Rapid Path-Planning for Unstable Concentric Tube Robot Guidance

Konrad Leibrandt, Christos Bergeles, Member, IEEE, and Guang-Zhong Yang, Fellow, IEEE

Abstract— The complex, non-intuitive kinematics of concen-
tric tube robots can make their telemanipulation challenging.
Collaborative control schemes that guide the operating clinician
via repulsive and attractive force feedback based on intraop-
erative path-planning can simplify this task. Computationally
efficient algorithms, however, are required to perform rapid
path-planning and to solve the inverse kinematics of the
robot at interactive rates. Until now, ensuring stable and
collision-free robot configurations required long periods of
pre-computation to establish kinematic look-up tables. This
paper presents a high-performance robot Kkinematics soft-
ware architecture, which is used together with a multi-node
computational framework to rapidly calculate dense path-
plans for safe telemanipulation of unstable concentric tube
robots. The proposed software architecture enables on-the-
fly incremental inverse-kinematics estimation at interactive
rates, and is tailored to modern computing architectures with
efficient multi-core CPUs. The effectiveness of the architecture
is quantified with computational-complexity metrics, and in a
clinically demanding simulation inspired from neurosurgery
for hydrocephalus treatment. By achieving real-time path-
planning we can generate active constraints on-the-fly and
support the operator in faster and more reliable execution of
telemanipulation tasks.

I. INTRODUCTION

Accessing pathologies through natural orifices or single
ports for minimally invasive surgery (MIS) is a challenging
task well suited for continuum robots as their shape flexibility
allows them to controllably conform to the traversed anatomy
[3]. Concentric tube robots (CTRs) represent an example
of continuum robots, and entail the translation and rotation
of pre-curved super-elastic tubes that are concentrically ar-
ranged [4]. The pre-curved tubes mutually interact to create
a final robot shape, allowing CTR to exhibit full tip-pose
control. As the number of tubes of the robot increases, its
redundant configuration space can be exploited to simul-
taneously achieve shape control and tip manipulation. By
controlling the number and mechanical properties of tubes,
CTRs can be deployed for a variety of surgical applications,
such as haemorrhage evacuation [5], transurethral prostate-
ctomy [6], tissue approximation for heart surgery [7] and

K. Leibrandt and G.-Z. Yang are with the Hamlyn Centre for Robotic
Surgery, Imperial College London, United Kingdom. C. Bergeles is with
the Translational Imaging Group, Centre for Medical Image Computing,
University College London, United Kingdom. K. Leibrandt was supported
by the President’s PhD Scholarship of Imperial College London and EPSRC
UK. C. Bergeles was supported by an EPSRC-funded UCL Future Leaders
Grant. Corresponding author: k.leibrandtl2@imperial.ac.uk.

A preliminary version of this paper was presented at IEEE/RSJ Int.
Conf. Intelligent Robots and Systems 2015, 2016 [1] and [2]. The current
manuscript expands our work, contains a new in-depth description of the
software framework, and additional metrics. This research was demonstrated
at the 2016 Surgical Robot Challenge, held during the 9" Hamlyn Sympo-
sium on Medical Robotics, London, UK.

Differently scaled robot configurations
Yo : 0.90
® v, :0.35
® -, :0.12

Anatomy

Fig. 1. Concentric tube robots with different translation scaling. Each
colour consists of 1000 robot configurations with random joint values.

bronchoscopic biopsy [8]. Computational design of CTR can
deliver optimal robot architectures for different surgical tasks
[71, [9]. The computational requirements for safe inverse
kinematics increase with the number of robot tubes that these
tailored robots possess, supporting the need for quick and
efficient solvers.

Detailed models based on tube mechanics have been
developed for the forward and inverse kinematics of CTRs.
The most advanced models account for the torsional wind-
up along the length of each tube, as well as the insta-
bility of configurations (equilibrium conformations) arising
from torsion [10], [11]. Energy accumulated through the
torsional wind-up of the tubes can rapidly release in certain
tube configurations and cause uncontrollable motion [11],
[12]. Therefore, unstable configurations need to be actively
avoided. However, their detection incurs additional compu-
tational cost and constraints on the inverse kinematics.

Real-time, safe and effective path-planning for custom-
designed CTRs has several benefits. First, it empowers the
operator with a reliable telemanipulation approach, ensuring
avoidance of anatomical collisions and dangerous unstable
configurations [1], [7], [13], [14], [15]. Second, if real-time
performance is guaranteed, it is possible to custom-make
concentric tubes for specific patients using rapid workspace
optimisation with minimal time delay. Especially in critical
cases such as ruptured aneurysms [5], a rapid plan-to-
deployment period can significantly reduce intra-operative
complication and potential morbidity. Finally, real-time path-

planning schemes can be coupled with active constraints
(AC)/virtual fixtures (VF) [16] to form cooperative robotic
telemanipulation controllers wherein the operator is gently
steered towards the estimated safe paths. In this shared-
control approach, the complexity of inverse kinematics is
invisible to the operator, allowing seamless avoidance of
collisions and unstable configurations while retaining overall
control over the approach path to the anatomical targets.

Fast solvers for robot inverse kinematics are a primary
building block towards assisted telemanipulation of CTRs.
To this end, researchers have achieved real-time kinematics
performance by creating look-up tables and employing root-
finding approaches to estimate the joint values for a desired
pose of the tip [10]. Others have investigated Jacobian-
based approximations [17] to speed-up computations. Pre-
computation of dense path-plans within the robot workspace
has been proposed by [18], while sparse path-plans and
random trees have been proposed in [14], [19].

Most commonly, the solvers do not consider stability and
prune the robot-design space to avoid unstable robots. This
approach, however, limits the combinations of tubes that
can be used, despite [7] having demonstrated that unstable
CTRs may well be the only robots that can perform certain
interventions. In addition, pre-computation of path-plans
assumes a static anatomy and complicates the intraopera-
tive adaptation of the said plans when there is anatomy
motion. Finally, pre-computation for achieving interactive-
rate kinematics solution adds many hours of overhead in
computational requirements - even when instability is not
considered. Only faster approaches to inverse kinematics
estimation can deliver the fundamental building blocks for
safe and effective CTR telemanipulation in dynamic environ-
ments. Our proposed approach is well suited to tackle these
challenges.

