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ABSTRACT 

Research has explored how embeddedness in small-world networks influences individual and firm 

outcomes. We show that there remains significant heterogeneity among networks classified as 

small-world networks. We develop measures of the efficiency of a network, which allow us to 

refine predictions associated with small-world networks. A network is classified as a small-world 

network if it exhibits a distance between nodes that is comparable to the distance found in random 

networks of similar sizes—with ties randomly allocated among nodes—in addition to containing 

dense clusters. To assess how efficient a network is, there are two questions worth asking: (i) ‘what 

is a compelling random network for baseline levels of distance and clustering?’ and (ii) ‘how 

proximal should an observed value be to the baseline to be deemed comparable?’. Our framework 

tests properties of networks, using simulation, to further classify small-world networks according 

to their efficiency. Our results suggest that small-world networks exhibit significant variation in 

efficiency. We explore implications for the field of management and organization. 
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Introduction 

The small-world network phenomenon has captured the imagination of scholars since the 

Milgram studies (Milgram, 1967). Milgram and his colleagues found that individuals in Nebraska 

were typically six steps away from a stockbroker in Boston. While containing weaknesses (Watts, 

2003), the “six-degrees-of-separation” experiment is often cited as evidence that we live in a small-

world network. This property of networks has stimulated research in a number of fields.  

The concept of a small-world network went through several iterations, from early 

formulations in the 1950s and 1960s (Milgram, 1967; Rapoport & Horvath, 1961) to a formalized 

model by Watts and Strogatz (1998). The perception behind the small-world network concept was 

the seemingly counterintuitive notion that individuals are more closely knit together than they 

think. In other words, most individuals are indirectly connected to each other, and there are fewer 

intermediaries between them than one would expect. The graph-theoretic definition by Watts and 

Strogatz (1998) relies on two different properties of networks: path-length and clustering. Path-

length is a measure of the number of intermediaries between two individuals in the network. 

Clustering measures the local density of ties around a specific individual; in other words, the 

proportion of an individual’s contacts which are directly linked to each other. The combination of 

short path-length and clustering means that, in a small-world network, individuals are—on 

average—a short distance from everyone else in the network, while at the same time retaining 

dense local connections. The groundbreaking advance of the model designed by Watts and 

Strogatz is their use of random networks and regular lattice as baseline to establish whether or not 

a network exhibits small-world network properties. Random networks are networks in which ties 

are allocated at random, usually within a set of constraints (Erdos & Renyi, 1959). Lattices are 

perfectly regular networks in which every node is linked to a set number of its neighbors 

https://www.researchgate.net/publication/308059369_The_small_world_problem?el=1_x_8&enrichId=rgreq-cc3bed797c491651907f21274180c4c3-XXX&enrichSource=Y292ZXJQYWdlOzMwODY5MzM3OTtBUzo0MTExNjcxNTY2NTQwODBAMTQ3NTA0MTI5Nzc1Nw==
https://www.researchgate.net/publication/308059369_The_small_world_problem?el=1_x_8&enrichId=rgreq-cc3bed797c491651907f21274180c4c3-XXX&enrichSource=Y292ZXJQYWdlOzMwODY5MzM3OTtBUzo0MTExNjcxNTY2NTQwODBAMTQ3NTA0MTI5Nzc1Nw==
https://www.researchgate.net/publication/9098704_A_study_of_a_large_sociogram?el=1_x_8&enrichId=rgreq-cc3bed797c491651907f21274180c4c3-XXX&enrichSource=Y292ZXJQYWdlOzMwODY5MzM3OTtBUzo0MTExNjcxNTY2NTQwODBAMTQ3NTA0MTI5Nzc1Nw==
https://www.researchgate.net/publication/220695976_Six_Degrees_The_Science_of_a_Connected_Age?el=1_x_8&enrichId=rgreq-cc3bed797c491651907f21274180c4c3-XXX&enrichSource=Y292ZXJQYWdlOzMwODY5MzM3OTtBUzo0MTExNjcxNTY2NTQwODBAMTQ3NTA0MTI5Nzc1Nw==
https://www.researchgate.net/publication/220695976_Six_Degrees_The_Science_of_a_Connected_Age?el=1_x_8&enrichId=rgreq-cc3bed797c491651907f21274180c4c3-XXX&enrichSource=Y292ZXJQYWdlOzMwODY5MzM3OTtBUzo0MTExNjcxNTY2NTQwODBAMTQ3NTA0MTI5Nzc1Nw==
https://www.researchgate.net/publication/302884305_Collective_dynamics_of_'small-world'_networks?el=1_x_8&enrichId=rgreq-cc3bed797c491651907f21274180c4c3-XXX&enrichSource=Y292ZXJQYWdlOzMwODY5MzM3OTtBUzo0MTExNjcxNTY2NTQwODBAMTQ3NTA0MTI5Nzc1Nw==
https://www.researchgate.net/publication/302884305_Collective_dynamics_of_'small-world'_networks?el=1_x_8&enrichId=rgreq-cc3bed797c491651907f21274180c4c3-XXX&enrichSource=Y292ZXJQYWdlOzMwODY5MzM3OTtBUzo0MTExNjcxNTY2NTQwODBAMTQ3NTA0MTI5Nzc1Nw==
https://www.researchgate.net/publication/302884305_Collective_dynamics_of_'small-world'_networks?el=1_x_8&enrichId=rgreq-cc3bed797c491651907f21274180c4c3-XXX&enrichSource=Y292ZXJQYWdlOzMwODY5MzM3OTtBUzo0MTExNjcxNTY2NTQwODBAMTQ3NTA0MTI5Nzc1Nw==
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(Wasserman & Faust, 1994). Watts and Strogatz (1998) paved the way for researchers to test the 

presence or absence of small-world network properties in their networks. 

Watts and Strogatz (1998) observed that most “real” networks exhibit small-world 

properties. This captured the interest of researchers across disciplines. In organizational research, 

small-world networks have been deemed to exist readily and have a multiplicity of outcomes. They 

have been found to be an efficient way of organizing information flow between firms (Verspagen 

& Duysters, 2004) and to enhance innovative performance of firms embedded in such networks 

(Schilling & Phelps, 2007). In the case of board interlocks, small-world network properties have 

also been shown to be resilient to turnover among members of the network (Davis, Yoo, & Baker, 

2003). At the individual level, small-world networks have been shown to enhance performance of 

creative teams on Broadway shows, both in terms of revenues and critical appeal (Uzzi & Spiro, 

2005). Small-world networks have also been linked with higher creativity and faster diffusion of 

innovation in networks of inventors (Fleming & Marx, 2006). In a community of software 

developers, small-world networks have been shown to enhance programmers’ productivity (Singh, 

2010). However, not all results have been consistent. In their review of the literature, Uzzi and 

colleagues have found that effects on performance of network members are generally positive, but 

with varying patterns across studies (Uzzi, Amaral, & Reed-Tsochas, 2007). At the firm level, 

Fleming, King and Juda (2007) failed to find evidence for any benefits of small-world networks 

on firms’ innovation within geographical regions. However, they found a positive effect of one of 

the components of small-world networks—path-length—on firms’ innovation. This suggest that 

the results at the firm level might not be robust, or that they are dependent on other conditions. 

The fact that results vary across studies raises a number of questions. Perhaps small-world 

network characteristics have a complex relationship (neither linear nor quadratic) with different 

