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Abstract

We report here the analysis of the near-infrared transit spectrum of the hot Jupiter HAT-P-32b, which was recorded with
the Wide Field Camera 3 (WFC3) on board the Hubble Space Telescope. HAT-P-32bis one of the most inflated
exoplanets discovered, making it an excellent candidate for transit spectroscopic measurements. To obtain the transit
spectrum, we have adopted different analysis methods, both parametric and non-parametric (Independent Component
Analysis, ICA), and compared the results. The final spectra are all consistent within 0.5σ. The uncertainties obtained
with ICA are larger than those obtained with the parametric method by a factor of∼1.6–1.8. This difference is the trade-
off for higher objectivity due to the lack of any assumption about the instrument systematics compared to the parametric
approach. The ICA error bars are therefore worst-case estimates. To interpret the spectrum of HAT-P-32b we used
 -REx, our fully Bayesian spectral retrieval code. As for other hot Jupiters, the results are consistent with the presence
of water vapor (log H O 3.452 1.65

1.83= - -
+ ), clouds (top pressure between 5.16 and 1.73 bar). Spectroscopic data over a

broader wavelength range are needed to de-correlate the mixing ratio of water vapor from clouds and identify other
possible molecular species in the atmosphere of HAT-P-32b.

Key words: methods: data analysis – planets and satellites: atmospheres – planets and satellites: individual (HAT-P-32 b) –
techniques: spectroscopic

1. Introduction

In the past decade the Hubble Space Telescope (HST) has been
an invaluable observatory from which to study the properties of
exoplanetary atmospheres. The majority of the planets observed to
date are hot and gaseous, as they are the easiest targets to probe.
Transit observations in the UV, VIS, and IR have started to
provide important insights into the chemical composition and
structure of the atmospheres of gas giants orbiting very close to
their star. Many of these atmospheres appear to be in the
hydrodynamic escape regime given their vicinity to the stellar host
(e.g., Vidal-Madjar et al. 2003; Linsky et al. 2010). Common
atmospheric components detected include alkali metals (e.g.,
Charbonneau et al. 2002; Redfield et al. 2008) and water vapor
(e.g., Barman 2007; Tinetti et al. 2007; Grillmair et al. 2008;
Deming et al. 2013; Fraine et al. 2014; Kreidberg et al. 2014).
Condensates or hazes have also been identified (e.g., Knutson
et al. 2014; Sing et al. 2016). Some of the data also suggest that
carbon-bearing or more exotic species, such as TiO and VO (e.g.,
Swain et al. 2009; Snellen et al. 2010; Evans et al. 2016; Line et al.
2016), are present in some of these atmospheres. Finally, eclipse
and phase curve observations have enabled us to glimpse into the
atmospheric thermal properties and global circulation of a few of
these objects (e.g., Majeau et al. 2012; Stevenson et al. 2014).

In this work we analyze the near-infrared transit spectrum of
the hot Jupiter HAT-P-32 b (T 1786eq = K; Hartman et al.
2011) obtained with the WFC3 camera on board the HST.
HAT-P-32b is one of the most inflated exoplanets discovered,
being less massive than Jupiter (M M0.79p Jup= ) but having
almost twice its radius (R R1.789p Jup= ). The atmosphere of
HAT-P-32b has been observed with ground-based instruments
in the optical wavelengths, revealing a featureless transmission
spectrum (Gibson et al. 2013; Zhao et al. 2014; Mallonn &
Strassmeier 2016; Nortmann et al. 2016). In addition, Zhao
et al. (2014) suggested the presence of a thermal inversion in
the atmosphere of HAT-P-32bto interpret eclipse observations.

We used our dedicated WFC3 pipeline (Tsiaras et al. 2016b)
to extract the transit light curves per wavelength channel and
obtain the planetary spectrum (Section 2). We used in parallel
Independent Component Analysis to correct for the instru-
mental systematics, and investigated the effect of different
analysis techniques on the same data set (Section 3). The final
spectrum was analyzed using our fully Bayesian spectral
retrieval code,  -REx (Waldmann et al. 2015a, 2015b).

