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THE DISTRIBUTION OF WEIGHTED SUMS OF THE

LIOUVILLE FUNCTION AND PÓLYA’S CONJECTURE

PETER HUMPHRIES

Abstract. Under the assumption of the Riemann hypothesis, the Linear In-
dependence hypothesis, and a bound on negative discrete moments of the
Riemann zeta function, we prove the existence of a limiting logarithmic dis-
tribution of the normalisation of the weighted sum of the Liouville function,
Lα(x) =

∑
n≤x

λ(n)/nα, for 0 ≤ α < 1/2. Using this, we conditionally show

that these weighted sums have a negative bias, but that for each 0 ≤ α < 1/2,
the set of all x ≥ 1 for which Lα(x) is positive has positive logarithmic density.
For α = 0, this gives a conditional proof that the set of counterexamples to
Pólya’s conjecture has positive logarithmic density. Finally, when α = 1/2, we
conditionally prove that Lα(x) is negative outside a set of logarithmic density
zero, thereby lending support to a conjecture of Mossinghoff and Trudgian
that this weighted sum is nonpositive for all x ≥ 17.

1. Introduction

The Liouville function λ(n) is defined as the completely multiplicative function
satisfying λ(p) = −1 for each prime p. Thus if n has the prime factorisation
n = pm1

1 · · · pmr
r , where the pi are primes and the mi are positive integers, then

λ(n) = λ (pm1

1 · · · pmr
r ) = λ(p1)

m1 × · · · × λ(pr)
mr = (−1)m1+...+mr .

That is,

λ(n) =





1 if n = 1,

1 if n has an even number of prime factors counting multiplicities,

−1 if n has an odd number of prime factors counting multiplicities.

We may study the average behaviour of λ(n) via

L(x) =
∑

n≤x

λ(n),

the summatory function of the Liouville function. The behaviour of this summatory
function is intimately linked to certain properties of the Riemann zeta function.
Recall that the Riemann zeta function ζ(s) is defined for ℜ(s) > 1 by the Dirichlet
series

ζ(s) =

∞∑

n=1

1

ns
,

or equivalently by the Euler product

ζ(s) =
∏

p

1

1− p−s
,
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and that ζ(s) extends meromorphically to the entire complex plane with only a
simple pole at s = 1 with residue 1. Now as λ(n) is completely multiplicative, the
Dirichlet series

∑∞
n=1 λ(n)n

−s has the Euler product

∞∑

n=1

λ(n)

ns
=
∏

p

1

1 + p−s
,

for ℜ(s) > 1, and so by comparing Euler products,
∞∑

n=1

λ(n)

ns
=
ζ(2s)

ζ(s)

for ℜ(s) > σc, the abscissa of convergence of
∑∞

n=1 λ(n)n
−s. Via partial summa-

tion, we therefore obtain the identity

(1)
ζ(2s)

ζ(s)
= s

∫ ∞

1

L(x)

xs
dx

x

for ℜ(s) > max{σc, 0}. The identity (1) implies that L(x) = O(xmax{σc+ε,0}) for
every ε > 0. As |λ(n)| = 1 for all n ∈ N, we certainly know that σc ≤ 1. On
the other hand, the zeroes of ζ(s) along the line ℜ(s) = 1/2 ensure that σc ≥ 1/2.
Indeed, as ζ(2s) is holomorphic for ℜ(s) > 1/2, the zeroes of ζ(s) in the strip
1/2 < ℜ(s) < 1 determine and are determined by the behaviour of L(x).

Theorem 1.1. The Riemann hypothesis is equivalent to the statement

L(x) = O(x1/2+ε)

for every ε > 0, where the implied constant is dependent on ε.

A slightly stronger condition on L(x) can be gleaned through the following result
of Landau.

Lemma 1.2 (Landau [24, Lemma 15.1]). Let F (x) be a real-valued function that

is bounded and integrable on any finite interval [1, X ], and suppose that there ex-

ists x0 ∈ [1,∞) such that F (x) is of constant sign on [x0,∞). Let σc be the

infimum of the set of points σ ∈ R for which
∫∞
x0
F (x)x−σ−1 dx is finite. Then

s
∫∞
1
F (x)x−s−1 dx is holomorphic in the open half-plane ℜ(s) > σc with a singu-

larity at the point σc.

