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Generalized Regular Form Based SMC for
Nonlinear Systems With Application to a WMR

Jianqiu Mu, Xing-Gang Yan, Sarah K. Spurgeon, and Zehui Mao

Abstract—In this paper, a generalized regular form is pro-
posed to facilitate sliding mode control (SMC) design for a
class of nonlinear systems. A novel nonlinear sliding sur-
face is designed using implicit function theory such that the
resulting sliding motion is globally asymptotically stable.
Sliding mode controllers are proposed to drive the system to
the sliding surface and maintain a sliding motion thereafter.
Tracking control of a two-wheeled mobile robot is consid-
ered to underpin the developed theoretical results. Model-
based tracking control of a wheeled mobile robot is first
transferred to a stabilization problem for the corresponding
tracking error system, and then the developed theoretical
results are applied to show that the tracking error system
is globally asymptotically stable even in the presence of
matched and mismatched uncertainties. Both experimental
and simulation results demonstrate that the developed
results are practicable and effective.

Index Terms—Generalized regular form, mobile robots,
nonlinear systems, nonlinear sliding surfaces, sliding mode
control (SMC), tracking control.

I. INTRODUCTION

S LIDING mode control (SMC) is a powerful technique
because of its fast convergence and strong robustness [1],

[2]. The invariance property of systems in the sliding mode
to matched uncertainties and parameter variations [3] has mo-
tivated numerous applications of sliding mode techniques to
nonlinear systems including multimachine power systems [4],
direct-drive robot system [5], induction motor [6], power con-
verters [7], and wheeled mobile robot (WMR) systems [8].
The concept of the SMC is also used to observer design and
fault detection [9]. Moreover, it has been demonstrated that the
sliding mode approach can be applied to control systems with
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mismatched uncertainties, see for example [10]–[13]. In [14],
the bounds on the uncertainties are estimated using adaptive
techniques. However, the uncertainties are inevitably assumed
to satisfy a linear growth condition in order to adaptively com-
pensate the parameter uncertainty. In [11], by using an extended
disturbance observer with a modified time-varying sliding sur-
face, a novel SMC is applied to stabilize an SISO system with
continuous external disturbance that does not vanish at the ori-
gin. Ultimate boundedness of the system is guaranteed and the
obtained ultimate bound can be further reduced by choosing
appropriate design parameters. However, the structure of the
system is restricted, which makes the method difficult to extend
to the MIMO case. The method proposed by Niu et al. [15] also
shows the strong robustness of SMC for systems with an uncer-
tain input distribution where the considered systems are linear
with nonlinear disturbances. In [16], SMC for general nonlinear
stochastic systems has been investigated. It is shown that for
some special nonlinear stochastic systems, LMIs can be used
for controller design. Furthermore, this method can also be ap-
plied for nonlinear uncertain stochastic systems with state-delay
based on a T–S fuzzy modeling and control approach [17]. With
the SMC above, the system is usually required to be in regular
form or to be transferred into such a form for analysis. It should
be noted that the transformation matrix for linear systems can be
easily obtained by basic matrix theory. However, for nonlinear
systems, it is very difficult to find a diffeomorphism to transfer a
nonlinear system into the traditional regular form. Moreover, the
associated conditions may be too strong to be applied for most
general nonlinear systems, (see, for example [18] and reference
therein). In this paper, a generalized regular form is proposed
for a class of nonlinear systems, which includes the traditional
regular form as a special case. Therefore, the developed results
can be applied to a wide class of systems.

The WMR is increasingly used for both industrial and ser-
vice purposes due to its flexible mobility [19]. Although it is not
necessary to satisfy Brockett’s well-known necessary condition
[20] if the reference trajectory does not involve stabilization to
a rest configuration [21], it is challenging to use PID control or
linear control methods to obtain desired tracking performance
for WMR systems because of the inherent nonlinearity caused
by the nonholonomic constraints. This has motivated the devel-
opment of nonlinear control approaches for trajectory tracking
of WMR systems. In existing work considering mobile robot
systems [22], [23], the controller for the kinematic model is
based on the back-stepping method proposed in [24]. In [8], the
kinematic controller based on the back-stepping technique was
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simplified and mismatched uncertainty is not considered. Due
to the dynamic behaviour of the linear and steering velocities
in implementation, the proposed control scheme requires the
actuator to reduce the tracking error in practice [24]. Therefore,
actuator dynamic control design is inevitably required in many
control approaches to improve the system performance [8],
[22], [23].