2. Data Analysis

2.1. Observations

The spatially scanned spectroscopic images of HAT-P-32b
were obtained with the G141 grism and are available from the
MAST archive3 (ID:14260, PI: Deming Drake). The data set
contains five consecutive HST orbits and each exposure is the
result of 14 non-destructive reads, with a size of 256×256 pixels
in the SPARS10 mode (exposure time=88.435623 s). With this
configuration the maximum signal level is 2.6 104´ electrons
per pixel and the total scan length is approximately 40 pixels.
During the light curve analysis, the first of the five orbits was

discarded. This is a standard practice for exoplanet transit
observations (e.g., Deming et al. 2013; Huitson et al. 2013;
Haynes et al. 2015; Tsiaras et al. 2016a), as the telescope needs
to stabilize into its new position. Of the remaining four HST
orbits, the first and the fourth provide the out-of-transit
baseline, while the second and the third capture the transit.
The data set contains, for calibration purposes, a non-dispersed
(direct) image of the target, obtained using the F139N filter.

2.2. Extraction of Light Curves

Before extracting the light curves (white and spectral),
all frames were reduced using the routines described in
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Tsiaras et al. (2016b). HAT-P-32A has an M1.5 stellar
companion, HAT-P-32B (T 3565 82 Keff =  ; Zhao et al.
2014). The dispersed signals from HAT-P-32A and HAT-P-32B
are blended when using the scanning mode. However, these two
stars are separated enough (2. 923 0. 004   , Zhao et al. 2014) to
avoid blending when the differential reads (the difference between
two consecutive non-destructive reads, or “stripes”) are consid-
ered. For each stripe, we determined the photometric aperture,
taking into account the wavelength-dependent photon trajectories
(Tsiaras et al. 2016b) and obtained a set of 12 white light curves.
The same criterion was used to extract the spectral light curves,
obtaining a set of 12 time series for each one of the 20 spectral
bins. The wavelength range of each bin was chosen in order to
have a similar flux level across all bins.

2.3. Parametric Fitting

It is known that instrumental systematics (known as “ramps”)
affect the WFC3 infrared detector both in staring (Berta et al.
2012; Swain et al. 2013; Wilkins et al. 2014) and scanning modes
(Deming et al. 2013; Knutson et al. 2014; Kreidberg et al. 2014;
Tsiaras et al. 2016a, 2016b). The brighter the star, the stronger the
ramps. In the case of HAT-P-32b, the host star is relatively faint
(K 9.99mag = ) so we did not expect very strong ramps.

We fitted the ramps on the white light curve using a similar
approach to Kreidberg et al. (2014); i.e., we adopted an analytic
function with two different types of ramps, short-term and
long-term, to correct the data:

R t r t t r e1 1 1a v b
r t t

1 b2 0= - - - - -( ) ( ( ))( ) ( )( )

where, t is the mid-time of each exposure, tv is the time when the
visit starts, t0 is the time when each orbit starts, ra is related to the
long-term ramp, and r r,b b1 2 are related to the short-term ramp.

To model the transit light curve we used our Python
package, PyLightcurve,4 which returns the flux as a function of
time using the nonlinear limb-darkening law (Claret 2000). The
limb-darkening coefficients were fitted on the profile of a star
similar to HAT-P-32A (T*=6207 K, [Fe/H]=−0.04 dex,

glog 4.33
*

=( ) [cgs]), using a modified version of the ATLAS
stellar model described in Howarth (2011). In this fit we took
into account the variable sensitivity of the G141 grism across
its wavelength range. The observations do not cover both the
ingress and the egress of the transit, hence we could not fit for
the semi-major axis and inclination, which have been fixed to
the values reported in Table 1. We also assumed a circular
orbit. The results are shown in Figure 1 and reported in Table 2.
As can be seen in the residuals near the egress, there are a few
points that appear to deviate significantly from the model fitted
to the white light curve. The root mean square (rms) of the
residuals is 180 ppm, significantly higher than the photon-noise
limited rms of 100 ppm. The error bar in transit depth is
accordingly higher than the photon-noise limited case. This
behavior could be caused by star-spots, which notoriously
might generate a wavelength-dependent astrophysical signal
and therefore a distortion on the spectrum. However, we
repeated the analysis excluding these points and the spectrum
was not affected. We also tested changing the orbital
parameters up to 1σ, in both directions, from their reference
values. However, this did not improve the white light curve
residuals. The main effect was a shift of ∼120 ppm in the white
light curve transit depth—i.e., up to 1.3σ from our reported

uncertainty—but again no detectable effect on the spectrum
(differential transit depths vary by less than 0.25σ on average).
Finally, for each wavelength bin we divided the spectral light

