.6) could be used to interpret these features be-

tween different CLIP related methods.
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Figure 4.2: Scatter plot of tetramer enrichment between PTBP1-eCLIP, mock-eCLIP and
PTBP1-iCLIP2 experiments.

a) Tetramer enrichment compared to the control between mock-eCLIP
and PTBP1-iCLIP2 experiments.
b) Same as a) but for mock-eCLIP and PTBP1-eCLIP.
c) Same as a) but for PTBP1-iCLIP2 and PTBP1-eCLIP.
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Figure 4.3: Heatmap of tetramer enrichment around cDNA-start peaks.

Each row shows the normalised tetramer enrichment relative to cDNA-
start peak in region 50 nt surrounding region from left to right: PTBP-iCLIP2,
PTBP-eCLIP and mock-eCLIP. All tetramers are sorted by PTBP1-eCLIP
enrichment from top to bottom.

130



4.5 Optimal peak calling settings for PTBP1 binding

sites in iCLIP data
We noticed that the distribution of cDNA-starts in clusters that were identified by

iCount shows a drop of cDNA-starts in the 15 nt surrounding the cluster region (Fig-

ure 4.1 - Heatmap of eCLIP-PTPB1). This can be explained by the use of 15 nt peak

merging conditions, which lead to the peaks being positioned at the boundaries of

clusters. To understand how the window size options affect the features of assigned

crosslink clusters better, I decided to redefine PTBP1 crosslink clusters to find the

most optimal peak calling and clustering windows size. For this purpose, I grouped

PTBP1-iCLIP1 and PTBP1-iCLIP2 experiments (here referred as PTBP1-iCLIP1-

2), since both experiments showed a similar specificity in the CLIPo analysis (see

Table 4.1). I first employed the standard binding site pipeline (see Methods 2.4.1)

of 5 different groups with 20 nt clustering windows and 3 nt, 10 nt, 25 nt, 50 nt

and 100 nt peak calling window sizes and by the significance of cDNA enrichment

compared to the shuffled data [183] of 0.05 FDR (False Discovery Rate) threshold.

To examine if the newly defined clusters represent bona fide PTBP1 binding

sites, I first assessed the sequence of clusters that were identified by different peak

calling window sizes. PTBP1 motifs (see Methods 2.4.4) are highly enriched across

the full length of these clusters but with decreased motif enrichment in long cluster

regions (Figure 4.4). The drop in motif enrichment can also be seen by looking at

the PTBP1 motif enrichment across all clusters for each peak window size group

(see Table 4.2: Optimal peak calling window size for PTBP1-iCLIP1-2), suggest-

ing that the short 3 nt peak calling window size is more precise in obtaining the

full coverage of PTBP1 motifs across clusters in the PTBP1-iCLIP1-2 data. The

enrichment of PTBP1 motifs is restricted to the region inside the 3 nt peak calling

clusters, whereas a slight enrichment of PTBP1 motifs continues in the surrounding

region of other cluster groups (10 nt, 25 nt, 50 nt, 100 nt in Figure 4.4).

Thus, the enrichment of PTBP1 motifs in the surrounding region of crosslink

clusters might be explained by the presence of binding sites of a closely neigh-

bouring PTBP1. Indeed, many RBPs contain multiple domains or form homo-
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multimers, which allows them to simultaneously bind at multiple sites over longer

RNA regions [64, 65, 33, 62]. For example, the two RRM domains of TIA1 were

found to promote its cooperative binding, and thereby increase the avidity of in-

teraction with longer binding regions [215]. Similarly, PTBP1 contains four RNA-

binding domains, each of which binds a pyrimidine-rich (Y-rich) motif to facili-

tate interactions with long RNA regions [64, 66, 65]. Moreover, PTBP1 can form

higher-order complexes when bound to RNA; binding of up to eight PTBP1 pro-

teins was observed at a regulated exon [67, 68]. Nevertheless, it is not known how

precisely iCLIP data can assign the position of full RBP binding sites on endoge-

nous transcripts, and therefore the length of these binding sites has not yet been

systematically assessed.

Since the short 3 nt peak calling window is the most suitable for this type of

analysis, I was next interested in the optimal clustering window size of surrounding

peaks. I used the same window size groups as I did for peak calling and draw

the PTBP1 motif enrichment for all 5 clustering groups (3 nt, 10 nt, 25 nt, 50 nt

and 100 nt in Figure 4.5). Similar to the peak window comparison I observed the

same decreased trend of motif enrichment in the long clusters of large clustering

window sizes (Figure 4.5). To ensure that the surrounding region is considered

in the motif enrichment analysis (see Table 4.3 - PTBP1 motif enrichment inside

clusters), I used the motif enrichment of mirrored clusters from the upstream region

to deduce the inside motif enrichment across clusters (Table 4.3: PTBP1 motif-

corrected enrichment). I found that the clustering with the approximate window

size of 10 nt has the highest motif enrichment compared to other clustering groups

(see Table 4.3). In essence, I found that the PTBP1 crosslink clusters from the iCLIP

data are optimally classified under the short window sizes. In my example, this is

demonstrated by the 3 nt peak calling window size and 10 nt clustering window size

for merging the neighbouring peaks for PTBP1-iCLIP1-2 data.
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Figure 4.4: PTBP1-binding motif enrichment across PTBP1 crosslink clusters with
different peak calling window sizes.

Heatmap showing the coverage of PTBP1-binding motifs at the PTBP1-
iCLIP1-2 crosslink clusters that were defined with a 20 nt clustering window
and 3nt, 10 nt, 25 nt, 50 nt, 100 nt peak calling window sizes. Each row shows
the average coverage for 300 clusters of similar length, sorted from shortest to
longest clusters. The white line marks the nucleotide preceding the start and
the nucleotide following the median end of all clusters that were combined in
each row. A colour key for the coverage per nucleotide of the PTBP1-binding
motifs is shown on the right.

133



Peak calling windows size PTBP1 motif enrichment inside clusters
3 nt 0.223

10 nt 0.222
25 nt 0.198
50 nt 0.181

100 nt 0.167

Table 4.2: Optimal peak calling window size for PTBP1-iCLIP1-2.

Figure 4.5: PTBP1-binding motif enrichment across PTBP1 crosslink clusters with
different clustering window sizes.

Heatmap showing the coverage of PTBP1-binding motifs at the PTBP1-
iCLIP1-2 crosslink clusters that were defined with a 3nt peak window and 3
nt, 10 nt, 25 nt, 50 nt, 100 nt clustering window sizes. Each row shows the
average coverage for 300 clusters of similar length, sorted from shortest to
longest clusters. The white line marks the nucleotide preceding the start and
the nucleotide following the median end of all clusters that were combined in
each row. A colour key for the coverage per nucleotide of the PTBP1-binding
motifs is shown on the right.
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Clustering
window size

PTBP1 motif
enrichment
inside clusters

PTBP1 motif
surrounding
enrichment upstream

PTBP1 motif
corrected
enrichment

3nt 0.228 0.103 0.125
10nt 0.235 0.105 0.131
25nt 0.222 0.099 0.123
50nt 0.203 0.091 0.112

100nt 0.180 0.083 0.098

Table 4.3: Optimal clustering size for PTBP1-iCLIP1-2.

4.6 Assessing the position-dependent principles of

splicing regulation with RNA-maps

Similar to many other RNA-binding proteins, PTBP1 regulates splicing in a

position-dependent manner [216]. The initial CLIP study concluded that PTBP1

binding close to an alternative exon generally causes skipping, whereas binding

near a flanking exon induces inclusion [53]. Furthermore, later studies showed that

PTBP1 promotes either skipping or inclusion by binding close to an alternative

exon in a similar manner to NOVA proteins [33], such that binding upstream or

inside the exon causes skipping, whereas binding downstream of the exon causes

its inclusion [61, 30]. After the optimised binding site identification conditions

for PTBP1-iCLIP1-2 data, I was interested in how PTBP1 binding contributed to

position-dependent splicing regulation.

I examined PTBP1 positioning within 300 nt of PTBP1-regulated exons that

were identified by the previous splice-junction microarray study [185]. The RNA-

maps reveal a clear position-dependent regulatory outcome for PTBP1 (Figure 4.6

and Figure 4.7). There is a strong enrichment of crosslink clusters at the repressed

exons that overlap with the 3’ splice site or the exon (normalised coverage of

crosslink enrichment in Figure 4.6b, enrichment in left table of Figure 4.6d). In

contrast, crosslink clusters at the enhanced exons locate downstream of the 5’ splice

site, with low coverage in the 3’ splice site or the exon (normalised coverage of

crosslink enrichment in Figure 4.7b, enrichment in left table of Figure 4.7d).

Using the RNA-map approach, I found the two main arrangements of PTBP1
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complexes around regulated exons: the clusters either extend upstream (Figure 4.6a,

b) or downstream of the 3’ splice site (Figure 4.7a, b). Moreover, in repressed

exons the cluster can also extend over the exons (Figure 4.6a, blue line in Figure

4.6b). As expected, the position of crosslink clusters appears to be dictated by the

enrichment of Y-rich motifs around regulated exons in comparison to the control

exons; repressed exons with upstream clusters contain a Y-rich motif enrichment

that extends upstream of the 5’ splice site (coverage of Y-rich motifs in Figure 4.6c),

whereas with the downstream clusters of enhanced exons, the enrichment of Y-rich

motifs is lower compared to repressed exons and is enriched only downstream of

the 5’ splice sites where crosslink clusters are enriched (Figure 4.7a, c).

Several features explain the activity of PTBP1 exons with the upstream PTBP1

bindings. Firstly, it has been shown that PTBP1 complexes repress splicing when

binding directly at 3’ splice sites [66, 211, 53, 61]. This analysis shows that these

repressed exons are preceded by the long coverage of PTBP1 crosslink clusters,

and with strong enrichment of Y-rich motifs that extends upstream of the canonical

position of the poly-Y tract (Figure 4.6a, b, c). In contrast there is almost no Y-rich

motif enrichment compared to the control exons in the 3’ splice site and exonic

region (Figure 4.6a, b, c), showing that PTBP1 binding upstream of the exon can

decrease accessibility of the 3’ splice site and/or the branch point that is needed for

the U2AF2 and U2 snRNP complexes to repress or enhance splicing, respectively.

Moreover, at the repressed exons, Y-rich motif enrichment is present at the 3’

splice site, as well as within and downstream of the exon (Figure 4.6c). This agrees

with previous studies showing that PTBP1 complexes repress splicing when binding

across the exon [66, 211, 53, 61]. In contrast, the motifs are enriched only down-

stream of the enhanced exons (Figure 4.7c). This enhancing effect of downstream

binding also agrees with the previous study [61] (Figure 4.7a, b, c). Notably, at

enhanced exons, enrichment starts downstream of the 5’ splice site and continues as

far as 300 nt away from the exon (Figure 4.7a, b). Taken together, PTBP1 binding

upstream or downstream of the regulated exons appears to play a central role in its

position-dependent manner of splicing regulation.
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Figure 4.6: RNA-map for PTBP1 repressed exons.

a) Heatmap showing the positioning of PTBP1-iCLIP1-2 crosslink clus-
ters and Y-rich motifs around PTBP1-repressed exons. All PTBP1 exons, were
identified with splice-junction microarrays [185], and their flanking regions
were aligned to the 3’ (left) and 5’ (right) splice sites (vertical white lines).
The positions of the PTBP1-iCLIP1-2 crosslink clusters are indicated by dark
shading, where the Y-rich motifs are shown as black or light red rectangles
inside or outside of the clusters, respectively.
b) Density plot showing the normalised coverage of PTBP1-iCLIP1-2 crosslink
clusters around repressed (blue) and control exons (grey).
c) Density plot showing the average coverage of Y-rich motifs around repressed
(light red) and control exons (grey).
d) Table on the left shows PTBP1-iCLIP1-2 crosslink cluster enrichment and
distance between repressed and control exons for the 3’ splice site, the 5’
splice site and exonic region. Table on the right shows the ratio between the
3’ splice site, the 5’ splice site and exonic regions for repressed and control
exons. 137



Figure 4.7: RNA-map for PTBP1 enhanced exons.

a) Heatmap showing the positioning of PTBP1-iCLIP1-2 crosslink clus-
ters and Y-rich motifs around PTBP1-enhanced exons. All PTBP1 exons, were
identified with splice-junction microarrays [185], and their flanking regions
were aligned to the 3’ (left) and 5’ (right) splice sites (vertical white lines).
The positions of the PTBP1-iCLIP1-2 crosslink clusters are indicated by dark
shading, where the Y-rich motifs are shown as black or light red rectangles
inside or outside of the clusters, respectively.
b) Density plot showing the normalised coverage of PTBP1-iCLIP1-2 crosslink
clusters around enhanced exon (blue) and control exons (grey).
c) Density plot showing the average coverage of Y-rich motifs around enhanced
(light red) and control exons (grey).
d) Table on the left shows PTBP1-iCLIP1-2 crosslink cluster enrichment and
distance between enhanced and control exons for the 3’ splice site, the 5’
splice site and exonic region. Table on the right shows the ratio between the
3’ splice site, the 5’ splice site and exonic regions for enhanced and control
exons. 138



In addition to PTBP1, I was interested in whether the RNA-map would also

show splicing regulation for another protein such as hnRNPC. To answer this ques-

tion, I examined published hnRNPC iCLIP data [124] with 552,440 significantly

enriched clusters that I identified with the same pipeline and peak calling parame-

ters that I used for PTBP1-iCLIP1-2 (3 nt peak calling and 10 nt clustering window

size). First, I examined hnRNPC positioning within 300 nt of hnRNPC-regulated

exons that were identified by JunctionSeq by using publicly available ENCODE

RNA-seq hnRNPC KD data for the K562 cell line. Regulated exons were selected

by having an adjusted p-value lower than 0.01 and log2 fold-change more than 1.0

(see Methods 2.2.3). Indeed, hnRNPC clusters are highly enriched upstream from

the 3’ splice site (Figure 4.8a, b, d), overlapping exactly over the the upstream posi-

tion next to 3’ splice site, where U2AF2 protein binds (Figure 4.8c) as a part of U2

snRNP and is needed for the splicing process (see subsection 1.2). Since hnRNPC

mainly works as a repressor [217, 218, 124, 50], I was also interested in the hn-

RNPC cluster composition around enhanced exons (Figure 4.9). I found that there

was no significant enrichment in the downstream region relative to the 5’ splice

site, as for PTBP1 (Figure 4.8a, b, d), but there is a clear drop in hnRNPC binding

at the upstream region from 3’ splice site where the control data shows the enrich-

ment (Figure 4.8b). This drop could be explained by previous studies [50, 219],

which demonstrated competition between U2AF65 and hnRNPC protein through a

knock down of hnRNPC, which revealed a large inclusion of alu-exons that would

otherwise be repressed by the hnRNPC [50, 219]. Taken together, RNA-maps can

be used to understand splicing regulation of alternative spliced exons by RBPs that

regulate splicing in the position-dependent manner.
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Figure 4.8: RNA-map for hnRNPC repressed exons.

a) Heatmap showing the positioning of hnRNPC-iCLIP crosslink clus-
ters and Y-rich motifs around hnRNPC-repressed exons. All hnRNPC exons,
were identified with JunctionSeq tool from RNA-seq hnRNPC KD data that
is publicly available on ENCODE website. The exon flanking regions were
aligned to the 3’ (left) and 5’ (right) splice sites (vertical white lines). The
positions of the hnRNPC-iCLIP crosslink clusters are indicated by dark
shading, where the Y-rich motifs are shown as black or light red rectangles
inside or outside of the clusters, respectively.
b) Density plot showing the normalised coverage of hnRNPC-iCLIP crosslink
clusters around repressed (blue) and control exons (grey).
c) Density plot showing the coverage of normalised cDNA-starts in the 300nt
upstream region from 3’ splice site for hnRNPC-iCLIP and U2AF65 protein.
d) Table on the left shows hnRNPC-iCLIP crosslink cluster enrichment and
distance between repressed and control exons for the 3’ splice site, the 5’
splice site and exonic region. Table on the right shows the ratio between the
3’ splice site, the 5’ splice site and exonic regions for repressed and control
exons. 140
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Figure 4.9: RNA-map for hnRNPC enhanced exons.

a) Heatmap showing the positioning of hnRNPC-iCLIP crosslink clus-
ters and Y-rich motifs around hnRNPC-enhanced exons. All hnRNPC exons,
were identified with JunctionSeq tool from RNA-seq hnRNPC knockdown
data that is publicly available on ENCODE website. The exon flanking regions
were aligned to the 3’ (left) and 5’ (right) splice sites (vertical white lines).
The positions of the hnRNPC-iCLIP crosslink clusters are indicated by dark
shading, where the Y-rich motifs are shown as black or light red rectangles
inside or outside of the clusters, respectively.
b) Density plot showing the normalised coverage of hnRNPC-iCLIP crosslink
clusters around enhanced (blue) and control exons (grey).
c) Density plot showing the coverage of normalised cDNA-starts in the 300 nt
upstream region from 3’ splice site for hnRNPC-iCLIP and U2AF65 protein.
d) Table on the left shows hnRNPC-iCLIP crosslink cluster enrichment and
distance between enhanced and control exons for the 3’ splice site, the 5’
splice site and exonic region. Table on the right shows the ratio between the
3’ splice site, the 5’ splice site and exonic regions for enhanced and control
exons. 141
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4.7 Discussion

Methods such as iCLIP are composed of many stages, which can influence the re-

sulting data. Here, I have examined the computational aspects of biological and

technical features from different PTBP1 datasets produced by the CLIP, iCLIP,

eCLIP and irCLIP method. In the past, the quality of CLIP libraries was exam-

ined by ranking the enriched motifs by their significance and comparing the top

motifs with evidence from in vitro binding assays. I now find that even poor qual-

ity CLIP libraries can detect correct motifs, and thus this analysis is not sufficient

evidence for high-quality data.