In a driftless nonholonomic system, since the uncertainties
mainly come from the input channel, SMC can be a very pow-
erful tool owing to the invariance of the sliding mode dynamics
to matched uncertainty. An SMC scheme for trajectory track-
ing with polar coordinates has been previously proposed by
Yang and Kim [25]. However, due to hardware limitations, the
designed controller did not exhibit the expected tracking per-
formance in practice. In both [23] and [8], SMC strategies were
used in the dynamic layer. Although the simulation results in [8],
[23] show robustness against matched uncertainties, the SMC
was only applied to the dynamic model, which only ensures that
the reference velocities can be tracked. In [26], sliding mode
techniques were applied to a WMR system using a feedback
linearization approach and results have been obtained not only
for the tracking control problem but also for regulation tasks.
However, this requires that the propulsive force of the WMR
can be measured as one of the states in the system so that the
strict relative degree condition required for feedback lineariza-
tion can be satisfied. This is very difficult to implement from
the practical point of view. In [27], SMC was applied to the
kinematic model of a WMR. However, the system can only be
controlled in a local domain to avoid the singularity. In most of
the existing work for the WMR, mismatched uncertainties are
not considered. However, in the presence of drift of the wheels,
the uncertain drift term will result in mismatched uncertain-
ties. Therefore, it is necessary to consider WMR systems with
mismatched uncertainties to ensure high tracking performance.

In this paper, a generalized regular form is proposed for a
class of nonlinear control systems, which is an extension of
the traditional/classical regular form for SMC design. This is
an extension of the traditional/classical regular form for sliding
mode design. Then, a novel nonlinear sliding surface is designed
associated with the generalized regular form such that the cor-
responding sliding mode dynamics are globally asymptotically
stable using implicit function theory. Robust sliding mode con-
trollers are designed to guarantee that the considered system
is driven to the sliding surface in finite time and remains on
it thereafter even in the presence of matched and mismatched
uncertainties. All the uncertainties are assumed to be bounded
by known functions and the bounds on the uncertainties are
fully used to reduce the effects of the uncertainties. The de-
veloped results are tested by model-based tracking control of
a WMR with a differential driving mechanism through simula-
tion and experiment. The tracking error dynamics are derived
initially, and then the developed results are applied to the error
system to demonstrate the developed strategies. Experimental
and simulation results on the WMR show that the proposed con-
troller is insensitive to matched uncertainties, and can tolerate
a certain level of mismatched uncertainties in both theory and
application.

II. SYSTEM DESCRIPTION

Consider a class of nonlinear systems with matched and mis-
matched uncertainties described by

ẋ = F(t, x) + G(t, x)(u+ Φ(t, x)) + Ψ(t, x) (1)

where x ∈ Rn and u ∈ Rm are the state variables and control
inputs, respectively. The nonlinear vector F(·) ∈ Rn and the
input matrix function G(·) ∈ Rn×m are known with full rank
for x ∈ Rn and t ∈ R+ . The terms Φ(·) and Ψ(·) denote the
matched and mismatched uncertainties, respectively. It is as-
sumed that all the nonlinear functions are smooth enough so
that the existence of the solution of system (1) is guaranteed.

Assumption 1: There exist known continuous non-negative
functions δ(t, x) and μ(t, x) such that the mismatched uncer-
tainty Ψ(t, x) and the matched uncertainty Φ(·) in system (1)
satisfy

‖Ψ(t, x)‖ ≤ δ(t, x) (2)

‖Φ(t, x)‖ ≤ μ(t, x). (3)

Remark 1: Assumption 1 requires that the bounds on the
uncertainties are known. These will be employed in the control
design to reject/reduce the effects of the uncertainties.

For further analysis, partition F(·), G(·), and Ψ(·)

F(t, x) :=
[F1(t, x)
F2(t, x)

]
(4)

G(t, x) :=
[G1(t, x)
G2(t, x)

]
(5)

Ψ(t, x) :=
[

Ψ1(t, x)
Ψ2(t, x)

]
(6)

where F1(·) ∈ Rn−m , F2(·) ∈ Rm , G1(·) ∈ R(n−m )×m ,
G2(·) ∈ Rm×m , Ψ1(·) ∈ Rn−m , and Ψ2(·) ∈ Rm . Then from
the partitions (4)–(6), the system (1) can be rewritten as

ẋ1 = F1(t, x) + G1(t, x)
(
u+ Φ(t, x)

)
+ Ψ1(t, x) (7)

ẋ2 = F2(t, x) + G2(t, x)
(
u+ Φ(t, x)

)
+ Ψ2(t, x) (8)

where x1 ∈ Rn−m , x2 ∈ Rm , and x = col(x1 , x2). Since
G(·) ∈ Rn×m is full rank for x ∈ Rn and t ∈ R+ , without
loss of generality, it is assumed that G2(t, x) is nonsingular in
(t, x) ∈ R+ ×Rn .

Choose the sliding function σ(x) as follows:

σ(x) = Kx2 + ϕ(x1 , x2) (9)

where K = diag{k1 , k2 , . . . , km} with ki > 0 for i =
1, 2, . . . ,m, ϕ(·) is a known class C1 function and each entry of
the Jacobian matrix [ ∂ϕ∂x2

]
ij

for i, j = 1, 2, . . . ,m is bounded.
Remark 2: There is no general way to design the function

ϕ(x1 , x2) for a general nonlinear system since the function is
dependent on the system dynamics. However, for a specific
system, system knowledge can be used in conjunction with
the assumptions to establish a design. It should be noted that
the sliding function (9) proposed in this paper includes both
the linear sliding function σ(x) = Cx where C ∈ Rm×n is a
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constant matrix, and the nonlinear sliding function in the form
of σ(x) = x2 + ϑ(x1) where ϑ(·) ∈ Rm as special cases.