curve by the white light curve (Kreidberg et al. 2014) and fitted
a linear trend simultaneously with a relative transit model:

n F F1 2Wc+l l l( )( ) ( )

where nl is the normalization factor that needs to be calculated
for each bin, cl is the wavelength-dependent linear ramp
(Tsiaras et al. 2016b, 2016a), and F FWl( ) is the ratio between
the spectral light curve and the white light curve. We fitted this
model using the same orbital parameters listed in Table 1 and
the white R RP * ratio obtained from the white light curve
fitting. The limb-darkening coefficients were calculated for
each bin using the same method as for the white light curve
(see Table 4). The rms of the residuals for the spectral light
curves (on average 474 ppm) is close to the photon-noise
limited case (on average 443 ppm). The corresponding error
bars in relative transit depths are also ∼10% above the photon
noise limit. This proves that the deviation from the model seen
for the white light curve is not wavelength dependent.
The planetary spectrum was fitted using MCMC and

following two different approaches, leading to a “stacked”
and a “weighted” spectrum:

1. (stacked) using a unique reference light curve for each
spectral bin, obtained by summing the relative stripe light
curves;

2. (weighted) fitting each stripe light curve alone, then
taking the weighted mean for each spectral bin.

Following the first method, we obtained the white light curve
shown in Figure 1 (top panel). Both methods give the same
modulation, with the exception of a few bins where the
differences are within 0.3σ.

3. ICA

Independent component analysis (ICA) is a blind signal-
source separation (BSS) technique that is able to separate the

Table 1
Parameters of the HAT-P-32b System (Hartman et al. 2011)

Stellar Parameters

[Fe/H] [dex] −0.04±0.08
Teff [K] 6207±88
M M* [ ] 1.160±0.041
R R* [ ] 1.219±0.016

glog
*

( ) [cgs] 4.33±0.01

Planetary Parameters

Teq [K] 1786±26
M Mp Jup[ ] 0.860±0.164

R Rp Jup[ ] 1.789±0.025

a [AU] 0.0343±0.0004

Transit Parameters

T0 [BJD] 2454420.44637±0.00009
Period [days] 2.150008±0.000001
R Rp * 0.1508±0.0004

a R* 6.05 0.04
0.03

-
+

i [deg] 88.9±0.4

4 https://github.com/ucl-exoplanets/pylightcurve
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source signals in a set of observations without any prior
knowledge about the signals themselves or their mixing ratios.
In many applications, observations are well-represented as
linear combinations of certain (unknown) source signals:

x As 3= ( )

where x x x x, , , n
T

1 2= ¼( ) is the column vector of observed
signals, s s s s, , , n

T
1 2= ¼( ) is the column vector of source signals,

and A is the so-called mixing matrix. The original source signals
are retrieved through a linear transformation that maximizes their

Figure 1. Top panel shows the white light curve of HAT-P-32b. The middle panel shows fitted white light curve. The bottom panel shows residuals after fitting.

Figure 2. Stacked spectra obtained with the UCL pipeline (magenta) and with stripe-ICA (blue).

Table 2
White Light Curve Fitting Results

Limb-darkening Coefficients (1.125–1.650 μm)

a1 0.603336
a2 −0.223032
a3 0.281379
a4 −0.13988

Fitting Results

T HJD0 ( ) 2457408.95783 ± 0.00004
R Rp * 0.1521 ± 0.0003

Figure 3. Transmission spectrum of HAT-P-32b obtained with the UCL
pipeline (black) and best-fitting model (light-blue).
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mutual independence, according to one or more statistical
estimators (Hyvärinen & Oja 2000; Hyvärinen 2012):

s Wx 4= ( )

ICA has been used to remove instrument systematics and other
astrophysical signals in exoplanetary light curves obtained with
Kepler, HST/NICMOS (Waldmann 2012; Waldmann et al. 2013),
Spitzer/IRS (Waldmann 2014), and Spitzer/IRAC (Morello et al.
2014, 2015, 2016; Morello 2015) with excellent results. We refer
the reader to those publications and the relevant cited literature for
more technical details about ICA and the different implementa-
tions. In this paper, we discuss a similar approach to the analysis
of spectroscopic time series obtained with HST/WFC3 using the
scanning-mode technique. The main steps of the algorithm are:

1. ICA decomposition;
2. fitting;
3. finalizing the parameter error bars.

3.1. ICA Decomposition

After the preliminary reduction, we obtained 12 stripe light
curves for each of the 20 spectral bins, as described in Section 2.2.
We performed ICA for all bins separately, by using the
corresponding 12 stripe light curves as input time series (vector
x in Equation (3)). Similarly, the light curves integrated over the 20
spectral bins for each stripe were used as input white light curves.
Thus, we obtained one set of components for each spectral bin and
an additional set for the whole spectral range. The transit signal is
mainly contained in the first components of all sets, while the other
components are predominantly instrument systematics and noise.