While optimised experimental conditions are essential to produce high quality

protein-RNA interaction data, to some extent the quality of data can also be im-

proved using computational filtering of non-reliable sequence reads, and statistical

solutions. Removing false positives from the dataset can improve RBP specificity

but also reduces the sensitivity [220]. For example, sensitivity of iCLIP data from

RBPs that bind to mRNA can be increased by mapping cDNAs directly to tran-

scriptome which in turn would improve the mapping of cDNAs that are too short

to detect exon-exon junctions. However, this could also decrease its specificity by

limiting the analysis only to known transcripts and missing the important bindings

of other RBP targets [221].

From chapter 3, it is clear that the conditions of RNA fragmentation can af-

fect studies of protein-RNA interactions, just as the conditions of DNA fragmenta-

tion affect the studies of protein-DNA interactions [222]. Here, I demonstrate how

these constraints can be taken into account through the integrated analysis of quality

checks to detect cDNAs that have strong cDNA-end constraints. The background

signal is not an inherent property of the original CLIP method, but such background

can be increased in methods that do not exploit the quality control step of visual-

ising the protein-RNA complex by SDS-PAGE. Therefore, background subtraction

methods developed as part of the eCLIP protocol use a mock eCLIP, potentially

improving the enhanced background by removing non-specific bindings (orange

rectangle in Figure 4.3).
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Here, I have showed how variations in specificity features influence the binding

site assignment. CLIPo evaluates different features such as complexity of the data,

cDNA-end constraints, and specificity of the data as quality measures for the cDNA

libraries. Complexity of the data is measured by uniquely mapped cDNAs to a sin-

gle genomic position after PCR duplicate removal (see Methods 2.5). Previously

I demonstrated how cDNA-end constraints can have an effect on non-coinciding

cDNA-starts. CLIPo can detect these constraints if they are part of the sequence,

structure constraints or cDNA length constraints. More importantly, CLIPo can

measure specificity of the data by looking at the number of identified clusters and

how enriched they are in top 10 sequence motifs around cDNA-starts, as well as

how enriched they are for cDNA-starts. For example, the ratio of cDNA-start cov-

erage across clusters can tell us how noisy the dataset is by using the FDR strin-

gency of peak calling algorithms. These features from CLIPo analysis are very

useful to compare the different variants of CLIP methods. I demonstrated this for

PTBP1, where most of the methods showed similar specificity except the PTBP1-

NarrowPeaks, which can be explained by the different ENCODE pipeline approach

(Figure 2.1, see Methods 2.2.2). Another example is PTBP1-iCLIP5 data (see Ta-

ble 4.1), which showed low enrichment of motifs and high cDNA-length constraints

(Table 4.1). This data had been previously published as an example of a library with

strong non-coinciding cDNA-starts [181]. In conclusion, CLIPo provides insights

into experimental and computational features of all variants of CLIP, which need to

be optimised to ensure comprehensive and unbiased assignment of the protein-RNA

binding sites.

The next important step after mapping is using optimal peak calling settings

(see subsection 1.6.8) to remove non-specific bindings of false positives. Optimis-

ing parameters such as peak calling window size and FDR threshold can reduce

the false positive rate and provide a set of high affinity binding sites. Many cDNA

reads are discarded by peak calling algorithms to increase specificity of RBP tar-

gets, though at the cost of reduced sensitivity. For example, cDNAs discarded by

peak calling algorithms could also be result of lowly expressed genes. This type of
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correction can be improved by integrating complementary data, such as RNA-seq,

[223] or additional controls for background correction such as mock eCLIP [134].

In this chapter, I demonstrated how the published ENCODE Narrow Peaks

from the eCLIP method can be improved with a customised pipeline using an iCount

peak calling tool that uses cDNA-start positions as crosslink sites. Moreover, most

of the peak calling algorithms use a fixed window size for peak calling and clus-

tering. Here, I examined the optimal window size by changing clustering and peak

calling parameters for binding site assignment in PTBP1-iCLIP1-2 data. Measuring

specificity between different CLIP-related methods or even replicates for the same

method still presents a significant challenge. In part, this is a problem relating to

experimental conditions, such as different cell lines or other variation in expression

profiles [221]. In the CLIPo analysis I focused on PTBP1 protein, which is known

to bind polypyrimidine tracks. This enabled me to use Y-rich motifs as a measure-

ment of RBP specificity between different methods and peak calling conditions. I

validated my results by PTBP1 motif enrichment, and I found that short windows

spanning upstream and downstream of approximately 3 nt, together with longer

windows of approximately 10 nt for clustering are the most appropriate. These pa-

rameters could be improved by observation at a single nucleotide resolution, but

this is a good starting point for further analysis.

Most of the available quality control measures rely on data complexity, the

number of clusters identified using a certain FDR threshold and motif discovery or

the reproducibility of biological replicates [220, 224, 225]. These quality controls

are important but they do not exploit known biological functions to validate specific

enrichments. One way to demonstrate CLIP library specificity by biological func-

tion is using the RNA-map approach for RBPs involved in splicing regulation [33].

For this purpose, I developed a new pipeline that can generate the cluster compo-

sition around regulated exons, and calculated their enrichment compared to the un-

regulated control exons (see Methods 2.4.8). Using this, I could better understand

how specific RBPs can regulate splicing in a position-dependent manner. Next, I

was interested in whether PTBP1 clusters from optimised peak calling conditions
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(PTBP1-iCLIP1-2 dataset) could reveal biological insights by using the RNA-maps

approach on regulated exons that were identified by another microarray study [185].

Indeed, PTBP1 crosslink clusters show that binding upstream or downstream of the

regulated exons appears to play a central role in its position-dependent manner of

splicing regulation. In greater detail, I demonstrated how PTBP1 binding upstream

from the 3’ splice site represses the exon inclusion that can also span across the

exonic region (Figure 4.6a, b). In contrast, the mechanisms of PTBP1-mediated

enhancing are far less understood [61]. The PTBP1 RNA-maps also indicate that

PTBP1 can directly enhance splicing when binding over the downstream region

of the alternative exon, but not in the upstream or exonic region (Figure 4.7a, b).

It remains to be seen whether PTBP1 assembles into higher-order complexes, po-

tentially in combination with other RBPs, in order to regulate splicing via these

binding regions. This could be done by assessing other cooperative RBPs or RBP-

complexes to this study.

In a similar way, I was interested in whether RNA-maps could demonstrate

how the hnRNPC protein represses exon inclusion by binding to a U-rich track at

the 3’ splice site and blocking U2AF65 or vice versa [217, 218, 124, 50]. For this

purpose, I used hnRNPC-iCLIP data from the original iCLIP study [124], and anal-

ysed hnRNPC knockdown RNA-seq data from the ENCODE project to identify

exons that are regulated by the hnRNPC protein. The RNA-maps showed a clear

position-dependent splicing regulation of these proteins, even though the iCLIP data

and controlled exons were prepared by different lab groups using methods with

different cell lines (Figure 4.8 and Figure 4.9). These RNA-maps could be even

clearer if the RNA-seq or microarray experiments to detect regulated exons were

prepared in parallel together with the iCLIP method, or at least through using the

same cell line. For example, in the hnRNPC RNA-map of repressed exons, there

are still several positions lacking hnRNPC crosslink clusters at the 3’ splice site:

however, there is a clear enrichment of Y-rich motifs to which hnRNPC binds (Fig-

ure 4.8 and Figure 4.9) [124]. Experimental conditions, such as expression differ-

ences between cell lines, could be one of the potential explanations. Interestingly,
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RNA-maps showed position-dependent regulation of RNA splicing for PTBP1 and

hnRNPC proteins overlapping with Y-rich motifs, especially in PTBP1-repressed

exons (Figure 3.6a, c). These mechanistic insights could be interesting for predict-

ing the regulated exons of such proteins. For example, exons with a similar pattern

of Y-rich motif enrichment in the long upstream region around splice sites (Figure

4.6a, c) could classify exons as potential targets that are regulated by PTBP1, in a

similar way to what has been done previously for the NOVA, hnRNPC, PTBP1 and

TDP43 [39, 30]. Another example would be for hnRNPC, where I demonstrated

how it can repress exon inclusion when it fully overlaps with U2AF65, binding at

the 3’ splice site (Figure 4.8). These are all important insights that are RBP-specific

and can be used for modelling in future studies. More importantly, the RNA-maps

indicate that PTBP1 or hnRNPC binding at its regulated exons represses splicing

when competing with U2AF2 binding, or when it incorporates the alternative exon

within a binding region, agreeing with findings from past studies [211].

At present, CLIPo mostly examines quality control measures, but in future I

could include more functions to measure the specificity of RBPs. In chapter 3, I

discovered that the cDNAs that end at the last intronic nucleotide are generated

from RNA fragments that originated from the 3’ end of intronic lariats, which are

produced when introns are spliced out from pre-mRNAs. The cDNA-end peak en-

richment could potentially be used as a measurement of lariat binding frequency.

For example, the stronger cDNA-end peak at the last intronic nucleotide could sug-

gest that PTBP1 more commonly remains bound to the intron lariat, while U2AF65

is released before splicing is completed (Figure 3.11a, d, e, f). This also agrees with

previous studies that showed U2AF65 binds only temporarily to the pre-mRNA

when the spliceosome is formed [226, 227, 228]. Another useful feature would be

the ability to filter cDNAs that have strong cDNA-end constraints, by removing cD-

NAs that have a sharper peak at cDNA-ends rather than cDNA-starts. This would

ensure that these cDNAs do not cause any misleading results in the final protein

binding site assignment.

In summary, I present several technical approaches that aid the assignment of
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RNA binding regions of RBPs from iCLIP data, and describe how such binding

regions can provide insights into the function of PTBP1. Application of these ap-

proaches will be particularly useful for studies of RBPs from different CLIP variants

and RBPs that likely play important roles in the regulation of splicing, as well as

other modes of post-transcriptional regulation.
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Chapter 5

Assignment of RNA binding sites for

higher-order proteins complexes

5.1 Introduction

The vast majority of mammalian transcripts undergo splicing, a process through

which introns are excised and respective exons adjoined (see subsection 1.2). Splic-

ing is integral to gene expression, and via alternative splicing, it broadens the diver-

sity of the transcriptome. An early step of the splicing process is branch point (BP)

selection by the spliceosome, which defines the 3’ splice site and leads to inclusion

of the downstream exon in the mRNA [229]. Point mutations are commonly as-

sumed to affect the encoded proteins in the coding gene regions, whereas mutations

at BP nucleotides can result in exon skipping and aberrant splicing, which can result

in disease [65]. In recent years, methods employing high-throughput sequencing

have enabled high-resolution studies of the positioning of RNA Polymerase II or

the ribosome in a transcriptome-wide manner [230, 231]. However, such a method

is not yet available for high-resolution studies of endogenous pre-mRNA splicing

reactions due to the challenges caused by the dynamic remodelling of spliceosomal

interactions.

In order to understand these spliceosomal interactions, the iCLIP technique

was adapted for the study of multiple proteins by applying it to the spliceosome in

a so-called ’spliceosome-iCLIP’. In this protocol, the SmB protein was used as a



bait to target other proteins involved in splicing. The SmB protein is a part of the

Spliceosome Sm ring, a collection of 7 proteins (E, F, G, D1, D2, D3 and B/B) that

form a stable assembly around the core of snRNAs that is common to all of them

except for the U6 snRNP [232, 233]. Accordingly, SmB-iCLIP can pull out the dif-

ferent snRNPs located at different positions along an RNA transcript. By changing

the lysis and wash buffers in iCLIP it is possible to capture closely associated pro-

teins from the spliceosome to simultaneously analyse their bound RNA targets with

iCLIP. Through my analysis of spliceosome-iCLIP data, I show that spliceosome-

iCLIP identifies strongly enriched crosslinking at specific positions around splice

sites, which can be used to distinguish interactions of multiple spliceosomal com-

ponents.

Another major challenge to understanding the endogenous splicing reaction is

the difficulty in assigning the position of BPs. Most of the high-throughput methods

rely on lariat-spanning reads that cross from the 5’ portion of the intron past the

BP to the 3’ portion of the intron [187, 188]. Even though such cDNA reads are

present in RNA-seq data, they are very rare, and have so far not been completely

identified in humans. Methods that enhance the proportion of lariats in RNA-seq

can increase this number, but it requires a very deep sequencing due to the great

length and low abundance of some introns [234]. CLIP-based methods are unique

because they freeze interactions at the point of cross-linking. This has previously

allowed rare events such as NMD exons, which are normally rapidly degraded, to

be discovered. Here, I found that spliceosome-iCLIP cDNAs that end at the last

dinucleotide of the intron are the ones that truncate at the BP position. I show that

the medium and mild purification conditions in the iCLIP method are optimal to

identify cDNAs that truncate at BPs. For this purpose, I developed a computational

pipeline to detect these hybrid cDNAs which allows us to identify the BPs within

most introns in expressed genes. Computational BP predictions, on the other hand,

most often predict multiple potential BPs in most introns. It is unknown if the top

scoring predictions represent the most commonly used BPs [235, 236].
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5.2 iCLIP identifies interactions between spliceoso-

mal proteins and snRNAs
SmB/B’ proteins are part of the collection of 7 proteins which form around the

core of the highly stable Sm core common to all spliceosomal snRNPs except U6

[237], making them suitable candidates for enriching snRNPs via immunopurifi-

cation. The standard iCLIP protocol employs a high concentration of detergents

in the lysis buffer, followed by washing buffer, which are not compatible with

many protein-protein interactions, except stable complexes such as snRNPs (Figure

5.1a). In order to adapt iCLIP for the study of RBP complexes like the spliceosome,

the SmB/B’ proteins were immunopurified under different conditions. Therefore,

a modified purification was established in the Ule lab with decreased concentra-

tion of detergents in the lysis buffer in the washing buffer (Figure 5.1a, — mild:

0.1% Igepal CA-630, 0.01% SDS, 0.05% Na-Deoxycholate — medium: 1% Igepal

CA-630, 0.1% SDS, 0.5% Na-Deoxycholate — stringent: 6 Urea in M, 1% SDS).

For spliceosome-iCLIP from UV-crosslinked lysates, a broad size distribution of

protein-RNA complexes was isolated in order to recover the greatest possible diver-

sity of spliceosomal protein-RNA interactions. For each purification condition of

spliceosome-iCLIP, cDNA libraries with two biological replicates were prepared.

As in previous iCLIP studies [124], cDNA-starts were considered as the

crosslink site and cDNAs at each crosslink site were summed as cDNA counts.

The replicate datasets were highly reproducible as indicated by the observation that

more than 80% of crosslinks with cDNA counts of five or more were present in

all three replicates of the medium and mild experimental condition (Figure 5.1b).

Under all conditions, highly enriched crosslinking was identified on all major and

minor Sm-class spliceosomal snRNAs (Figure 5.1c, d). When stringent conditions

were used, more than 75% of spliceosomal crosslinking mapped to snRNAs (Fig-

ure 5.1c). However, under medium or mild conditions, the proportion of snRNAs

decreased to approximately 10%. For comparison, less than 0.5% of the auxiliary

splicing factors TIA1 or U2AF65 crosslinked to snRNAs [183, 50]. U1cU5 snRNAs

were most highly enriched by spliceosome-iCLIP, as expected by their high abun-
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dance (Figure 5.1d). In comparison to stringent spliceosome-iCLIP, the medium

and mild conditions identified additional crosslink sites outside the Sm sites which

indicates that mild and medium conditions of spliceosome-iCLIP can identify bind-

ing sites of multiple snRNP-associated proteins (Figure 5.1d).