For the sliding function in (9), the sliding surface is
described by

S = {x ∈ Rn | σ(x) = 0}. (10)

Definition 1: System (7) and (8) with the sliding function
defined in (9) is called the generalized regular form of system
(1) if the function G1(·) defined in (5) satisfies

G1(t, x)|x∈S = 0. (11)

Remark 3: It should be emphasized that the classical regular
form requires that G1(t, x) = 0 for all t ≥ 0 and x ∈ Rn (see,
e.g., [1], [18]), whereas the generalized regular form defined
above requires that G1(t, x) = 0 only for all t ≥ 0 and x ∈ S. It
is clear to see that the classical regular form is a special case of
the generalized regular form defined above as S is just a surface
in Rn . From the Frobenius Theorem, the distribution spanned
by the column vectors of the input matrix G(·) is completely
integrable if and only if the distribution is involutive (e.g., see
[28]). This implies that the classical regular form may not exist
for a nonlinear system. In contrast, the generalized regular form
may exist and, thus, to develop a sliding mode theory associated
with the proposed generalized regular form is valuable since the
proposed method can be applied in cases where the classical
regular form is not available.

Define function matrices ΓG(t, x) and ΓF (t, x) as

ΓG(t, x) :=
∂σ

∂x
G(t, x) = KG2(t, x) +

∂ϕ

∂x
G(t, x) (12)

ΓF (t, x) :=
∂σ

∂x
F(t, x) = KF2(t, x) +

∂ϕ

∂x
F(t, x) (13)

where F(·), F2(·), G(·), and G2(·) are defined in (4) and (5) and
σ(·) is defined in (9). The following assumption is imposed on
system (7) and (8).

Assumption 2: The function matrix ΓG(t, x) defined in (12)
is nonsingular for x ∈ Rn and t ∈ R+

Remark 4: Assumption 2 is a limitation on the input distri-
bution matrix G(t, x) and the designed sliding surface σ(x) in
(9). It is required to guarantee that the system can be driven to
the sliding surface (10). Since G2(·) is nonsingular, it is straight
forward to see from (13) that Assumption 2 usually can be sat-
isfied by choosing an appropriate parameter K, and thus, this
condition is not strict.

It should be noted that under condition (11), when the system
(1) is limited to the sliding surfaces (10), the system (7) has the
following form:

ẋ1 = F1(t, x)|x∈S + Ψ1(t, x)|x∈S . (14)

The objective now is to study under what conditions system (14)
is the sliding mode dynamics of system (1) with respect to the
sliding surface (10). Therefore, it is necessary to guarantee that
there exists a unique solution of the functional equation σ(x) =
0 for x2 in terms of x1 . The following lemma is introduced to
facilitate further analysis.

Lemma 1 (see [29]): Assume that f : Rp ×Rm �−→ Rm is
a continuous mapping and it is continuously differentiable with

respect to the variable ξ ∈ Rm . If there exists a constant d > 0
such that∣∣∣∣

[
∂f

∂ξ

]
ii

∣∣∣∣−
∑
j �=i

∣∣∣∣∣
[
∂f

∂ξ

]
ij

∣∣∣∣∣ ≥ d, i = 1, . . . ,m (15)

for any (z, ξ) ∈ Rp ×Rn where
[
∂f
∂ξ

]
ij

denotes the ij th entry

of the Jacobian matrix ∂f
∂ξ and p = n−m, then there exists

an unique mapping g : Rp �−→ Rm such that f(z, g(z)) = 0.
Moreover, this mapping g(·) is continuous. Furthermore, if f(·)
is a class C1 function, then g(·) is a class C1 function.

Lemma 2: Under condition (11), there exists a function
g : Rn−m → Rm such that when system (7) is constrained
to the sliding surface (10), the dynamical system (7) can be
described by

ẋ1 = F s
1 (t, x1) + Ψs

1(t, x1) (16)

where

F s
1 (t, x1) = F1(t, x)|x2 =g(x1 ) (17)

Ψs
1(t, x1) = Ψ1(t, x)|x2 =g(x1 ) (18)

if K = diag{k1 , k2 , . . . , km} in (9) satisfies

ki ≥ ε+
m∑
j=1

sup

∣∣∣∣∣
[
∂ϕ

∂x

]
ij

∣∣∣∣∣ , i = 1, 2, . . . ,m (19)

where ε is a positive constant.
Proof: When system (7) is limited to the sliding surfaces

(10), it follows from condition (11) that the system (7) can be
described by (14).

From (9) and (19)∣∣∣∣
[
∂σ

∂x2

]
ii

∣∣∣∣ =
∣∣∣∣ki +

[
∂ϕ

∂x2

]
ii

∣∣∣∣ ≥ ki −
∣∣∣∣
[
∂ϕ

∂x2

]
ii

∣∣∣∣

≥ ε+
m∑
j=1

sup

∣∣∣∣∣
[
∂ϕ

∂x

]
ij

∣∣∣∣∣−
∣∣∣∣
[
∂ϕ

∂x2

]
ii

∣∣∣∣

= ε+
m∑
j = 1
j �=i

sup

∣∣∣∣∣
[
∂ϕ

∂x

]
ij

∣∣∣∣∣ (20)

for i = 1, 2, . . . ,m. This implies that
∣∣∣∣
[
∂σ

∂x2

]
ii

∣∣∣∣−
m∑
j = 1
j �=i

∣∣∣∣∣
[
∂σ

∂x2

]
ij

∣∣∣∣∣ ≥ ε, i = 1, 2, . . . ,m. (21)

Then from Lemma 1, there exists a unique class C1 function
x2 = g(x1) satisfying σ(x1 , g(x1)) = 0.