https://www.researchgate.net/publication/228264519_Managing_Creativity_in_Small_Worlds?el=1_x_8&enrichId=rgreq-cc3bed797c491651907f21274180c4c3-XXX&enrichSource=Y292ZXJQYWdlOzMwODY5MzM3OTtBUzo0MTExNjcxNTY2NTQwODBAMTQ3NTA0MTI5Nzc1Nw==
https://www.researchgate.net/publication/216634004_Social_Network_Analysis_Methods_And_Applications?el=1_x_8&enrichId=rgreq-cc3bed797c491651907f21274180c4c3-XXX&enrichSource=Y292ZXJQYWdlOzMwODY5MzM3OTtBUzo0MTExNjcxNTY2NTQwODBAMTQ3NTA0MTI5Nzc1Nw==
https://www.researchgate.net/publication/228170316_The_Small_World_of_the_American_Corporate_Elite_1982-2001?el=1_x_8&enrichId=rgreq-cc3bed797c491651907f21274180c4c3-XXX&enrichSource=Y292ZXJQYWdlOzMwODY5MzM3OTtBUzo0MTExNjcxNTY2NTQwODBAMTQ3NTA0MTI5Nzc1Nw==
https://www.researchgate.net/publication/228170316_The_Small_World_of_the_American_Corporate_Elite_1982-2001?el=1_x_8&enrichId=rgreq-cc3bed797c491651907f21274180c4c3-XXX&enrichSource=Y292ZXJQYWdlOzMwODY5MzM3OTtBUzo0MTExNjcxNTY2NTQwODBAMTQ3NTA0MTI5Nzc1Nw==
https://www.researchgate.net/publication/251800035_Collaboration_and_Creativity_The_Small_World_Problem?el=1_x_8&enrichId=rgreq-cc3bed797c491651907f21274180c4c3-XXX&enrichSource=Y292ZXJQYWdlOzMwODY5MzM3OTtBUzo0MTExNjcxNTY2NTQwODBAMTQ3NTA0MTI5Nzc1Nw==
https://www.researchgate.net/publication/251800035_Collaboration_and_Creativity_The_Small_World_Problem?el=1_x_8&enrichId=rgreq-cc3bed797c491651907f21274180c4c3-XXX&enrichSource=Y292ZXJQYWdlOzMwODY5MzM3OTtBUzo0MTExNjcxNTY2NTQwODBAMTQ3NTA0MTI5Nzc1Nw==
https://www.researchgate.net/publication/228118626_Small-World_Networks_and_Management_Science_Research_A_Review?el=1_x_8&enrichId=rgreq-cc3bed797c491651907f21274180c4c3-XXX&enrichSource=Y292ZXJQYWdlOzMwODY5MzM3OTtBUzo0MTExNjcxNTY2NTQwODBAMTQ3NTA0MTI5Nzc1Nw==
https://www.researchgate.net/publication/222513119_The_Small_Worlds_of_Strategic_Technology_Alliances?el=1_x_8&enrichId=rgreq-cc3bed797c491651907f21274180c4c3-XXX&enrichSource=Y292ZXJQYWdlOzMwODY5MzM3OTtBUzo0MTExNjcxNTY2NTQwODBAMTQ3NTA0MTI5Nzc1Nw==
https://www.researchgate.net/publication/222513119_The_Small_Worlds_of_Strategic_Technology_Alliances?el=1_x_8&enrichId=rgreq-cc3bed797c491651907f21274180c4c3-XXX&enrichSource=Y292ZXJQYWdlOzMwODY5MzM3OTtBUzo0MTExNjcxNTY2NTQwODBAMTQ3NTA0MTI5Nzc1Nw==
https://www.researchgate.net/publication/220534391_Interfirm_Collaboration_Networks_The_Impact_of_Large-Scale_Network_Structure_on_Firm_Innovation?el=1_x_8&enrichId=rgreq-cc3bed797c491651907f21274180c4c3-XXX&enrichSource=Y292ZXJQYWdlOzMwODY5MzM3OTtBUzo0MTExNjcxNTY2NTQwODBAMTQ3NTA0MTI5Nzc1Nw==
https://www.researchgate.net/publication/302884305_Collective_dynamics_of_'small-world'_networks?el=1_x_8&enrichId=rgreq-cc3bed797c491651907f21274180c4c3-XXX&enrichSource=Y292ZXJQYWdlOzMwODY5MzM3OTtBUzo0MTExNjcxNTY2NTQwODBAMTQ3NTA0MTI5Nzc1Nw==
https://www.researchgate.net/publication/302884305_Collective_dynamics_of_'small-world'_networks?el=1_x_8&enrichId=rgreq-cc3bed797c491651907f21274180c4c3-XXX&enrichSource=Y292ZXJQYWdlOzMwODY5MzM3OTtBUzo0MTExNjcxNTY2NTQwODBAMTQ3NTA0MTI5Nzc1Nw==
https://www.researchgate.net/publication/220403867_The_small-world_effect_The_influence_of_macro-level_properties_of_developer_collaboration_networks_on_open-source_project_success?el=1_x_8&enrichId=rgreq-cc3bed797c491651907f21274180c4c3-XXX&enrichSource=Y292ZXJQYWdlOzMwODY5MzM3OTtBUzo0MTExNjcxNTY2NTQwODBAMTQ3NTA0MTI5Nzc1Nw==
https://www.researchgate.net/publication/220403867_The_small-world_effect_The_influence_of_macro-level_properties_of_developer_collaboration_networks_on_open-source_project_success?el=1_x_8&enrichId=rgreq-cc3bed797c491651907f21274180c4c3-XXX&enrichSource=Y292ZXJQYWdlOzMwODY5MzM3OTtBUzo0MTExNjcxNTY2NTQwODBAMTQ3NTA0MTI5Nzc1Nw==


 

5 
 

measures of performance? Is our current measurement apparatus crude and imprecise, unable to 

capture the likely behavior of a network? These are the questions at the core of this paper. In fact, 

we are hardly the first to notice that research on small-world networks is far from complete: 

management scholars have recognized the existence of weaknesses in the current apparatus used 

to assess whether a network is a small-world network (Steen, Macaulay, & Kastelle, 2011; Uzzi et 

al., 2007). However, those studies focused on limitations of the link between the measure 

employed and the mechanisms it was said to capture, on the interpretation of the results, or on the 

limitations of the data used. Measurement issues and their solutions have not featured highly in 

past research on small-world networks—this is what we tackle, as we believe there are ways to 

enhance our measurement apparatus. There are three limitations of the current measurement 

method that need to be overcome: (i) the widely used formula to calculate small-world networks 

is sensitive to large differences between the results for path-length and those for clustering; (ii) the 

current apparatus is only defined for the simplest types of networks, and applying it to more 

complex networks might have unintended consequences on the result; and (iii) there is a 

fundamental ambiguity regarding what makes a random network appropriate for comparison. 

We build on the small-world network literature to design measures of efficiency of 

networks that refine our understanding of small-world network characteristics and their behavior, 

and overcome the three limitations highlighted above. By efficiency, we refer to the degree to 

which the structure of a network will facilitate circulation of flux. In order to do so, we draw on 

advances in network measurement. Especially, we will measure how observed networks compare 

to random networks in terms of clustering and path-length through simulation. High clustering and 

short path-length, compared to the ones obtained with comparable random networks, increase the 

speed of diffusion of information through a network. Our framework refines prediction about 

https://www.researchgate.net/publication/228118626_Small-World_Networks_and_Management_Science_Research_A_Review?el=1_x_8&enrichId=rgreq-cc3bed797c491651907f21274180c4c3-XXX&enrichSource=Y292ZXJQYWdlOzMwODY5MzM3OTtBUzo0MTExNjcxNTY2NTQwODBAMTQ3NTA0MTI5Nzc1Nw==
https://www.researchgate.net/publication/228118626_Small-World_Networks_and_Management_Science_Research_A_Review?el=1_x_8&enrichId=rgreq-cc3bed797c491651907f21274180c4c3-XXX&enrichSource=Y292ZXJQYWdlOzMwODY5MzM3OTtBUzo0MTExNjcxNTY2NTQwODBAMTQ3NTA0MTI5Nzc1Nw==
https://www.researchgate.net/publication/227623799_Small_worlds_The_best_network_structure_for_innovation?el=1_x_8&enrichId=rgreq-cc3bed797c491651907f21274180c4c3-XXX&enrichSource=Y292ZXJQYWdlOzMwODY5MzM3OTtBUzo0MTExNjcxNTY2NTQwODBAMTQ3NTA0MTI5Nzc1Nw==
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networks by dividing the class of small-world networks into subclasses of more or less efficient 

networks. We find many networks that are characterized as small-world networks do not exhibit 

efficient properties, which suggests that there is substantial variation in the properties of small-

world networks. Thus, we offer a rationale for some of the inconsistent results in the literature, and 

tools that will allow researchers to better assess the characteristics of the networks, with direct 

implications for social science and organization research. 

A Framework to estimate network efficiency 

 The small-world network phenomenon opens new avenues for management and 

organizational scholarship. From this perspective, it is more than just firms’ and individuals’ 

characteristics or network positions that matter. The structure of the relationships between actors 

embedded in the network—firms or individuals—helps to predict the outcomes. The literature has 

identified several mechanisms that explain why small-world networks are beneficial in different 

contexts, such as firm alliances or creative teams (Schilling & Phelps, 2007; Uzzi & Spiro, 2005). 

Those mechanisms usually postulate that the benefits of being embedded in a small-world network 

are related to the speed of information diffusion coupled with the existence of dense clusters, 

believed to quicken the execution of new ideas. The speed of diffusion is usually attributed to the 

short average path-length (the number of links one need to traverse to join any two individuals in 

the network) found in small-world networks. Dense clusters are subgroups of individuals or firms 

that share many relations within the group; in other words, they are cohesive subgroups. Small-

world networks lead to increased efficiency because the network retains cohesive groups that are 

more likely to mobilize quickly and effectively to bring a new idea to fruition (Fleming et al., 

2007; Fleming & Marx, 2006; Schilling & Phelps, 2007)i, even while favoring diffusion of 

knowledge. 

https://www.researchgate.net/publication/228264519_Managing_Creativity_in_Small_Worlds?el=1_x_8&enrichId=rgreq-cc3bed797c491651907f21274180c4c3-XXX&enrichSource=Y292ZXJQYWdlOzMwODY5MzM3OTtBUzo0MTExNjcxNTY2NTQwODBAMTQ3NTA0MTI5Nzc1Nw==
https://www.researchgate.net/publication/251800035_Collaboration_and_Creativity_The_Small_World_Problem?el=1_x_8&enrichId=rgreq-cc3bed797c491651907f21274180c4c3-XXX&enrichSource=Y292ZXJQYWdlOzMwODY5MzM3OTtBUzo0MTExNjcxNTY2NTQwODBAMTQ3NTA0MTI5Nzc1Nw==
https://www.researchgate.net/publication/220534391_Interfirm_Collaboration_Networks_The_Impact_of_Large-Scale_Network_Structure_on_Firm_Innovation?el=1_x_8&enrichId=rgreq-cc3bed797c491651907f21274180c4c3-XXX&enrichSource=Y292ZXJQYWdlOzMwODY5MzM3OTtBUzo0MTExNjcxNTY2NTQwODBAMTQ3NTA0MTI5Nzc1Nw==
https://www.researchgate.net/publication/220534391_Interfirm_Collaboration_Networks_The_Impact_of_Large-Scale_Network_Structure_on_Firm_Innovation?el=1_x_8&enrichId=rgreq-cc3bed797c491651907f21274180c4c3-XXX&enrichSource=Y292ZXJQYWdlOzMwODY5MzM3OTtBUzo0MTExNjcxNTY2NTQwODBAMTQ3NTA0MTI5Nzc1Nw==
https://www.researchgate.net/publication/228138768_Small_Worlds_and_Regional_Innovation?el=1_x_8&enrichId=rgreq-cc3bed797c491651907f21274180c4c3-XXX&enrichSource=Y292ZXJQYWdlOzMwODY5MzM3OTtBUzo0MTExNjcxNTY2NTQwODBAMTQ3NTA0MTI5Nzc1Nw==
https://www.researchgate.net/publication/228138768_Small_Worlds_and_Regional_Innovation?el=1_x_8&enrichId=rgreq-cc3bed797c491651907f21274180c4c3-XXX&enrichSource=Y292ZXJQYWdlOzMwODY5MzM3OTtBUzo0MTExNjcxNTY2NTQwODBAMTQ3NTA0MTI5Nzc1Nw==
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Those two mechanisms—speed of information diffusion and ability to mobilize—rely on 

the two properties of small-world networks defined in Watts and Strogatz’s model (Watts & 

Strogatz, 1998): path-length and clustering coefficient. Their model starts from a regular ring 

lattice network, in which each node is connected to its k-nearest neighbors, and progressively 

rewires the edges between nodes to transform this network into a random network (k is a parameter 

equal to how many of its neighbors every node is connected to). Regular lattices have high 

clustering by definition because a node and its neighbors are densely connected locally. Random 

networks have short average path-length because there is no segregation between groups of nodes, 

due to the randomness of the ties. Figure 1 illustrates that the transition between a ring lattice to a 

random network depends on the proportion of ties that are rewired (ties for which the receiving 

node is randomly swapped for a new node); the first panel of Figure 1 shows a ring lattice, the 

second panel shows a small-world network, and the third a random network. Watts and Strogatz 

observe that there is a transition phase between the regular lattice and the random network, during 

which the network retains clustering levels close to those of a regular lattice while already 

displaying path-length similar to the ones found in random networks. They go on to show that this, 

in turn, affects the speed at which a disease will spread in a network. Specifically, they find that 

diseases spread at a similar speed in both small-world networks and random networks, but at a 

much slower speed on a regular ring lattice. 