On unspliced substrate RNA, spliceosomal crosslinking was observed at sev-

eral positions in the vicinity of splice sites, which I marked in numerical order to

simplify the analysis (Figure 5.2b, peak 1-6). To characterise the binding sites of

these proteins, I plotted the density of crosslinks for each replicate (Figure 5.2b,

green lines) from medium and mild conditions around splice sites for spliceosome-

iCLIP, together with TIA1/TIAL1 and U2AF65 (Figure 5.2b, blue lines) produced

from HeLa cells in previous studies [183, 50]. Their binding exactly corresponds to

the positioning of peaks 2 and 5, respectively (Figure 5.2b), but the exact identity

of other peaks remains undetermined. In conclusion, I find that we can identify

spliceosomal interaction together with other associated proteins that can be dis-

tinguished using the nucleotide resolution of the iCLIP method from higher-order

protein complexes.
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Figure 5.1: Spliceosome-iCLIP identifies the known protein-snRNA interactions.

a) Schematic representation of the spliceosome-iCLIP method performed
under conditions of varying lysis stringency.
b) Percentage of crosslinks with a cDNA count value within the indicated range
that were reproducible in all three replicates of the Sm iCLIP experimental
groups indicated. Both single and multiple hits were considered.
c) Genomic distribution of spliceosome-iCLIP cDNAs.
d) Distribution of spliceosome-iCLIP cDNAs between different snRNAs.
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5.3 Spliceosome-iCLIP can identify branch point po-

sitions genome-wide
In the chapter 3 (section about Non-coinciding cDNA-starts can result from locus-

specific cDNA-end constraints), I hypothesised that the sharp peak at the last in-

tronic nucleotide (Figure 3.11b, d, e, f) could be the result of cDNAs that were

generated from RNA fragments that originated from the 3’ end of intronic lariats.

To test this hypothesis I investigated whether peak A and peak B (Figure 5.2b)

corresponded to cDNAs truncating at the 5’ splice site and the BP (Figure 5.2a).

Since I found that the less stringent purification conditions were the most suitable

to identify intronic cDNAs (Figure 5.1c), I used spliceosome-iCLIP under mild and

medium purification conditions from Cal51 cells and grouped them to continue the

investigation. According to the model showing that cDNAs truncating at peak B

may also originate from intron lariats, these cDNA reads should overlap with the 3’

ends of introns (Figure 5.2a) as seen before in the PTBP1 and U2AF65 experiment

(Figure 3.11b, d, e, f). Moreover, rather than these cDNAs terminating at protein

cross-link sites, the model implies cDNA reads could instead terminate at the 3’,5’-

phosphodiester linkages (Figure 5.2a). In agreement with this model, I discovered

that cDNAs that terminate at the last nucleotide of endogenous introns truncate at

the known sequence consensus of BPs (Figure 5.3b). In contrast, the remaining

spliceosome-iCLIP cDNAs preferentially truncate at uridines (Figure 5.3c), which

agrees with the high propensity of uridines for protein-RNA crosslinking [120] as

well as findings from chapter 3. I used the cDNAs that end at the last nucleotide

of endogenous introns to identify adenines in 35,056 introns that putatively act as

BPs. Additionally, to identify more distally located candidates whose reads would

not terminate at intron ends due to our 39 nt cDNA-length limit, I overlapped cDNA

truncation sites with computationally predicted BPs [186] and selected the position

with the highest number of truncated cDNAs as the experimentally identified BP

(Figure 5.3a). This identified BP candidates in a further 15,756 introns. Thus, this

collectively identified candidate BPs in 50,812 introns of the most highly expressed

genes (FPKM >10 as determined by RNA-seq in Cal51 cells). Since these genes in
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total contain 78,894 annotated introns, I was able to identify putative BPs in 64%

of introns in expressed genes.

Figure 5.2: Analysis of splicesomal interactions with pre-mRNAs in vivo.

a) Schematic description of the three-way junctions of intron lariats,
which would produce cDNAs that truncate at peak A or B on the RNA maps a)
and b). These cDNAs initiate from the end of the intron and truncate at the BP
(peak B), or downstream of the 5’ splice site and truncate at the first nucleotide
of the intron (peak A). The three-way junction is produced after limited RNase
I digestion of intron lariats, followed by ligation of the L3 adaptor to the two 3’
ends of the three-way junction. This leads to cDNAs corresponding to peaks
A and B that do not truncate at sites of protein-RNA crosslinking, but rather at
the three-way junction of intron lariats.
b) RNA-map of summarised crosslinking of spliceosome-iCLIP from mild
and medium conditions of 4 replicates (green lines) at all exon-intron and
intron-exon boundaries of spliceosome-iCLIP from Cal51 cells. For compar-
ison, crosslinking of TIA1 or U2AF65 is also shown, and the scale for the
normalised TIA1 or U2AF65 data is shown on the right of the respective panel.
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To facilitate further analysis, I broke defined different categories of BP based

on their presence in experimental and/or computational data. These categories were:

experimentally identified and top computational score, top computational score that

have a different experimentally identified BP, and two other categories that are nei-

ther part of top experimentally or computationally BPs (Figure 5.3a). Surprisingly,

only 38% of the experimentally identified BPs overlapped with the top-scoring com-

putationally predicted BPs in the same introns [235] (exp & top comp, 19,243 BPs,

Figure 5.3a). The remaining experimental BPs (exp other, 31,569 BPs, Figure 5.3a)

had smaller enrichment of C at the -3 and +1 position, and T at the -2 position

(Figure 5.3e). Furthermore, a subset of these sites lacked uridine at the position

two nucleotides upstream of the BP, and therefore these did not overlap with any

computational BP (exp, not comp, 5,125 BPs, Figure 5.3a). This represents a po-

tentially new and sizeable category of BPs that computational approaches have not

yet identified.

I was also interested in whether I could validate BP groups, by using RNA-seq

data and spliceosome-iCLIP cDNAs in a manner that can identify lariat-spanning

reads that cross the BP from the 5’ to the 3’ region of the intron. This type of

analysis has previously been successful in RNA-seq data but the lariat-spanning

reads are very rare, and have so far identified less than 1000 BPs in humans [238,

239]. I found very few lariat-spanning cDNAs present in RNA-seq, but many such

cDNAs present in spliceosome-iCLIP. In all categories of experimentally defined

BPs, more than 2% of BPs could also be identified by the lariat-spanning reads,

regardless of whether they overlapped with a computational BP or not (Figure 5.3h).

In contrast, less than 1% of other computationally top-scoring BPs were identified

by lariat-spanning reads (Figure 5.3h - top comp).

Next, I examined spliceosome-iCLIP crosslinking around the different BPs

categories (Figure 5.3f) where I found that the crosslinking peak 4 (Figure 5.3b)

is aligned to position 25 nt upstream of the BP that were experimentally identified

(Figure 5.3f). Since this peak was not used to identify BPs, it could be used for

independent validation of different BP categories. Only experimental, but not com-
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putationally predicted BPs, are preceded by peak 4 (Figure 5.3f). This suggests

that spliceosomal complexes bind at the experimentally determined BPs, but not

at other computationally top-scoring BPs. Together, these results demonstrate that

splicesome iCLIP can identify valid BPs in most introns of expressed genes.

In order to understand the discrepancy between the experimental and compu-

tationally predicted BPs better, I evaluated the structure (see Methods 2.4.6) around

the putative BPs. Experimental BPs had a low intramolecular pairing probability re-

gardless of their computational score, whereas computationally top-scoring BPs had

higher pairing probability, demonstrating that experimental BPs are single-stranded

and therefore accessible (Figure 5.3g). Strikingly, the majority of computationally

top-scoring BPs that do not overlap with the experimental BPs (top comp) appear

to be in structurally inaccessible conformation. This indicates that the accuracy of

computational predictions could be increased by taking into account the analysis of

RNA secondary structure at BPs.
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Figure 5.3: Comparison of experimentally and computationally identified BPs.

a) A table explaining the different categories of BPs, and the total num-
ber of these BPs identified in highly expressed genes (FPKM >10).
b) The composition of genomic nucleotides around the nucleotide preceding
all spliceosome-iCLIP cDNA-starts that overlap with ends of introns.
c) The composition of genomic nucleotides around the nucleotide preceding
all spliceosome-iCLIP reads that do not overlap with ends of introns.
d) The composition of genomic nucleotides of BPs that were experimentally
identified, and also have the highest score of all computationally identified BPs
in the same intron (exp & top comp).
e) The composition of genomic nucleotides of BPs that were experimentally
identified, and do not have the highest score of all computationally identified
BPs in the same intron (exp).
f) RNA-map of summarised crosslinking around the three categories of BPs,
as defined in a).
g) Pairing probability was calculated at each nucleotide around BP using
RNAfold program with the default parameters. Average pairing probability
was then calculated for the two groups described in a) the computationally
top-scoring BPs that were not experimentally identified (comp).
h) Percentage of the above BPs categories which have accompanying lariat
spanning reads in spliceosome-iCLIP and RNA-seq.
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5.4 The effect of branch point position on spliceoso-

mal interactions
It is not yet fully understood how the position of BPs on endogenous introns deter-

mines spliceosomal interactions. I examined the effect of BP position by dividing

3’ splice sites into three categories, depending on the distance between the BP and

the 3’ splice site (Figure 5.4 - distance groups of 17-21 nt, 22-35 nt, 36-100 nt).

The spliceosome-iCLIP replicates from mild and medium conditions were highly

reproducible (Figure 5.1b, Figure 5.2b, green lines), therefore they were grouped

for the remaining analysis in order to maintain high crosslink coverage for each

distance group. U2AF65 crosslinking peaks were at similar positions upstream of

the 3’ splice site at all three categories, with a slight shift upstream for the more

distally located BPs, demonstrating that U2AF65 binding is generally independent

of the BP position (Figure 5.4c, d, f). Nevertheless, introns with the distal BPs had

broader U2AF65 crosslinking (Figure 5.4f). More importantly, the position of peak

4 is precisely determined by the position of the BP: regardless of how far the BP is

positioned from the 3’ splice site, peak 4 is invariably present 25 nt upstream of the

BP, with an additional position with enriched crosslinking at 19 nt upstream from

the BP (Figure 5.4a, c, e). This indicates that peak 4 may reflect crosslinking of

two proteins or two domains of a protein. I used the DREME motif discovery tool

to examine potential sequence-specificity of proteins that bind at these positions by

comparing the sequence of the region between 30 and 20 nt upstream of the BP to

the sequence of the deep intronic region further than 100 nt from the splice sites,

but I was not able to identify any enriched sequence motifs that could potentially

identify the specificity of the 25 nt upstream peak (data not shown). This demon-

strates that RNA contacts at peak 4 upstream of the BP are determined solely by the

position of the BP, rather than the sequence specificity that could be masked by sec-

ondary structure or interact with other spliceosomal complexes. Taken together, the

BP-dependent position of peak 4 further indicates that it likely represents contacts

of late spliceosomal components that are involved in BP recognition, although its

identity remains unresolved.
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Figure 5.4: The effect of BP position on spliceosomal interactions.

RNA-map of summarised cDNA-starts around BPs a), c), e) and intron-
exon junctions b), d), f). BPs were divided into the following categories based
on their distance from the 3’ splice site: a), b) 17-21 nt, c), d) 22-35 nt, e),
f) 36-100 nt. The scale for the spliceosome-iCLIP data is on the left, and
U2AF65-iCLIP data is shown on the right of each graph.

159



5.5 Identification of 25 nt upstream peak relative to

branch points by using ENODE eCLIP dataset
By analysing spliceosome-iCLIP data, I was able to identify over 50,000 BPs

genome-wide in expressed genes and more importantly, I identified that the po-

sition of peak 4 (Figure 5.2b) is precisely determined by the position of the BP in

the surrounding region of 25 nt upstream from the identified BPs (Figure 5.4a, c,

e). First, I tried to identify the protein that might interact with that region by us-

ing publicly available iCLIP data and the DREME tool for motif discovery (data

not shown). With both approaches I could not identify any protein enrichment or

a motif that would be significantly enriched in that region. To continue with the

investigation, I decided to use the large eCLIP dataset from the ENCODE project to

see if any of their proteins are enriched in that region. I systematically analysed the

eCLIP data of 140 samples from 70 different proteins in the HepG2 cell line and

178 samples from 89 different proteins in the K562 cell line by using customised

pipeline (Figure 2.1, see Methods 2.2.2). Next, I intersected cDNA-starts from each

sample to the -50 to -10 nt upstream region away from the BPs, where the 4th peak

showed the highest enrichment of cDNA-starts in the spliceosome-iCLIP (Figure

5.4a, c, e). Surprisingly, the eCLIP dataset revealed a candidate, with a more than

2-fold enrichment of the SF3B4 protein overlapping peak 4 from both replicates

and in both cell lines (orange in Figure 5.5a, b). SF3B4 is a subunit of the splic-

ing factor 3b protein complex, which is a multi-protein complex that forms the U2

snRNP together with other units and is essential for the splicing process [240]. It is

also known that the SF3b subunit binds to the pre-mRNA near the BP to reinforce

U2 snRNP [241, 242, 243, 244] and plays a key role in BP recognition during con-

stitutive and alternative splicing [245, 246, 247]. There is also enrichment of the

SF3A3 protein (red in Figure 5.5a) in the HepG2 cell line, which is another subunit

of splicing factor 3 that interacts with the same U2 snRNP. Besides the splicing

factor associated proteins, another enriched protein SMNDC1 was detected in the

K562 cell line (purple in Figure 5.5b), known as the survival motor neuron domain-

containing 1 protein, associated with autosomal recessive proximal spinal muscular
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atrophy and already identified as a constituent part of the spliceosome complex

[248, 249]. Non-consistent enrichment of SMNDC1 protein between these two cell

lines could be because of their differences in expression level. Taken together, this

demonstrated how the eCLIP dataset can be used to identify targets genome-wide,

and also revealed proteins from peak 4 that are already known to interact with BPs.

However, this approach is another confirmation that the identified BPs are valid.

Figure 5.5: Proportions of cDNA-starts from eCLIP dataset around 25 nt peak upstream
from the BPs genome-wide.

a) Each barplot represents its own replicate of 70 different proteins from
the eCLIP HepG2 dataset that intersect with -10 to -50 nt upstream region
away from BPs. Both replicates from the SF3B4 protein (in orange) are
showing the highest enrichment followed by SF3A3 (in red) protein replicates.
b) Each barplot represents its own replicate of 89 different proteins from the
eCLIP K562 dataset that intersect with -10 to -50 nt upstream region away
from BPs. Both replicates from the SF3B4 protein (in orange) are showing the
highest enrichment followed by SMNDC1 (in purple) protein replicates.
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5.6 Discussion

In this chapter, I assessed the features of the spliceosome-iCLIP method that was

developed in the Ule lab. Spliceosome-iCLIP uses Sm core proteins as a bait to pu-

rify endogenous snRNPs and associated proteins. This was possible due to the high

strength of protein-protein interactions within snRNPs as well as the mild purifica-

tion conditions that were used, which preserved interactions between snRNPs and

other associated proteins. Spliceosome-iCLIP identified known and novel crosslink

sites on snRNAs, both within and outside the Sm site, indicating that the method

can be used to study snRNAs and potentially other non-coding RNAs that may play

a role in splicing. In addition, enriched crosslinking was identified in pre-mRNAs

at defined positions around the splice sites and BPs, which correspond to the posi-

tions where snRNPs and associated splicing factors typically bind. I characterised

two major peaks that overlapped with TIA1/TIAL1 and U2AF65 iCLIP data (Fig-

ure 5.2b peak 2 and 5). The identity of the remaining peaks is presently unclear.

However, it is possible that peaks 2, 5 and 6 corresponds to auxiliary factors that

can be co-purified with U1 and U2 snRNP in the complex E [226, 250, 251].

I next presented how cDNA-starts from spliceosome-iCLIP data that overlap

with the ends of introns can be used as a new feature to identify BP positions in

most human introns. Both the number of identified BPs, and their strong consensus

sequence, compare favourably to previous methods that were based on analysis of

lariat reads in RNA-seq. For identified BPs, I used different methods to show that

their validity was comparable to the BPs that overlapped with the computationally

top-scoring prediction.

It is also known that the majority of BPs are positioned in the region between

19 and 35 nt upstream from the 3’ splice site [239]. One limitation of the current

spliceosome-iCLIP experiment is that only 50 cycles of Illumina sequencing were

used, which limits the BP detection in the region between 17 nt (the minimum

cDNA length used for mapping) and 40 nt (the longest cDNA length after adapter

and barcode removal, see Methods 1). To overcome the problem of identifying BPs

that are located near 3’ splice sites, I could lower the minimum length of the 17
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nt threshold for mapping sequences and increase the number of multiple-hits from

the current single-hit approach (see Methods 3). It would be important to analyse

these short sequences separately, as they often map to multiple genomic positions.

The BP discovery method should prove a useful starting point for future studies of

splicing machinery.

Here, I focused on the spliceosome-iCLIP data for BP identification but this

method could also be applied to other RBPs; for example PTBP1, where the cDNA-

end peak at the 3’ splice site (Figure 3.11d, e, f) could be a part of lariat cDNAs.

This suggests that other datasets of relevant RBPs could also be applied to BP dis-

covery genome-wide. Furthermore, including datasets with a better representation

of long cDNAs, such as eCLIP dataset from ENCODE, which is generated using

paired-end sequencing which allows up to 120 nt long cDNAs [134]. These long

cDNAs could potentially identify more distal BPs which are known to be involved

in exon skipping events [235, 239, 252].

It is not surprising that, given the broad importance of splicing regulation for

cellular differentiation, a number of diseases are caused by mutations in components

of the splicing machinery [253, 254]. Another challenge for the future would be to

explore genomic variations around BPs systematically for a better understanding of

how splicing-associated mutations can lead to disease.