The analysis above shows that x2 = g(x1) when x ∈ S.
Hence, the result follows by substituting x2 = g(x1) into the
right-hand side of the (14). �

III. SLIDING MOTION ANALYSIS AND CONTROL DESIGN

A. Stability Analysis of the Sliding Mode

Assumption 3: There exists a continuously differentiable
Lyapunov function V (t, x1) : R+ ×Rn−m �−→ R satisfying
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the inequalities

ς1(‖x1‖) ≤ V (t, x1) ≤ ς2(‖x1‖) (22)

∂V

∂t
+
∂V

∂x1
F s

1 (t, x1) ≤ −ς3(‖x1‖) (23)

∥∥∥ ∂V
∂x1

∥∥∥ ≤ ς4(‖x1‖) (24)

where the functions ςi(·) for i = 1, 2, 3, 4 are continuous class
K functions, and F s

1 (·) is given in (17).
Remark 5: Assumption 3 implies that the nominal system

of the sliding mode dynamics (16) is asymptotically stable.
The conditions (22)–(24) are developed from the well-known
converse Lyapunov Theorem (see [30]).

From Assumption 1, it is straightforward to see that the mis-
matched uncertainty Ψs

1(t, x1) in (16) satisfies

‖Ψs
1(t, x1)‖ ≤ γ(t, x1) (25)

where γ(·) is a known positive continuous function, which is
assumed to satisfyγ(t, 0) = 0 such that the origin is the invariant
equilibrium point of the sliding mode dynamics (14).

Theorem 1: Under condition (11) in Definition 1 and
Assumptions 1 and 3, the sliding mode (16) is globally uniformly
asymptotically stable if there exists a continuous nondecreasing
function w : R+ �−→ R+ satisfying w(r) > 0 for r > 0 and
w(r) → ∞ when r → ∞ such that for any x1 ∈ Rn−m

w(‖x1‖) ≤ ς3(‖x1‖) − ς4(‖x1‖)γ(t, x1). (26)

Proof: Consider the Lyapunov candidate function V (·) sat-
isfying Assumption 3 for system (16). The time derivative of
V (·) along the trajectory of system (16) is given by

V̇ =
∂V

∂t
+
(
∂V

∂x1

)τ
(F s

1 (t, x1) + Ψs
1(t, x1))

≤ ∂V

∂t
+
(
∂V

∂x1

)τ
F s

1 (t, x1) +
∥∥∥∥
(
∂V

∂x1

)τ ∥∥∥∥ ‖Ψs
1(t, x1)‖

≤ − ς3(‖x1‖) + ς4(‖x1‖)γ(t, x1)

≤ − w(‖x1‖) (27)

where the conditions (22)–(24) are used above. Hence, the con-
clusion follows. �

Remark 6: It should be pointed out that condition (26) shows
the limitation on the mismatched uncertainty Ψ(t, x) in system
(1) through the bounds γ(t, x1) in (25). It should be noted that:

1) γ(t, x1) is the bound on Ψs
1(t, x1) [see (25)];

2) Ψs
1(t, x1) is the contribution from the function Ψ1(t, x)

when the system is on the sliding surface [see (18)];
3) Ψ1(t, x) is a subcomponent of Ψ(t, x) [see (6)].

Therefore, inequality (26) represents the limitation on the
bounds of the subcomponent Ψ1(·) of Ψ(·) when Ψ1(·) is on
the sliding surface instead of the uncertainty Ψ(·) in the whole
space x ∈ Rn .

Remark 7: For systems with mismatched disturbances,
which do not vanish at the origin or in the presence of mis-
matched external disturbances d(t) and which do not van-
ish when time t goes to infinity, the problem is particularly

challenging. In this case, usually only ultimate bounded re-
sults can be obtained under appropriate conditions unless other
techniques such as adaptive control are used to identify the dis-
turbance [13]. In this paper, global asymptotic stabilization is
considered where it is required that the mismatched disturbances
vanish at the origin, which is reflected in (25) where γ(t, 0) = 0.

B. Reachability

From Assumption 2, ΓG(t, x) is nonsingular. Consider the
control law

u(t, x) = − Γ−1
G (t, x)ΓF (t, x) − Γ−1

G (t, x)sgn
(
σ(x)

)

·
{∥∥∥∂σ

∂x

∥∥∥δ(t, x) + ‖ΓG(t, x)‖μ(t, x) + η
}

(28)

where ΓG(·) and ΓF (·) are defined in (12) and (13), respectively,
δ(·) and μ(·) satisfy (2) and (3), respectively, and η > 0 is a
constant parameter selected to define the reaching behavior.