We may take f(n) = λ(n) in this theorem and use the fact that ζ(σ) 6= 0 for all
σ > 0 in order to obtain the following corollary.

Corollary 1.3. If L(x) is of constant sign for all sufficiently large x, then the

Riemann hypothesis holds.

The former statement and some numerical evidence, namely calculations of L(x)
up to x = 1500, led to the following conjecture of Pólya in 1919.

Pólya’s Conjecture ([28]). For all x ≥ 2, we have that

L(x) ≤ 0.

This conjecture would of course imply the Riemann hypothesis, and in fact some-
thing slightly stronger; that all of the zeroes of the Riemann zeta function are sim-
ple, as we shall show in Section 2. However, it was soon seen that Pólya’s conjecture
leads to an overly restrictive condition on the zeroes of ζ(s). More precisely, Ingham
[12] showed that Pólya’s conjecture implies that the positive imaginary parts of the
zeroes of the Riemann zeta function are linearly dependent over the rationals. Such
a nontrivial relation seems quite unlikely to be true; indeed, it is conjectured that
positive imaginary parts of the zeroes of the Riemann zeta function are linearly
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independent over the rationals, which we call the Linear Independence hypothesis.
It therefore came as no major surprise when Haselgrove [9] announced in 1958 a dis-
proof of Pólya’s conjecture. In fact, Tanaka [31] has since shown that the smallest
such value of x ≥ 2 for which L(x) > 0 is x = 906 150 257.

Motivated by this problem, Mossinghoff and Trudgian [25] look at generalisations
of Pólya’s conjecture by studying weighted sums of the Liouville function.

Definition 1.4. The weighted sum of the Liouville function with weight α ∈ R is
the summatory function

Lα(x) =
∑

n≤x

λ(n)

nα
.

When α = 0, this is the summatory function of the Liouville function. Moss-
inghoff and Trudgian study the possibility of the eventual constancy of sign of
Lα(x) for sufficiently large x, and determine that for certain ranges of α, namely
0 ≤ α ≤ 1, this is closely related to the Riemann hypothesis. For this range of α,
the same argument as for (1) yields the identity

ζ(2(α + s))

ζ(α + s)
= s

∫ ∞

1

Lα(x)

xs
dx

x

for ℜ(s) > 1−α, and Proposition 1.2 then shows that the constancy of sign of Lα(x)
for sufficiently large x implies the Riemann hypothesis. Mossinghoff and Trudgian
then go on to prove that for 1/2 < α < 1, the Riemann hypothesis implies the
eventual constancy of sign of Lα(x), and so these two problems are equivalent. For
0 ≤ α < 1/2 and α = 1, however, Ingham’s argument can be modified to prove
that the eventual constancy of sign of Lα(x) contradicts the Linear Independence
hypothesis, and so for these values of α we would expect Lα(x) to change sign
infinitely often. This has been proven unconditionally to occur for α = 0 and α = 1
[4], but no such sign changes have been found in the range 0 < α < 1/2. This leads
to the following conjecture of Mossinghoff and Trudgian.

The 0 < α < 1/2 Conjecture (Mossinghoff–Trudgian [25, Problem 1]). For

0 < α < 1/2, the weighted sum Lα(x) changes sign infinitely often.

Mossinghoff and Trudgian give a heuristic argument that Lα(x) is predominantly
negative for 0 < α < 1/2 [25, §2.1], and they calculate L1/4(x) up to x = 1012 and

show that it is always negative for 11 ≤ x ≤ 1012 [25, §4].
Finally, the case α = 1/2 is of particular interest. Here Ingham’s argument no

longer applies, and indeed a heuristic argument of Mossinghoff and Trudgian [25,
§2.3] suggests that L1/2(x) truly is eventually of constant sign, which is strengthened

by computational evidence showing that L1/2(x) ≤ 0 for 17 ≤ x ≤ 1012 [25, §4].

The α = 1/2 Conjecture (Mossinghoff–Trudgian [25, Problem 3]). The weighted

sum L1/2(x) is nonpositive for all x ≥ 17.