During the BP analysis, I additionally identified a strong peak of spliceosomal

crosslinking at 25 nt upstream (Figure 5.4a, c, e - peak 4) of experimentally derived

BPs, which could be a part of the SF3 proteins that are known to bind at the ’an-

choring site’ upstream of the BPs [241]. To follow up this hypothesis I used the

large ENCODE eCLIP dataset to show that peak 4 (25 nt upstream from the BPs)

is interacting with SF3 proteins. I validated these results by using two different cell

lines from the eCLIP data and presented it as a useful approach for future studies to

identify potential RBP targets.

iCLIP has only been previously used for the study of single proteins. Re-

cently, interactome capture was developed to study all RBPs interacting with mR-

NAs [255]. Since this approach isolates the whole compendium of RBPs, the se-
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quence reads distribute over the whole length of mRNAs, and crosslink patterns

of specific proteins cannot be easily distinguished [256]. Accordingly, interactome

capture has been used primarily to identify RBPs, rather than their binding sites

[255, 8, 257]. Nevertheless, high-throughput analysis of RNA interactions of multi-

protein complexes is crucial in order to understand the dynamic assembly of such

complexes on target RNAs. As a proof-of-principle method for the study of multi-

protein complexes, I showed that spliceosome-iCLIP can delineate the crosslinking

positions of spliceosomal complexes on endogenous transcripts at high resolution

and in a transcriptome-wide manner. As others have shown, it is possible to dis-

tinguish differences between 5’ and 3’ splice sites binding in different conditions

[258]. The ability of spliceosome-iCLIP to monitor the concerted pre-mRNA bind-

ing of spliceosomal proteins indicates that the method could also be readily applied

to the study of other multi-protein RNA-binding complexes.
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Chapter 6

Conclusion

In the first part of this thesis, I explored how variations in CLIP and iCLIP-related

methods affect the assignment of protein-RNA binding sites. I reject the previously

postulated hypothesis that highly prevalent readthrough cDNAs would explain the

presence of non-coinciding cDNA-starts in iCLIP cDNA libraries, and show that

the use of cDNA-starts is appropriate. Moreover, I found that the non-coinciding

cDNA-starts are caused by constrained cDNA-ends, which result from the RNA

sequence and structure constraints of RNase cleavage sites. These have an effect

in particular on the assignment of long binding sites. These constraints can be

overcome by optimizing iCLIP conditions and library preparation by RNase frag-

mentation, RNA ligation and cDNA purification, and by ensuring the recommended

purification of protein-RNA complexes and cDNAs [126].

While showing that cDNA-starts are appropriate to assign crosslink sites in

iCLIP, I also found that cDNA-ends can be informative for specific purposes. I

exploited analysis of cDNA-ends in order to capture novel insights in RNA pro-

cessing, showing how the sequence and structure of a nascent mRNA can lead to

preferential sites of RNase fragmentation, which can lead to suboptimal assignment

of the protein-RNA binding site. I developed computational approaches to visualise

the impact of these features on the sequenced cDNA libraries, which helps to inter-

pret the assigned binding sites correctly. These considerations apply to all protocols

that amplify truncated cDNAs, including iCLIP, eCLIP and irCLIP, and they ensure

that cDNA-starts comprehensively identify protein-RNA crosslink sites across the



transcriptome.

In the second part of my thesis I developed a set of pipelines named ’CLIPo’,

which use the findings of the third chapter to perform quality control analyses. The

main function of CLIPo is to establish cDNA-end constraints, together with pro-

tein specificity and library complexity from the data produced by iCLIP and other

related methods. These cDNA-end constraints can be recognized by analysis of

their secondary structure with motif analysis as a quality control measure. CLIPo

complements the findings from chapter 3, which I demonstrated by focusing on the

PTBP1 protein. This approach can now be applied to other RBPs and any iCLIP-

related methods.

In the last part of my thesis, I presented a new spliceosome-iCLIP method

developed in the Ule lab, that identifies the positioning of spliceosomal complexes at

nucleotide resolution in a transcriptome-wide manner. Furthermore, I demonstrated

how cDNA-end constraints that are the result of intron-exon cleavage sites can be

used as a new feature to identify BP positions in most human introns.

6.1 Future directions for integrating quality control

into machine learning algorithms
How the RBPs recognize the target RNAs and why they bind to specific positions is

still unclear. Taking all of these quality controls into consideration, machine learn-

ing could have great potential to aid the prediction of RBP interactions. Progress

has been made in the prediction of RBP binding sites for several RBPs using com-

putational prediction models. To date this has only really been possible for RBPs

with strong binding patterns, such as sequence and structure specificity. Recent

studies, have now shown great potential in the field through the usage of matrix

factorization and multiple-kernel learning, which encodes multiple features to pre-

dict RBPs binding characteristics [259, 34, 35, 36]. This type of modelling allows

integration of multiple factors in order to identify discriminative non-overlapping,

class-specific RNA binding patterns of different strengths [35]. With the integra-

tion of multiple biological features across large datasets, such as ENCODE, these

166



prediction models could be rapidly improved.

Meta-analysis and prediction models to study RBPs are becoming more and

more popular, as they integrate large datasets of CLIP related methods and incorpo-

rate available sources of information such as RNA sequence and structure to model

protein-RNA interactions [260, 261, 262]. These types of analysis rarely lead to

specific biological insights; a major reason being the limited effort to disentangle

the effects of technical noise from biological information in CLIP data. Filtering

or more careful assessment of samples that are of a low quality, as well as better

understanding of the variation between them, is crucial for modelling. However,

computational approaches for quality control of CLIP data that is used for the meta-

analyses have not yet been developed and implemented. Therefore, I have assessed

the value of assessing cDNA-end structure and sequence constraints, cDNA-length

constraints, data complexity, motif enrichment, and noise measurement for quality

controls, as well as their validating specificity of the data with the use of RNA-maps.

In future studies, these quality controls could be included when using larger

datasets to better understand other technical and biological insights. For example,

how much might the choice of cell line affect the composition of binding sites?

The ENCODE consortium has already produced a large number of eCLIP data for

two cell lines. It would be important to include RBP clusters from different cell

lines to determine missing binding sites that are results of lowly or not expressed

genes in a certain cell type. Other technical artefacts that should be considered

include technical batch effects of each experiment. A method such as iCLIP is a

complex multi-step technique, and there are variations in how each laboratory and

person produces data each time as shown in the datasets analysed in chapters 3 and

4 (eIF4A3-iCLIP1 in Figure 3.16a and PTBP1-iCLIP5 in Table 4.1). Variations in

experiments produced by the same lab, suggest that these cDNA length constraints

could result from a technical batch effect due to their library preparation. Another

way to test this is by analysing RBPs produced by CLIP-related methods that cluster

together, despite these RBPs having a very distinct motif specificity. This would

indicate that the batch effect is a stronger determinant of binding variation than
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biological recognition of the same binding sites by RBPs. To assess this batch

effect more systematically, it is valuable to define clusters of specific RBPs based

on multiple datasets, especially those produced by different methods. However,

there are additional types of technical or biological artefacts across CLIP-related

experiments, such as variations in gene expression or batch effects that are produced

by a specific lab. Therefore, it is crucial to consider these artefacts before we can

start modelling RBP interactions.

6.2 Cooperative binding of RBPs to non-optimal

binding sites
Crosslinking studies indicate that over 1,500 potential RBPs might be encoded by

the human genome [7, 8], and most of these RBPs cooperate or compete with each

other for their binding sites [263]. Studying the interactions and cooperative bind-

ings between RBPs using an experimental approach is very expensive and time con-

suming, since one needs to design and integrate multiple conditions of pre-selected

targets. Computational analysis and prediction of these interactions is therefore

critical to gain a comprehensive understanding of RBP functions [264]. More im-

portantly, these modelling methods could potentially discover cooperative interac-

tions between RBPs at the protein level, so as to identify targets that are using

non-optimal binding sites to stabilise their proximal binding site [265].

An advantage of cooperative binding to non-optimal binding sites could be to

increase efficiency and specificity of RBPs [265]. The full functional potential will

only be achieved with both binding partners present, decreasing the ’off-target ef-

fects’ of both proteins on RNAs that contain similar sequences where no functional

binding events are needed. It is possible that the cooperative binding between RBPs

is used to refine their target spectrum in healthy physiology, but is detrimental in the

context of disease, since it predisposes them for aggregation with each other. For

example, factors that are associated with ALS accumulate in distinct foci that are

phenotypically similar to stress granules formed by multiple RBPs [266]. There are

groups of RBPs that have a major role in neurological diseases such as ALS and
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FTD. Both have been associated with a group of RBPs including TDP43, Matr3,

and hnRNPA2. These RBPs have already been associated with common diseases,

and they also correlate to changes in gene expression, where they bind in proxim-

ity to one another. By applying machine learning towards cooperative binding of

RBPs to non-optimal binding sites, we could improve understanding of their func-

tion. Methods such as spliceosome-iCLIP also have a great potential to be applied

to the study of other RBP-complexes to better understand cooperative bindings of

RBPs. Alongside an experimental approach, there is a great advantage of identify-

ing RBP targets with large datasets in a similar way as I demonstrated in chapter 4,

where I overlaid over 150 eCLIP samples to identify new targets that are involved in

spliceosomal interactions. This approach could be used across other RBP studies,

especially for discovery of new cooperative targets.

6.3 Final thoughts

In recent years, several variants of iCLIP methods have been developed, including

FAST-iCLIP, eCLIP, miCLIP, hiCLIP and irCLIP. Each of these variants has fea-

tures that have not yet been systematically analysed. At the moment there are no

tools available to measure the quality of the data in depth. It is therefore crucial to

first understand technical differences between the methods and experimental con-

ditions, in order to separate technical and biological variability. The tools I have

generated in this thesis will be influential in this regard, as I have shown how it can

comprehensively quality control CLIP datasets from various techniques to identify

suitable datasets for further analysis. Beyond this, there is still a great need for

additional experimental and computational methods to validate results produced by

these methods. Developing methods to generate RNA-maps is a good example of

integrating different sets of experimental data with computational methods to learn

about splicing regulation. In this regard, I have developed new tools for summari-

sation of CLIP data in RNA maps which have been used throughout this thesis and

which will be useful to CLIP biologists in future. Lastly, due to the nucleotide res-

olution of iCLIP, I demonstrated here that it can also be used to study a complex of
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proteins that binds to distinct positions on pre-mRNAs by using spliceosome-iCLIP.

This provided a new transcriptome-wide view of the spliceosome in action which

led to new insights into branch point usage. All the computational methods for data

analysis and data visualisation applied in this thesis are now available on the GitHub

repository and can be applied to different datasets in the future. Taken together, this

thesis will therefore enable us to better understand iCLIP data, and should be useful

for future studies of any other iCLIP-related method.
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Abstract

Background: Ultraviolet (UV) crosslinking and immunoprecipitation (CLIP) identifies the sites on RNAs that are in
direct contact with RNA-binding proteins (RBPs). Several variants of CLIP exist, which require different
computational approaches for analysis. This variety of approaches can create challenges for a novice user and can
hamper insights from multi-study comparisons. Here, we produce data with multiple variants of CLIP and evaluate
the data with various computational methods to better understand their suitability.

Results: We perform experiments for PTBP1 and eIF4A3 using individual-nucleotide resolution CLIP (iCLIP), employing
either UV-C or photoactivatable 4-thiouridine (4SU) combined with UV-A crosslinking and compare the results with
published data. As previously noted, the positions of complementary DNA (cDNA)-starts depend on cDNA length in
several iCLIP experiments and we now find that this is caused by constrained cDNA-ends, which can result from the
sequence and structure constraints of RNA fragmentation. These constraints are overcome when fragmentation by
RNase I is efficient and when a broad cDNA size range is obtained. Our study also shows that if RNase does not
efficiently cut within the binding sites, the original CLIP method is less capable of identifying the longer binding sites
of RBPs. In contrast, we show that a broad size range of cDNAs in iCLIP allows the cDNA-starts to efficiently delineate
the complete RNA-binding sites.

Conclusions: We demonstrate the advantage of iCLIP and related methods that can amplify cDNAs that truncate at
crosslink sites and we show that computational analyses based on cDNAs-starts are appropriate for such methods.

Keywords: Protein–RNA interactions, iCLIP, eCLIP, irCLIP, Binding site assignment, High-throughput sequencing,
Polypyrimidine tract binding protein 1 (PTBP1), Eukaryotic initiation factor 4A-III (eIF4A3), Exon-junction complex

Background
RNA-binding proteins (RBPs) play crucial roles in all
aspects of post-transcriptional gene regulation. To under-
stand the mechanisms of their action, it is essential to
identify the endogenous sites of protein–RNA interac-
tions, which has been aided by the development of ultra-
violet (UV) crosslinking and immunoprecipitation (CLIP)
[1, 2]. During the CLIP protocol, crosslinked protein–
RNA complexes are purified and the RNA fragments are
released by digesting the protein, resulting in RNAs with a

covalently bound peptide at the crosslink site. This is
followed by reverse transcription, during which the bound
peptide can lead to truncation of complementary DNAs
(cDNA) at the crosslink site. The CLIP protocol prepares
the cDNA library in a way that requires the reverse tran-
scriptase to read through this peptide, thereby generating
only ‘readthrough cDNAs’. Therefore, individual-nucleotide
resolution CLIP (iCLIP) was also developed to exploit the
‘truncated cDNAs’ [3]. The cDNA-starts of these truncated
cDNAs identify the nucleotide just downstream of the
crosslinked peptide. Even though iCLIP amplifies both
truncated and readthrough cDNAs, computational compar-
isons of CLIP and iCLIP cDNAs estimated that over 80% of
iCLIP cDNAs truncate at the crosslink sites of most RBPs
[4]. Recently, further variants were developed that also
amplify truncated cDNAs, including BrdU-CLIP [5], eCLIP
[6] and irCLIP [7]. Therefore, understanding the proportion
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and characteristics of truncated cDNAs in these protocols
is essential.
The computational methods that use cDNA-starts to

assign RNA-binding sites have been developed along
with iCLIP. However, a recent study observed that the
starts of long and short iCLIP cDNAs often map to
different genomic positions for several RBPs, which leads
to non-coinciding cDNA-starts [8]. Here, we focused on
experiments produced for polypyrimidine tract binding
protein 1 (PTBP1), eukaryotic initiation factor 4A-III
(eIF4A3) and the splicing factor U2 auxiliary factor
65 kDa subunit (U2AF2), which represent examples of
non-coinciding or coinciding cDNA-starts in introns or
exons. eIF4A3 is a component of the exon junction
complex (EJC). In vitro biochemical experiments with
several splicing substrates demonstrated that the site of
EJC deposition is normally expected at nucleotides −20
to −24 upstream of the exon-exon junction (–24..–
20 nt) [9]. However, further studies showed that the se-
quence and structure of a nascent messenger RNA
(mRNA) can shift EJC deposition as far as 10 nt away
from this expected site [10]. The non-coinciding cDNA-
starts in eIF4A3 iCLIP data produced by the previous
study were shifted upstream of this expected region and
it was proposed that the presence of non-coinciding
cDNA-starts might be related to this shift [8]. The study
concluded that the use of cDNA-starts may not be
appropriate in iCLIP whenever non-coinciding cDNA-
starts are prevalent.
To understand if cDNA-starts can be used to assign

RNA-binding sites, we further analysed the iCLIP data
with high frequency of non-coinciding cDNA-starts. We
first examined the position and prevalence of crosslink-
induced mutations to confirm previous findings, show-
ing that such mutations are generally >5-fold less com-
mon within iCLIP than CLIP cDNAs, regardless of the
presence of non-coinciding cDNA-starts [4]. Moreover,
we identified RNA motifs that are commonly associated
with crosslink sites and found them most highly
enriched at cDNA deletions in CLIP, and cDNA-starts in
iCLIP, eCLIP and irCLIP, even if non-coinciding cDNA-
starts are prevalent. Interestingly, when using the photo-
activatable 4-thiouridine (4SU)-based crosslinking in
combination with iCLIP, the motifs were more highly
enriched at cDNA-starts than at T-to-C transitions.
These results demonstrate that the cDNA-starts can
reliably be used to determine crosslink sites in iCLIP,
regardless of the crosslinking method.
Further analyses demonstrated that presence of

sequence and structural constraints at cDNA-ends is the
cause of the non-coinciding cDNA-starts. To experi-
mentally validate this finding, we produced additional
PTBP1 and eIF4A3 iCLIP experiments, which demon-
strate that the prevalence of the non-coinciding cDNA-

starts is directly correlated with the extent of cDNA-end
constraints. We show that the broad size range of iCLIP
cDNAs in these new experiments allows the cDNA-
starts to assign binding sites that align with the expected
binding motifs (PTBP1) or binding regions (eIF4A3). We
conclude that the use of the iCLIP cDNA-starts is ap-
propriate to assign the protein–RNA crosslink sites in
iCLIP and related methods.