Our work expands on the algorithms of [1], [2]. The
proposed software architecture takes advantage of distributed
computing resources and multi-core CPUs to provide glob-
ally dense workspaces (robot task space) within minutes. By
creating memory-optimal data structures to represent CTRs
and the inverse kinematics problems, the developed infras-
tructure can, in real-time, leverage the dense workspaces for
on-demand path-planning with on-line local inverse kinemat-
ics to guide the user along safe trajectories. Further, our
research contributes to Implicit Active Constraints (IAC)
for CTRs by proposing constraint generation based on the
generated path-plans. Contrary to ACs, which are manually
defined, IACs are algorithmically generated and tailored to
the respective task based on limited user input [20]. As
such, IACs are both more complex to define and to estimate
intraoperatively, further increasing the benefit of a software
architecture that enables real-time safe and effective robot
guidance. Further expanding upon the work in the literature,
the developed software requires minimal pre-computation,
and is quick and reliable for incorporation in telemanipula-
tion control schemes of CTRs. The computational benefits
are supported by extensive quantitative evaluation. User-
based evaluation of the guidance scheme is carried out

through a study simulating a challenging clinical scenario
from neurosurgery.

II. ROBOT KINEMATICS AND CONSTRAINTS

The sections of CTRs can be of variable curvature (VC)
or fixed curvature (FC) [10]. A VC section consists of two
tubes, which rotate individually but translate in tandem.
Therefore, a VC section has 3 degrees-of-freedom (DoF). An
FC section is a single tube and has 2 DoF. The " tube’s
translation is denoted as ;p, and its base rotation as ;aB.
The joint-space q of a CTR is therefore described by the set
of {igo,i aB} i € [1, Ny, where Ny is the number of tubes.

This work estimates the shape of the CTR based on
the unloaded torsionally compliant kinematics model [4],
[10]. Estimating the robot shape relies on computationally
demanding iterative solving of a boundary value problem.
Beginning at a torsion-free tip angle ;oT, differential equa-
tions are iteratively solved via Euler approximation (dis-
cretisation step €,;c) to obtain the base angle ,aB for each
tube. Subsequently, the shape of the robot is calculated
using matrix exponentials and the curvature along the robot’s
centre line.

A. Anatomical Constraints

CTRs are often deployed within delicate anatomy, making
it important to avoid contact with the anatomy (denoted
as I'). Rasterized polygons, extracted from pre-operatively
acquired images, provide the representation of I' as a set of
3D points. Rasterisation occurs with a maximal lattice of €]
and the points are stored in a k-d tree (3-d tree). This k-d tree
allows for rapid distance queries between the robot shape and
I". Each point along the robot centreline is associated with
the maximum tube diameter ;7" at that robot location (the
external surface of the robot). The k-d tree is queried to
determine the nearest-neighbour ;_,d™ of every robot point
to I'. Given the tube radii, idrt, the discretisation step, €arc,
and the mesh lattice, €15, the distance to the anatomy, d,p.,

is:
- z-drt) (1)
2

A robot is colliding with the anatomy iff dan, < 0.

= [EarCa elat]

: nn
dana = min (icld - ‘ 9

Lel

B. Stability Constraints

Anatomical constraints are complemented by the
mechanics-based risk of instability. Here, a quantitative
measure of stability is used, first proposed in our work in
[2]. In [10], it was demonstrated that instability manifests
as an S-shaped curve relating the tube rotation at the base,
a®, to tube rotation at the tip, a’. Observing Fig. 2,
stable CTRs do not exhibit negative slopes on this S-curve
[14]. This notion gives rise to the quantitative measure of

stability, dgia:
dyta = g — atan2 (1, 07))

where o7 is the minimum inverse slope along the entire S-
curve. The angle difference between the most critical slope

@ 2
@
Sl In
=]
i T Od
&d Lsta

27

3
e
=

B
e |
E
N
B
el

o=

a® [radl

Fig. 2. S-curve: Relation of a® — . The colour of the curve is a
representation of dsta, defined in (2). Curve (D is stable, curve @), @) are

unstable.

of the S-curve [{ = atan2(1,09)] and the vertical axis
(£ = 5) represents the distance to an unstable configuration.
The configuration is unstable iff dg, < 0.

The advantage of quantitative measurements for the
anatomical constraints (distance to anatomy) and stability
(distance to unstable configuration) is the ease of gen-
eration of i. differentiable cost-functions for inclusion in
optimisation-based inverse kinematics solvers, and ii. thresh-
olds for accepting/rejecting robot configurations under exam-
Ination.

III. RAPID FORWARD AND INVERSE KINEMATICS

This section introduces and describes our high-
performance software architecture to iteratively solve
the boundary value problem defining the kinematics,
while respecting stability and anatomical constraints. The
developed software is based on the C++14 standard. It
achieves a compromise between the multitude of criteria
requiring consideration in high-performance robotics
applications, e.g.:

1) memory allocation;

2) memory alignment and random memory access;

3) cache misses;

4) cache coherency;

5) branching, conditionals;

6) dynamic dispatch (virtual functions);

7) vector instructions.

Criteria 1-4 relate to memory access bottlenecks. Dynami-
cally allocated memory is reserved on the heap, which is time
consuming and should be avoided. Furthermore, all memory-
access timings depend on where the data is stored, e.g.
main memory, processor cache. Accessing the cache is order
of magnitudes faster. Therefore, avoiding cache misses and
increasing cache coherency helps increase execution speed.