The aim of this paper is to study these conjectures by following the methods
of Rubinstein and Sarnak [29] and Ng [27] in calculating the logarithmic densities
δ(Pα) of the sets

Pα = {x ∈ [1,∞) : Lα(x) ≤ 0}
for 0 ≤ α ≤ 1/2. Recall that for a measurable set P ∈ [1,∞), we let

δ(P ) = lim inf
X→∞

1

logX

∫

{x∈[1,X]∩P}

dx

x
,

δ(P ) = lim sup
X→∞

1

logX

∫

{x∈[1,X]∩P}

dx

x
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be the lower and upper logarithmic densities respectively of P , and if these two
limits are equal, we define the logarithmic density δ(P ) of P by

δ(P ) = δ(P ) = δ(P ).

It is clear that if δ(P ) exists, then 0 ≤ δ(P ) ≤ 1, and in particular that if P has
finite Lebesgue measure, then δ(P ) = 0. It is, of course, more common to consider
the natural density

lim
Y →∞

1

Y

∫

{y∈[1,Y ]∩P}

dy.

It is not hard to show that if the natural density of a set P exists, then the logarith-
mic density of P also exists and is equal to the natural density; we note, however,
that the converse is not true.

For the logarithmic densities δ(Pα), we prove the following conditional results,
which rely on the Riemann hypothesis (which we abbreviate to RH), the Linear
Independence hypothesis (which we abbreviate to LI), and a bound

J−1(T ) =
∑

0<γ<T

|ζ′(ρ)|−2 ≪ T

on negative discrete moments of ζ(s), which is defined and discussed in Section 3.

Theorem 1.5. Assume RH, LI, and J−1(T ) ≪ T . Then for 0 ≤ α < 1/2,

1/2 ≤ δ(Pα) < 1.

Moreover,

lim
α→1/2−

δ(Pα) = 1.

Thus (conditionally) Lα(x) does indeed have a bias towards being negative, and
as α tends to 1/2 from below, this bias becomes stronger. In spite of this, the set
of x ∈ [1,∞) for which Lα(x) is positive has strictly positive logarithmic density.
In particular, the set of counterexamples to Pólya’s conjecture has strictly positive
logarithmic density.

Theorem 1.5 suggests that δ(P1/2) = 1; that is, that the set of counterexam-
ples to the α = 1/2 conjecture has logarithmic density zero. Surprisingly enough,
this is somewhat easier to prove than Theorem 1.5, in the sense that the Linear
Independence hypothesis is superfluous.

Theorem 1.6. Assume RH and J−1(T ) ≪ T . Then

δ(P1/2) = 1.

Note, however, that this result does not eliminate the possibility that L1/2(x)
changes sign infinitely often; it merely states that even though this may occur,
L1/2(x) is almost always negative.

The methods of proof for these theorems rely heavily on the techniques developed
in [27], where Ng proves related results for M(x) =

∑
n≤x µ(n), the summatory

function of the Möbius function. In turn, Ng’s method of constructing a limiting
logarithmic distribution for M(x)/

√
x builds on the seminal work of Rubinstein

and Sarnak [29] on biases in prime number races.

2. Unconditional and Conditional Estimates on Lα(x)

We will now mention some of the known results on the behaviour of Lα(x) for
0 ≤ α ≤ 1/2. In particular, we discuss upper and lower bounds on L(x), and how
often it is positive or negative.
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For upper bounds, we immediately note the trivial bound

|Lα(x)| ≤
∑

n≤x

n−α ≪ x1−α.

Of course, this can be strengthened significantly. By elementary means — that is,
without appealing to methods of complex analysis — it is possible to show that
Lα(x) = o(x1−α); this is equivalent to the Prime Number Theorem. The strongest
unconditional estimates are obtained via analytic methods. These involve deter-
mining zero-free regions of ζ(s) to the left of the line ℜ(s) = 1. The largest zero-free
region that has been proven, independently by Korobov [14] and Vinogradov [32],
is the region

{s+ it ∈ C : σ ≥ 1− c(log τ)−2/3(log log τ)−1/3}
for some effective constant c > 0. Using this and known bounds on 1/ζ(s) in
this region, we may prove the following bounds via standard methods of contour
integration.