Results
Crosslink sites are identified by cDNA-starts in iCLIP
The iCLIP protocol is composed of eight principal
experimental steps (Fig. 1a). First, cells or tissues are ir-
radiated with UV light, which can create covalent bonds
between an RBP and RNA. Cell lysates are then treated
with RNase and the crosslinked RNA fragments are
co-immunoprecipitated with the RBP. In the third
step, an oligonucleotide adapter is ligated to the 3′
end of RNA fragments. The immunoprecipitated com-
plexes are then separated and visualised by SDS-
PAGE and the protein–RNA complex is isolated in a
size-specific manner (Additional file 1: Figure S1).
The RBP is removed from the RNA through protein-
ase K digestion, leaving a small peptide at the cross-
link site. This impairs the reverse transcription and
commonly leads to the truncation of cDNAs at the
crosslinked peptide. Hence, iCLIP cDNAs start at the
nucleotide just downstream of the crosslinked peptide
and they end at the site of RNase cleavage.
To assess how variations in experimental conditions

affect the assigned binding sites, we compared published
and newly produced experiments for eIF4A3, PTBP1
and U2AF2. For the ease of comparisons, we numeric-
ally label the different experiments produced by the
same method (Fig. 1b). eIF4A3-iCLIP1 refers to data
generated in the previous study [8], while eIF4A3-
iCLIP2 and eIF4A3-iCLIP3 were newly produced by the
Le Hir and Ule labs, respectively. These are compared to
the published eIF4A3 CLIP [11]. The PTBP1-iCLIP1 also
refers to data generated in the previous study [12], while
PTBP1-iCLIP2 and PTBP1-iCLIP3 were newly produced
with deliberate protocol differences. Specifically, 4SU
was used to induce crosslinking and RNase I conditions
were adjusted in PTBP1-iCLIP2, and the 3′ dephosphor-
ylation step was omitted in PTBP1-iCLIP3. These are
compared to the published PTBP1 CLIP [13], eCLIP [6]
and irCLIP data [7]. Finally, we also compare the PTBP1
data to U2AF2 CLIP [14] and iCLIP [15].
It was proposed that presence of non-coinciding cDNA-

starts might indicate that some of these cDNAs have read
through the crosslink site during reverse transcription [8].
It has been shown previously that such readthrough
cDNAs often contain deletions, which are introduced into
cDNAs at the crosslink site during reverse transcription
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[4, 16]. We compared the proportion of cDNAs with dele-
tions in the different eIF4A3 datasets. Since the rate of se-
quencing errors rises with increasing cDNA length, we
only examined cDNAs shorter than 40 nt for this purpose.
Strikingly, a bimodal distribution of deletions is apparent
in all datasets, with one peak of deletions close to the
cDNA-starts (5..8th nt) and the second close to the
cDNA-centres (22..27th nt, Fig. 2a). Thus, the deletions

present in iCLIP show the same features as in CLIP and
likely inform on the presence of readthrough cDNAs.
Importantly, the proportion of deletions is lower by a
factor of 5 or more in all eIF4A3 iCLIP experiments
compared to CLIP, indicating that readthrough cDNAs
represent a minor proportion of iCLIP data.
We used sequence motifs as a second feature that can

serve as an identifier of crosslink sites. We defined these

Fig. 1 An overview of methods and experiments. a A simplified schematic of the iCLIP protocol [17]. Before, cells or tissues are irradiated with UV light,
which creates covalent bonds between proteins and RNAs that are in direct contact (step 1). After lysis, the crosslinked RNA is fragmented by limited
concentration of RNase I and RNA fragments are then co-immunoprecipitated with the RBP (step 2), followed by ligation of a 3′ adapter (step 3). After
SDS-PAGE purification (step 4), the crosslinked RBP is removed through proteinase K digestion and purification of RNA fragments (step 5). Reverse
transcription is performed with a primer that includes a barcode (orange) containing both an experimental identifier and a unique molecular identifier
(UMI) (step 6). The peptide that is on the crosslink site impairs reverse transcription and commonly leads to truncation of cDNAs at the crosslink site.
Therefore, two types of cDNAs are generated: truncated cDNAs and readthrough cDNAs. In iCLIP, the cDNA library is prepared in such a way that both
truncated and readthrough cDNAs are amplified (step 7). After PCR amplification and sequencing (step 8), both truncated and readthrough cDNAs are
present. b Table summarising the experiments used in this study. 4SU using 4SU combined with UV-A crosslinking, RNase optimised RNase digest
conditions including antiRNase inhibitor and increased RNase I concentration, dephospho omitting 3′ dephosphorylation

Haberman et al. Genome Biology  (2017) 18:7 Page 3 of 21



ba

c

h

d

e

g

f

0

0.5

1

0 10 20 30 40
position of deletions relative to cDNA-starts

%
 o

f c
D

N
A

s 
w

ith
 d

el
et

io
ns

eIF4A3 (cDNAs < 40 nt)

eCLIP
iCLIP1

iCLIP2

iCLIP3

CLIP

T-to-C transitions before the 8th nt (38%)

T-to-C transitions only after the 7th nt (19%)

no T-to-C transitions (43%)

deletions before the 8th nt (0.4%)

deletions only after the 7th nt (1.1%)

no deletions (98.5%)

remaining with CL-motifs at 0nt (13%)

remaining (31%)

CL-motifs at 1..10th nt (56%)

remaining with CL-motifs at 1..10nt (18%)
remaining (36%)

CL-motifs at 0nt (46%))

mock
eCLIP

0

20

40

%
 o

f c
D

N
A

s 
w

ith
 C

L-
m

ot
ifs

−50 −25 0 25 50
position of CL-motifs relative to cDNA-starts

−50 −25 0 25 50

position of CL-motifs relative to cDNA-starts

PTBP1,
all cDNAs

iCLIP1

iCLIP2

iCLIP3

CLIP

eIF4A3-iCLIP3
(cDNAs < 40 nt)

0

10

20

30

%
 o

f c
D

N
A

s 
w

ith
 C

L-
m

ot
ifs

0

20

40

%
 o

f c
D

N
A

s 
w

ith
 C

L-
m

ot
ifs

PTBP1-iCLIP2
(cDNAs < 40 nt)

eIF4A3-iCLIP3
(deletions before
the 8th nt)

position of CL-motifs relative to cDNA-starts

%
 o

f c
D

N
A

s 
w

ith
 C

L-
m

ot
ifs

position of CL-motifs relative to cDNA-starts

remaining with CL-motifs at 0nt (21%)

remaining (38%)

CL-motifs at 1..10th nt (41%)

%
 o

f c
D

N
A

s 
w

ith
 C

L-
m

ot
ifs

PTBP1-iCLIP1
(deletions before
the 8th nt)

position of CL-motifs relative to cDNA-starts

%
 o

f c
D

N
A

s 
w

ith
 C

L-
m

ot
ifs

−50 −25 0 25 50 −50 −25 0 25 50
position of CL-motifs relative to cDNA-starts

0

25

50

75

100

−50 −25 0 25 50

0

25

50

75

100

−50 −25 0 25 50

0

25

50

75

100 PTBP1-iCLIP2
(transitions before
the 8th nt)

deletions before the 8th nt (0.4%)

deletions only after the 7th nt (1%)

no deletions (98.6%)

−50 −25 0 25 50

position of CL-motifs relative to cDNA-starts

0

20

40

%
 o

f c
D

N
A

s 
w

ith
 C

L-
m

ot
ifs

PTBP1-iCLIP1
(cDNAs < 40 nt)

PTBP1
(all cDNAs)

Fig. 2 (See legend on next page.)
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sequence motifs based on analysis of eCLIP mock input
data that were produced along with the PTBP1 eCLIP
[6]. Even though no immunoprecipitation is done, the
eCLIP mock data represent RNA fragments crosslinked
to RBPs, because the lysate is loaded onto the gel and
transferred to a nitrocellulose membrane and the non-
crosslinked RNA migrates out of the gel or through the
membrane. Thus, eCLIP mock data represent RNAs
crosslinked to many different RBPs and should reflect
the sequence preferences at crosslink sites that are com-
mon to a mixture of RBPs. We identified 10 tetramers
that are enriched at cDNA-starts by a factor of 1.5 or
more compared to the 10 nt region upstream of the
cDNA-starts. Since they serve as a signature of crosslink
sites, we refer to them as ‘CL-motifs’ (for UV crosslink-
associated motifs). On one hand, these CL-motifs could
represent sequence preferences of one or few unknown
RBPs that dominate the eCLIP mock input data. On the
other hand, all CL-motifs are rich in uridines (see
‘Methods’), which would agree with the hypothesis of
preferred UV-C crosslinking to uridines [4]. The CL-
motifs are rich in polypyrimidine sequences that are
preferentially bound by PTBP1 and U2AF2 [18] and thus
it is expected that their enrichment should be especially
high at crosslink sites of these proteins. While no further
increase in CL-motif enrichment is seen at cDNA-starts
of PTBP1-eCLIP, it is reassuring to find their increased en-
richment at cDNA-starts of all PTBP1 and U2AF2 iCLIP
experiments (Fig. 2b, Additional file 1: Figure S2A).
We also found significant enrichment of CL-motifs at

cDNA-starts of all eIF4A3 iCLIP experiments (Fig. 2c,
Additional file 1: Figure S2B). eIF4A3 is not thought to
bind RNA with sequence specificity based on biochem-
ical and transcriptomic studies [9, 11, 19] and its
sequence-independent interaction with RNA is consist-
ent with the properties of DEAD-box proteins [20].
Moreover, we did not find any generic enrichment of
CL-motifs at nucleotides −20 to −24 upstream of the
exon-exon junctions, where EJC normally binds (data
not shown). Thus, it is most likely that CL-motifs only

reflect crosslinking preferences in the case of eIF4A3
iCLIP. In contrast to their enrichment at cDNA-starts of
all iCLIP experiments, CL-motifs are depleted from the
cDNA-starts of all CLIP experiments and instead they
are enriched within the sequence of CLIP cDNAs
(Fig. 2b, Additional file 1: Figure S2A, B). This agrees
with the expected prevalence of truncated cDNAs in
iCLIP and readthrough cDNAs in CLIP.
To further assess the validity of CL-motifs, we

exploited the bimodal distribution of deletions in the
cDNAs shorter than 40 nt, where one peak of deletions
is seen in the first 7 nt and a second peak around the
centre of cDNAs (Fig. 2a). We separated the cDNAs into
three classes: those with deletions in the first 7 nt, those
with deletions elsewhere and those with no deletions. If
cDNAs contain a deletion in PTBP1 and U2AF2 iCLIP,
CL-motifs are most highly enriched at the position of de-
letion, but not at cDNA-starts, which confirms that they
represent readthrough cDNAs (Additional file 1: Figure
S2C, D). However, in iCLIP of all three proteins, >90% of
cDNAs lack deletions; in these cDNAs, CL-motifs are
enriched exclusively at the cDNA-starts, confirming that
these largely correspond to truncated cDNAs (Fig. 2c,
Additional file 1: Figure S2C, D). In conclusion, analysis of
cDNA deletions and CL-motifs indicates that the position
of crosslink sites can generally be defined by cDNA-starts
in iCLIP.

cDNA-starts assign crosslink sites in iCLIP regardless of
the crosslinking method
We noticed that the cDNAs with deletions in eIF4A3-
iCLIP3 contain some CL-motif enrichment at cDNA-
starts in addition to the position of deletions (Fig. 2c).
To better understand this dual enrichment, we separated
those cDNAs with deletion before the 8th nt into three
classes (Fig. 2d). Fifty-six percent of cDNAs had the CL-
motifs overlapping with the deletion and these had no
additional motif enrichment at cDNA-starts. Thirteen
percent had CL-motifs at their start, but not at the pos-
ition of the deletion, and 31% had CL-motifs at neither

(See figure on previous page.)
Fig. 2 Crosslink-associated (CL)-motifs are enriched at cDNA deletions and cDNA-starts in iCLIP. a Proportion of eIF4A3 cDNAs with deletion at
each position relative to the cDNA-start. Only cDNAs shorter than 40 nt are examined. b Analysis of all PTBP1 experiments examined in this study
shows the proportion of cDNAs from each experiment that overlap with a CL-motif at each position relative to the cDNA-start. c Proportion of
eIF4A3-CLIP3 cDNAs that overlap with a CL-motif at each position relative to the cDNA-start. Only cDNAs shorter than 40 nt are examined; they
are divided into those lacking deletions or containing a deletion within the first 7 nt or anywhere in the remaining portion of the cDNA. d The
cDNAs of eIF4A3-CLIP3 containing a deletion within the first 7 nt are further sub-divided into three categories. First, cDNAs with CL-motifs between
the 1st and 10th nucleotide of the cDNA. Second, the remaining cDNAs that contain CL-motifs at the position 0. And third, all remaining cDNAs. The
proportion of cDNAs that overlap with a CL-motif at each position relative to the cDNA-start is then plotted for each sub-category. e Proportion of
PTBP1-iCLIP2 cDNAs that overlap with a CL-motif at each position relative to the cDNA-start. Only cDNAs shorter than 40 nt are examined and are
divided into those lacking T-to-C transitions or containing a transition within the first 7 nt or anywhere in the remaining portion of the cDNA. f The
cDNAs of PTBP1-iCLIP2 containing a T-to-C transition within the first 7 nt are further sub-divided into three categories. First, cDNAs with CL-motifs
overlapping the position 0. Second, the remaining cDNAs that contain CL-motifs between the 1st and 10th nucleotide of the cDNA. And third,
all remaining cDNAs. Visualisation as in (d). g Same as (c), but for PTBP1-iCLIP1. h Same as (d), but for PTBP1-iCLIP1
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position. A possible explanation for the dual enrichment
is that about 80% of deletions correspond to crosslink
sites and about 20% are a result of sequencing errors
within truncated rather than readthrough cDNAs. This
further indicates that readthrough cDNAs correspond to
a minor proportion of iCLIP reads.
Since cDNAs with deletions are rare in iCLIP, we per-

formed a new PTBP1-iCLIP experiment (PTBP1-iCLIP2)
in which we incubated cells with 4SU and induced
crosslinking with UV-A. We additionally optimised the
RNase conditions (see below). In PAR-CLIP, which origin-
ally introduced 4SU-mediated crosslinking, the presence
of T-to-C transitions indicates the position of crosslink
sites [21] and therefore we wished to examine if the same
applies to iCLIP when 4SU is used to induce crosslinking.
We used CL-motifs to examine the alignment of cDNA-
truncations and transitions to crosslink sites. The CL-
motifs are CU-rich (see ‘Methods’) and correspond well to
the known binding motifs of PTBP1 [18]. Thus, even if
4SU-mediated crosslinking has different sequence prefer-
ences, we expect that the CL-motifs should align well to
the crosslink sites of PTBP1 due to its binding prefer-
ences. The further benefit of using the same CL-motifs for
all analyses is that it allows us to directly compare the ex-
tent of their enrichment across all different experiments.
Notably, we obtained an unexpected misalignment be-
tween CL-motifs and transitions in PTBP1-iCLIP2: 57% of
cDNAs contained deletions, but CL-motifs were enriched
mainly at cDNA-starts, just like in PTBP1-iCLIP1 (com-
pare Fig. 2e and Additional file 1: Figure S2C). In 67% of
cDNAs with transitions, the position of the transition
mapped to the first few nucleotides close to the cDNA-
start. We therefore examined these cDNAs in more detail
by dividing them into three classes (Fig. 2f): 46% of these
cDNAs contain CL-motifs at the cDNA-start. Eighteen
percent contain CL-motifs at the site of transition ra-
ther than the cDNA-start. Thirty-six percent contain
no CL-motif at either position. A possible explanation
for this pattern of enrichment is that about 20% of
transitions correspond to crosslink sites and about
75% are a result of other causes. In conclusion, pres-
ence of transitions does not separate readthrough and
truncated cDNAs in iCLIP, since CL-motifs are
equally enriched at cDNA-starts of cDNAs containing
or lacking transitions.
While transitions do not overlap well with CL-motifs

in PTBP1-iCLIP2, the overlap is better with deletions in
PTBP1-iCLIP1. Even though only 1.4% of PTBP1-iCLIP1
cDNAs contain deletions (Fig. 2g), a greater proportion
contain CL-motifs at the position of the deletion than at
cDNA-starts (Fig. 2h). This indicates that deletions are
more reliable than transition to identify crosslink sites in
readthrough cDNAs, even when 4SU is used for cross-
linking in iCLIP. Taken together, analysis of deletions,

transitions and CL-motifs indicates that the incidence of
readthrough cDNAs is generally low and that the majority
of cDNAs truncate at crosslink sites in iCLIP regardless of
the crosslinking method.