---Insert Figure 1 about here--- 

The work of Watts and Strogatz generated significant interest in many fields, including 

social sciences and management. However, they offer little guidance as to how to use the model 

to estimate small-world network properties for networks that are not generated by their model. The 

guidance they offer is summarized in the legend of Table 1 of their paper: 𝐿𝑎𝑐𝑡𝑢𝑎𝑙 ≥  𝐿𝑟𝑎𝑛𝑑𝑜𝑚 but 

https://www.researchgate.net/publication/302884305_Collective_dynamics_of_'small-world'_networks?el=1_x_8&enrichId=rgreq-cc3bed797c491651907f21274180c4c3-XXX&enrichSource=Y292ZXJQYWdlOzMwODY5MzM3OTtBUzo0MTExNjcxNTY2NTQwODBAMTQ3NTA0MTI5Nzc1Nw==
https://www.researchgate.net/publication/302884305_Collective_dynamics_of_'small-world'_networks?el=1_x_8&enrichId=rgreq-cc3bed797c491651907f21274180c4c3-XXX&enrichSource=Y292ZXJQYWdlOzMwODY5MzM3OTtBUzo0MTExNjcxNTY2NTQwODBAMTQ3NTA0MTI5Nzc1Nw==
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𝐶𝑎𝑐𝑡𝑢𝑎𝑙 ≫  𝐶𝑟𝑎𝑛𝑑𝑜𝑚, where L is the average path-length and C the clustering for a given network, 

while 𝐿𝑟𝑎𝑛𝑑𝑜𝑚 and  𝐶𝑟𝑎𝑛𝑑𝑜𝑚 are the average path-length and clustering for an equivalent random 

network. The emerging practice among social scientists to estimate small-world network 

properties was mirrored on their model: measuring path-length and clustering, and comparing them 

to those found in a comparable random network. The comparison takes the form of a ratio of ratios: 

𝐶𝐶𝑜
𝐶𝐶𝑟

⁄

𝑃𝐿𝑜
𝑃𝐿𝑟

⁄
  

(where 𝐶𝐶𝑜 and 𝑃𝐿𝑜 are the clustering coefficient and the path-length in the 

observed network and  𝐶𝐶𝑟 and 𝑃𝐿𝑟 are those in the comparable random network). This has proved 

to work well when evaluating whether or not networks generated with the Watts and Strogatz 

model displayed small-world network properties.  

However, this method is not in the original paper by Watts and Strogatz, and has potential 

caveats. First, if the two ratios that compose the final ratio are very different, the largest ratio is 

going to have an inflated influence on the final statistic. Second, this method is appropriate for 

undirected and unweighted networks; however, many network observed by management scholars 

are directed or weighted. For example, records of transactions between exchange partners are 

directed: there is a buyer and a seller. Furthermore, those are also weighted, as transactions vary 

in amount. As a consequence, extending the method for directed and weighted networks seems 

like a natural step. Defining measures for directed or weighted networks offers researchers an 

alternative to the current common practice of simplifying their network (by ignoring weights or 

direction of ties) in order to use the framework, which—as our results will show—has unintended 

consequences on the results obtained. Thirdly, the term random network covers a wide family of 

synthetic networks, and there are many different subclasses of random networks. It begs the 
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question: which type of random network should be used for comparison? While it seems there is 

no consensus in the current literature, we offer guidelines for researchers to choose the family of 

random networks best suited for their purposes. 

The simplest random networks, often referred to as Erdos-Renyi or Bernoulli networks, are 

constructed by using the same number of nodes as those in the network under study, and assigning 

each dyad a uniform probability of having a tie based on the observed density (Erdos & Renyi, 

1959). In these networks, the network distance has been shown to grow with the logarithm of the 

number of nodes (Chung & Lu, 2002). Baseline values based on random networks often rely on 

formula using the numbers of nodes and ties as input (Erdos & Renyi, 1959; Molloy & Reed, 1995; 

Opsahl, Colizza, Panzarasa, & Ramasco, 2008). The main advantage of this approach is that 

network properties can often be approximated using equations with the number of nodes and ties 

only. For example, the network distance is approximately the ratio between the logarithm of nodes 

and the logarithm of the average degree of nodes (Newman, 2001b; Watts & Strogatz, 1998). The 

disadvantage of this approach is that the distribution of ties across nodes is uniform or Poisson 

(Erdos & Renyi, 1959): such distributions rarely exists in reality.  

Most real-world distributions are skewed (Albert, Jeong, & Barabási, 1999; Molloy & 

Reed, 1995), implying that some nodes are hubs, which should reduce network distance (Albert et 

al., 1999; Dodds, Muhamad, & Watts, 2003; Granovetter, 2003; Newman, 2001b; Simşek & 

Jensen, 2008; Yeates & Beeby, 2006). In other words, the skewed (scale free) nature of degree 

distributions in most observed networks leads one to question whether the values for comparison 

should be obtained from a random network with a similar degree distribution, rather than uniform 

ones. Indeed, some scholars have made the case that this is the best way to obtain baseline values 

(Uzzi & Spiro, 2005). 
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We refine the estimation of both path-length and clustering. Our framework is an extension 

of the method used to estimate small-world properties that allow for the evaluation of how efficient 

a network is. We conceptualize efficiency as the combination of characteristics that lead to a high 

speed of information diffusion (e.g. short path-length) and ease of resource mobilization (e.g. 

clustering). To determine the efficiency of a network, we measure how much the network under 

study differs statistically from the same characteristics in comparable random networks, for each 

of the aforementioned characteristics. Unlike previous works—that have relied on equations—we 

create ensembles of random networks using randomization procedures. While costly in 

computation, simulations lead to more accurate baseline values and expose the distribution of 

network distances in similar networks. If network distances found in random networks follow a 

normal or Gaussian distribution, the standard deviation can be calculated. In our analysis, the 

distributions of values for random networks were normally distributed for all networks. However, 

it is an additional feature of our framework that the analyst can evaluate, by looking at the 

distribution of values, when conclusions about a network might be less reliable due to non-

normality of the distribution. 

Our framework differs from the previous method on several accounts. The usual practice 

to estimate small-world network properties relies on the values obtained from one random network 

and compares them to the network under study. The limitation of this approach is that there is no 

way for the analyst to know if the values obtained from the random network are representative of 

the population of random networks generated with the same properties. For example, for Erdos-

Renyi networks, this population consists of all random networks with the same number of nodes 

and ties. We overcome this limitation by drawing several random networks from that family, 

allowing us to observe the distribution of values in that population. This approach is similar in 
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spirit to several methods developed to overcome challenges associated with working with network 

data. For example, multiple regression quadratic assignment procedure (MRQAP) overcomes the 

limitations of standard significance tests in the presence of non-independence between 

observations (as is the case in a network), by performing multiple permutations on the matrix of 

ties and attributes between actors in the network (Dekker, Krackhardt, & Snijders, 2007). 

Exponential random graph models aim to uncover the generative process that leads to the observed 

network. In order to do this, the procedure generates ensembles of random networks in order to 

estimate how much the observed network departs from the random networks (Robins, Snijders, 

Wang, Handcock, & Pattison, 2007; Snijders, Pattison, Robins, & Handcock, 2006).  As such, our 

approach applies similar thinking to the estimation of path-length and clustering coefficient. 

The second difference between our framework and the traditional method is that we allow 

for flexibility in terms of the random network being generated; an analyst can pick the type of 

random network deemed to be most appropriate to study the network at hand. There are three 

traditional dimensions used to refer to network types: whether a network is (i) directed or not, (ii) 

weighted or not, and (iii) whether it is a 1-mode (unipartite) or 2-mode (bipartite) network. 

Directed networks are networks in which ties have a direction from one node to the next. For 

example, in the case of a message network, there is a sender and a receiver for each message. 

Conversely, a collaboration network might be undirected, simply recording that two individuals 

have worked together. Weighted networks are networks in which a tie is assigned a numerical 

value to represent a specific attribute. For example, in a collaboration network, the weight might 

record how often two-individuals have worked together. Finally, 1-mode networks have only 1 

type of nodes, while 2-mode networks have two types of nodes. In a 2-mode network, two nodes 

from the same type can only be linked together through a node from the other type. 2-mode 
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networks are a convenient way of representing co-presence at events. For example, in a co-

authorship network, authors are linked to papers and two authors can only be linked together 

through having co-authored a paper. We provide an example of our framework for 1-mode 

unweighted and undirected networks, for 1-mode weighted or directed networks, and for 2-mode 

weighted networks. To use our framework, an analyst should go through the following five steps: 

1. Determine the type of network to be studied (e.g. 2-mode weighted). 

2. Based on the type of network studied, choose the most relevant method to calculate the 

average path-length and the clustering in the network under study (see Table 1 for 

recommendations). 

3. Based on the type of network studied; choose a randomization procedure (see Table 1 

for recommendations). 