Theorem 2.1. For each 0 ≤ α ≤ 1/2, there exists an effective constant c = c(α) >
0 such that

Lα(x) = O

(
x1−α exp

(
−c (log x)3/5

(log log x)1/5

))
.

Next we consider lower bounds for Lα(x). It is quite simple to show that Lα(x)
must indeed be bounded away from zero. We know that

ζ(2(α + s))

ζ(α + s)
= s

∫ ∞

1

Lα(x)

xs
dx

x

for ℜ(s) > max{σc, 0}, where σc is the abscissa of convergence of the Dirichlet
series for ζ(2(α + s))/ζ(α + s). As ζ(2(α + s)) has a simple pole at s = 1/2 − α,
while ζ(α+s) is nonvanishing there, we must have that σc ≥ 1/2−α. In particular,
the statement Lα(x) = O(x1/2−α−ε) cannot be true for any ε > 0, as otherwise
ζ(2(α+s))/ζ(α+s) would be holomorphic in the open half-plane ℜ(s) > 1/2−α−ε.
This then tells us that at least one of the two statements

lim inf
x→∞

Lα(x)

x1/2−α−ε
= −∞, lim sup

x→∞

Lα(x)

x1/2−α−ε
= ∞

must be true for every ε > 0. If it is the latter that is the case, then of course we
will have disproved Pólya’s conjecture.

In certain cases, it is possible to prove a slightly stronger result. Namely, for the
case α = 0, which corresponds to the classical case of the summatory function of
the Liouville function, we may prove that

lim inf
x→∞

L(x)√
x
, lim sup

x→∞

L(x)√
x

are both bounded away from zero. This involves relating L(x) to a certain function
I(x), defined in (22), that we will study later.

Theorem 2.2 (Anderson–Stark [1, Theorem 1]). For any x0 > 1, we have that

lim inf
x→∞

L(x)√
x

≤ L(x0)− I(x0)√
x0

≤ lim sup
x→∞

L(x)√
x
.

It is shown unconditionally in [1] that we have the bound

|I(x) − 1| ≤ 2
√
2πζ(3/2)

ζ(3)
√
x

,
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where
2
√
2πζ(3/2)

ζ(3)
= 6.43700967 . . . .

So if one finds small and large values of L(x) in conjunction with the bound above on
I(x), then bounds for lim infx→∞ L(x)/

√
x and lim supx→∞ L(x)/

√
x follow. The

former task is more difficult; finding extrema of L(x) turns out to be computation-
ally quite demanding. Nevertheless, work of Borwein, Ferguson, and Mossinghoff [4]
has resulted in tabulations of values of L(x) up to and beyond x = 1014. Notably,
this includes the extremal results

L(72 204 113 780 255) = −11 805 117, L(351 753 358 289 465) = 1 160 327.

Combining these values with the bounds on I(x) yields the following results.

Theorem 2.3 (Borwein–Ferguson–Mossinghoff [4, Theorem 2]). We have that

(2) lim inf
x→∞

L(x)√
x

≤ −1.389278414 . . . , lim sup
x→∞

L(x)√
x

≥ 0.061867262 . . . .

It is worth noting that if extrema for Lα(x), 0 < α < 1/2, are determined, then
similar results hold for Lα(x)/x

1/2−α. For α = 1/2, however, we expect that no
positive extrema past x = 17 occur, and that this extremum does not prove that
lim supx→∞ L1/2(x) > 0 as the related function I1/2(x) is too large at x = 17.

We now consider determining upper and lower bounds for L(x) under the as-
sumption of certain unproven conjectures. In Section 1, we noted that the bound

L(x) = O(x1/2+ε)

for every ε > 0 is equivalent to the Riemann hypothesis; a modification of this
argument shows that the same is true for

Lα(x) = O(x1/2−α+ε)

for 0 ≤ α ≤ 1/2. We now show that this can be strengthened slightly via work of
Soundararajan, and subsequently improved by Balazard and de Roton, on a related
problem.

Theorem 2.4 (Soundararajan [30], Balazard–De Roton [2]). Assume RH. Then

for every ε > 0, we have the estimate

(3) M(x) = O
(√

xe(log x)1/2(log log x)5/2+ε
)
,

where M(x) =
∑

n≤x µ(n) is the summatory function of the Möbius function.