Theorem 2: Consider the nonlinear system (7) and (8). Un-
der Assumptions 1 and 2, the control (28) is able to drive system
(1) to the sliding surface (10) in finite time and maintain a sliding
motion on it thereafter.

Proof: From (9),

σ̇(x) =
∂σ

∂x

(
F(t, x) + Ψ(t, x)

)
+
∂σ

∂x
G(t, x)(u+ Φ(t, x))

= ΓF (t, x) + ΓG(t, x)
(
u+ Φ(t, x)

)
+
∂σ

∂x
Ψ(t, x).

(29)

Substituting the control in (28) into (29),

στ (x)σ̇(x)

= στ (x)
{
∂σ

∂x
Ψ(t, x) + ΓG(t, x)Φ(t, x)

}
−

στ (x)sgn(σ(x))
{∥∥∥∥∂σ∂x

∥∥∥∥ δ(t, x) + ‖Γ(t, x)‖μ(t, x) + η

}

≤ ‖σ(x)‖
{∥∥∥∥∂σ∂xΨ(t, x)

∥∥∥∥+ ‖Γ(t, x)Φ(t, x)‖

−
∥∥∥∥∂σ∂x

∥∥∥∥ δ(t, x) − ‖Γ(t, x)‖μ(t, x) − η

}
. (30)

From Assumption 1,

∥∥∥∥∂σ∂xΨ(t, x)
∥∥∥∥ ≤

∥∥∥∥∂σ∂x
∥∥∥∥ ‖Ψ(t, x)‖

≤
∥∥∥∥∂σ∂x

∥∥∥∥ δ(t, x) (31)

‖Γ(t, x)Φ(t, x)‖ ≤ ‖Γ(t, x)‖‖Φ(t, x)‖
≤ ‖Γ(t, x)‖μ(t, x). (32)
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Substituting inequalities (31) and (32) into (30) yields

στ (x)σ̇(x) ≤ ‖σ(x)‖
{∥∥∥∥∂σ∂xΨ(t, x)

∥∥∥∥−
∥∥∥∥∂σ∂x

∥∥∥∥ δ(t, x)

+ ‖Γ(t, x)Φ(t, x)‖ − ‖Γ(t, x)‖μ(t, x) − η

}

≤ − η‖σ(x)‖. (33)

Hence, the conclusion follows. �

IV. APPLICATION TO A WMR SYSTEM

A. Problem Formulation

Consider a WMR with differential driving mechanism. As
the wheels of the robot may drift, which may result in mis-
matched uncertainty, it is necessary to consider mismatched dis-
turbances. From [31], the kinematic model of the WMR can be
described by

q̇ =

⎡
⎣ cos θc 0

sin θc 0
0 1

⎤
⎦(u+ φ(t, q)

)
+ ψ(t, q) (34)

where q = col(qx, qy , θc) ∈ R3 is the state with coordinates
(qx, qy ) on the x− y plane and the heading angle θc , u =
col(v, ω) is the control input where v is the linear velocity and
ω is the steering velocity, φ(·) ∈ R2 includes all uncertainties
in the input channel (i.e., the matched uncertainty) and the term
ψ(·) ∈ R3 denotes the mismatched uncertainty.

Without loss of generality, it is assumed that ψ(·) has the
form ψ(t, q) := col(ψ1(t, q), ψ2(t, q), 0) where ψ1(·) ∈ R and
ψ2(·) ∈ R. Note that the third component of ψ(·) is assumed to
be zero. If it is not zero, then it can be included in the matched
uncertainty φ(·) in (34).

Assume that the reference trajectory is model based, and it
is given by the following dynamic system:

⎡
⎣ q̇xrq̇yr
θ̇r

⎤
⎦ =

⎡
⎣ cos θr 0

sin θr 0
0 1

⎤
⎦
[
vr (t)
ωr (t)

]
(35)

where qr = col(qxr , qyr , θr ) is the reference trajectory and
ur = col(vr (t), ωr (t)) is the reference control with vr �= 0.
Then the objective of the model-based tracking control
is to design a controller u for the system (34) such that
limt→∞ ‖qr − q‖ = 0 where q = col(qx, qy , θc) ∈ R3 is the
state of the system (34) and qr = col(qxr , qyr , θr ) is the
reference trajectory created by (35).

Remark 8: Due to the complex nonlinearity in the nonholo-
nomic WMR system, it is straightforward to see that not all
trajectories can be tracked. Therefore, the trajectory in this pa-
per is assumed to be model based. It should be noted that the
initial misalignment of the WMR may result in different initial
misalignment of the tracking error system. Such an effect can
be included in the system uncertainty that can be overcome by
redesign of the SMC if necessary.

Introduce a diffeomorphism T : R3 −→ R3 with x = T (q)
as (see, e.g., [27])

x :=
[
x1
x2

]
=

⎡
⎣ x1
x21
x22

⎤
⎦ = T̃ (q)(qr − q) := T (q) (36)

where x1 ∈ R, x2 = col(x21 , x22) ∈ R2 and

T̃ (q) =

⎡
⎣− sin θc cos θc 0

cos θc sin θc 0
0 0 1

⎤
⎦ .