4. Next, generate an ensemble of random networks with the chosen randomization 

procedure and calculate path-length and clustering in each of those networks. The size 

of the ensemble should be adapted based on the size of the network under study; the 

computation is costly and, therefore, there is a trade-off between the time the simulation 

takes to run and the ability to detect smaller departures from random—obtained through 

the number of replication. (For convenience, one can use the software we provide with 

this paper)ii. 

5. Once the simulation is over, check that the distribution of values for the simulated 

networks is normal (we recommend visual inspection in a graph and additional 

diagnostics of normality). If the distribution appears to be normal, the researcher can 

calculate p-values or plot confidence intervals. For further analyses, to enter the results 

as variables in a regression for example, we recommend calculating the departure of 
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the observed path-length and clustering to the mean of the simulation, in number of 

standard deviations. This has two benefits. First, it contains more information than a 

dummy coding (of whether the value is higher or lower than random). Second, it 

facilitates comparisons across different networks. 

Method 

Our framework relies on estimating two network characteristics: average path-length and 

clustering. There are several ways of estimating a given property depending on the type of network 

under study; as an example there are different formulas for 1-mode undirected networks and for 

2-mode networks for clustering. The randomization procedures can also be adapted, depending on 

which type of network is being studied. The following section covers the different estimates for 

the two characteristics of networks we are focusing on—along with the randomization procedures 

we recommend—based on the types of network under study. Our framework offers the analyst the 

flexibility to choose the most appropriate type of random network to generate for comparison with 

the network under study. 

Network Distance. In binary and weighted 1-mode networks, network distance is the 

average shortest path-length found among nodes in the largest component. In weighted networks, 

the shortest path is based on Dijkstra’s algorithm (Dijkstra, 1959; Newman, 2001b). This algorithm 

identifies the least costly path between two nodes as the shortest path. A higher weight is 

understood by the algorithm as being a tie that is costlier to traverse. In most networks (and all 

those analyzed in this paper) the tie weights are positive, and a higher weight represents a stronger 

tie. Hence we need to transform the weights to represent cost of transmission between two nodes, 

instead of representing the strength of association. One such transformation process is to invert the 
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tie weights (Newman, 2001b). This ensures that a tie that is twice as strong as another (e.g., 4 

versus 2) is assigned half the cost (e.g., 0.25 versus 0.5). However, this procedure assigns a non-

meaningful distance value to the path. To overcome this issue, we multiply the inverted weights 

with the average tie weight in the network. Thus, one unit of distance refers to one step with the 

average tie weight, and distance among nodes becomes comparable across networks. One should 

note that this transformation does not affect the relative distance within a network, it only acts as 

a normalization to make comparisons easier (in the rest of this paper, we refer to this procedure as 

normalizing weights). 

In binary 2-mode networks, the distance between nodes is found by projecting the network 

to a weighted 1-mode network, then applying the method outlined above. To increase the richness 

of 1-mode projections, it is possible to assign tie weights based on the 2-mode structure (Newman, 

2001b; Opsahl, 2013). We assign a tie weight between two nodes that is equal to the number of 

common nodes they shared in the 2-mode network. For example, in a scientific collaboration 

network, the tie strength between two authors would be the number of papers they have co-

authored. 

To determine distance in weighted 2-mode networks, we extend the projection method by 

defining the 1-mode tie weight from a node to another as the sum of tie weights towards common 

nodes in the 2-mode network. As two nodes might exert different levels of interaction with the 

common nodes, this procedure leads to a weighted 1-mode network where ties are symmetric, but 

weights are asymmetric. In other words, if A is connected to B, B must be connected to A, but the 

tie weight from A to B is not necessarily equal to that from B to A. We realize, however, that the 

most appropriate weight calculation for 2-mode projections are somewhat context dependent. For 

example, should your 2-mode network record how long individuals have attended a series of 
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events, you might want the weights to be symmetric and reflect the amount of time the individuals 

spent together at those event.iii Table 1 summarizes the calculation of path-length that we 

recommend for different networks.  

Network Clustering. We rely on the global clustering coefficient and its generalizations 

to weighted 1-mode networks (Opsahl & Panzarasa, 2009) and 2-mode networks (Opsahl, 2013; 

Piepenbrink & Gaur, 2013) to determine the level of clustering. The global clustering coefficient 

is similar to the local clustering coefficient, and measures the proportion of triplets that are closed 

among all the potential triplets in a network. A triplet with nodes A, B, C is closed if ties exist 

between each pairs (A,B), (B,C) and (A, C). It is formally defined for 1-mode networks as: 𝐶𝐶 =

 
𝑐𝑙𝑜𝑠𝑒𝑑 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑝𝑙𝑒𝑡𝑠
. It is more robust to skewed degree distribution than the local clustering 

coefficient. Indeed, the average local clustering coefficient (Barrat, Barthélemy, Pastor-Satorras, 

& Vespignani, 2004; Watts & Strogatz, 1998) is disproportionately based on whether ties exist 

among the neighbors of nodes with few ties (Opsahl & Panzarasa, 2009; Ravasz, Somera, Mongru, 

Oltvai, & Barabási, 2002). By contrast the binary global coefficient weights each triplet equally. 

Another advantage of the global coefficient is that it is faster to compute than the local clustering 

coefficient. This difference in computation time becomes significant when running simulations 

with a thousand replications, as we do. Implementations of the clustering coefficient algorithm are 

readily available in R and Python—in packages such as igraph (Csardi & Nepusz, 2006). In Table 

1, we show the method to calculate clustering that we recommend for different types of networks. 

The first column of Table 1 shows the different types of networks that a researcher might want to 

analyze; for each type of network, the subsequent columns show the type or types of path-length 

and clustering measure available. The fourth column shows the randomization procedures 

available for this type of network and, finally, the fifth column contains recommendations. 
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---Insert Table 1 here--- 

 

Randomization Procedures. If the network under study is not a 1-mode unweighted 

network, using Erdos-Renyi networks for comparison imposes simplification of the features of the 

observed network. In response, scholars have developed new randomization procedures which 

maintain additional features of the networks (Molloy & Reed, 1995; Opsahl et al., 2008). We take 

advantage of those by presenting a framework in which the analyst can select the type of random 

networks they deem most appropriate for comparison with the network under study. 

By reshuffling ties in an observed network, it is possible to create random networks that 

maintain each node’s number of ties (i.e., maintaining the hubs) as well as the overall number of 

nodes and ties (Molloy & Reed, 1995). This reshuffling is achieved, for directed networks, by 

selecting a tie from one node to another and changing the endpoint of that tie. For weighted 

networks, it is also possible to only reshuffle the weights (Opsahl et al., 2008). A key feature of 

this procedure is the preservation of the largest interconnected group of nodes. Other methods to 

refine the generation of random networks have been elaborated, relying on generating functions 

(Newman, Strogatz, & Watts, 2001; Newman, Watts, & Strogatz, 2002) and, in some cases, those 

are less computationally costly than our rewiring procedure. However, they do not always 

accurately preserve features of a given network, and using them would reduce the generality of 

our method. 

Weighted 1-mode randomization. For weighted 1-mode networks, we extend the 

randomization procedure for random networks to weighted networks by sampling the observed tie 

weights. Traditionally, classic random networks are binary networks (Erdos & Renyi, 1959). To 

produce comparison values for weighted networks, a binary random network is far removed from 

the observed network, and it might be appropriate to use a weighted random network for 
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comparison. Therefore, we assign tie weights to classic random networks by randomly sampling 

weights from the tie weights of the network under study. This ensures that the distribution of tie 

weight in the network—generated in this way—approximate the distribution of weight in the 

observed network. As opposed to the tie reshuffling (Molloy & Reed, 1995) and weight reshuffling 

procedures (Opsahl et al., 2008), this does not maintain the exact weight distribution, as the 

number of ties in the random network is not exactly the same as the observed network. 

2-mode randomization. Randomization procedures for 1-mode networks are well 

established (Erdos & Renyi, 1959; Molloy & Reed, 1995; Opsahl et al., 2008). However, this is 

not true for 2-mode networks. Our definition of a classic random 2-mode network is a network 

with a set number of primary and secondary nodes, and a uniform probability of ties being present. 

When creating a corresponding classic random 2-mode network, the numbers of primary and 

secondary nodes of the observed network are maintained; the probability of ties being present 

between nodes from different modes is equal to the number of observed ties divided by the product 

of the number of primary nodes and the number of secondary nodes (Barrat et al., 2004; Borgatti 

& Everett, 1997). Similar to our technique for 1-mode random networks, we randomly sample the 

tie weights in the observed weighted 2-mode network to obtain more realistic random networks. 

The tie reshuffling procedure for 1-mode networks (Molloy & Reed, 1995) is extended to 2-mode 

networks by selecting two nodes from each mode that are connected by exactly two ties and then 

changing the endpoints. When this procedure has been repeated many times, the resulting network 

can be considered random, yet the nodes maintain their degree. In our analysis, we repeated the 

procedure ten times the number of ties in the observed networks. The weight reshuffling procedure 

for 2-mode networks is a straightforward generalization of the 1-mode procedure (Opsahl et al., 

2008). While maintaining the topology of an observed network, it randomly reassigns the tie 
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weights, ensuring that nodes of both modes maintain their degree, but not their strength. 

For all the randomization procedures mentioned there are implementations available in R 

and Python, through the igraph and the tnet package (Csardi & Nepusz, 2006; Opsahl, 2009). 

Determining the number of simulations. Because each simulation is expensive, one 

might want to limit the number of runs necessary to accurately estimate the characteristic of a 

network. We are simulating a distribution of networks and using them to calculate the mean and 

the standard deviation of this distribution. Intuitively, one understands that the more networks we 

are simulating the smaller the standard error for the mean of the distribution is going to be. In 

addition, increasing the runs increases the precision of our estimation of the standard deviation 

from the mean for this distribution of networks. Ritter, Schoelles, Quigley, and Klein (2011) 

provide very detailed suggestions on how to calculate the number of runs necessary to detect an 

effect of a specific size. They suggest that when simulation runs are inexpensive, one could 

perform 10,000 or 100,000 simulation runs. They also show that, even when differences between 

the observed mean and the simulated one are relatively small (in the range of 0.2 standard 

deviation), one requires less than 1,000 runs (the number we have retained here) to obtain a power 

over 0.99. 