From Soundararajan’s bound for M(x), it is simple to determine a similar esti-
mate for L(x).

Corollary 2.5. Assume RH. For each 0 ≤ α ≤ 1/2 and for each ε > 0, there exists

an absolute constant c = c(α) > 0 such that

L(x) = O
(√

xec(log x)1/2(log log x)5/2+ε
)
.

Proof. We recall the identity

λ(n) =
∑

d2|n
µ
( n
d2

)
,

and hence that

L(x) =
∑

d2≤x

M
( x
d2

)
.
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Combining this with (3), we obtain

L(x) ≪
∑

d≤√
x

√
x

d
e(log x/d2)1/2(log log x/d2)5/2+ε ≪

√
xe(log x)1/2(log log x)5/2+ε ∑

d≤√
x

1

d
,

and this last sum is ≪ log x. This yields the result with c = 1+ε′ for any ε′ > 0. �

For lower bounds, we cannot determine anything new under the assumption of
the Riemann hypothesis; indeed, Pólya’s conjecture, namely the false statement
that L(x) ≤ 0 for all x ≥ 2, implies the Riemann hypothesis. If the Riemann
hypothesis is false, on the other hand, we can easily prove strong lower bounds.

Theorem 2.6 (cf. [24, Theorem 15.2]). Suppose that RH is false, so that Θ =
sup{ℜ(ρ) : ζ(ρ) = 0} > 1/2. Then for 0 ≤ α ≤ 1/2,

lim inf
x→∞

Lα(x)

xΘ−α−ε
= −∞, lim sup

x→∞

Lα(x)

xΘ−α−ε
= ∞

for every ε > 0.

In particular, the falsity of the Riemann hypothesis implies the falsity of Pólya’s
conjecture and the truth of the 0 < α < 1/2 conjecture; however, it does imply the
falsity of the α = 1/2 conjecture. A similar argument can also be used should the
Riemann hypothesis hold but ζ(s) have a zero of order greater than one. Note that
this argument only holds for 0 ≤ α < 1/2.

Theorem 2.7 (cf. [24, Theorem 15.3]). Assume RH and that ζ(s) has a zero

ρ = 1/2 + iγ of order m ≥ 2. Then for 0 ≤ α < 1/2,

lim inf
x→∞

Lα(x)

x1/2−α(log x)m−1
< 0, lim sup

x→∞

Lα(x)

x1/2−α(log x)m−1
> 0.

As an immediate corollary, we see that Pólya’s conjecture implies the simplicity
of the zeroes of the Riemann zeta function.

For α = 1/2, the same method of proof shows that

lim inf
x→∞

L1/2(x)

(log x)m−1
< 0, lim sup

x→∞

L1/2(x)

(log x)m−1
> 0

if ζ(s) has a zero of order m ≥ 3. Thus the α = 1/2 conjecture can only show that
ζ(s) has zeroes of order at most 2.

To strengthen the unconditional lower bounds (2) under the assumption of the
Riemann hypothesis and the simplicity of the zeroes of ζ(s), we must also assume
separate hypotheses. As we discussed in Section 1, such lower bounds can be at-
tained assuming the Riemann hypothesis and the Linear Independence hypothesis,
which states that for positive imaginary parts γ1, . . . , γn of nontrivial zeroes of ζ(s)
and rational constants c1, . . . , cn, the equation

c1γ1 + · · ·+ cnγn = 0

has only the solution c1 = . . . = cn = 0. A limited scope of numerical computa-
tions performed by Bateman et al. [3] have failed to determine any linear relations
amongst the imaginary parts of nontrivial zeroes of the Riemann zeta function; as
it is known that there exist infinitely many zeroes of ζ(s) along the line ℜ(s) = 1/2,
however, these computations are of little use as evidence for the truth of this con-
jecture. Theoretical evidence for this conjecture is also somewhat lacking, though
conversely there is no known mathematical argument that would suggest the exis-
tence of a nontrivial relation connecting the imaginary parts of the zeroes of ζ(s).
Nevertheless, some related results are known; it has been shown that for any β 6= 0
and for every ε > 0, the number of positive integers k lying between 1 and T such
that ζ(1/2 + kiβ) 6= 0 is at least as large as T 5/6−ε for infinitely many values of T
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with T tending to infinity [17, Corollary 9.8], which suggests that zeroes of ζ(s) can-
not lie too densely in an arithmetic progression. Note that assuming the Riemann
hypothesis, one could replace 5/6 by 1. Moreover, Martin and Ng [19], [20] claim
to have extended this result to show that for any α, β ∈ R with β 6= 0, there exists
a positive constant c > 0 such that the number of positive integers k lying between
1 and T satisfying ζ(1/2 + i(α+ kβ)) 6= 0 is at least as large as cT/ logT . Despite
these suggestive results, a proof of the Linear Independence hypothesis currently
seems very much inaccessible.