From (34)–(36), the dynamics of the new error system in x
coordinates is given by

ẋ =

⎡
⎣ vr (t) sin θr cos θc − vr (t) cos θr sin θc
vr (t) cos θr cos θc + vr (t) sin θr sin θc

ωr (t)

⎤
⎦

+

⎡
⎣ 0 − cos θc(qrx − qx) − sin θc(qry − qy )
−1 − sin θc(qrx − qx) + cos θc(qry − qy )
0 −1

⎤
⎦

·
(
u+ φ̂(t, x)

)
+ Ψ(t, x)

=

⎡
⎣ vr (t) sinx22
vr (t) cosx22

ωr (t)

⎤
⎦

︸ ︷︷ ︸
F(t,x)

+

⎡
⎣ 0 −x21
−1 x1
0 −1

⎤
⎦

︸ ︷︷ ︸
G(t,x)

(
u+ φ̂(t, x)

)

+ Ψ(t, x) (37)

where

φ̂(t, x) = φ(t, q)|q=T −1 (x)

Ψ(t, x) :=
[

Ψ1(t, x)
Ψ2(t, x)

]
=
∂T

∂q
ψ(t, q)|q=T −1 (x). (38)

By direct calculation,

∂T

∂q
=
(
− T̃ (q) + T̂ (x)

)
(39)

where

T̂ (x) =

⎡
⎣0 0 −x21

0 0 x1
0 0 0

⎤
⎦ .

Substituting (39) into (38) yields

Ψ(t, x) = −T̃ (q)ψ(t, q)|q=T −1 (x). (40)

Then it is straightforward to see that the mismatched uncertainty
Ψ(t, x) in the new error system (37) has the form

Ψ(t, x) =
[

Ψ1(t, x)
Ψ2(t, x)

]
=

⎡
⎣ Ψ1(t, x)

Ψ21(t, x)
0

⎤
⎦ .
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Thus, system (37) can be described in the form (7) and (8) as
follows

ẋ1 = vr (t) sinx22︸ ︷︷ ︸
F1 (t,x)

+
[
0 −x21

]
︸ ︷︷ ︸

G1 (t,x)

(
u+ Φ(t, x)

)

+ Ψ1(t, x) (41)

ẋ2 =
[
vr (t) cosx22

ωr (t)

]
︸ ︷︷ ︸

F2 (t,x)

+
[−1 x1

0 −1

]
︸ ︷︷ ︸

G2 (t,x)

(
u+ Φ(t, x)

)
(42)

where x2 = col(x21 , x22) ∈ R2 , x1 ∈ R and

Φ(t, x) := φ̂(t, x) − Ψ2(t, x). (43)

It is straightforward to verify that T̃ (q) is nonsingular and
T̃−1(q) is bounded. From (36), ‖qr − q‖ ≤ ‖T̃−1(q)‖ ‖x‖,
which implies that limt→∞ ‖qr − q‖ = 0 if limt→∞ ‖x‖ = 0.
Therefore, the model-based reference tracking control problem
for the kinematic model (34) has now been transformed to a
stabilization problem for the error system (37). It remains to
design a control u to stabilize the system (37) globally and
asymptotically.

B. Control design

Assume that the reference trajectory only moves forward
with vr (t) ≥ Vm where Vm is a positive constant such that
a continuously differentiable feedback control law that asymp-
totically stabilizes the tracking error system exists [21], [32],
and the reference velocities (vr (t), ωr (t)) are bounded with
vr (t) ≤ Vx and |ωr (t)| ≤ Wx for any t ∈ R+ . Furthermore,
the mismatched and matched uncertainties Ψ1(t, x) and Φ(t, x)
satisfy

‖Ψ1(t, x)‖ ≤ sin2(x22)
√
x2

21 + α+ 0.1|x1x21 |
√
x2

21 + α︸ ︷︷ ︸
δ(t,x)

(44)

‖Φ(t, x)‖ ≤ 0.5‖x‖ + 0.6|vrωr |︸ ︷︷ ︸
μ(t,x)

(45)

where α is a positive constant satisfying α < V2
m . Design the

switching functions

σ(x) =
[
k1x21
k2x22

]
+

[
0
x1√

c+x2
1 +x2

2 1

]

︸ ︷︷ ︸
ϕ(x1 ,x2 )

(46)

where k1 > 0 and k2 > 1 are design parameters and c > 0 is a
constant. The sliding surface is described by

S = {x ∈ R3 |σ(x) = 0} (47)

where σ(x) is defined in (46). Then on the sliding surface (47),
x21 = 0, and thus, from (41), G1(t, x) = 0. Therefore, system
(41) and (42) has the generalized regular form. From F(·) and

G(·) in (37) and by direct calculation

ΓF (t, x) :=
∂σ

∂x
F(t, x)

=

[
k1vr cosx22

(c+x2
2 1 )vr sin x2 2 −x1 x2 1 vr cos x2 2√

c+x2
1 +x2

2 1

+ k2ωr

]
(48)

ΓG(t, x) :=
∂σ

∂x
G(t, x)