Description of the networks 

 We use six real-world networks to test the proposed method for assessing network 

efficiency. The networks are (i) the US power grid (Watts & Strogatz, 1998), (ii) the US airport 

network (Colizza, Pastor-Satorras, & Vespignani, 2007), (iii) the neural network of the C. elegans 

worm (Watts & Strogatz, 1998), (iv) a Facebook-like online social network (Opsahl & Panzarasa, 

2009), (v) a scientific collaboration network (Newman, 2001a), and (vi) an online forum (Opsahl, 

2013). These six networks represent various combinations of 1- and 2-mode networks, undirected 
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and directed networks, and binary and weighted networks as outlined in Table 2—which list 

characteristics of each of those six networks. 

Power grid 

The first network is the high-voltage power grid in the western states of the United States 

of America. The nodes are transformers, substations, and generators; the ties are high-voltage 

transmission lines. This network was also used in the Watts and Strogatz (Watts & Strogatz, 1998) 

seminal paper. Although the transmission lines can be directed and differentiated based on their 

capacity, this information has not been used in previous research and was not available to us. 

Therefore, we treat this network as an undirected and binary 1-mode network. 

US Airport 

The US airport network is comprised of the 500 busiest commercial airports in the United 

States (Colizza et al., 2007). A tie exists between two airports if a flight was scheduled between 

them in 2002. The tie weights correspond to the number of seats available on the scheduled flights. 

Although this type of network is directed by nature, as a flight is scheduled from one airport and 

to another, this network is highly symmetric and we analyze it as undirected. This network is 

analyzed as an undirected and weighted 1-mode network. 

C. elegans 

The C. elegans network is the neural network of the Caenorhabditis elegans worm, and was 

included in the Watts and Strogatz analysis (Watts & Strogatz, 1998). The network contains 306 

nodes that represent neurons, out of which 297 are part of a single large component (see Table 3). 

Two neurons are connected if at least one synapse or gap junction exists between them. Given that 

https://www.researchgate.net/publication/302884305_Collective_dynamics_of_'small-world'_networks?el=1_x_8&enrichId=rgreq-cc3bed797c491651907f21274180c4c3-XXX&enrichSource=Y292ZXJQYWdlOzMwODY5MzM3OTtBUzo0MTExNjcxNTY2NTQwODBAMTQ3NTA0MTI5Nzc1Nw==
https://www.researchgate.net/publication/1861441_Reaction-diffusion_processes_and_metapopulation_models_in_heterogeneous_network?el=1_x_8&enrichId=rgreq-cc3bed797c491651907f21274180c4c3-XXX&enrichSource=Y292ZXJQYWdlOzMwODY5MzM3OTtBUzo0MTExNjcxNTY2NTQwODBAMTQ3NTA0MTI5Nzc1Nw==


 

20 
 

not all synapses and gap junctions are bidirectional, this network is directed. Moreover, this 

network contains information on the number of synapses and gap junctions that transmit signals 

from one neuron to another. We treat this network as a directed and weighted 1-mode network. 

Online social network 

The Facebook-like online social network originates from a student online social network 

website at the University of California, Irvine, which operated in 2004 (Opsahl & Panzarasa, 

2009). This social network was similar to early versions of Facebook in that it only allowed 

students at a specific university to register and create an online profile. When registered, the 

students could communicate using private messages or through a forum. This network is 

constructed from the 59,835 private messages sent on the site. In total, 1,899 users sent or received 

at least one message. These users are the nodes of the network, and the messages constitute the 

ties (20,296). As messages are sent from one user to another, this network is treated as a directed 

and weighted 1-mode network. Although this is the same type of network as the C. elegans 

network, the C. elegans network is fairly small (i.e., 306 nodes). We included both networks due 

to the C. elegans’ inclusion in the seminal small-world paper (Watts & Strogatz, 1998) and the 

larger size of the online social network (Opsahl & Panzarasa, 2009); we aim to demonstrate the 

applicability of our framework to large networks, yet remain consistent with the existing literature 

by using a network used in previous studies. 

Scientific collaboration 

The scientific collaboration network is the co-authorship network based on the 22,016 

preprints posted to the Condensed Matter section of the arXiv E-Print Archive between 1995 and 

1999 (Newman, 2001a). This network can be classified as a 2-mode, affiliation, or bi-partite 
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network since there are two types of nodes (i.e., authors and papers), and connections exist only 

between the different types of nodes. A tie is formed between an author and a paper if their name 

appeared on it. This network is a binary 2-mode network as authors cannot be listed more than 

once on a single paper. Similar to previous work (Newman, 2001a, 2003; Opsahl, 2013), we deem 

the authors to be the primary nodes of this network. In so doing, we maintain these nodes when 

transforming or projecting this network onto a 1-mode network. 

Online forum 

The online forum network is obtained from the same online social networking website as 

the online social network (Opsahl & Panzarasa, 2009); however, the focus in this network is not 

on the private messages exchanged among users, but on users’ activity in the forum (Opsahl, 2013). 

The forum represents an interesting 2-mode network among 899 users and 522 topics, as a weight 

can be assigned to the ties based on the number of messages or characters that a user posted to a 

topic. In the interest of clarity, we focus on the number of characters. The results are substantively 

similar when the tie weights are defined as the number of messages. When transforming this 

weighted 2-mode network into a 1-mode network, we chose to maintain the users, as we believe 

these are directly responsible for the tie generation. The number of users in this network is smaller 

than in the online social network; not all users that sent or received private messages participated 

in the forum. 

--- Table 2 about here --- 

Results 

Table 3 presents comparisons of the six observed networks with the characteristics of 1000 

simulated networks. We ran simulations using both transformed networks (following the 
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traditional method for estimating small-world networks), and non-transformed networks (our 

approach). Table 3 illustrates the importance of the choice of randomization procedure in obtaining 

values for comparisons. We ran simulations with transformed versions of the networks using both 

classic random networks and tie reshuffled random networks; with non-transformed versions of 

the networks we used classic, tie reshuffled and weight reshuffled random networks. We then 

estimated the size of the main component for each of the networks (the numbers in brackets present 

the 95% confidence interval around the average value for the main component obtained from the 

simulation). Preserving the size of the main component is particularly important as computations 

of path-lengths are restricted to the main component of a network. As a result, if the main 

components of the simulated networks are very different in size compared to the one of the 

observed network, we might obtain estimates for path-length and clustering that do not correspond 

to the observed network. This is a particularly acute problem for small networks in which the size 

variations of the main component can have a large incidence on the average path-length. We can 

see that, in the case of non-transformed networks, the classic random network does not 

approximate the size of the main component accurately for the US power grid and the scientific 

collaboration (3rd and 4th row of table 3). Tie reshuffled random networks performed slightly better, 

but were still far from the observed values. The same procedures repeated on non-transformed 

networks show the same limitations for classic random networks. This also illustrates that weight 

reshuffled networks preserve the main component, making them a good option in cases where 

other randomization procedures do not reflect the size of the main component accurately. If none 

of the procedures approximate the main component size accurately, this might indicate that both 

small-world and efficiency calculations are likely to be unreliable. 

---Insert Table 3 about here--- 
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To investigate the efficiency of those six networks, we first assess whether those networks 

are small-world networks using the existing Watts and Strogatz method (Watts & Strogatz, 1998). 

As this method necessitates binary and undirected 1-mode networks, we transform the networks 

and derive approximations of their properties using equations (Newman, 2001b; Watts & Strogatz, 

1998). In the top half of Table 4, all network distances are larger (between 8% and 119%), and all 

clustering levels are higher (between 186% and 105,578%) than approximations based on classic 

random networks. However, no clear heuristic exists for determining whether these differences 

constitute comparable network distances and higher clustering-levels; it is a subjective decision of 

the researchers to deem their network a small-world network (Langer, Pedroni, & Jäncke, 2013). 

---Insert Table 4 about here--- 

 The top half of Table 4 covers the calculation for all the networks, using the small-world 

framework to estimate properties of networks. All the networks are transformed into 1-mode 

undirected and unweighted networks to make them comparable with Erdos-Renyi networks. In 

addition to the path-length and clustering in both classic random networks and tie reshuffled 

random networks, we also calculate the expected network distance and expected clustering 

coefficient using equations. We calculate the distance in the observed network, followed by the 

expected distance using an equation (
ln (n)

ln (k)
), where n is the number of nodes and k the average 

degree (reported as expected network distance and expected clustering coefficient). We then 

calculate the same parameter in classic random networks (Erdos-Renyi), and finally we calculate 

this parameter in tie reshuffled networks. We repeat the calculations for clustering coefficient.  

We note that the approximations of the network distances using equations are mostly 

outside of the confidence intervals generated with classic random networks; this highlights the 

importance of simulation in this specific case. The approximations for clustering coefficient are 

https://www.researchgate.net/publication/234090643_The_Problem_of_Thresholding_in_Small-World_Network_Analysis?el=1_x_8&enrichId=rgreq-cc3bed797c491651907f21274180c4c3-XXX&enrichSource=Y292ZXJQYWdlOzMwODY5MzM3OTtBUzo0MTExNjcxNTY2NTQwODBAMTQ3NTA0MTI5Nzc1Nw==
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much closer to the simulation results of classic random networks. In this first panel, one can see 

that the network distances in the six networks under study are higher than the ones obtained by 

using equations. In four cases, the distances in the observed network are higher than the ones 

obtained with classic and tie reshuffled random networks. However, it is not the case for both the 

C.elegans neural network and the online social network. For the C.elegans network, the observed 

network distance falls within the 95% confidence interval for the simulation using classic random 

networks, but not when using tie reshuffled networks. With the online social network, the observed 

distance is outside of the confidence interval for the simulation with classic random networks (but 

smaller than simulated distances), and within the confidence interval for the simulation using tie 

reshuffled random networks. 