The importance of this hypothesis lies in applications of Kronecker’s theorem,
which states that if t1, . . . , tn are linearly independent over the rationals, then the
set {(

e2πit1y, . . . , e2πitny
)
∈ Tn : y ∈ R

}

is dense in Tn, where

Tn = {(z1, . . . , zn) ∈ Cn : |zl| = 1 for all 1 ≤ l ≤ n}
is the n-torus. We will use a variant of this result in Section 5, and highlight the
connection between the Linear Independence hypothesis and Kronecker’s theorem
with regards to applications in analytic number theory in Section 6. Firstly, how-
ever, we note the following result of Ingham, subsequently extended by Mossinghoff
in Trudgian in [25], which relies crucially on Kronecker’s theorem.

Theorem 2.8 (Ingham [12, Theorem A], Mossinghoff–Trudgian [25, §3]). Assume

RH and LI. Then we have that

lim inf
x→∞

Lα(x)

x1/2−α
= −∞, lim sup

x→∞

Lα(x)

x1/2−α
= ∞.

Ingham’s theorem was proved before a counterexample of Pólya’s conjecture was
discovered, and provided theoretical evidence to the falsity of this conjecture. More-
over, the method of proof of Ingham’s theorem was instrumental in Haselgrove’s
disproof of Pólya’s conjecture [9].

3. Moments of the Riemann Zeta Function

In Section 4, we will determine an explicit expression for Lα(x) involving a sum
of the form ∑

ρ

ζ(2ρ)

ζ′(ρ)

xρ−α

ρ− α
,

where the sum is over the nontrivial zeroes ρ of ζ(s). Assuming the Riemann
hypothesis, we have that |xρ−α| = x1/2−α. It is therefore of importance to know
bounds on sums of the form

∑

|γ|<T

|ζ(2ρ)|
|ρ− α||ζ′(ρ)| ,

where T is large, and the sum is over all zeroes ρ = 1/2 + iγ with |γ| < T .
Such bounds, however, turn out to be related to highly challenging open problems.
Nevertheless, we can make progress based on knowledge we have on the density of
the zeroes of the Riemann zeta function in the strip 0 < ℜ(s) < 1.

Theorem 3.1 ([24, Corollary 14.3]). For T ≥ 4, let N(T ) denote the number of

zeroes ρ = β + iγ of ζ(s) in the rectangle 0 < β < 1, 0 < γ < T . Then

(4) N(T ) =
1

2π
T logT − 1

2π
(1 + log 2π)T +O(log T ).

In particular,

(5) N(T + 1)−N(T ) ≪ logT.
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By partial summation, these estimates allow us to determine accurate bounds
on sums of the form ∑

|γ|<T

1

|ρ− α| .

Similarly, the size of ζ(2ρ) can be bounded through classical results of Littlewood
on the growth of ζ(s) on the line ℜ(s) = 1.

Theorem 3.2 (Littlewood [24, §13.3]). Assume RH. Then for all |t| ≥ 1,

|ζ(1 + it)| ≤ 2eγ0 log log τ +O(1),(6)

1

|ζ(1 + it)| ≤
12eγ0

π2
log log τ +O(1),(7)

where τ = |t|+ 4 and γ0 is the Euler–Mascheroni constant.

So it remains to determine bounds on the size of 1/ζ′(ρ). This, however, proves
to be highly difficult. Indeed, it is not even known whether all the zeroes of ζ(s) are
simple, so it is conceivable that such a bound may be unattainable. For a precise
lower bound, on the other hand, there is a classical result of Littlewood.