Criteria 5-7 relate to bottlenecks regarding instructions.
Branching means that the sequence of processor instructions
depends on specific conditions that usually need to be evalu-
ated at run-time. Delays are caused if the processor mispre-
dicts the branch of instructions it needs to flush and therefore

reloads the instruction pipeline. Dynamic dispatch (i.e. vir-
tual functions) means that the instructions for a specific func-
tion call are determined at run-time instead of compile-time,
which introduces an overhead for each function call. Finally,
vector-instructions operate on an array of data simultaneously
[single instruction multiple data (SIMD)] rather than on a
single datum. Using vector-instructions in conjunction with
expensive operations, such as trigonometric operations, can
substantially speed-up algorithm execution.

Memory usage in CTRs mainly depends on the number
of sample points along the robot centre line as well as
the robot architecture (i.e. type of tubes and number of
tubes). Fixing the number of sample points allows the
preallocation of the maximally needed memory, and thus
no allocation is necessary during the forward kinematic
calculations. Further, the memory is constrained by memory-
alignment requirements to enable vector instructions (e.g.
64-byte for the Xeon Phi™architecture). Respecting these
requirements allows memory allocation as a single chunk,
which simplifies and expedites memory copying and network
transmission of robot objects. Further, optimal memory al-
location and alignment helps to fully utilize cache lines and
hence optimises overall processor cache utilization, which
reduces cache misses and increases its coherency, reducing
potential bottlenecks caused by memory access times.

Branching caused by conditional expressions is, when
possible, reduced by substituting loops and conditionals
with equivalent constructs that are resolved at compile-time.
The next section describes our implementation for compile-
time unrolled for-loops and if-else-statements, based on
template meta-programming.

The advantage of compile-time resolved loops and con-
ditionals is not only the avoidance of branching, but also
the further optimisation (e.g. auto vectorization) of code
instructions by the compiler, since most instructions can be
fully determined at compile-time.

Dynamic dispatch in C++is the usage of virtual function
calls. The overhead of these calls can accumulate signifi-
cantly in particular if the function’s complexity is minimal.
We tackle this by avoiding some layers of polymorphism
using variadic templates and precompiling many different
concentric tube instances to avoid virtual function calls.
Furthermore, vector instructions for costly functions (e.g.

1 #define CTR_ALIGNMENT 64

2 // Base class for the Concentric Tube Robot

3 template<class Real>

4 class alignas(CTR_ALIGNMENT) RobotBase

54

6 public:

7 typedef RobotBase<Real> base_t;

8 /* Append FC section and return the pointer to the new created robot x/
9 virtual base_t* appS(const FC<Real> & _sec) const noexcept = 0;

10 /* Append VC section and return the pointer to the new created robot */
11 virtual base_t+ appS(const VC<Real> & _sec) const noexcept = 0;

12

13 virtual Tr calcKinematic(const Vecl& _JVal,

14 const Real& _ArcLengthStep) noexcept = 0;

15};

Code 1: Abstract class representing the CTR architecture.

1 /* Helper struct to recursively append a section to the
2 variadic template class (at compile-time) */

3 #define CTR_MAXSECTION 8
4 template<class Real, class
5 namespace details {

6 template<size_t secs_s>

7 struct appH

8 {

9 typedef RobotBase<Real> base_t;

10 template<class Real, class SecT, class ...Args>

11 static base_t+* appS(const Robot<Real,Args...>& _rob_prev,

...Args> class Robot;

12 const SecT& _sec) noexcept
13 { return new Robot<Real,Args...,SecT>(_rob_prev,_sec); }
14 };

15 template<> // Stop criteria for recursive appending
16 struct appH<CTR_MAXSECTION>

17 {

18 typedef RobotBase<Real> base_t;

19 template<class Real, class SecT, class ...Args>

20 static base_t+ appS(const Robot<Real,Args...>&,

21 const SecT&) noexcept

22 { return nullptr; }

23}

2}

Code 2: Helper struct to append FC/VC section to the CTR.

trigonometric functions or square-root) can be used since
the structural description of the robot is known.

A. Robot architecture using template classes

Fully defining a robot description at compile time reduces
adaptability for the software user, and a compromise between
compile- and run-time definitions is required.

Using template classes as described below provides a
fully defined robot kinematic architecture at compile time.
Although compilation might require some extra time, the
gain of shifting run-time computations to compile-time is
significant. Furthermore, code inlining and compiled code
optimisation is improved, since the sequence of instructions
is transparent at the time of compilation.

We create an abstract base class (see Code 1) from which
a variadic template class derives (see Code 3). The abstract
class has only a limited interface of elevator functions so that
the computational overhead resulting from dynamic dispatch
is marginal. The Robot-class encapsulates the generating
components of a CTR, i.e. its sections and section types
(FC, VC) in a tuple (Code 3, Line 29). Tuples provide
an optimal memory footprint while allowing to store the
sections without abstraction.

Many different classes derived from the templated
Robot class will get compiled, covering several expected
robot architectures'. For example if the maximum num-
ber of sections is set to 2, 6 different Robot classes
will be automatically generated, corresponding to the 6
possible robot architectures maximally having 2 sections:
{{FC},{VC} {FC,FC},{FC,VC},{VC,FC},{VC,VC}}. The
number of generated classes iS Nciass = 2(Mmaxsect1) _ 9
For nmax,sec = 8 the compiler generates 510 classes in less
than a minute.

!Compilation of multiple Robot classes is only necessary if the used
robot architecture is not known at compile time. In case the software is
tailored to a specific robot architecture abstraction or compilation of a set
of differently templated classes is not necessary.

1 template<class Real, class ...Args>
2 class alignas(CTR_ALIGNMENT) Robot :
34

4 // Base class type

typedef RobotBase<Real> base_t;
// Tuple type holding the different sections.

typedef std::tuple<Args... > secs_t;

// Tuple size, number of sections

static constexpr size_t secs_s = std::tuple_size<secs_t>::value;
10 public:

11 /* Constructor to append a section.