Non-coinciding cDNA-starts result from constrained
cDNA-ends
In addition to the model of readthrough cDNAs, the
previous study also discussed an alternative model, in
which the non-coinciding cDNA-starts could originate
from constraints on RNase cleavage, particularly when
these are combined with the presence of long binding
sites [8]. We examined this alternative model in more
detail, since the prevalence of readthrough cDNAs in
iCLIP did not appear sufficient to account for the non-
coinciding cDNA-starts. We used the tool developed by
the previous study (iCLIPro) to examine the prevalence
of non-coinciding cDNA-starts in the PTBP1-iCLIP1
dataset. This tool compares the cDNA-start positions of
shorter and longer cDNAs and displays overlapping
starts by enrichment at position 0, while non-coinciding
starts are enriched at other positions. As seen previously
[8], we find that the PTBP1-iCLIP1 library contains
non-coinciding cDNA-starts (Fig. 3a). To understand if
the prevalence of non-coinciding cDNA-starts depends
on the length of binding sites, we first identified regions
on RNAs where cDNA-starts are significantly clustered,
and we refer to these as ‘crosslink clusters’ (see
‘Methods’ for more detail). Notably, the proportion of
non-coinciding cDNA-starts increases within crosslink
clusters that are longer than 5 nt (Fig. 3b) and this
increase is particularly dramatic in clusters longer than
30 nt (Fig. 3c). This analysis reveals that the non-
coinciding cDNA-starts originate mainly from long
binding sites.
To understand the possible causes and effects of the

constrained RNase cleavage, we examined the new
PTBP1-iCLIP2 experiment, in which we had also modi-
fied the conditions of RNase treatment: in this experi-
ment, we included an inhibitor of endogenous RNases
into the lysis buffer (antiRNase which does not inhibit
RNase I) and slightly increased the concentration of
RNase I compared to PTBP1-iCLIP1. In this way, we
hoped to ensure that RNase I, which is not thought to
have any sequence specificity, was responsible for frag-
menting the RNAs in PTBP1-iCLIP2. Interestingly, the
proportion of non-coinciding cDNA-starts is decreased
in PTBP1-iCLIP2 (Fig. 3d), and this decrease is particu-
larly apparent when analysing long crosslink clusters
(Fig. 3e, f ). In addition to the overlapping cDNA-starts,
the cDNA-ends in PTBP1-iCLIP2 also often overlap
with cDNA-starts (diagonal enrichment in Fig. 3d-f ).
Both RNase I and UV crosslinking require single-
stranded RNA and thus their similar RNA structure
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preferences are the likely cause for their increased
chance of overlap. Taken together, our results show that
the prevalence and position of non-coinciding cDNA-
starts can vary greatly between different iCLIP experi-
ments performed for the same RBP and thus they are
most likely a result of technical differences between
these experiments.
To understand the technical features that lead to the

non-coinciding cDNA-starts in PTBP1-iCLIP1, we
examined in more detail the long crosslink clusters in
which such cDNAs are most prominent. We restricted
all following analyses to the 1000 crosslink clusters with
the highest cDNA count to ensure that they have high
coverage of diverse cDNA lengths. We identified the
position within each crosslink cluster with the highest
count of cDNA-starts (cDNA-start peak) and the pos-
ition downstream of each crosslink cluster with the
highest count of cDNA-ends (cDNA-end peak). Next,
we categorised cDNAs based on their length and plotted

their starts and ends around cDNA-start peaks (Fig. 4a)
or cDNA-end peaks (Fig. 4b). As expected for long
crosslink clusters, cDNA-starts are broadly distributed
around the cDNA-start peaks. We measured the empir-
ical cumulative distribution of cDNA-starts around
cDNA-start peaks (Fig. 4a, c – inset), which demon-
strates that the distribution of cDNA lengths has a much
stronger influence on the position of cDNA-starts in
PTBP1-iCLIP1 (Fig. 4a) than PTBP1-iCLIP2 (Fig. 4c).
Strikingly, the cDNA-ends of all length categories precisely
overlap at the position of cDNA-end peaks in PTBP1-
iCLIP1 (Fig. 4b), while they are enriched over a broader
region downstream of the cDNA-end peaks in PTBP1-
iCLIP2 (Fig. 4d). Indeed, this tight constraint of cDNA-
ends in PTBP1-iCLIP1 reveals three distinct peaks of
cDNA-starts for each category of cDNA lengths (Fig. 4b),
while these peaks are less prominent in the PTBP1-iCLIP2
library, in which the fold change for cDNA-end constraint
is decreased by half (Fig. 4b, d – inner box plot). We

(See figure on previous page.)
Fig. 3 Proportion of non-coinciding cDNA-starts differs between PTBP1 iCLIP experiments. a Heatmap for PTBP1-iCLIP1 generated using the previously
developed software iCLIPro [8] to show the relative positioning of cDNA-starts of shorter iCLIP cDNAs (17–39 nt) compared to cDNA-starts of long
cDNAs (longer than 39 nt). b As in (a), but for cDNAs of PTBP1-iCLIP1 that overlap with 5–30 nt long crosslink clusters. c As in (a), but for cDNAs of
PTBP1-iCLIP1 that overlap with >30 nt long crosslink clusters. d As in (a), but for PTBP1-iCLIP2. e As in (a), but for cDNAs of PTBP1-iCLIP2 that overlap
with 5–30 nt long crosslink clusters. f As in (a), but for cDNAs of PTBP1-iCLIP2 that overlap with >30 nt long crosslink clusters

a b

c d

Fig. 4 Non-coinciding cDNA-starts are a result of constrained cDNA-ends. a The cDNA-starts (solid lines) and cDNA-ends (dotted lines) of PTBP1-iCLIP1 are
plotted around the cDNA-start peak that was identified within each of the 1000 > 30 nt long crosslink clusters that have the highest total cDNA count.
cDNAs are divided into four length categories: 17–29 nt, 30–34 nt, 35–39 nt and >39 nt. The inner plot shows the empirical cumulative distribution from
all four length categories in the region between –25 nt and 25 nt around cDNA-start peaks. b As in (a), but plotted around the cDNA-end peak that was
identified within the 30 nt downstream of each of the 1000 > 30 nt long crosslink clusters that have the highest total cDNA count. The inner box plot
shows the ratio of cDNA counts (log2) at the position 0 (overlapping with cDNA-end peak) compared to the average count of cDNAs in the region from
5 nt to 25 nt downstream of the cDNA-end peak (marked by horizontal arrow). c As in (a), but for PTBP1-iCLIP2. d As in (b), but for PTBP1-iCLIP2
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conclude that the presence of non-coinciding cDNA-
starts is reduced in PTBP1-iCLIP2 due to the decreased
constraints at cDNA-ends.

PTBP1 binding sites can be assigned correctly despite
non-coinciding cDNA-starts
Analysis of the PTBP1-iCLIP1 demonstrated that the
non-coinciding cDNA-starts are most enriched within
long crosslink clusters. Thus, we speculated that analysis
of long binding sites might detect non-coinciding
cDNA-starts also in those iCLIP datasets previously
analysed by the iCLIPro tool, even if they had not been
detected by iCLIPro. For example, U2AF2-iCLIP appears
to lack non-coinciding cDNA-starts when analysed by
iCLIPro [8] and so we looked at iCLIP data for this
protein in more detail.
Both PTBP1 and U2AF2 preferentially bind to pyrimi-

dine tracts (Y-tracts) [14, 15, 18] and therefore we
defined the coordinates of potential PTBP1 and U2AF2
binding sites independently of iCLIP data. Specifically,
we compared the crosslinking of these two proteins
across the longest computationally identified Y-tracts
that are annotated in the human genome as T-rich or
TC-rich ‘low complexity sequences’ and are located
mainly at deep intronic positions. Interestingly, PTBP1-
iCLIP1 and U2AF2-iCLIP have a similar presence of
non-coinciding cDNA-starts within these long Y-tracts.
The short iCLIP cDNAs identify the crosslink sites close
to the 3′ region of the Y-tracts, while longer cDNAs
identify crosslink sites that are located further towards
the 5′ region (Fig. 5a, b). These non-coinciding cDNA-
starts of all cDNA length categories correctly identify
crosslink sites, because they are enriched almost exclu-
sively within the Y-tracts, which these proteins are known
to bind (Additional file 1: Figure S3).
Notably, the cDNA-ends are constrained to positions

downstream of the Y-tracts both in PTBP1-iCLIP1 and
U2AF2-iCLIP (Fig. 5c, d). Since cDNA-ends represent
the sites of RNase cleavage, this most likely indicates
inefficient RNase cleavage within the Y-tracts. Thus, the
presence of non-coinciding cDNA-starts reflects
constrained positions of cDNA-ends. In this context, the
broad size range of iCLIP cDNAs is crucial to overcome
the constraints at cDNA-ends, thereby enabling the
non-coinciding cDNA-starts to detect crosslink events
across the long Y-tracts. Moreover, the long cDNAs are
particularly important, since they can truncate at cross-
link sites that are located far from the site of RNase
cleavage. In doing so, they identify crosslink sites across
the entire length of the long binding sites.
Our analysis of Y-tracts indicates that non-coinciding

cDNA-starts do not necessarily have a negative effect on
the assignment of binding sites. To examine this notion
more comprehensively, we compared the sequence

features of crosslink clusters defined by PTBP1-iCLIP1
and PTBP1-iCLIP2. First, we identified PTBP1-binding
motifs by searching for pentamers that are most highly
enriched around the cDNA-starts in PTBP1-iCLIP2 (see
‘Methods’). Then, we visualised the position of these
PTBP1-binding motifs around the crosslink clusters that
were identified by cDNA-starts in the different iCLIP,
eCLIP or irCLIP experiments (Fig. 5e). This confirmed
that enrichment of the PTBP1-binding motifs correctly
overlaps with the starts and ends of crosslink clusters
regardless of which crosslinking type or which variant of
library preparation protocol was used. Moreover, the
high prevalence of non-coinciding cDNA-starts in
PTBP1-iCLIP1 does not affect the high resolution of the
method. Taken together, we conclude that the use of
cDNA-starts is appropriate for the computational analysis
of data produced by iCLIP or any related method that is
capable of efficiently amplifying truncated cDNAs.

Efficient RNase I-mediated RNA fragmentation minimises
the cDNA-end constraints
The cDNA-end corresponds to the position where the
RNA fragment was cleaved by the RNase (Fig. 1a, step
2). As described earlier, we optimised the conditions of
RNase treatment in the PTBP1-iCLIP2 experiment to
ensure that RNase I is the primary cause of RNA frag-
mentation. This indicates that RNA fragmentation by
other factors might have caused the high cDNA-end
constraints in PTBP1-iCLIP1. To investigate this possi-
bility, we first assessed cDNA positions at the 3′ splice
sites, since these are subject to endogenous RNA cleav-
age by the spliceosome. While PTBP1 binds to Y-tracts
at specific 3′ splice sites to repress alternative splicing,
U2AF2 binds to most 3′ splice sites [14, 15, 18]. Inter-
estingly, a peak of cDNA-ends is present at the last
intronic nucleotide, even though most cDNA-ends are
in the exonic sequence (Fig. 6a). The U2AF2-iCLIP
cDNAs of all length categories that end in terminal part
of introns have non-coinciding cDNA-starts (Fig. 6b),
while the cDNAs that end in the exon have fully coin-
ciding cDNA-starts (Fig. 6c).
The intronic U2AF2-iCLIP cDNA-ends are con-

strained to the position where the 3′ splice site is
cleaved by the endogenous spliceosome. However, the
cDNA-ends in exons are not constrained, most likely
because they result from cleavage of pre-mRNA by
RNase I. To test this hypothesis, we exploited the fact
that intron lariats lack a phosphate at their 3′ end and
thus no 3′ dephosphorylation is needed at step 2 of the
protocol to detect them in iCLIP (Fig. 1a). We therefore
produced another PTBP1 iCLIP experiment (PTBP1-
iCLIP3), in which we omitted dephosphorylation from
step 2 and continued directly to ligation of the 3′
adapter in step 3 (Fig. 1a). Since RNA fragments cleaved
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at their 3′ end by RNase I contain a 3′ phosphate, they
were not ligated to the 3′ adapter (Fig. 1a, step 3) and
therefore only those RNA fragments cleaved by other
means were amplified in PTBP1-iCLIP3. Notably, both
in PTBP1-iCLIP1 and PTBP1-iCLIP3, the cDNA-ends at
3′ splice sites are strongly constrained to the end of in-
trons, while this constraint is minor in PTBP1-iCLIP2
(Fig. 6d–f ). Thus, non-coinciding cDNA-starts predom-
inate at 3′ splice sites in PTBP1-iCLIP1 and PTBP1-
iCLIP3, while in PTBP1-iCLIP2 most cDNA-starts
coincide in the region of 20 nt to 5 nt upstream of the
intron-exon junction. This suggests that the RNAs
overlapping with the 3′ splice sites were fragmented by
spliceosome-mediated cleavage in PTBP1-iCLIP1 and
PTBP1-iCLIP3 and by RNase I in PTBP1-iCLIP2 and in
U2AF2-iCLIP. It is this difference that appears to explain
the variation in the prevalence of non-coinciding cDNA-
starts at 3′ splice sites.
To further compare the characteristics at cDNA-ends,

we visualised the nucleotide composition of cDNA-ends
for the three PTBP1 iCLIP experiments. In PTBP1-
iCLIP2, for which we used the increased RNase I
concentration, we observed almost no sequence biases
at cDNA-ends, in agreement with the lack of sequence
specificity of RNase I (Fig. 6h). In contrast, a preference
for adenosines was observed at the cDNA-ends in
PTBP1-iCLIP1 and PTBP1-iCLIP3, suggesting that this
preference results from an RNase I-independent frag-
mentation of RNAs (Fig. 6g–i). Spliceosome-mediated
RNA cleavage contributes to only about 0.1% of these
fragments (Fig. 6j) and therefore the primary cause of
RNase I-independent fragmentation remains to be
identified. Nevertheless, we can clearly conclude that the
efficient use of RNase I avoids the constraints at cDNA-
ends in iCLIP and this decreases the incidence of non-
coinciding cDNA-starts.

Sequence or structure preferences of RNA fragmentation
can constrain the cDNA-ends
Both U2AF2 and PTBP1 primarily bind to pre-mRNAs
and therefore we also wished to assess the impact that
constraints at cDNA-ends may have on RBPs binding
mature mRNAs. For this purpose, we examined the
iCLIP and CLIP cDNA libraries produced for eIF4A3.

The position of cDNA-starts varies greatly between
different eIF4A3 experiments (Fig. 7a). As observed by
the previous study, the cDNA-starts in eIF4A3-iCLIP1
are shifted to positions upstream of the expected EJC-
binding region (yellow rectangle in Fig. 7a) [8]. In con-
trast, the cDNA-starts of eIF4A3-iCLIP2 and eIF4A3-
iCLIP3 overlap with the expected binding region. The
cDNA-starts of eIF4A3-CLIP are shifted upstream of
eIF4A3-iCLIP2 and eIF4A3-iCLIP3, which agrees with
the likely prevalence of truncated cDNAs in iCLIP and
readthrough cDNAs in CLIP.
Next, we asked how the position of cDNA-ends may

influence the position of cDNA-starts. For this purpose,
we first examined the positions of cDNA-ends by sum-
marising them across all exon-exon junctions. The
cDNA-ends in eIF4A3-iCLIP1 are highly enriched in a
region immediately downstream of the expected EJC-
binding region (mainly positions –18..0 nt relative to the
junctions), but they are also more broadly distributed
further downstream of the expected EJC-binding region,
including in the downstream exon (Fig. 7b). To under-
stand why the positions of cDNA-ends are so different in
eIF4A3-iCLIP1 compared to the remaining experiments,
we first identified the cDNA-end peak, corresponding to
the position with the highest count of cDNA-ends at each
junction. We then grouped all exon-exon junctions that
had the same position of the cDNA-end peak relative to
the junction. Both in eIF4A3-iCLIP1 and eIF4A3-iCLIP2,
each junction has a preferred position of cDNA-ends, in-
dicating that both experiments show a strong cDNA-end
constraint at individual junctions (marked by blue rect-
angle in Additional file 1: Figure S4A, B).
To further understand the causes for different cDNA-

end positions in eIF4A3-iCLIP1, we assessed the RNA
sequence and structure preference at cDNA-ends. The
cDNA-end peak in eIF4A3-iCLIP2, but not eIF4A3-
iCLIP1, coincides with a strong decrease in pairing prob-
ability (Additional file 1: Figure S4C, D). Since most
endonucleases cut at single-stranded RNA, this indicates
that the RNA fragments were cut at their 3′ end by an
endonuclease in eIF4A3-iCLIP2, while additional factors
may contribute to the RNA fragmentation in eIF4A3-
iCLIP1. In eIF2A3-iCLIP2, but not eIF4A3-iCLIP1, we
also observe a second peak of cDNA-ends precisely at