=

[ −k1 k1x1
x1 x2 1

(c+x2
1 +x2

2 1 )
3
2
− x2 1

(c+x2
1 +x2

2 1 )
1
2
− k2

]
(49)

which is nonsingular when k2 ≥ 1. When system (41) is limited
to the sliding surface (47), it can be described by

ẋ1 = vr (t) sin

(
− x1

k2
√
c+ x2

1

)

︸ ︷︷ ︸
Fs

1 (t,x1 )

+Ψs
1(t, x1) (50)

where

‖Ψs
1(t, x1)‖ ≤ √

α sin2

(
x1

k2
√
c+ x2

1

)

︸ ︷︷ ︸
γ (t,x1 )

. (51)

Therefore, system (50) with Ψs
1(·) satisfying (51) is the slid-

ing mode dynamics associated with the sliding surface (47).
For system (50), define the candidate Lyapunov function as
V (t, x1) = 1

2x
2
1 , then it is clear to see that

0.4x2
1︸ ︷︷ ︸

ς1 (t,x1 )

≤ V (t, x1) ≤ 0.6x2
1︸ ︷︷ ︸

ς2 (t,x1 )

.

The time derivative of V along the trajectories of system (50)
is given by

∂V

∂t
+
∂V

∂x1
F s

1 (t, x1) = vr (t) sin

(
− |x1 |
k2
√
c+ x2

1

)
x1

≤ − Vm sin

(
|x1 |

k2
√
c+ x2

1

)
|x1 |

︸ ︷︷ ︸
ς3 (|x1 |)

(52)

∥∥∥∥ ∂V∂x1

∥∥∥∥ = |x1 |︸︷︷︸
ς4 (|x1 |)

. (53)

From k2 ≥ 1 > 2
π , which implies

τ

k2
√
c+ τ 2

<
π

2
(54)
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it is straightforward to see that ς3(τ) is a class K function. Thus

ς3(|x1 |) − ς4(|x1 |)γ(t, x1)

= Vm sin

(
x1

k2
√

1 + x2
1

)
|x1 | −

(
√
α sin2

(
x1

k2
√
c+ x2

1

))
|x1 |

≤
(
Vm sin

(
x1

k2
√

1 + x2
1

)
−√

α sin2

(
x1

k2
√
c+ x2

1

))
|x1 |

= w(|x1 |) (55)

where

w(τ) =
(
Vm sin

(
τ

k2
√
c+ τ 2

)
−√

α sin2
(

τ

k2
√
c+ τ 2

))
τ

(56)
where τ ∈ R+ . Since Vm ≥ √

α ≥ √
α sin( τ

k2

√
c+x2

1

), it is

clear that w(τ) is positive definite. Therefore, the conditions
of Theorem 1 hold. By limiting the minimum reference ve-
locity Vm = 0.01, the kinematic controller u = col(v, ω) is
described by

u(t, x) = − Γ−1
G (t, x)ΓF (t, x) − Γ−1

G (t, x)sgn
(
σ(x)

)·
{∥∥∥∂σ

∂x

∥∥∥δ(t, x) + ‖ΓG(t, x)‖μ(t, x) + 5
}

(57)

where the uncertainties δ(·) and μ(·) for the WMR are defined
in (44) and (45), respectively. σ(x) for the WMR is defined
in (46) with k1 = k2 = 1 and c = 0.01, and the corresponding
ΓG(·) and ΓF (·) are defined in (48) and (49), respectively. Then,
from Theorems 1 and 2, it is straightforward to see that systems
(41) and (42) are globally asymptotically stable.

The performance of the proposed controller is tested with a
smoothed sharp corner trajectory, which can be described by the
following equations:

qrx(t) =

{
0 t < 4 − β√

(t+β−4)2 +β−√
β√

16+β , t ≥ 4 − β
(58)

qry (t) =

{
1 −

√
(t−4)2 +β√

16+β , t < 4
1 t ≥ 4

(59)

where β = 0.81 is a positive parameter that smoothes the corner.
The initial point of the reference is (0, 0, π2 ) and the initial

point of the robot is chosen as (0.5, 0.1, 2.17). The motion of
the robot and the reference trajectory given by (58) and (59)
are shown in Fig. 1. The time response of the tracking errors
and the control signal (v, ω) shown in Figs. 2 and 3, respec-
tively. From Fig. 3, it can be seen that the system is affected
by the matched uncertainties at the corner. However, due to the
complete robustness of SMC to matched uncertainties, the per-
formance of the system is not affected. From Figs. 1–3, it is
straightforward to see that the proposed approach is effective. It
should be noted that due to the discontinuity of the sgn function,
the control in reality may experience chattering [33]. To avoid
such problems, the boundary-layer technique proposed in [34]
has been introduced to reduce the chattering in the simulation
and experiments presented in this paper.

Fig. 1. Reference trajectory of the Lemniscate curve and the trajectory
of the robot in the x − y plane.

Fig. 2. Time response of the tracking errors.

Fig. 3. Time response of the control pair (v, ω).

Remark 9: Uncertainties are added in the WMR simulation
and bounds on the uncertainties are given to show the robustness
of the proposed methodology. In the real system, the uncertain-
ties will vary on a case-by-case basis and can be obtained by
statistical data analysis or engineering experience.
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Fig. 4. System overview for the WMR.