3.2. Fitting

Following a standard ICA algorithm (e.g., Morello 2015;
Morello et al. 2016), we simultaneously fitted a transit model
(with the same parameters as in Section 2.3) and a linear
combination of the non-transit components to the relevant raw

light curves. We computed the “stacked” and a “weighted”
spectra, as described in Section 2.3.
The residuals obtained for the stacked white light curve have

been included as an additional component in the spectral fits. This
step is equivalent to dividing by the white light curve as is done in
the parametric fitting (see Section 2.3), in order to remove possible
undetrended systematics common to all wavelengths.
The fitting process is as follows. First, we run a Nelder-Mead

optimization algorithm to find the parameter values minimizing
the fitting residuals, then we use them as starting values for a
Markov Chain Monte Carlo (MCMC) calculation with 300,000
iterations. The likelihood’s variance, 0

2s , is initialized to the
variance of the residuals, then updated at any iteration. The
best-fitting parameters are estimated as par par,0m s , where parm
and par,0s are the mean value and standard deviation of the
relevant parameter chain, respectively.

3.3. Final Error Bars

To fully account for the potential bias associated with the
detrending technique, the final error bars are re-scaled with respect
to the MCMC error bars inferred from the residuals only, by
adding a ICA

2s term to the likelihood’s variance:

. 5par
ICA
2

0
2

0
2 par,0s

s s
s

s=
+ ( )

The ICA
2s term is calculated as:

o ISR 6
j

j jICA
2 2ås = ( )

where ISR is the so-called interference-to-signal-ratio matrix
computed with ICA, and oj are the coefficients of the non-
transit components. Simply put, the ICAs term is the weighted
sum of the errors attributed to the independent components
extracted with ICA. We refer the reader to Morello et al. (2015,
2016) for additional details.

Table 3
Limb-darkening Coefficients a1 4- and Transit Depth R Rp

2
*( ) for the Wavelength Channels

m1 2l l m- ( ) a1 a2 a3 a4 R R ppmp
2
*( ) ( ) R R ppmp

2
*( ) ( )

UCL Pipeline Stripe-ICA

1.1250 1.1511 0.632741 −0.481904 0.701108 −0.306091 22940±112 22961±184
1.1511 1.1767 0.619205 −0.434713 0.64011 −0.282483 22862±100 22890±184
1.1767 1.2011 0.614294 −0.41589 0.610565 −0.272242 23091±105 23057±181
1.2011 1.2247 0.599151 −0.360648 0.544934 −0.247917 23083±105 23163±186
1.2247 1.2480 0.584001 −0.29953 0.465487 −0.216442 22893±102 22926±179
1.2480 1.2716 0.581928 −0.282551 0.441745 −0.210655 22878±102 22863±242
1.2716 1.2955 0.58946 −0.229732 0.322997 −0.169253 22951±110 22966±189
1.2955 1.3188 0.57237 −0.227002 0.362724 −0.181489 22864±123 22911±200
1.3188 1.3421 0.569522 −0.202303 0.325228 −0.166816 23176±94 23188±203
1.3421 1.3657 0.564634 −0.163366 0.265035 −0.14235 23335±129 23381±189
1.3657 1.3901 0.561817 −0.127278 0.200548 −0.113503 23255±103 23285±236
1.3901 1.4152 0.561832 −0.0979712 0.148201 −0.0914278 23122±111 23064±182
1.4152 1.4406 0.572262 −0.100901 0.133369 −0.0848254 23382±119 23396±195
1.4406 1.4667 0.58462 −0.111943 0.124656 −0.0799948 23202±115 23129±196
1.4667 1.4939 0.600205 −0.136878 0.140204 −0.0874595 23181±130 23170±294
1.4939 1.5219 0.609784 −0.134319 0.11158 −0.0721681 23041±160 22987±204
1.5219 1.5510 0.626375 −0.139701 0.0839621 −0.0555132 22890±114 22959±201
1.5510 1.5819 0.647904 −0.193435 0.120068 −0.0635888 23076±131 22978±230
1.5819 1.6145 0.663831 −0.223633 0.124246 −0.0583813 22871±102 22886±171
1.6145 1.6500 0.686226 −0.267069 0.137329 −0.0557593 22611±111 22680±198
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The error bars for the weighted spectrum are calculated as the
simple arithmetic means of the error bars derived from fitting the
independent components to the single stripes. These are worst-case
estimates, as they do not scale when combining the results from
the stripes. Scaling the error bars would not be theoretically
correct, as the individual fits are not independent, given that they
adopt the same components, which are estimated using the
information contained in all of the stripes. The error bars obtained
with ICA are larger than the ones obtained with the parametric
approach by a factor ∼1.6 (weighted) and ∼1.8 (stacked). Note
that scaling the error bars in the weighted approach would have led
to final error bars smaller than photon-noise limited.