12 I. arg: robot with one section less.

13 II. arg: section to append. x/

14 template<class R, class SecT>

15 explicit Robot(R&& _rob_prev, SecT&& _sec) noexcept

16 : m_Secs(std::tuple_cat(_rob_prev.m_Secs,

17 std::forward_as_tuple(_sec))){}

18 virtual base_t* appS(const FC<Real> & _sec) const noexcept

19 { return details::appH<secs_s>::template

20 appS<Real,FC<Real>,Args... >(*this,_sec); }

21 virtual base_t* appS(const VC<Real> & _sec) const noexcept

22 { return details::appH<secs_s>::template

23 appS<Real,VC<Real>,Args... >(xthis,_sec); }

24 virtual Tr calcKinematic(const VecJ& _Jval,

25 const Real& _ArcLengthStep) noexcept
26 { /* Implementation of the forward kinematics */ }

27 protected:

28 // Different sections stored in tuple

29 alignas(CTR_ALIGNMENT) secs_t m_Secs;

30 };

public RobotBase<Real>

© w9 w;

Code 3: CTR variadic template class. The template argu-
ments determine the section types, order and number.

The recursive generation of new classes stops when the
upper limit of total section number is reached. Using partial-
specialization for the template arguments (see Code 2, Line
16-24) the recursive instantiation process is halted. The
number of sections and tubes for each generated class is
known at compile time. Iterating over the tuple storing the
section is also possible at compile time.

B. Unrolling loops at compile time

Iterating over tuples of sections requires the availability, at
compile time, of the indices of the elements to be accessed,
i.e. the index is a template-parameter. Therefore, a standard
for-loop with dynamic loop count cannot be used; every

1 template <int Iter, int Last, int Inc = 1>

2 struct static_for

3{

4 template <typename Fn>

5 inline void operator() (Fn&& fn) const noexcept
6 { // call function

7 fn(std::integral_constant<int,Iter>());

8 // Recursive call

9 static_for<Iter+Inc,

10 // Last iteration if positive increments

11 (Inc>0)*(Iter+Inc+(1+((Last-Iter-1)/ Inc)))+
12 // Last iteration if negative increments

13 (Inc<0)+(Iter+Inc*(1+((Iter-Last-1)/-Inc))),
14 Inc>()(std::forward<Fn>(fn));

15 }

16 };

17 template <int Last, int Inc>

18 struct static_for<Last,Last,Inc>

19 { // Termination criteria

20 template <typename Fn>

21 inline void operator() (Fn&&) const noexcept{ }
2 };

Code 4: for-loop resolved at compile time, using template-
ing and partial specialization.

1 auto t = std::make_tuple(unsigned(0.0),int(1.1),float(2.2),double(3.3));
2 static_for<0,std::tuple_size<decltype(t)>::value,1>()

3 ([&] (auto ie)

4{

5 static constexpr auto i =
6 auto& ti = std::get<i>(t);
7 std::cout<<ti<<typeid(ti).name()<<", "<<std::flush;

81});

decltype(ie)::value;

Output: 0j,1i,2.2f,3.3d,
Code 5: Usage of static_for, using generic lambdas to
provide the iteration index as template-argument.

loop needs to have iteration bounds known at compile time.
A standard approach for this is to use recursive template
calls, which act with each level of recursion on the next
element in the tuple. This is addressed with a developed
dedicated convenience struct: static_for (see Code 4).
Passing a function-pointer to static_for results in a call
to the pointed function with the current iteration index,
and a recursive call to static_for with an incremented
(Inc > 0) or decremented (Inc < 0) Iter-value. This
approach unrolls the for-loop at compile-time, resulting in
a speed-up of computations at runtime as the instructions
can be vectorized. The lengthy calculations for the Last-
template parameter are necessary to ensure that the stop
criterion is met (i.e. if (|Last-First| mod |Inc| # 0)). To use
the function parameter as a template parameter, we package
the iteration index into an integral_constant-class (see
Code 4, Line 7).

Using generic lambdas (see Code 5, Line 3) we can
retrieve the loop index in the function definition, from the
type [decltype(ie)] of the function parameter as constexpr,
since we encoded it in the parameter type, instead of the
parameter value. Code 5 shows the usage and the output
using the static_for construct. The output, listed below the
code segment, shows that each element type is different.

C. Resolving conditionals at compile-time

Runtime performance is commonly decreased by the
abundance of machine-level jumps created by if/else state-
ments. To improve performance by limiting the number of
such jumps at compile time, an approach similar to the
static_for-loop is pursued. When different code sequences
need to be executed depending on the CTR section type, a
dedicated construct, static_if_else, is used. Two function-

1 template <bool valid> struct static_if_else

2{ // Call function: Call if-function

3 template <typename FnIf,typename FnElse, typename... Args>

4 auto operator()(FnIf&& fnif, FnElse&&, Args&&... args) const
5 -> decltype(fnif(std::forward<Args>(args)...))

6 { return fnif(std::forward<Args>(args)...); }

7%};

8 template <> struct static_if_else<false>

9{ // Partial specialisation: Call else-function

10 template <typename FnIf,typename FnElse, typename... Args>
11 auto operator()(FnIf&&, FnElse&& fnelse, Args&&... args) const
12 -> decltype(fnelse(std::forward<Args>(args)...))

13 { return fnelse(std::forward<Args>(args)...); }

14 };

Code 6: if/else resolve at compile time depending on
template-parameter, FnIf or FnElse is called.