V. EXPERIMENTAL TEST

A low-cost WMR was built at the University of Kent for ex-
perimental testing, the overview of the system is shown in Fig. 4.
Two wheels with a radius of 0.063 m are assembled on the right
and left side equipped with 12V dc motors as actuators for differ-
ential driving. The size of the chassis is 20 cm(l/w) with a 12-V
battery and electronics. A rate gyroscope and two encoders with
1600 pulses/turn assembled on the shaft of the motors are used
to estimate the coordinates. It should be noted that the motors
are independently driven by two H-bridge MOSFET-based motor
drivers. The actual control signals are pulse-width-modulation
(PWM) signals controlled by a microcontroller embedded in the
robot. In order to obtain data from the controller, a bluetooth
module is used to transfer data to the PC via a serial communi-
cation with cycle time of 10 ms.

A. Implementation of the Control With DC Motors

It should be noted that the control inputs of system (41) and
(42) are the linear velocity v and the steering velocity ω. As
assumed by other authors (e.g., see [31]), such a controller can be
implemented directly using the differential driving mechanism
to produce the desired inputs (v, ω) required by the controller
(28). Two dc motors are used as actuators driving the wheels on
each side of the robot independently. The relationship between
the velocities of the robot (v, ω) and the rotational velocities of
the wheels (ωR, ωL ) can be described as follows (e.g., see [31]):[

v
ω

]
=

1
2

[
r r
r
b − r

b

] [
ωR
ωL

]
(60)

where (ωR, ωL ) denote the rotational velocities of the wheels
on the right and left sides, respectively. r and b denote the
radius of the wheel and width of the robot, respectively. The
dynamics of the motor are also investigated to achieve the in-
put (v, ω) required by controller (28). The model of the motor
system can be described by (e.g., see [3])

[
ω̇m
i̇m

]
=

[
0 Kt

Jm

− Ke

Lm
−Rm

Lm

] [
ωm
im

]
+
[

0
1
Lm

]
uv

+
[−TL

0

]
(61)

y = ωm (62)

where ωm and im are the angular velocity and motor current,
and y is the measured output. uv denotes the input voltage

Fig. 5. Comparison between the actual time response of angular ve-
locity of the motor and the simulation.

Fig. 6. Tracking performance of the motor control.

adjusted by the microcomputer with PWM techniques. Param-
eters Jm , Lm , Kt , Ke , and Rm denote the motor inertia, induc-
tance, torque constant, back electromotive force constant and
resistance, respectively. TL is the external disturbance repre-
senting the effects of friction and the motor load.

Parameters identified through experiments with no-load are
Jm = 0.0012 Kg · m2 , Lm = 0.0054 F, Kt = 0.034 N · m/A,
Ke = 1.04 V · s/rad, and Rm = 2.4 Ω. The comparison be-
tween the model response (61) and the response of the actual
motor is shown in Fig. 5. The experimental results when tracking
a constant reference and sine wave reference signals are shown
in Fig. 6. From the test results, it can be seen that although the
system is affected by the limitation of the hardware, the tracking
performance is as expected. Although the control performance
of the motors may also be affected by parameter variations, the
uncertainties caused by friction between the wheels and ground
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Fig. 7. Motion of robot in x–y plane in tracking task experiment.

Fig. 8. Time response of tracking errors in tracking task experiment.

in the motor system will not affect the performance of the WMR
system since the SMC is robust to matched uncertainties.

B. Experimental Results

The experimental results for the WMR are presented in this
section. The control of the robot is designed with the same
process described in Section IV-B and the control performance
is tested with the reference curve described in (58) and (59),
which denotes a smoothed right-angled curve.

The actual motion of the robot and the reference trajectory
are shown in Fig. 7. The time response of the tracking errors is
shown in Fig. 8, and the control signal is shown in Fig. 9. From
Fig. 8, it is seen that the system experiences uncertainties caused
by the hardware. However, the robot exhibits good tracking
performance as shown in Fig. 7 due to the high robustness of
the designed SMC.

From the experimental results, it is evident that although mod-
eling error and noise may exist, the robustness properties of the
SMC ensure that the system exhibits the expected tracking per-
formance in the presence of uncertainties. It should be noted that
the noise usually comes from the motors, and thus, it is matched.

Fig. 9. Measured control input (v, ω) based on sensors data in tracking
task experiment.

Since SMC is completely robust to matched uncertainty, good
tracking accuracy is achieved in the experiments.

VI. CONCLUSION

This paper has proposed a novel generalized regular form
for a class of nonlinear systems. Based on the generalized
regular form, a novel sliding surface has been designed and
global asymptotic stability of the corresponding sliding mo-
tion has been presented. A SMC scheme was designed to
guarantee reachability of the sliding mode. The developed re-
sults have been applied to a WMR. Based on the WMR dy-
namics, a nonlinear sliding surface was formed and global
asymptotic stability was exhibited. This application demon-
strates that sliding mode techniques can be used to stabilize sys-
tems when the normal regular form is not available. Simulation
and experimental results showed that the proposed results are
effective.
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