4. Atmospheric Retrieval

To interpret the spectrum of HAT-P-32b, we use
 -REx (Waldmann et al. 2015a, 2015b), a Bayesian spectral
retrieval code that uses line lists provided by ExoMol (Yurchenko
et al. 2011; Tennyson & Yurchenko 2012; Barton et al. 2013;
Barber et al. 2014; Yurchenko & Tennyson 2014), HITRAN
(Rothman & Gordon 2009; Gordon et al. 2013), and HITEMP
(Rothman & Gordon 2010). We assumed an atmosphere
dominated by molecular hydrogen and helium, with a mean
molecular weight of 2.3 amu. We considered as candidate trace
gases a broad range of molecules, including H2O, C2H2, CH4,
CO2, CO, HCN, NH3, VO, and TiO. The RobERt (Robotic
Exoplanet Recognition, Waldmann 2016) module restricts the list
of detectable molecules, based on the observed spectral pattern, to
H2O, TiO, and VO. Given the relatively narrow spectral range
probed, we assumed an isothermal profile and molecular
abundances constant with pressure. In addition, we set uniform
priors to the fitted parameters, which were: the mixing ratios of the
molecules (10−12–10−1), the effective temperature of the planet
(1400–2100K), the radius of the planet (1.56–2.10RJup), and the
cloud top pressure (10−3–106 Pa).

In addition to our best-fit model, we fitted for a fully cloudy
atmosphere (straight line), and an atmosphere that contains
only H2O as an active gas (no TiO and VO). We calculated the
Bayes factors relative to the cloudy model as follows:

B
E

E
log 7m

m

c
= ( )

where Em is the Bayesian evidence of the test model and Ec is
the one of the cloudy model.

We found B 12.2m = for the pure-water model and B 12.3m =
for the model that includes water, TiO, and VO. These values
correspond to a 5.3σ detection of water, while they are inconclusive
about the presence of TiO and VO (Trotta 2008).

5. Results

Figure 2 reports the stacked spectra obtained with the
parametric pipeline and with stripe-ICA. Table 3 reports the
numerical results. The four spectra, i.e., stacked and weighted
obtained with the two detrending algorithms, are all consistent
within 0.5σ (maximum discrepancy for a wavelength bin).
Also, the error bars for the corresponding stacked and weighted
spectra are similar, within less than 10% in average.

5.1. Retrieval Results

The transmission spectrum of HAT-P-32b and the best fit to it,
retrieved with  -REx, is shown in Figure 3. The best-fitting values
and the posterior distributions are shown in Table 4 and Figure 4.

With the exception of water vapor, the fitted values for all of the
other molecular mixing ratios are smaller than 10−7. This result
means that they are not detectable from this data set. The
water vapor mixing ratio oscillates, instead, between
log H O 3.452 1.65

1.83= - -
+ depending on the clouds’ top pressure,

which could occur between 5.16 and 1.73 bar. A strong correlation
between the water vapor mixing ratio, the clouds’ top pressure,
planetary radius at 10 bar, and temperature is noticeable in
Figure 4, indicating there is a degeneracy of solutions.