(See figure on previous page.)
Fig. 5 Non-coinciding cDNA-starts are required to map the crosslink sites within Y-tracts. a The cDNA-starts of PTBP1-iCLIP1 and CLIP experiments
are plotted around the ends of >35 nt Y-tracts that are annotated as T-rich or TC-rich low-complexity sequence in the human genome (hg19).
cDNAs of PTBP1-iCLIP1 are divided into four length categories: 17–29 nt, 30–34 nt, 35–39 nt and >39 nt. b Same as (a), but using U2AF2-iCLIP
and CLIP cDNAs. c Same as (a), but showing the positions of cDNA-ends. d Same as (b), but showing the positions of cDNA-ends. e Heatmap
showing the coverage of PTBP1-binding motifs at the PTBP1-iCLIP1, PTBP1-iCLIP2, PTBP1-eCLIP or PTBP1-irCLIP crosslink clusters that were defined
with a 3-nt clustering window. Each row shows the average coverage for 300 clusters of similar length, sorted from shortest to longest clusters.
The white line marks the nucleotide preceding the start and the nucleotide following the median end of all clusters that were combined in each
row. A colour key for the coverage per nucleotide of the PTBP1-binding motifs is shown on the right
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(See figure on previous page.)
Fig. 6 Constrained cDNA-ends affect the cDNA-starts at 3′ splice sites. a The cDNA-starts (solid lines) and cDNA-ends (dotted lines) of U2AF2-iCLIP
are plotted around intron-exon junctions (position 0 being the first nucleotide of the exon). cDNAs are divided into three length categories: 17–29 nt,
30–34 nt and 35-39 nt; the distribution of all cDNAs together is shown in grey. b Same as (a), but using only cDNAs that end in the intron. c Same as
(a), but using only cDNAs that end in the exon. d Same as (a), but showing PTBP1-iCLIP1 cDNA-starts (full lines) and cDNA-ends (dotted lines). e Same
as (a), but showing PTBP1-iCLIP2 (using 4SU and optimised RNase conditions) cDNA-starts (full lines) and cDNA-ends (dotted lines). f Same as (a), but
showing PTBP1-iCLIP3 (omitting 3′ dephosphorylation) cDNA-starts (full lines) and cDNA-ends (dotted lines). g The composition of genomic nucleotides
around iCLIP cDNA-ends from PTBP1-iCLIP1. h Same as (g), but showing PTBP1-iCLIP2. i Same as (g), but showing PTBP1-iCLIP3. j Proportions of
cDNAs that map to introns which contain cDNA-ends at positions overlapping the last two nucleotides of introns. PTBP1-iCLIP1 and PTBP1-iCLIP2 are
compared to PTBP1-iCLIP3 iCLIP, which was performed without using PNK to dephosphorylate RNAs in step 2. This enriches for RNAs that contain a 3′
OH, which can occur when they are cleaved at their 3′ end independently of RNase I, such as the 3′ ends of intron lariats
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Fig. 7 A broad cDNA length range ameliorates the effects of constrained cDNA-ends. a The cDNA-starts of eIF4A3 iCLIP and CLIP experiments
are plotted around the 1000 exon-exon junctions with the highest number of cDNAs. b Same as (a), but showing cDNA-ends. c Heatmap
showing the position of cDNA-starts in eIF4A3-iCLIP1 around the 1000 exon-exon junctions with the highest number of cDNAs. Junctions are
sorted according to their cDNA-end peak position. Each row shows the average of cDNA counts at all junctions with a cDNA-end peak at the
indicated position. The values are normalised against the maximum value across all rows. On the right, the arrows mark parts of the figure in
which binding site assignment corresponds to the schematic shown in Fig. 8d. Coloured rectangles mark the main region of eIF4A3 crosslinking
(green), the expected EJC-binding region (yellow) and the position of the cDNA-end peak (blue). d Same as (c), but for eIF4A3-iCLIP2. The arrow in
the figure marks the 17 nt minimal distance between cDNA-starts and the expected EJC-binding region that is required for cDNA-starts to be able
to identify crosslink sites within the binding site. On the right, the arrows mark sections that correspond to the schematics shown in Fig. 8c, b
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the end of the exon (position –1) (Fig. 7b, Additional
file 1: Figure S4B). This probably reflects the deposition
of eIF4A3 on the spliced exon intermediate, as would be
expected based on previous biochemical studies [22–24].
The nucleotide composition at cDNA-ends also differs
between eIF4A3-iCLIP1 and eIF4A3-iCLIP2 (Additional
file 1: Figure S4E, F). These differences suggest that RNA
was fragmented by different mechanisms in eIF4A3-
iCLIP1 and eIF4A3-iCLIP2, but this remains to be fully
understood. Both eIF4A3-iCLIP2 and eIF4A3-iCLIP3 have
a strong enrichment of adenosine at the position following
the cDNA-end peak, indicating a potential for RNase I-
independent fragmentation (Additional file 1: Figure S4G).
However, the published eIF4A3-CLIP data used RNase T1
to fragment the RNA [11], which prefers to cut after the
guanosine, in agreement with a guanosine enrichment at
the position preceding the cDNA-end peaks (Additional
file 1: Figure S4H). Taken together, these findings indicate
that differences in RNA fragmentation conditions can
dramatically affect the structural and sequence features at
cDNA-ends in CLIP and iCLIP experiments and thus they
can constrain the positions of cDNA-ends in multiple
different ways. The impact of these constraints becomes
clear when aligning the junctions to the position of
cDNA-end peak, which demonstrates that the position of
each length category of cDNAs is defined by the position
of cDNA-ends (Additional file 1: Figure S4I–K).
To understand the constraints at cDNA-ends at the

level of individual exon-exon junctions, we examined
the exon-exon junctions with highest coverage of
cDNAs in greater detail. For this purpose, we focused on
the 1000 junctions with the highest cDNA count. This
demonstrates that the cDNA-ends are largely restricted
to a single position in the eIF4A3-iCLIP3 experiment,
while they are more variable in eIF4A3-iCLIP1. As a re-
sult, the cDNA-starts often coincide in eIF4A3-iCLIP1,
but are fully non-coinciding in eIF4A3-iCLIP3 (Add-
itional file 1: Figure S5). This again demonstrates that
the cDNA-end constraints are the primary cause of non-
coinciding cDNA-starts in iCLIP. These constraints
therefore need to be considered when interpreting the
position of binding sites assigned by iCLIP and related
methods.

A broad range of cDNA lengths compensates for the
constrained cDNA-ends
To understand how the constraints at cDNA-ends
influence the positions of cDNA-starts, we grouped
all exon-exon junctions that had the same position of
the cDNA-end peak and visualised the position of cDNA-
starts (Fig. 7c, d). This confirms that the position of
cDNA-ends (marked with blue rectangle) has a strong
effect on the position of the identified crosslink sites. Not-
ably, this effect is a lot more pronounced for eIF4A3-

iCLIP1, because cDNA-starts are enriched within a nar-
rowly defined distance from the cDNA-ends (Fig. 7c).
Analysis of the cDNA length distribution of the examined
experiments shows that eIF4A3-iCLIP1 has the largest pro-
portion of cDNAs that are shorter than 39 nt (58%) and
most of these cDNAs are in the range of 27–38 nt long
(Additional file 1: Figure S6). This indicates that a narrow
range of cDNA lengths dominates the eIF4A3-iCLIP1 li-
brary and this range of cDNA lengths defines the distance
at which cDNA-starts are positioned relative to cDNA-
ends. For comparison, only 36% of cDNAs are shorter than
39 nt in eIF4A3-iCLIP3 and the size distribution is more
even in eIF4A3-iCLIP2 (Additional file 1: Figure S6A). As a
result of the narrow range of cDNA-starts, the cDNA-
starts in eIF4A3-iCLIP3 rarely identify crosslink sites within
the expected EJC-binding region (marked by the yellow
rectangle).
In eIF4A3-iCLIP2, cDNAs have a broad range of

lengths, which allows to identify crosslink positions over
a broad area upstream of the cDNA-end peak, including
the expected EJC-binding region (Fig. 7d). Nevertheless,
eIF4A3-iCLIP2 does not identify crosslinking within the
expected EJC-binding region at a subset of exon-exon
junctions; at these junctions, the cDNA-ends are posi-
tioned closer than 17 nt to this region (top portion of
the heatmap in Fig. 7d). Since only cDNAs longer than
16 nt are normally isolated by the iCLIP procedure and
short cDNAs rarely map to a unique genomic position,
it would be very challenging to identify crosslink sites
closer than 17 nt to cDNA-ends. This demonstrates that
to comprehensively identify crosslink sites within the
binding region, the cDNA-ends should ideally be at least
17 nt away from the binding region.
In eIF4A3-iCLIP2, the large majority of cDNA-ends

are present more than 17 nt downstream of the expected
EJC-binding region (Fig. 7b). This decreased constraint
on cDNA-ends and the broad range of cDNA lengths
are the most likely reasons for the capacity of eIF4A3-
iCLIP2 to identify crosslink sites over the EJC-binding
region at most exon-exon junctions. Indeed, most cross-
linking in eIF4A3-iCLIP2 is seen within the expected
EJC-binding region, as well as approximately 10 nt on
each side of this region (marked with green rectangle in
Fig. 7d). In conclusion, the broad range of cDNA lengths
can overcome the cDNA-end constraints by producing
the non-coinciding cDNA-starts that can more compre-
hensively identify crosslink sites.

Discussion
Our study demonstrates that use of cDNA-starts is
appropriate to assign protein–RNA crosslink sites with
iCLIP and related methods, regardless of the crosslinking
method. Our findings also underscore the importance of
fully optimising the iCLIP conditions with the goal to
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produce a broad range of cDNA lengths with a minimal
cDNA-end constraint. We find that crosslink sites are
assigned by cDNA-starts even if non-coinciding cDNA-
starts are present, since these are a result of cDNA-end
constraints, which can have diverse causes (Fig. 8). The
constrained cDNA-ends become problematic when they

are present close to the binding site (Fig. 8c) or when a
narrow range of cDNA lengths dominates the library
(Fig. 8d). In these cases, only a portion of the binding
site might be assigned and this portion is likely to locate
at the upstream region of binding sites (Fig. 8c, d). In con-
trast, a broad range of cDNA lengths can compensate for
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Fig. 8 (See legend on next page.)
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cDNA-end constraints and in this case the presence of
non-coinciding cDNA-starts does not detrimentally influ-
ence binding site assignment (Fig. 8b).
A previous study suggested that the non-coinciding

cDNA-starts might reflect a prevalence of readthrough
cDNAs [8]. Here, we show four independent approaches
to examine non-coinciding cDNA-starts in PTBP1 and
eIF4A3 iCLIP, all of which lead us to conclude that non-
coinciding cDNA-starts are unrelated to readthrough
cDNAs. First, we show that CL-motifs are enriched
mainly at cDNA-starts in iCLIP, but not in CLIP. This
also applies to the PTBP1-iCLIP2 experiment in which
4SU was used for crosslinking. Second, we find a much
lower proportion of crosslink-induced deletions in
eIF4A3 iCLIP compared to CLIP data, as was also ob-
served previously for other RBPs [4]. Moreover, even
though the proportion of transitions is high in the
PTBP1-iCLIP2, analysis of CL-motifs indicates that a
minority of transitions correspond to crosslink sites,
while most crosslink sites overlap with cDNA trunca-
tions. This agrees with the enrichment of binding motifs
at cDNA-starts in CPSF30 iCLIP, where 4SU was also
used for crosslinking [25]. This conclusion is specific for
iCLIP, since transitions can precisely assign the crosslink
site in PAR-CLIP [21], because only readthrough cDNAs
are amplified and usually only one transition is present
in the sequenced read. Third, we show that the non-
coinciding cDNA-starts in iCLIP result from the con-
strained cDNA-ends and that their prevalence is greatly
diminished when RNase I is the primary source of RNA
fragmentation. Fourth, while cDNA-starts of read-
through cDNAs could lead to spurious assignment of
crosslink sites upstream of the expected binding regions,
we find that the binding sites are correctly assigned by
PTBP1-iCLIP1 as well as by eIF4A3-iCLIP2 and eIF4A3-
iCLIP3. Thus, we find that prevalence of non-coinciding
cDNA-starts is unrelated to the presence of readthrough
cDNAs.
The presence of non-coinciding cDNA-starts previ-

ously served as an argument for using cDNA-centres
instead of cDNA-starts because the cDNA-starts are
shifted to the region upstream of the expected binding

sites in eIF4A3-iCLIP1 [8]. However, we now find that
other eIF4A3 iCLIP experiments also contain non-
coinciding cDNA-starts, but their cDNA-starts correctly
identify crosslink sites; this indicates that the non-
coinciding cDNA-starts are not the cause of shifted
binding site assignment in eIF4A3-iCLIP1. We now
show that this shift is caused by the presence of cDNA-
ends just downstream of binding sites, which is unique
to eIF4A3-iCLIP1. We also show that the non-
coinciding cDNA-starts are an indirect signature of se-
quence and structure biases at cDNA-ends, which reflect
RNase preferences. It has recently been shown that the
sequence bias of RNases can be incorporated into
models that predict protein-RNA binding [26]. It re-
mains unclear what causes the unusually high con-
straints at cDNA-ends in some of the experiments.
Multiple sources of RNA fragmentation could lead to
such preferences, including the cleavage of intron-exon
boundaries upon splicing, specificity of RNA cleavage by
exogenous or endogenous RNases, RNA fragmentation
during sonication or spontaneous hydrolysis. Non-
specific RNases, such as RNase I, should be used instead
of the sequence-specific RNases, such as the RNase A,
T1 or micrococcal nuclease. Moreover, as we demon-
strate with the PTBP1-iCLIP2 experiment, it is import-
ant that cleavage by RNase I is the dominant source of
RNA fragments. The optimal RNase conditions can be
confirmed by visualisation of protein-RNA complexes
after their separation with SDS-PAGE, as in the pub-
lished guidelines [3, 17, 27].
We also show that additional aspects of the iCLIP

protocol need careful optimisation to avoid cDNA-end
constraints. The 3′ dephosphorylation of RNA frag-
ments needs to be efficient (Fig. 1, step 2), since this is
necessary for efficient 3′ adapter ligation to the RNA 3′
ends produced by RNase I (Fig. 1, step 3). While previ-
ous studies found sequence and structural biases in the
RNA ligase-mediated 3′ adapter ligation [28, 29], we
show that PTBP1-iCLIP2 cDNA-ends do not have much
sequence bias, indicating that RNA ligation is not the
reason for the constraints in the other experiments.
However, it is important that the ligation is efficient, so

(See figure on previous page.)
Fig. 8 A schematic explaining how different extents of cDNA-end constraints affect binding site assignment. a If the iCLIP library contains a broad
range of cDNA lengths and unconstrained positions of cDNA-ends, then crosslink sites are identified in an unbiased manner, allowing assignment
of the full binding site (RNA map at the bottom). The crosslink sites assigned by cDNA-starts are marked in red bars and a grey bar marks a crosslink site
that is incorrectly assigned by a readthrough cDNA. b If cDNA-ends are constrained, most likely as a result of biased RNase cleavage, then the resulting
cDNA-starts do not coincide. Nevertheless, if a broad distribution of cDNA lengths is available and the cDNA-ends are placed far enough from the
binding site, then crosslink sites can still be identified across the full binding site, allowing correct assignment, as was seen in the case of eIF4A3-iCLIP2
(Fig. 7d). c If cDNA-ends are constrained to a position very close to the binding site, then those cDNAs that truncate at crosslink sites in the 3′ region
of the binding site are too short to be isolated and mapped to the genome. Therefore, crosslink sites are identified only in the 5′ region of the binding
site, leading to an overly narrow assignment of binding sites, as was seen in some of the sites identified by eIF4A3-iCLIP1 and eIF4A3-iCLIP2 (Fig. 7c, d).
d If cDNA-ends are constrained and an iCLIP library contains a narrow distribution of cDNA sizes, then cDNA-end constraints lead to an overly narrow
assignment of binding regions, as was seen in the case of eIF4A3-iCLIP1 (Fig. 7c)
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that ideally most RNA fragments become ligated to the
3′ adapter, which minimises potential biases. Finally,
purification of cDNAs should be performed in a way
that maintains a broad range of cDNA lengths in the
final amplified library. This should ideally include isola-
tion of both short and long cDNAs to maximise map-
ping of crosslink sites that are located either close or far
from the site of RNase cleavage, respectively. Moreover,
it indicates that special procedures for genomic mapping
of short cDNAs may be beneficial; for example, due to
the problem that short reads often map at multiple
genomic positions, mapping of short cDNAs could be
narrowed down to the genomic regions where longer
cDNAs map. In sum, it is important to ensure that
RNase I is the primary source of RNA fragmentation,
that 3′ dephosphorylation of RNA fragments is efficient
and that the cDNA library has a broad range of cDNA
sizes.
We show that use of cDNA-starts is appropriate to as-

sign protein–RNA crosslink sites with iCLIP. Interest-
ingly, we find that the number of assigned crosslink
clusters can vary greatly between the different datasets
in a manner that does not necessarily correlate with the
number of unique cDNAs that are present in the library
(Figs. 1b, 5e). These differences might reflect variable
amounts of co-purified non-specific RNAs in the differ-
ent experiments, which could result from the use of dif-
ferent antibodies and purification conditions. To draw
more solid conclusions, direct comparisons between
multiple methods will need to be done for a larger num-
ber of diverse RBPs.
It is clear, however, that identification of long binding

sites can be particularly challenging. Presence of long
cDNAs is required to identify crosslink sites across the
complete length of long PTBP1 binding sites. Moreover,
RNase cleavage sites need to be far enough from the
EJC-binding site in order to identify contacts within 10
nt on either side of the expected EJC-binding region by
the eIF4A3 iCLIP. This is compatible with the previous
findings that the precise position of EJC binding can
vary between different junctions, which can be influ-
enced by RNA sequence and structure, or by other RBPs
that bind in the vicinity [10, 11, 19]. Moreover, crosslink
sites positioned further from the expected binding site
might reflect eIF4A3 interactions that are independent
of its DEAD-box domain. Thus, analysis of long binding
sites with iCLIP experiments can provide valuable in-
sights into mechanisms of protein-RNA complexes.