D reliable ()| (]
l) : D C
== multicast Dt Daiiiid
Server G_ Clients I 1
PN

I ion, Initial Multica
e Robot description 7

e Anatomy I’

Vertex S; Periodic Multi

o Distance threshold dthres

o Stability threshold dg{res

o Discr. paramter €ffarc, i, {arc,sta}, o, sta} }
e Scaling parameter 7y,

Local Planner, Local Computation:

e KD-tree of tip positions

e Edge costs (multithreaded)

Vertex Sampling, Periodic Multicast:
e CTR centreline

o Stability distance dsta

® Anatomical distance dana

Path-Planner Path-Planner

Optimization, Periodic Multicast:

o Distance threshold dthres

e Stability threshold dg{‘;es

o Discr. paramter € (e fig, {arc,sta}, {a,sta} }

o Costfunc. paramter Y{pos ori,ana,sta}

e Current jointvalues q

D D
s

Optimization, Periodic Multicast:
e Optimal Joint Values

e Tip Pose

e Anatomical distance

e Stability distance

® Desired pose p Inverse Kinmatic Inverse Kinematic

Fig. 3. Blocks for calculating valid CTR configuration samples for the i.
path-planning, ii. and for solving the inverse kinematic. Computational tasks
performed by server: blue, by client: green. Server-client communication
using reliable multicast via a daemon network: red.

pointers are passed to the static_if_else struct (Code 6).
The first represents the if- instructions, while the second
represents the else-instructions. Depending on the template-
parameter of the static_if else, the correct branch is al-
ready chosen at compile-time.

Using static_for and static_if_else to compile CTR
classes for all expected combinations of sections, every sin-
gle class can be individually optimized by the compiler, even
if from a developer’s perspective only a single class needs to
be written. The majority of machine-level code optimisations
is achieved by the compiler, while the complexity of the
implementation is hidden from the library user.

The next section leverages the speed-up achieved by the
described implementation, detailed by benchmarks in Sec.
VI-A, towards on-line path-planning and inverse kinematics
for assisted telemanipulation.

IV. GUIDANCE VIA IMPLICIT ACTIVE CONSTRAINTS

Based on our high-performance software architecture, we
generate IACs [20]. In our work, guiding paths (i.e. path
plans) are generated based on pre-computed road-maps and
navigation goal position as defined by the operating clinician.
Due to the computational efficiency of the software frame-
work pre-computation occurs in matter of minutes, rather
than hours. In the pre-computation step, random configura-
tions of the robot are generated using a parallel computing
approach. A schematic representation of the framework is de-
picted in Fig. 3. Our path-planner’s efficiency heavily relies
on the developed multi-node framework. A central computer
(server) controls computing clients that generate random
robot-configuration samples and solve the inverse kinematics
using different optimization techniques (see Sec V).

Please refer to [2] for a detailed description of our path-
planning framework.

A. Probabilistic Roadmap

The constraint-generation framework is based on an undi-
rected graph G, with vertices v; € (. The vertices of

© @

Fig. 4. Random concentric tube configurations with different scaling of
the translational component, 1000 configurations each. @: v, = 0.12, ®:

Yo = 0.35. ©: v, = 0.70, @: v, = 0.90.

the graph represent random, stable, and collision-free CTR
configurations. Edges e; ; between vertices v;, v; represent
possible transitions among the configurations. The graph is
queried using the A* graph-search algorithm to efficiently
extract the shortest path between the current robot configu-
ration and the configuration corresponding to a desired tip
pose. The Euclidean norm between two vertex positions is
the admissible A* heuristic.

The extracted series of robot configurations generates a
guidance path along which the operator is guided.

B. Precomputation of Graph - Generation of Roadmap

To obtain the vertices of the graph safe robot configura-
tions have to be found. During that process the server con-
trols parameters defining configuration sampling (density)
(74, q) and configuration acceptance (dthres, dthres). Since
the goal is to obtain uniformly distributed configurations in
task-space, the joint-space sampling has to be non-linear.
Extended robot-configurations in most scenarios will be
rejected as they will collide with the anatomy. This leads to
a bias towards shorter robots, which needs to be accounted
for. Therefore, using a random uniformly distributed number
¢r,u € [0,1] for a tube with a maximum extension of ;o™
we scale the translation/extension joint values with:

max

qr = ip Qr,u’yw € [07]-] 3)

y Yo

The extent of sampling elongated versus retracted robots is
governed by +,, as depicted in Fig. 4.

Each client calculates the forward kinematics for the given
joint value, determines dgi, (2) and d,,, (1), and sends the
configuration to the server iff’

deol (q,) < dglglres A dsta (q,) < dé?;es- 4)

Results on the time required to compute the road-maps and
the effect of the scaling factor are reported in Sec. VI-B.

When the server has received a minimum number of
configurations, a local planner calculates edges e;; and
the corresponding cost for transitioning from one robot
configuration represented by the vertex v; to another vertex
v;. Edge generation is performed in two stages: first the cost
for a potential edge e; ; has to be below a certain threshold,
and second, only the edges with the N."®* smallest costs are
introduced in the graph. The edge w(v;, vx) cost depends on

(5.1)
(5.2)

fee(vjavk) = HweE(Uj) - weE(vk)H
g]v(vjavk - abs q{’l)]} q{’l)k})

SN i} —waliod P

cl

hcl 'Uja 'Uk

where x.. provides the end-effector position of a vertex,
q returns the joint-value vector of vertex, abs provides the
element-wise absolute values of a vector, IV, is the larger of
the centre line point counts of v;, v, and a1, Uj} provides
the position of ¢-th centre line point of vertex v; if ¢ is smaller
than the number of centre line points, and otherwise provides
the position of the final centre line point.
The edge cost is calculated as:

w(vy, vk) = w(ejr) ©
T

= fee(vj, v8) + w3, Gy (V5, Vk) + Werha (vj, Vi)
where w;fv is the vector of weights for the joint value
differences, and w,; is the weight for the root-mean-square
error of the centre-line differences. The graph generation

process is detailed in [2].

C. Guidance Generation - Query of Roadmap

The guidance constraint is calculated from the implicit
constraint defined by the desired user end-effector position
and the roadmaps, utilizing a shortest-path search. The source
vertex is the vertex of graph G that is closest to the current
configuration based on the cost-function described in (5.1)-
(5.3). The goal vertex is determined by the user-defined target
position. It is selected from a set of vertices that are ranked
based on the distance between graph G vertices and the target
position. Since the computational cost of finding the shortest

Fig. 5. Implicit Active Constraints: Guidance paths to navigation goals.

path from the source vertex to all vertices in the goal set
can be very high, we chose a subset of the potential vertices.
During parallel computation, calculating paths to very similar
goal configurations is avoided by maximising the cost, i.e. the
robot configuration discrepancy, between the potential goal
vertices. This increases the chances of finding a low-cost
path from the source vertex. In a last step, multiple shortest
path searches to the set of goal vertices are performed using
the A* algorithm and the resulting lowest-cost path (P;) is
chosen for user guidance. An example of shortest paths to
various targets is depicted in Fig. 5.