6. Discussion

6.1. Comparison between Detrending Algorithms

As mentioned in the previous section, the error bars obtained
with ICA are larger by a factor of ∼1.6–1.8 compared to the
ones obtained with the parametric fitting. The larger error bars
obtained with ICA are the trade-off for higher objectivity, due
to the lack of any assumption about the instrument systematics
compared to the parametric approach. The ICA error bars are
worst-case estimates. It is worth noting that the discrepancies
between the spectra obtained with the different methods are
smaller than the parametric error bars, suggesting that, in this
case, the ICA error bars might be overly conservative.

6.2. Comparison with Other Observations

Previous ground-based observations of the transit of HAT-P-32b
in the optical wavelengths (Gibson et al. 2013; Zhao et al. 2014;
Mallonn & Strassmeier 2016; Nortmann et al. 2016) did not find
evidence of spectral modulations due to molecules. Our cloud top
pressure is consistent with their measurements within 1σ, hence the
water detection in the infrared is not controversial.

6.3. Strong Water Feature

Water vapor has been detected, to date, in the atmospheres of
about 10 hot Jupiters (Iyer et al. 2016). Stevenson (2016)
identified two classes of hot Jupiters, essentially mostly cloudy
or with a strong water signature. The observed trend suggests
that hotter (T 700eq > K) and more inflated ( glog 2.8> )
planets are more likely to have a strong water signature than
cooler and smaller ones, but the current sample is not
statistically significant. In agreement with this scenario, we
find that HAT-P-32b (T 1786eq = K; glog 2.8> ) has one of
the strongest water features so far detected (∼500 ppm, 5.3σ).

7. Conclusion

We have reported here the analysis of the near-infrared
transit spectrum of the hot Jupiter HAT-P-32b, which was
recorded with the WFC3 on board the HST.
To obtain the transit spectrum, we adopted different analysis

methods, which include parametric and non-parametric techniques
(ICA), and compared the results. The final spectra are all consistent
within 0.5σ. The uncertainties obtained with ICA are larger than
the ones obtained with the parametric method by a factor of
∼1.6–1.8. The larger uncertainties obtained with ICA are the trade-
off for higher objectivity, due to the lack of any assumption about
the instrument systematics compared to the parametric approach.
The ICA uncertainties are therefore the worst-case estimates.
To interpret the spectrum of HAT-P-32b, we used  -REx, a

fully Bayesian spectral retrieval code.
As for other hot Jupiters, the results are consistent with the

presence of water vapor (log H O 4.662 1.93
1.66= - -

+ ) and probably
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clouds (top pressure between 5.16 and 1.73 bar). Spectroscopic
data over a broader wavelength range will be needed to de-correlate
the water vapor’s mixing ratio from clouds and identify other
possible molecular species in HAT-P-32b atmosphere.

The authors are supported by the European Research
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also supported by the Istituto Nazionale di AstroFisica—
Osservatorio Astronomico di Palermo (INAF-OAPa). This
work is also supported by STFC (ST/P000282/1).
The authors wish to thank Ingo Waldmann, Marco Rocchetto,

Jonathan Tennyson, and Sergey Yurchenko for their input.

Appendix
Dilution Factor for the Companion Star

In this particular data set the nearby companion HAT-P-32B
can be separated from the host star HAT-P-32A. This gives us

Table 4
Fitting Results for HAT-P-32b Atmosphere

Parameter Value

log H O2 4.66 1.93
1.66- -

+

T Keff [ ] 1553 91
174

-
+

R Rp jup[ ] 1.76 0.04
0.05- -

+

P barcld,top [ ] 3.39 1.66
1.77

-
+

Figure 4. Posterior distributions to the fit for the WFC3 spectrum of the giant planet HAT-P-32b. Even though we tested the presence of many other molecules in this
atmosphere, here we show only the posterior of H2O because it is the only significant one. All of the other molecules do not show a statistically significant contribution
to the fit.
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the opportunity to calculate the dilution factor between the two
stars, so that it can be used by other studies where the two stars
cannot be separated. To calculate the dilution factor we
extracted the light curve of the companion by adjusting the
wavelength calibration and using an aperture expanding five
pixels above and below the spatially scanned spectrum. Given
the undispersed image of the system taken in the beginning of
the observation, we found the companion to be shifted by
−3.5487 and −23.9709 pixels along the horizontal and vertical
axes of the detector, respectively. For this calculation we
considered only the spectra obtained during the last HST orbit,
as we noticed that the dilution factor was varying linearly
during the two orbits before the transit. The most possible
explanation for this behavior is the long-term linear ramp (see
Table 5).
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