Conclusions
We find that the presence of non-coinciding cDNA-
starts in iCLIP is not a signature of readthrough cDNAs,
but instead reflects cDNA-end constraints. These can
particularly affect the assignment of long binding sites of

RBPs. To overcome these constraints, multiple tech-
nical aspects of iCLIP need to be optimised, including
the conditions of RNase fragmentation, RNA ligation
and cDNA purification. This produces cDNA libraries
with a broad cDNA length distribution and low
cDNA-end constraints, which are well suited for
assigning the complete RNA binding sites of RBPs.
These considerations apply to all protocols that amp-
lify truncated cDNAs, including iCLIP, eCLIP and
irCLIP, and they ensure that cDNA-starts comprehen-
sively identify protein-RNA crosslink sites across the
transcriptome.

Methods
iCLIP experiments
iCLIP experiments are based on the previously described
protocol [17] with minor modifications. In PTBP1-
iCLIP1 (which was already used for a previous publica-
tion [12]), no antiRNase was used and the concentration
of RNase I was 0.5 U/mL. In PTBP1-iCLIP2, 4SU was
used for crosslinking as previously described [17] and
the RNase conditions were optimised to ensure efficient
RNase I-dependent fragmentation. In detail, HEK293T
cells were grown on 10 cm2 dishes, incubated for 8 h
with 100 μM 4SU and crosslinked with 2× 400 mJ/cm2

365 nm UV light. Protein A Dynabeads were used for
immunoprecipitations (IP). Eighty microlitres of beads
were washed in iCLIP lysis buffer (50 mM Tris-HCl
pH 7.4, 100 mM NaCl, 1% NP-40, 0.1% SDS, 0.5% so-
dium deoxycholate). For the preparation of the cell lys-
ate, 2 million cells were lysed in 1 mL of iCLIP lysis
buffer and the remaining cell pellet was dissolved in
50 μL urea lysis buffer (50 mM Tris-HCl, pH 7.4,
100 mM NaH2PO4, 7 M urea, 1 mM DTT). After the
pellet had dissolved, the mixture was diluted with CLIP
lysis buffer to 1000 μL, an additional centrifugation was
performed and the two lysates were pooled before pro-
ceeding (2 mL total volume). As control for purity of
protein–RNA complexes, we used a high-RNase condi-
tion for analysis by SDS-PAGE gel, but not for further
preparation of cDNA library (Additional file 1: Figure
S1A). For the full experiment, we incubated 2 mL of lys-
ate with 4 U/mL of RNase I and 2 μL antiRNase (1/
1000, AM2690, Thermo Fisher) at 37 °C for 3 min and
centrifuged (Additional file 1: Figure S1B). We took care
to prepare the initial dilution of RNase in water, since
we found that RNase I gradually loses its activity when
diluted in the lysis buffer. In total, 1.5 mL of the super-
natant was then added to the beads, incubated at 4 °C
for 4 h and cDNA library was prepared based on the
standard protocol. In PTBP1-iCLIP3, the dephosphoryla-
tion step was omitted from step 2 (Fig. 1a) and the rest
was same as the standard protocol.
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eIF4A3-iCLIP2 was performed from HEK293 cells
crosslinked with 0.15 mJ/cm2 254 nm UV light. To pre-
pare the cell lysate, the cells were lysed with 1 mL iCLIP
lysis buffer (50 mM Tris-HCl pH 7.4, 100 mM NaCl, 1%
NP-40, 0.1% SDS, 0.5% sodium deoxycholate, final
concentration 2 mg/mL) and sonicated (Bioruptor, 5 × 5 s
on/off). Two replicates were produced, one with 1 U/mL
and the other with 2 U/mL of RNase I in 1 mL of lysate.
The SDS-PAGE analysis showed the size of the resulting
protein-RNA complexes to be similar (Additional file 1:
Figure S1C) and therefore we grouped these two replicates
for all analyses of eIF4A3-iCLIP2. After RNase treat-
ment, the samples were centrifuged. For each IP,
100 μL of Protein G Dynabeads were washed in
iCLIP lysis buffer and incubated with the anti-eIF4A3
antibody produced in the Le Hir laboratory [11]. The
samples were rotated at 4 °C for 2 h. The beads were
then washed with high-salt washing buffer (50 mM
Tris-HCl pH 7.4, 1 M NaCl, 1% NP-40, 0.1% SDS,
0.5% sodium deoxycholate). After the first round of
washes, the samples proceed through 3′ adapter
addition, an additional phosphorylation (0.2 μL PNK,
0.4 μL cold ATP [1 mM], 0.4 μL 10× PNK buffer,
3 μL water). After SDS-PAGE separation, the guide-
lines recommend isolating radioactive RBP-RNA com-
plexes that migrate 20–100 kDa higher than the RBP
alone, which leads to isolation of RNA molecules of
50–300 nt. Since we expect that most cDNAs truncate at
crosslink sites within these RNA molecules, we prepared
the iCLIP library with a heterogeneous population of
cDNAs that were 30–140 nt long (Additional file 1:
Figure S1D). We then produced sequence reads of
150 nt using the Illumina MiSeq platform for PTBP1-
iCLIP2 and 120 nt using the Illumina HiSeq platform
for eIF4A3-iCLIP2, thereby obtaining sequences for
cDNAs up to a length of 139 or 109 nt, respectively
(after removal of adapters).
eIF4A3-iCLIP3 was performed from HeLa cells based

on the previously described protocol [17] with minor
modifications. Briefly, HeLa cells were grown on 10 cm2

dishes and crosslinked with 0.15 mJ/cm2 254 nm UV
light. Protein A Dynabeads were used for IPs. For each
IP, 40 μL of beads were washed in iCLIP lysis buffer and
incubated with 5 μL of anti-eIF4A3 antibody produced
in the Le Hir laboratory [11]. For the preparation of the
cell lysate, the cells were scraped from a 10 cm2 dish
and lysed in 1 mL of iCLIP lysis buffer, incubated with
of 1 U/mL of RNase I at 37 °C for 3 min and centri-
fuged. The supernatant was then added to the beads and
incubated at 4 °C for 2 h. Afterwards, the beads were
washed with IP buffer (10 mM Tris, 150 mM NaCl,
2.5 mM MgCl2, 1% NP-40), RIPA-S buffer (50 mM Tris,
1 M NaCl, 5 mM EDTA, 2 M urea, 0.5% NP-40, 0.1%
SDS, 1% sodium deoxycolate) and PNK buffer before

proceeding to the iCLIP protocol for cDNA library
preparation and Illumina HiSeq sequencing produced
50 nt sequence reads (Additional file 1: Figure S1E, F).

Computational analyses
All the source codes used for the analyses in this paper
are released under an open source license compliant
with OSI (http://opensource.org/licenses) and are
available at the GitHub (https://github.com/jernejule/
non-coinciding_cDNA_starts) and Zenodo repository
(https://zenodo.org/badge/latestdoi/57377213).

Trimming of the adapter sequences
Before mapping the cDNAs, we removed unique molecular
identifiers (UMIs) and trimmed the 3′ Solexa adapter se-
quence. Adapter sequences were trimmed with the FASTX-
Toolkit 0.0.13 adapter removal software, using the following
parameters: -Q 33 -a AGATCGGAAG -c -n -l 26.

Mapping of iCLIP sequence data
To map iCLIP sequence data for PTBP1 and all RBPs
other than eIF4A3, we used the UCSC hg19/GRCh37
genome assembly and the Bowtie2 version 2.1 alignment
software with default settings. More than 81% (1,642,850
of 2,007,824) and 85% (8,585,142 out of 9,634,025) of all
cDNAs from the published and newly generated iCLIP
data, respectively, mapped uniquely to a single genomic
position. To map the eIF4A3 iCLIP data, we compiled a
set of the longest mRNA sequence available for each
multi-exon gene from BioMart Ensembl Genes 79. We
mapped to these mRNAs with the Bowtie2 version 2.1
alignment software, allowing two mismatches. More
than 50% (11,935,475 of 23,040,243) of cDNAs from all
eIF4A3 iCLIP datasets mapped to a unique mRNA
position.
The first 9 nt of the sequenced iCLIP read correspond

to the barcode, which contains the experimental identi-
fier that allows to separate experimental replicates, and
the UMIs, which allow to avoid artefacts caused by vari-
able PCR amplification of different cDNAs (Fig. 1a, step 8,
orange) [3]. We used these UMIs to quantify the number
of unique cDNAs that mapped to each position in the
genome (for PTBP1) or transcriptome (for eIF4A3) by
collapsing cDNAs with the same UMI that mapped to the
same starting position to a single cDNA.

Definition of crosslink-associated (CL) motifs
We reasoned that sequence motifs enriched directly at
the starts of the mock eCLIP cDNAs might uncover
preferences of UV crosslinking, since they are thought to
represent a mixture of crosslink sites for many different
RBPs and thus they should not reflect sequence specificity
of any specific RBP [6]. We therefore examined occur-
rence of tetramers that overlapped with the nucleotide
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preceding the cDNA-starts (position –1 nt) in comparison
with the ones overlapping with the 10th nucleotide pre-
ceding the cDNA-starts (position –10 nt) in PTBP1 mock
input eCLIP. We excluded the TTTT tetramer from fur-
ther analyses, since it is often part of longer tracts of Ts,
and therefore its inclusion decreases the resolution of ana-
lysis. Thus, the tetramers that are enriched over 1.5-fold
at position –1 compared to –10 include TTTG, TTTC,
TTGG, TTTA, ATTG, ATTT, TCGT, TTGA, TTCT and
CTTT, and these were considered for all analyses of ‘CL-
motifs’.

Definition of crosslink clusters
The crosslink clusters were identified by False Discovery
Rate peak finding algorithm from iCount (https://
github.com/tomazc/iCount), by assessing the enrichment
of cDNA-starts at specific sites compared to shuffled
data as described previously [30], with the following add-
itional details. At each cDNA-start, the counts of all
cDNAs containing their cDNA-start at a maximum spa-
cing of 15 nt were summed up (or at 3 nt spacing for
Fig. 5e). Then crosslink clusters were defined by using
the cDNA-starts with counts that passed the false dis-
covery rate < 0.05 significance threshold (determined by
comparing the count distribution to shuffled data).
Neighbouring clusters that were less than 21 nt apart (or
3 nt apart for Fig. 5e) were then merged into single
clusters.

Definition of cDNA-start peak and cDNA-end peak
The peak position of cDNA-starts was identified by
comparing the counts at each cDNA-start and choosing
the position with the maximum count within each de-
fined region from the top 1000 exon-exon junctions that
contain the highest number of cDNAs. Peak positions
with a low number of cDNAs (less then median number
of all top cDNA-start peaks) were ignored. If more than
one position of cDNA-starts had equal count, then the
position with maximum count that was located closest
to the start of the defined region was chosen. The same
approach was used to define cDNA-end peaks.

Definition of PTBP1-binding motifs
To identify the motifs bound by PTBP1, we searched for
pentamers enriched in the region [–10..10] around the
cDNA-start peaks identified in each crosslink cluster
defined by PTBP1-iCLIP2. Sixty-nine pentamers had
enrichment z-score > 299 and were used as PTBP1-
binding pentamers for further analyses. Their sequences
are: TCTTT, CTTTC, TCTTC, CTTCT, TCTCT,
CTCTC, TTTCT, TTCTC, TTCTT, TTTTC, TCCTT,
CTCTT, ATTTC, TTCCT, CTTCC, TTTCC, CCTTT,
CTTTT, CCTTC, TCTGT, TTCTG, TCCTC, CTTCA,
ATCTT, TGTCT, TCTGC, CTCCT, CCTCT, GTCTT,

TCTAT, TCTCC, ATTCC, TTCTA, CTTTG, TATCT,
ACTTC, TTATC, CTTAT, CTATT, TTCAT, TTCCA,
TCTTG, TTGTC, TTGCT, CTCTA, CTCTG, TATTT,
TCCCT, TCATT, TTCCC, CATTT, ATTCT, TTTAC,
GTTCT, CTATC, TCATC, CTTTA, TGTTC, TATTC,
CATCT, TACTT, CTGTT, CTTGC, ACCTT, TTTCA,
TTTGT, TGTTT, CTTGT, ACTTT. All of these penta-
mers are enriched in pyrimidines, in agreement with
the known preference of PTBP1 for UC-rich binding
motifs [31].

Visualisation of cDNA distributions with the density
graphs (used in Figs. 4a–d, 5a–d, 6a–f, 7a and b,
Additional file 1: Figure 3A–E, Additional file 1: Figure 4I–K,
Additional file 1: Figure 5A and B)
All normalisations were performed in R (version 3.1.0)
together with the ‘ggplot2’ and the ‘smoother’ package
for the final graphical output. For the analysis of eIF4A3
iCLIP, each density graph (RNA map) shows a distribu-
tion of cDNA-starts and cDNA-ends relative to positions
of exon-exon junctions or end peaks in mRNAs. To
avoid any border effects, we examined only exon-exon
junctions within coding regions, excluding the first or
the last junction. The number of cDNAs starting or end-
ing at each position on the graph was normalised by the
number of all cDNAs mapped to representative mRNAs,
the mRNA length and the number of examined exon-
exon junction positions, as described below:

RNAmap n½ � ¼ ððcDNAs n½ �=sum cDNAsð ÞÞ
� length mRNAsð Þ=count exonexonjunctionsð Þ

where [n] stands for a specific position on the density
graph.
To draw the graph, we then used the Gaussian method

with a 5-nt smoothing window.
For the analysis of PTBP1 iCLIP and CLIP, each dens-

ity graph (RNA map) shows a distribution of cDNA-
starts and cDNA-ends relative to positions of its binding
sites, which were defined using the position of Y-tracts.
We obtained genomic positions of all TC-rich and T-
rich low complexity sequences that are present in
introns in protein-coding genes in the human genome
by using the UCSC table browser.
To avoid the effects of variable abundance of intronic

RNAs (and occasional presence of highly abundant non-
coding transcripts, such as snoRNAs), we then normal-
ised counts at each binding site by the density of cDNAs
in the same region. For this purpose, we examined the
region of the binding site, as well as 120 nt 5′ and 3′ of
the binding site, to find the nucleotide with the largest
count of cDNA-starts or ends (depending on whether
starts or ends were plotted on the graph), which is
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referred to as ‘MaxCount’. We thus obtained ‘Max-
Count-normalised cDNA counts’ at each position (which
were between 0 and 1). For drawing RNA maps, we
wished to examine the enrichment of cDNA counts
within binding sites compared to nearby regions outside
of binding sites. We therefore calculated the average
‘MaxCount-normalised cDNA counts’ at each position
across the evaluated binding sites and divided this count
at each position by the average ‘MaxCount-normalised
cDNA counts’ in the region 50–100 nt downstream of
the binding site, as described in the formula below:

RNAmap n½ � ¼ average normalised cDNAs n½ �

= average normalised cDNAs

� 50� 100 nt downstream of the binding site½ �

where [n] stands for a specific position on the density
graph.
To draw the graph, we then used the Gaussian method

with a 10-nt smoothing window. The empirical cumulative
distribution (Fig. 4a, c) were generated in R with stat_ecdf
function from ggplot2 package by using frequency of raw
cDNA-start counts for each length category in region
25 nt upstream and downstream from cDNA start peak.

Assignment of the cDNA-end peak in eIF4A3 iCLIP
For cDNA-end peak assignment in eIFA3 iCLIP data, we
used exons longer than 100 nt that were in the top 50%
of the distribution of exons based on cDNA coverage.
This ensured that sufficient cDNAs were available for as-
signment of the putative binding sites. We then sum-
marised all cDNA-end positions in the region –20 to +25
around exon-exon junctions and selected the position
with the maximum cDNA count as the ‘cDNA-end peak’.

Analysis of pairing probability
Computational prediction of the secondary structure
around the cDNA-end peaks was performed using the
RNAfold program with the default parameters [32].

Analysis of cDNA transitions
Density of C-to-T transitions across cDNAs was
performed by using the samtools software with the follow-
ing parameters: samtools calmd –u –u genomic.fasta
input_BAM> BAM_with_transitions. This pipeline re-
places BAM format mapped cDNA sequences with transi-
tions relative to genomic reference. In the next step of the
following pipeline we used a custom python script
(available on github repository) that returns a density
array of C-to-T transitions for cDNAs that are shorter
than 40 nt. For the final visualisation of density graphs, we
used the same approach as for all other density figures
without additional normalisations.

Additional file

Additional file 1: Figure S1. Quality control of the PTBP1 and eIF4A3
iCLIP. Figure S2. CL-motifs are enriched at cDNA deletions and cDNA-
starts in U2AF2-iCLIP. Figure S3. Analysis of cDNA-starts and cDNA-ends
at the start of Y-tracts. Figure S4. Constrained cDNA-ends in eIF4A3 iCLIP.
Figure S5. The impact of cDNA-end constraints on cDNA-starts in eIF4A3
iCLIP. Figure S6. Distribution of cDNA sizes in the studied experiments.
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