 These two results are particularly interesting: they illustrate that the network distance in 

observed networks is not always similar to the one found in a random network (one of the 

conditions for a network to be deemed a small-world network). This highlights the importance of 

defining a heuristic to decide whether or not the observed distance is close to the random distance. 

Using the Watts and Strogatz framework we show that, of the three networks they used, only the 

C.elegans neural network exhibits distances that are close to distances found in random networks. 

The results for clustering coefficient indicate that all the networks exhibit clustering levels that are 

higher than the ones found in random networks, except in the case of the online social network, 

where the clustering is lower than that found in tie reshuffled random networks. 

In summary, all the networks in this test (except the C.elegans network), do not seem to 

exhibit both characteristics of small-world networks at once, when deriving confidence intervals 

from simulation. Either they do not exhibit path-length that falls within the confidence interval of 

the simulations using both classic random networks and tie reshuffled random network, or they do 
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not exhibit clustering that is outside of the confidence intervals for clustering coefficient of both 

simulations, with classic random networks and tie reshuffled random networks. 

Finally, one needs to remark that the practice of computing small-world networks Q as the ratio of  

𝐶𝐶𝑜
𝐶𝐶𝑟

⁄

𝑃𝐿𝑜
𝑃𝐿𝑟

⁄
 would hide that fact; the 

𝐶𝐶𝑜
𝐶𝐶𝑟

⁄  ratios in the case of all our networks would always be 

much larger than 
𝑃𝐿𝑜

𝑃𝐿𝑟
⁄ . We believe this is often the case, and limit the usefulness of the small-

world Q as a summary statistic. 

Our framework offers the flexibility of using non-transformed networks to estimate both 

path-length and clustering. In the second panel of Table 4, we use the distribution of values 

obtained from tie reshuffled and weight reshuffled random networks without transformation. In 

other words, we use a 2-mode or weighted network when the observed network is 2-mode or 

weighted.  

In this case we obtain different results for network distances, where the simulated network 

distance confidence intervals show that network distances are similar to the observed network 

distance in the US airport network, in the online social network, and in the online forum network. 

For clustering coefficient, the simulations with non-transformed networks show that 

clustering in the observed networks is higher than in random networks, in all cases except for the 

online social network. 

Figure 2 illustrates the results from Table 4. 

---Figure 2 about here--- 

 

Using non-transformed networks, the two networks derived from a Facebook-like online 

community exhibit network distances comparable to random networks with tie or weight 

reshuffling (Opsahl & Panzarasa, 2009; Opsahl, 2013). This may indicate that an online setting 

https://www.researchgate.net/publication/222845920_Clustering_in_Weighted_Networks?el=1_x_8&enrichId=rgreq-cc3bed797c491651907f21274180c4c3-XXX&enrichSource=Y292ZXJQYWdlOzMwODY5MzM3OTtBUzo0MTExNjcxNTY2NTQwODBAMTQ3NTA0MTI5Nzc1Nw==
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removes barriers for communication with distant parts of the network (Dodds et al., 2003; 

Kleinberg & Lawrence, 2001; Leskovec & Horvitz, 2008). Moreover, one of these networks also 

has a level of clustering comparable to that found in random networks. Although online settings 

might explain the low clustering, it seems that, in this case, this network bears closest similarity to 

a random network. 

Overall, only the US airport network and the online forum network display network 

distances that are similar to the ones found in non-transformed random networks, and clustering 

that is higher than that found in random networks. These results show a more nuanced picture of 

small-world networks than the usual small-world network Q computation allows for. Indeed, all 

of the networks tested show considerable differences to random networks, for both clustering and 

average path-length. 

In our framework, a network is deemed efficient if it exhibits clustering coefficient above 

the one for random networks and outside of the 95% confidence interval of the simulation, while 

having a path-length falling within the 95% confidence interval of the simulation. 

Application 

To demonstrate the variations between the methods we propose versus the classic method for 

measuring small-world properties, we examine the network of collaboration between producers 

and directors in the French movie industry between 1996 and 2010. This 2-mode network 

comprises 7567 individuals who participate in 3548 movies. On average, directors and producers 

participated in 2.24 movies and each movie had 4.77 directors and producers. We chose to focus 

on this network because collaborative relationships vary substantially during the time period, 

allowing us to observe changes in path-length and clustering.  We use four-year moving 

windows to build each network (1996-1999, 1997-2000, etc.). 
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Figure 3 and 4 illustrate the results of calculating clustering and path-length in random 

networks for each time period, using the classic method and our simulation framework. For the 

classic path-length, we use binary path-length on the projection of the network, for the classic 

clustering coefficient, we use the 1-mode clustering coefficient on the projection of the network. 

The classic method consistently underestimates clustering coefficient compared to our method. 

Path length estimates using the classic method often fall above the 95th percentile of the 

simulated networks at the beginning of the period, but are within the 5th and 95th percentile of our 

simulations for the last three time periods. 

--- Insert Figure 3 and 4 about here --- 

This example illustrates the difference between the classic method and our estimation 

framework. Whether the difference in estimation will have a bearing on the comparison between 

the observed value and the random one depends on the network. In the case of this movie 

network, the observed distances vary between 6.13 and 4.8, so are continuously higher than the 

distance in random networks, and the observed clustering varied between 0.044 and 0.077; here 

again, an order of magnitude above the random clustering results. 

Table 5 shows the result of looking at clustering and path-length ratios, using our 

proposed measure of departure from the mean in number of standard deviations. Looking at the 

pattern over time, our method allows us to conclude that, both for clustering and path-length, the 

network behaves less like its random counterparts at the end of the period as it did at the 

beginning of the period. Using our framework, the analyst can conclude whether the network is 

converging towards its random counterparts or diverging from them. The path-length and 

clustering ratios do not offer such a clear picture. In addition, the path-length and clustering 
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ratios differ by more than an order of magnitude; as such, should the analyst use small-world Q 

(for example as an explanatory variable in a regression), its value is overly determined by the 

clustering ratio. In case the analyst wants to use the results of this analysis in a regression, a good 

starting point would be to include the path-length and clustering departure from random in 

number of standard deviation as variables in the model. 

--- Insert Table 5 about here --- 

Discussion 

We offer a framework to determine the efficiency of a network, building on the small-

world network framework. An efficient network exhibits path-length similar to that of simulated 

random networks (falling within the 95% confidence interval of the simulation) and clustering 

above that of simulated random networks (falling above and outside of the 95% confidence interval 

of the simulation). 

Our work alleviates reliance on human judgment, allows probability statements about both 

clustering and path-length, and offers flexibility in defining values for comparison. Surprisingly, 

our framework shows that network properties (such as network distances and clustering) do not 

always behave as expected. More specifically, many networks do not exhibit distances comparable 

to random networks, and, in some cases, they display clustering values similar to random networks. 

Table 6 summarizes the relative strength and weaknesses of the two approaches, highlighting that 

our framework offers flexibility and robustness, at the cost of speed. 

--- Insert Table 6 about here --- 

Among the networks under study, that have been deemed small-world networks in the past, 

we cannot conclude that they statistically resemble random networks on path-length and do not 



 

29 
 

resemble random networks on clustering coefficient. This finding illustrates the importance of 

rethinking the characterization of small-world networks. Statistical statements regarding the 

departure from random offer a more precise way of characterizing networks in terms of how 

efficient they are, with efficiency reflecting their proximity to random on path-length and on 

clustering coefficient. Those results emphasize the difficulty in answering the question: “Is this 

network a small-world network?”. They do so by illuminating the heterogeneity among networks, 

in terms of the proximity of their path-length and clustering to comparable random networks. Far 

from all having similar relations to their random equivalent, they sometimes show path-lengths 

that are close to random, and sometimes not. We obtained similar results for clustering coefficient. 

Our framework offers several alternative computations to determine whether the path-

length or clustering of a studied network are similar to those found in comparable random 

networks. It allows us to paint a more precise picture of a given network. While a network might 

be a small-world network when computing small-world network Q, further investigations using 

our framework will reveal whether or not network distance and clustering in that network are 

similar to those found in random networks. It also offers the additional advantage of a probability 

statement, regarding the likelihood of the observed value to be comparable to one found in a 

random network (provided the analyst first checks that the distribution of values obtained from 

random networks is normal). Finally, by defining procedures for classic and non-transformed 

random networks, we allow scholars flexibility in the features of their networks (such as bi-partite 

structure and weights) in the calculation, if they deem it relevant. 

This study offers a simpler mechanism to estimate the size of the departure from random 

in a network (e.g., in number of standard deviations). This could lead to the use of more statistically 

robust measures in modelling the small-world network properties of a network, by replacing small-
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world network Q in regressions with measures of deviation from random. Our results show that 

small-world network properties are more complex than previously thought. We believe this should 

ignite further interest in understanding what governs network distance and clustering in real-world 

networks. Those networks that consistently display characteristics similar to random network 

distance and higher than random clustering should be of particular interest to researchers. In 

addition, those networks that are traditionally deemed to be small-world networks, but do not 

exhibit network distances comparable to random networks, or clustering higher than the one found 

in random networks, form a new subclass of network. We propose that those networks are less 

efficient small-world networks, compared to those networks that do pass our test. In so doing, we 

show that the comparability of real and random network properties is objective, and should not be 

left to the judgement of individual researchers. Humans show a high propensity to see similarity 

between two measures, whether or not that similarity is statistically significant (Hand, 2014). Our 

framework addresses this issue. 

 

Recommendations for analysis of path-length and clustering 

Our framework illustrates that the usual practice of calculating small-world network Q is 

not always enough to gain an understanding of the path-length and clustering characteristics of a 

network. We offer a flexible set of tools to help the analyst make probability statements regarding 

the path-length and the clustering of an observed network. We recommend that, in addition to 

calculating small-world network Q, researchers also use our framework to gain a better 

understanding of how clustering and path-length in their network compare to those found in 

comparable random networks. 