V. INVERSE KINEMATICS

The shortest-path search between the current robot con-
figuration and the desired navigation target provides visual
and haptic guidance to the user. Nevertheless, we ensure that
the operator is in full control of the robot. Towards this end,
we use the on-line inverse kinematics algorithm presented
in [1] to allow user-intended deviation from the given paths.
Multiple optimisation algorithms, namely:

e Controlled Random Search with Local Mutation;

o Multi-Level Single-Linkage with Low-Discrepancy;

« Bound Optimisation by Quadratic Approximation;

o Principal Axis;

o Software for unconstrained minimisation w/o derivative;

o Nelder-Mead simplex algorithm;

« Damped-least squares Jacobian;
run in parallel on disparate computing devices to minimise
the cost function:

¢ (anvrapszD) = “pos |pD -P
+ Yori asin(|z” — zo‘z)
+ Yana Cana (qv T? F)
+ Vsta Csta (qa T)

°l,

(7

This cost function depends on the current robot end-
effector pose (p©, z9), anatomy (I), robot kinematics (7),
and desired end-effector pose (p”,z"). Further, there is
dependence on cost functions that encode risk of collision
with the anatomy (C,n,) and configuration instability (Cgsy,)-

The inverse kinematics solver is initialized based on (5.1)-
(5.3) with the joint values of the vertex v; € Ps closest to
the current robot configuration. Therefore, finding a locally
best configuration for the current desired position (tele-
manipulation position) is based on the globally optimized
configuration to reach the goal robot configuration.

Haptic guidance is based on an elasto-plastic friction
model, which redirects kinetic energy from user input to-
wards the guidance path [16]. The parameters governing the
extent and feel of haptic guidance can be found in Table I
and follow the formulas introduced in [1].

TABLE I
FRICTION CONSTRAINT PARAMETERS

Parameter (GVF) Value | Parameter (GVF) Value
fc [N T 175 oo [N/mm] 0.5

Oappex | °] 15 o1 [N.s/mm)] 0.0003
Zess [mm] 35 o2 [N.s/mm] 0.0012

TABLE I
PROFILER RESULTS FOR 1000 RANDOM CONFIGURATIONS

Profiler metric variadic simple complet?ly
template template dynamic
Instruction refs. 1124E5 1303E5 19 296E5
Data refs. 526E5 674E5 7824E5
Last-Level cache 0.31E5 0.55E5 2.75E5
Branches 28E5 40E5 2949E5
Misprediction 0.21E5 0.25E5 5.16E5
Misprediction rate 0.73% 0.63% 1.75%

VI. EXPERIMENTAL RESULTS
A. Computational Benchmark

This section compares three kinematic implementations
written in C++to demonstrate the computational efficiency
gained by the novelties of the work described herein.

The first implementation is «completely dynamic» and was
used in [14]. Each robot consists of a set of sections, and
each section consists of a number of tubes. Limited compile-
time optimisation is possible with this approach, and, hence,
the computational efficiency is low.

The second implementation, «simple template», encodes
the robot as a template class with two parameters: i.
number of sections, and ii. number of tubes. Although, this
approach allows to fully unroll loops and to resolve condi-
tional expressions at compile-time, the section-class had to
be implemented using virtual-functions, which resulted in
important run-time overheads.

The final approach, «variadic template», is the contribution
of this paper and follows the new design patterns.

All benchmarks were performed on an Intel® Core™ i7-
3770 CPU. Table II show profiler results from the
Cachegrind-software package, when compiled with the Intel®
C++ Compiler (ICC) 2016.3. It shows improvements of more
than an order of magnitude between the template-code and
the «completely dynamic» code. The improvements between
the «variadic template» code and the «simple template» code
are also significant, ranging from 13.7% (instruction refer-
ences) to 42.4% (last-level cache references). Therefore, it
is expected that computation time will significantly improve
for the «variadic template» implementation.

The computation times for the three implementa-
tions, listed in Table III, validate this expectation. The
computational-time reduction between the «completely dy-
namic» implementation and the template-code is more than
an order of magnitude. Depending on the compiler choice,
«variadic template» code ran up to 15.8 times faster. In com-
parison with the «simple template» code, an improvement of

TABLE III
COMPUTATIONAL TIME FOR 100000 RANDOM CONFIGURATIONS

Implementation ‘ Time Ratio* Time Ratio* Time Ratio*
ICC 2016.3 GCC 6.1 Clang 3.8

variadic template 1.75s 100% 294s 100% 2.80s 100 %

simple template 1.88s 107% 3.25s 111% 293s 105%

completely dynamic | 27.68s 1580% 32.28s 1100% 31.58s 1129 %

*Ratio of the time compared to the respective fastest algorithm.

TABLE IV
DURATION TO SAMPLE WORKSPACE

TIME TO COMPLETE SAMPLING [S] VS. ACCEPTANCE RATE [%]

Scaling | configurations configurations | Parametri-
(V) 250,000 1,000,000 zation:
01 107.9s 550.8s €arc,fk
) 0.044 % 0.046 % 1 mm
0.4 21.5s 8l.1s €arc,sta
) 2.38 % 2.55 % 2 mm
07 169s 70.4s €a,sta
) 10.6 % 10.7 % 1°
1.0 1745 60.7s dihres [qthres
(uniform) 20.9 % 20.4 % Imm/ 5°

7% is measured using the ICC compiler. This evolutionary
improvement justifies an increased initial implementation
complexity because usability, and computational precision
are identical and the source-code maintenance became sim-
pler using the «variadic template». The compiler flags were
tuned individually for all examined compilers to guarantee
that each one performs at its best. The binaries produced by
GCC 6.1 and Clang 3.8 had a similar runtime, whereas the
ICC 2016.3 compiler produced a significantly faster code?.
The relative improvements from ICC to GCC or Clang
were less for the «completely dynamic» implementation.

B. Creation of Road-map

Durations for computing safe configuration samples for the
road maps are listed in Table IV. The results show timings
and acceptance rates for the respective translational scaling
factor (). Obtaining a graph with 1,048,576 vertices, and
209,715 vertices per v, € [0.12,0.25,0.35,0.70,0.90] took
186.8 s with 149.4 s for the sampling and 37.4 s for defining
the edges of the graph in the local planning step.

C. User Experiment

This section describes the benefits of the developed frame-
work from the operator’s perspective, evaluating the value
of interactive-rate inverse kinematics and implicit active
constraints. The simulated clinically scenario is based on
an intervention that involves cauterisation of the choroid
plexus in hydrocephalic ventricles. In this procedure, an
elongated CTR needs to access the base of the ventricles
and cauterise them to limit the production of cerebrospinal
fluid as a means to indirectly reduce ventricle pressure. The
procedure is envisioned as an alternative to endoscopic third
ventriculostomy [7], and requires highly curved CTR that are
prone both to instabilities and to collisions with the anatomy
(see robot parameters in Table V).

In the experiment 4 novice female and 10 novice male
participants, age 25-35, had to manoeuvre the CTR towards
13 cauterization points using a haptic device (Geomagic
Touch). The task was performed in two different modes:
«guidance», «free». The order of the modes was randomised
for every participant. The experimental protocol recorded
metrics on a seven-level Likert scale, such as execution time,
frustration, ease of telemanipulation etc. Each participant

2Linking the GCC and Clang executable to the Intel® Math Kernel
Library (MKL) increases performance such that the advantage of ICC
reduces to &~ 10%.

TABLE V
ROBOT PARAMETERS (3 SECTIONS, 4 TUBES)

Robot Section Curvature Straight/Curved Stiffness Tube
Type [mmfl] Length [mm] Ratio Index
variable curvature 0.0522 0.00/66.47 5:1 1,2
fixed curvature 0.05263 66.47/66.70 1:1 3
fixed curvature 0.0 113.17/12.65 0.05:1 4

could activate the IAC on-demand in the «guidance» mode
to evaluate the effectiveness of the proposed cooperative
guidance framework which provides: visual guidance, hap-
tic guidance, and path-planning aided inverse kinematics,
compared to the «free» mode, where no path guidance
was provided but only collision avoidance guidance and the
inverse kinematics was solely based on on-line optimization.
Users could choose to follow closely or approximatively the
guidance path to command the robot, allowing easy manip-
ulation even when the shape of the path appeared complex.

The list of quantitative performance metrics used includes:

o Duration [min]: Duration of task completion;

e P, TD [m]: Travel distance of CTR tip;

e Py, TD [m]: Travel distance of CTR desired position;
o AP.|sp 0.T. [m min]: Integral of || Pee — Paplly;
APk [mm]: Accuracy of inverse kinematics;

o AT,y [ms]: Mean time of IK updates.

The results of the experiment are listed in Table VI. They
show statistical significance based on the Wilcoxon signed-
rank test in metrics 1-4. This indicates an overall better
task performance when using the proposed path-planning
and guidance framework. Fig. 6 shows two plots of the
distance between the operator’s desired position and the
CTR’s tip position indicating that the path-planning improves
the convergence of the inverse-kinematics; the reason for this
is that without path-planning the local inverse kinematics
solver cannot escape a local minimum, which originates from
the stability constraints.

In a qualitative assessment, the participants were asked to
compare the modes, on a scale from —3 to +3 (—3: negative
evaluation, +3: positive evaluation). The results are listed
in Table VII. The majority of the users stated to prefer
the «guidance» mode over the «free» mode. The users felt
more in-control with guidance enabled, giving them a safer
feeling. Unsurprisingly, the haptic feedback arising from
the attractive and repulsive elasto-plastic friction model was
evaluated as useful by the users.

TABLE VI
QUANTITATIVE RESULTS FROM USER EXPERIMENT.

Metric ‘ Free Mode! Guidance Mode! p-value
Duration [min] 12.9 [10.5,15.9] 8.6 [6.0,10.5] 0.9%
Pee TD [m] 20[1.8, 351 1.1[1.0, 1.3] 1.6%
Py, TD [m] 321 27,471 14109, 1.6] 0.0%
APee)sp 0.T. [m min]| 74 [2.9, 8.7] 0.6 [0.5, 1.4] 1.6%
AP [mm] 0.7[04, 1.71 0.7 [0.2, 0.8] 11.3%
ATypt [ms] 20[2.0, 20] 2.0 [2.0, 2.0] 20.6%
TValue represents the median, in parenthesis 25" and 75" percentile.

w

T

Free Mode
30 Guidance Mode |7
25
£
3 20
=
215
&

S

0 100 200 300 400 500 600
Time [s]

Fig. 6. Distance between robot end-effector Pee and user set-point Psp.

VII. DISCUSSION AND CONCLUSIONS

The paper presents a novel software design and computing
architecture to rapidly calculate dense path-plans to safely
guide the operator during telemanipulation of a CTR. The
emphasis of this paper is on the high-level code optimisation
using a variadic template software-approach and C++14
features. The paper makes the case for the requirement of
tailored and optimised software libraries as a solution to
computationally challenging problems in robotics. Existing
approaches in the literature highlight the inverse kinematics
of CTR as a highly resource-intensive problem, which our
software architecture makes tractable and solvable in real-
time. The performance and effectiveness of the presented
approach is demonstrated by a variety of metrics established
in software engineering, as well as via a multi-user experi-
ment that focused on human factors and useability.