Doing this will provide researchers with additional information about the phenomenon they 
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are studying that will inform their analyses. If the results of both small-world network calculation 

and our framework are congruent and indicate the network is a small-world and efficient, the 

analyst can be confident that the network observed is an efficient small-world network. If the 

results of the two framework are in opposite direction—with small-world network Q identifying a 

small-world network—one is dealing with a non-efficient small-world network. This means that 

this network is likely to behave differently from the previously identified efficient small-world 

networks. In the case of the non-efficient small-world network, one expects information to spread 

slower across the network. If the results of both frameworks are both negative, one can be confident 

that the network under study will not display accelerated information diffusion in the network. 

Finally, we have yet to encounter a network that our framework classifies as efficient that does not 

get classified as a small-world network. We believe such cases to be rare, but such class of 

networks would be fascinating to study further.  

The result of this classification effort in a 2 x 2 matrix will inform further investigation. In 

the case of either efficient and small-world networks, or non-efficient and non-small-world 

networks, the researcher can conclude and proceed to further analysis, for example, using our 

efficiency measure as an independent variable in a regression analysis. Where researchers find it 

difficult to draw conclusion regarding the properties of a specific network—because it is a non-

efficient small-world or an efficient non-small-world—it should prompt them to use related 

simulation methods, such as exponential random graph models (ERGMs) (Snijders et al., 2006), 

to study the generative processes which resulted in the observed network. The result from this 

analysis will help the researcher understand whether to expect the structure of the network to lead 

to the effects usually associated with small-world networks, such as fast circulation of information. 

This approach, repeated over a population of networks, would yield interesting insights about 
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which generative process leads to networks displaying smaller or greater efficiency. 

 

Further research and limitations 

We believe our results have considerable consequences for management research. They 

call for a fresh investigation of networks previously studied by the management literature, such as 

Canadian banks (Baum, Shipilov, & Rowley, 2003) and strategic alliances (Schilling & Phelps, 

2007) at the firm level, and director interlocks (Davis et al., 2003), inventors (Fleming et al., 2007) 

and firm co-ownership (Kogut & Walker, 2001) at the individual level. Indeed, our measures may 

help explain the difference in the effects of small-world networks reported in those studies. This 

is an exciting development and should facilitate research into the mechanisms hidden behind the 

small-world network effect. This exploration, along with research in the contingencies of network 

effects at different levels (e.g. effects of global structures on the influence of individual position 

in network on outcomes), are fruitful avenues for future research—our framework will help ensure 

that results from these future studies rest on solid ground. 

Our framework has boundary conditions that are similar to those of the Watts and Strogatz 

model (1998). It assumes sparse networks in which the number of ties are much smaller than the 

square of the number of nodes. This limitation should not overly affect the usefulness of our 

framework, as a large proportion of networks studied in the management literature meet this 

criterion. One consistent result obtained with the framework is that, in the large majority of cases, 

clustering is often several orders of magnitude higher in observed networks than in random 

networks (whether classic or rewired). For this reason, it can lead us to identify networks as small-

world networks when computing small-world network Q, derived from the ratio of the clustering 

coefficient ratio (
𝐶𝐶𝑜

𝐶𝐶𝑟
⁄ ) and the path-length ratio (

𝑃𝐿𝑜
𝑃𝐿𝑟

⁄ ). Indeed, this ratio might be large 
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(the condition for a network to be a small-world network) because the first ratio is always several 

orders of magnitude bigger than the second, and therefore drives the overall statistic. Retaining 

only the path-length comparison and using ensembles of random networks to estimate confidence 

intervals to accept or reject whether a network had a path-length comparable to random networks—

seemingly a step in the right direction—would fail to retain important information about the 

network under study. One area of potentially fruitful exploration would be to compare clustering 

of the studied networks with clustering in similar regular lattices, instead of random networks. The 

rationale behind this is that the original assumption in Watts & Strogatz’s model (1998) is not that 

clustering should be higher than random in small-world networks, but that clustering levels should 

remain somehow comparable to the ones found in regular lattices with the same number of nodes 

and same average degree (Watts & Strogatz, 1998). 

Another interesting avenue to investigate is the role of hubs in networks (Schilling & Fang, 

2014) and how their presence or absence drives outcomes usually associated with small-world 

networks. Likelihood and speed of information diffusion in a network might be better 

approximated by counting hubs and analyzing their connections than by raw path-length (Schilling 

& Fang, 2014). Our contribution thus is not only methodological—refining our measurement 

apparatus—but should also spur new interest in the mapping of theoretical constructs, such as 

speed of information diffusion, to network measurements. 

The classification of networks, and the study of the properties common to a class, is another 

potentially fruitful avenue for future research. We expect the class of efficient small-world 

networks to display different properties than non-efficient small-world networks. In turn those 

networks should display different properties than networks that are neither efficient nor small-

world. We hope that future research will explore in-depth the specific properties of those two 
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classes. 

Finally, the definition of a tie in a specific network is going to have an effect on the 

structure of the network. Sometimes this is obvious, as in the case of ties between airports and 

between individuals on a social networking website. However, there is potential for further 

research studying systematic variation across networks representing friendship, advice and other 

type of relationships. 

Conclusion 

In this paper, we developed a framework to estimate the efficiency of a network. According to 

our framework, more efficient networks are likely to sustain faster diffusion of information. Our 

framework offers insights into why results concerning small-world networks have been mixed 

and, through classifying networks into two subclasses of efficient and non-efficient small-world 

networks, offers an avenue for further research to identify the common properties of those two 

subclasses. The practical advice we offer on how to use the results obtained with our framework 

as input in further analyses (e.g. regression) should help researchers implement our framework in 

their own research. We hope this will lead researchers to rethink how they measure small-world 

network properties in their research. 
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TABLES 

Table 1 Available and recommended measurement for different types of networks 

 Path-length Clustering  Randomization 

procedures 

Recommended 

One-mode network, 

undirected, 

unweighted 

Unweighted Global 

clustering 

coefficient 

Erdos Renyi 

Tie rewiring 

Tie rewiring (preserves degree 

distribution) 

One-mode network, 

directed, unweighted 

Unweighted Global 

clustering 

coefficient 

Erdos Renyi 

Tie rewiring 

Tie rewiring (preserves degree 

distribution) 

One-mode network, 

undirected, weighted 

Weighted, 

normalized 

weights 

Global 

clustering 

coefficient 

Erdos Renyi 

Tie rewiring 

Weight rewiring 

Tie rewiring (preserves degree 

distribution) or weight 

rewiring (preserves largest 

connected component, but do 

not alter structure) 

One-mode network, 

directed, weighted 

Weighted, 

normalized 

weights 

Global 

clustering 

coefficient 

Erdos Renyi 

Tie rewiring 

Weight rewiring 

Tie rewiring (preserves degree 

distribution) or weight 

rewiring (preserves largest 

connected component, but do 

not alter structure) 

Two-mode network, 

undirected, 

unweighted 

Projection, 

weighted, 

normalized 

weights 

Two-mode 

global 

clustering 

coefficient 

Erdos Renyi 

Tie rewiring 

Tie rewiring (preserves degree 

distribution)  

Two-mode network, 

directed, unweighted 

Projection, 

weighted, 

normalized 

weights 

Two-mode 

global 

clustering 

coefficient 

Erdos Renyi 

Tie rewiring 

Tie rewiring (preserves degree 

distribution) 

Two-mode network, 

undirected, weighted 

Projection, 

Asymmetric 

weights, 

normalized 

weights 

Two-mode 

global 

clustering 

coefficient 

Erdos Renyi 

Tie rewiring 

Weight rewiring 

Tie rewiring (preserves degree 

distribution) or weight 

rewiring (preserves largest 

connected component, but do 

not alter structure) 

Two-mode network, 

directed, weighted 

Projection,  

Asymmetric 

weights , 

normalized 

weights 

Two-mode 

global 

clustering 

coefficient 

Erdos Renyi 

Tie rewiring 

Weight rewiring 

Tie rewiring (preserves degree 

distribution) or weight 

rewiring (preserves largest 

connected component, but do 

not alter structure) 
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Table 2 Descriptive statistics about the six networks 

 US 

Power 

Grid 

US 

Airports 

C. Elegans 

Neural 

Network 

Online 

Social 

Network 

Scientific 

Collaborati

on 

Online 

Forum 

Basic network parameters 

Modes 1 1 1 1 2 2 

Directed No No Yes Yes No No 

Weighted No Yes Yes Yes No Yes 

Primary nodes 4,941 500 306 1,899 16,726 899 

Secondary nodes NA NA NA NA 22,016 522 

Ties (one-mode) 6,594 2,980 2,345 20,296 47,594 71,380 

Ties (two-mode) NA NA NA NA 58,595 7,089 

Average tie weight NA 152,320 3.76 2.95 NA 480.19 
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Table 3 Comparison of observed networks with random equivalents 

 US Power 

Grid 

US 

Airports 

C. Elegans 

Neural 

Network 

Online 

Social 

Network 

Scientific 

Collaboration 

Online 

Forum 

Transformed networks (one-mode, undirected, weights removed) 

Nodes in main component in 

the observed network 

4941 500 297 1,893 13,861 897 

% of nodes in main 

component 

100.00% 100.00% 97.06% 99.68% 82.87% 99.78 

Nodes in main component in 

classic random networks 

4508.44 

[4457; 4557] 

499.99 

[500; 500] 

306.00 

[306; 306] 

1899 

[1899; 1899] 

16668.51 

[16654; 16682] 

899.00 

[899; 899] 

Nodes in main component in 

tie reshuffled networks 

4752.33 

[4711; 4788] 

499.65 

[498; 500] 

296.97 

[297; 297] 

1894.12 

[1897; 1899] 

16208.01 

[16186; 16228] 

897.00 

[897; 897] 

Non-transformed networks 

Nodes in main component in 

the observed network 

4941 500 239 1,294 13,861 897 

% of nodes in main 

component 

100.00% 100.00% 78.10% 68.14% 82.87% 99.78% 

Nodes in main component in 

classic random networks 

4,508.44 

[4457; 4557] 

499.99 

[500; 500] 

305.75 

[304; 306] 

1,898.91 

[1898; 1899] 

16,065.93 

[16018; 16115] 

898.68 

[897; 899] 

Nodes in main component in 

tie reshuffled networks 

4,752.33 

[4711; 4788] 

499.65 

[498; 500] 

262.36 

[257; 266] 

1,302.43 

[1296; 1308] 

15,756.39 

[15688; 15821] 

897.90 

[895; 899] 

Nodes in main component in 

weight reshuffled networks 

NA 500.00 

[500; 500] 

239.00 

[239; 239] 

1294.00 

[1294; 1294] 

NA 897.00 

[897; 897] 

Note: The network distance is the average shortest path-length found among nodes in the largest group of 

interconnected nodes (i.e., the main or largest component) as distances to nodes in disconnected components are 

infinite. When randomizing an observed network, the size of the largest components might vary. If the average size 

of the largest components in random networks is substantially different from the observed network, the 

comparability of the random networks should be questioned. As this table shows, we find some signal of this. Two 

issues are worth highlighting. First, the largest components in classic random networks include almost all nodes. 