Our approach is still limited by the fact that a reduced-
time pre-computation is required, and by the time required
to calculate the path plan intraoperatively. Even though this
amounts only to 3-5min, and 1-10s, respectively, we aim to
reduce it further by investigating approaches that warp the
workspace based on real-time collision avoidance to enable
dynamic active constraints, providing operator guidance in
cases where the anatomy undergoes motion and manipula-
tion. Without frameworks such as the proposed one, advances
in complex-robot telemanipulation will lag.

The proposed approach of completely templated classes
can also be used for other variations of continuum robots
where the kinematics variables and robot shape are coupled,
leading to computationally intensive kinematics. Kinematic
chains of standard serial-link robots could also be an area of
application, with each tuple element representing a different
type of joint (e.g. rotational, prismatic, universal), albeit with
limited benefit due to their significantly simpler kinematics.

TABLE VII
QUALITATIVE AVERAGE RESULTS OF USER EXPERIMENT [—3,+43]

Metric Free Mode Guidance Mode
Performance efficiency -1.54 1.54
Performance safety -1.54 2.15
Frustration -1.46 1.23
Overall performance -0.69 1.62
Guidance Forces 1.85

VIII. ACKNOWLEDGEMENT

The authors gratefully acknowledge Prof. Pierre Dupont
from Harvard Medical School for providing the anatomy
used in this paper.

REFERENCES

[1] K. Leibrandt, C. Bergeles, and G.-Z. Yang, “On-line collision-free in-
verse kinematics with frictional active constraints for effective control
of unstable concentric tube robots,” IEEE/RSJ Int. Conf. Intelligent
Robots and Systems, pp. 3797-3804, 2015.

[2] K. Leibrandt, C. Bergeles, and G.-Z. Yang, “Implicit active constraints
for safe and effective guidance of unstable concentric tube robots,”
IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pp. 1157—
1163, 2016.

[3] J. Burgner-Kahrs, D. C. Rucker, and H. Choset, “Continuum robots
for medical applications: a survey,” IEEE Trans. Robotics, vol. 31,
no. 6, pp. 1261-1280, 2015.

[4] R. J. Webster and B. A. Jones, “Design and kinematic modeling
of constant curvature continuum robots: a review,” Int. J. Robotics
Research, vol. 29, no. 13, pp. 1661-1683, 2010.

[5] J. Burgner et al., “A telerobotic system for transnasal surgery,”
IEEE/ASME Trans. Mechatronics, vol. 19, no. 3, pp. 996-1006, 2014.

[6] R. J. Hendrick, C. R. Mitchell, S. D. Herrell, and R. J. Webster,
“Hand-held transendoscopic robotic manipulators: A transurethral
laser prostate surgery case study,” Int. J. Robotics Research, vol. 34,
no. 13, pp. 1559-1572, 2015.

[7]1 C. Bergeles et al., “Concentric tube robot design and optimization
based on task and anatomical constraints,” IEEE Trans. Robotics,
vol. 31, no. 1, pp. 67-84, 2015.

[8] L. G. Torres, R. J. Webster, and R. Alterovitz, “Task-oriented design
of concentric tube robots using mechanics-based models,” IEEE/RSJ
Int. Conf. Intelligent Robots and Systems, pp. 4449-4455, 2012.

[9] J. Burgner, H. B. Gilbert, and R. J. Webster, “On the computational
design of concentric tube robots: Incorporating volume-based objec-
tives,” IEEE Int. Conf. on Robotics and Automation, pp. 1193-1198,
2013.

[10] P. E. Dupont, J. Lock, B. Itkowitz, and E. Butler, “Design and control
of concentric tube robots,” IEEE Trans. Robotics, vol. 26, no. 2, pp.
209-225, 2010.

[11] H. B. Gilbert, R. J. Hendrick, and R. J. Webster, “Elastic stability
of concentric tube robots: a stability measure and design test,” IEEE
Trans. Robotics, vol. 32, no. 1, pp. 20-35, 2016.

[12] R. Xu, S. F. Atashzar, and R. V. Patel, “Kinematic instability in
concentric-tube robots: modeling and analysis,” IEEE RAS/EMBS Int.
Conf. Biomedical Robotics and Biomechatronics, pp. 163-168, 2014.

[13] J. Ha, F. C. Park, and P. E. Dupont, “Elastic stability of concentric tube
robots subject to external loads,” IEEE Trans. Biomedical Engineering,
vol. 63, no. 6, pp. 1116-1128, 2016.

[14] C. Bergeles and P. E. Dupont, “Planning stable paths for concentric
tube robots,” IEEE/RSJ Int. Conf. Intelligent Robots and Systems, pp.
3077-3082, 2013.

[15] R.J. Hendrick, H. B. Gilbert, and R. J. Webster, “Designing snap-free
concentric tube robots: A local bifurcation approach,” IEEE Int. Conf.
Robotics and Automation, pp. 2256-2263, 2015.

[16] S. Bowyer and F. Rodriguez y Baena, “Dynamic frictional constraints
in translation and rotation,” IEEE Int. Conf. Robotics and Automation,
pp. 2685-2692, 2014.

[17] D. C. Rucker and R. J. Webster, “Computing jacobians and compliance
matrices for externally loaded continuum robots,” IEEE Int. Conf.
Robotics and Automation, pp. 945-950, 2011.

[18] L. G. Torres et al., “A motion planning approach to automatic obstacle
avoidance during concentric tube robot teleoperation,” /IEEE Int. Conf.
Robotics and Automation, pp. 2361-2367, 2015.

[19] A. Kuntz et al., “Motion planning for a three-stage multilumen
transoral lung access system,” IEEE/RSJ Int. Conf. Intelligent Robots
and Systems, pp. 3255-3261, 2015.

[20] K. Leibrandt, H. Marcus, K.-W. Kwok, and G.-Z. Yang, “Implicit
active constraints for a compliant surgical manipulator,” IEEE Int.
Conf. Robotics and Automation, pp. 276-283, 2014.