This is due to the Poisson distribution of ties across nodes (Erdos & Renyi, 1959), and gives further support for our 

choice in not using classic random networks to produce comparison values. Second, the size of the largest 

component does not change when only tie weights are reshuffled (Opsahl et al., 2008). Given that the results shown 

in Figure 2 and Table 3 are mostly consistent across the two randomization procedures for the weighted networks, 

we believe the variability in size of the largest component is not a major limitation. Furthermore, the first half of this 

table repeats this analysis for the transformed networks and their random counterparts. The results of an application 

of the framework to these networks are reported in Table 4. 
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Table 4 Comparison with different type of random networks 

 US Power 

Grid 
US 

Airports 
C. Elegans 

Neural Network 
Online Social 

Network 
Scientific 

Collaboration 
Online 

Forum 

Transformed networks 

Observed Network 

Distance 
18.99 2.99 2.46 3.06 6.63 1.88 

Expected Network 

Distance 
8.66 2.51 2.17 2.82 5.59 1.34 

Difference 119% 19% 13% 8% 19% 40% 

Network Distance in 

classic random 

networks 

8.48 
[8.25; 

8.70] 

2.77 
[2.74; 

2.80] 

2.46 
[2.43; 2.49] 

3.09 
[3.07; 3.11] 

5.79 
[5.76; 5.82] 

1.82 
[1.82; 1.82] 

Network Distance in tie 

reshuffled random 

networks 

8.49 
[8.42; 

8.57] 

2.59 
[2.57; 

2.61] 

2.38 
[2.36; 2.40] 

3.04 
[3.03; 3.06] 

4.94 
[4.94; 4.95] 

1.86 
[1.85; 1.86] 

Observed Clustering 

Coefficient 
0.10 0.35 0.18 0.06 0.36 0.50 

Expected Clustering 

Coefficient 
0.00 0.02 0.05 0.01 0.00 0.18 

Difference 18992% 1371% 293% 640% 105578% 186% 

Clustering Coefficient 

in classic random 

network 

0.00 
[0.00; 

0.00] 

0.02 
[0.02; 

0.03] 

0.05 
[0.04; 0.05] 

0.01 
[0.01; 0.01] 

0.00 
[0.00; 0.00] 

0.18 
[0.18; 0.18] 

Clustering coefficient in 

tie reshuffled random 

networks 

0.00 
[0.00; 

0.00] 

0.24 
[0.23; 

0.25] 

0.11 
[0.11; 0.12] 

0.08 
[0.08; 0.08] 

0.01 
[0.01; 0.01] 

0.43 
[0.43; 0.43] 

Non-transformed networks 

Observed network 

distance 
18.99 20.30 8.41 2.96 7.03 1.40 

Network distance in 

classic random 

networks 

8.48 
[8.25; 

8.70] 

2.24 
[2.15; 

2.34] 

3.43 
[3.24; 3.64] 

3.50 
[3.43; 3.57] 

4.72 
[4.69; 4.76] 

0.62 
[0.56; 0.69] 

Network distance in tie 

reshuffled random 

networks 

8.49 
[8.42; 

8.57] 

24.32 
[5.50; 

83.53] 

3.46 
[3.27; 3.66] 

2.96 
[2.91; 3.01] 

4.10 
[4.08; 4.11] 

1.04 
[0.76; 1.67] 

Network distance in 

weight reshuffled 

random networks 

NA 33.40 
[7.05; 

109.11] 

5.51 
[4.88; 6.16] 

2.75 
[2.70; 2.81] 

NA 1.07 
[0.84; 1.70] 

Observed clustering 

coefficient 
0.10 0.48 0.24 0.06 0.28 0.53 

Clustering coefficient in 

classic random 

networks 

0.00 
[0.00; 

0.00] 

0.02 
[0.02; 

0.03] 

0.03 
[0.02; 0.03] 

0.01 
[0.01; 0.01] 

0.00 
[0.00; 0.00] 

0.11 
[0.10; 0.11] 

Clustering coefficient in 

tie reshuffled random 

networks 

0.00 
[0.00; 

0.00] 

0.24 
[0.23; 

0.25] 

0.09 
[0.08; 0.10] 

0.07 
[0.07; 0.07] 

0.00 
[0.00; 0.00] 

0.50 
[0.48; 0.51] 

Clustering coefficient in 

weight reshuffled 

random networks 

NA 0.35 
[0.34; 

0.36] 

0.18 
[0.17; 0.19] 

0.05 
[0.05; 0.06] 

NA 0.50 
[0.48; 0.51] 

Note: Empirical results with random networks corresponding to the transformed networks and classic random 
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networks corresponding to the non-transformed networks. The first part of the table highlight attributes of the analyzed 

networks. The second part shows results based on Watts and Strogatz’s method (Watts & Strogatz, 1998), it does not 

take into consideration the recent advances in measuring the network distance and clustering in weighted and/or two-

mode networks (M. E. J. Newman, 2001; Opsahl & Panzarasa, 2009; Opsahl, 2013). It should be noted that the 

approximations are mostly outside the 95% confidence interval of the distributions. This highlights the need for using 

simulations instead of approximations. The third part of the table shows the result reported graphically in Figure 2 and 

of classic random networks for the non-transformed networks. 

 

 

Table 5 Ratio v. standard deviation departure 

 Clustering 

ratio 
Clustering 

departure 
Path-length 

ratio 
Path-length 

departure 

2000 14.95 47.4 1.33 27.13 

2001 17.46 52.61 1.4 38.77 

2002 20.37 51.17 1.36 35.87 

2003 19.64 43.92 1.29 34.06 

2004 21.38 49.86 1.29 37.17 

2005 18.53 52.98 1.29 39.56 

2006 19.38 68.42 1.24 36.73 

2007 23.82 75.71 1.24 32.96 

2008 24.81 91.94 1.24 34.97 

2009 28.57 101.68 1.26 35.63 

2010 21.02 99.86 1.33 48.11 

  

https://www.researchgate.net/publication/11846504_Random_Graphs_with_Arbitrary_Degree_Distributions_and_their_Applications?el=1_x_8&enrichId=rgreq-cc3bed797c491651907f21274180c4c3-XXX&enrichSource=Y292ZXJQYWdlOzMwODY5MzM3OTtBUzo0MTExNjcxNTY2NTQwODBAMTQ3NTA0MTI5Nzc1Nw==
https://www.researchgate.net/publication/222845920_Clustering_in_Weighted_Networks?el=1_x_8&enrichId=rgreq-cc3bed797c491651907f21274180c4c3-XXX&enrichSource=Y292ZXJQYWdlOzMwODY5MzM3OTtBUzo0MTExNjcxNTY2NTQwODBAMTQ3NTA0MTI5Nzc1Nw==
https://www.researchgate.net/publication/45921742_Triadic_Closure_in_Two-Mode_Networks_Redefining_the_Global_and_Local_Clustering_Coefficients?el=1_x_8&enrichId=rgreq-cc3bed797c491651907f21274180c4c3-XXX&enrichSource=Y292ZXJQYWdlOzMwODY5MzM3OTtBUzo0MTExNjcxNTY2NTQwODBAMTQ3NTA0MTI5Nzc1Nw==
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Table 6 Summary of strength and weaknesses of the two approaches 

 Traditional Small world 

estimation 

Efficiency estimation 

Strength ● Ease of use 

● Speed 

● Implemented for 

different types of 

networks 

● Robust 

Weakness ● Only defined for one-

mode undirected and 

unweighted networks 

● Computationally 

intensive 
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FIGURES 

Figure 1: From ring lattice to random network through rewiring 
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Figure 2: Empirical analysis of six real-world networks 

 

 

Note: Observed values are shown with red lines, while blue and yellow areas represent 

distributions of values from tie reshuffled networks and weight reshuffled networks (based on 

1000 randomization), respectively. Green areas represent overlap between the distributions. As 

only weighted networks have corresponding weight reshuffled random networks, we base our 

conclusions on the results from the tie reshuffled random networks. It is only for the online 

social network that the results from the randomization procedures do not converge. 
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Figure 3: Clustering in random networks obtained from the film network 
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Figure 4: Path-length in random networks obtained from the film network 

 

 

 

 

 

 

ENDNOTES 

i One should note that Burt defines a measure of network efficiency at the individual level, which measures the 

proportion of one’s contacts that are non-redundant (Burt, 1992). Our measure is at the level of the network instead 

of the individual. However, it is probable that efficient networks following our definition have members with a high 

average efficiency as defined by Burt. 
ii The software is available in the R package tnet. 
iii We thank one of the reviewers for suggesting that weighting 2-mode projections is context dependent and one has 

to allow researchers to pick the approach that is the most appropriate for the analysis they are conducting. 

                                                           

All in-text references underlined in blue are linked to publications on ResearchGate, letting you access and read them immediately.