Theorem 3.3 (Littlewood [24, Theorem 13.18, Theorem 13.21]). Assume RH.

There exists an absolute constant c > 0 such that

(8) ζ′(ρ) ≪ exp

(
c

log γ

log log γ

)

for every nontrivial zero ρ = 1/2 + iγ of ζ(s).

The following conjecture of Hejhal (for nonnegative powers) and Gonek (for
negative powers) gives a reasonably precise rate on the growth of sums of powers
of ζ′(ρ).

Conjecture 3.4 (Gonek–Hejhal [8], [10]). Let

Jk(T ) =
∑

0<γ<T

|ζ′(ρ)|2k

be the discrete moment of order k of the Riemann zeta function. Then for all k ∈ R,

Jk(T ) ≍ T (logT )(k+1)2 .

Note that the Gonek–Hejhal conjecture necessarily implies the simplicity of the
zeroes of the Riemann zeta function. This conjecture has been further refined via
the work of Hughes, Keating, and O’Connell, who arrive at a more precise form
of this conjecture by modelling the Riemann zeta function by the characteristic
polynomial of a large random unitary matrix. Their method also suggests that the
Gonek–Hejhal conjecture is actually false for k ≤ −3/2.

Conjecture 3.5 (Hughes–Keating–O’Connell [11]). For all k ∈ C with ℜ(k) >
−3/2, we have that

(9) Jk(T ) ∼
1

2π

G2(k + 2)

G(2k + 3)
a(k)T (logT )(k+1)2 ,

where G(s) is the Barnes G-function and

a(k) =
∏

p

(
1− 1

p

)k2 ∞∑

m=0

(
Γ(m+ k)

m!Γ(k)

)2
1

pm
.
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Here the Barnes G-function is defined by

G(s+ 1) = (2π)s/2 exp

(
−1

2
(s2 + γ0s

2 + s)

) ∞∏

n=1

(
1 +

s

n

)n
exp

(
−s+ s2

2n

)
,

for s ∈ C.
Limited progress has been made on these conjectures. In the case of k being a

nonnegative integer, the precise asymptotic results are known for k = 0 uncondi-
tionally, k = 1 under the assumption of the Riemann hypothesis, and k = 2 up
to correct order assuming the Riemann hypothesis. Moreover, recent conditional
results have determined the order of Jk(T ) up to multiplication by an error term
of size exp(c log logT/ log log logT ).

Theorem 3.6 (Milinovich–Ng [22], Milinovich [21]). Assume RH, and suppose that

k is a positive integer. Then for each k, there is an absolute constant c > 0 such

that

T (logT )(k+1)2 ≪ Jk(T ) ≪ T (logT )(k+1)2 exp

(
c

log logT

log log log T

)
.

In the case of negative powers, which is of most relevance to us, much less
progress has been made. Indeed, the only accurate bound is a conditional result on
the lower bound on the order of J−1(T ).

Theorem 3.7 (Gonek [8]). Assume RH and that all of the zeroes of ζ(s) are simple.

Then

(10) J−1(T ) ≫ T.

Observe that this bound is consistent with the asymptotic behaviour predicted
in Conjecture 3.5. For J−1/2(T ), there is also a lower bound, but Conjecture 3.5

suggests that this underestimates the growth of J−1/2(T ) by a factor of (logT )1/4.

Theorem 3.8 (Garaev–Sankaranarayanan [7]). Unconditionally, we have that

(11) J−1/2(T ) ≫ T,

where we restrict the sum to be over only the simple nontrivial zeroes of ζ(s).

For our applications, the lower bound (10) is not of any use; it is an upper bound
that we require, in the form of the following conjecture.

Conjecture 3.9. We have that

J−1(T ) =
∑

0<γ<T

1

|ζ′(ρ)|2 ≪ T.

Note that this implies that the zeroes of the Riemann zeta function are all simple.
In conjunction with (10), this conjecture shows that

J−1(T ) ≍ T,

while the stronger conjecture (9) with k = −1/2 implies that

J−1(T ) ∼
3

π3
T ;

this particular asymptotic was first conjectured by Gonek [8]. However, we do not
require this stronger estimate in our applications. We also note that the assumption
J−1(T ) ≪ T and the Cauchy–Schwarz inequality, along with the asymptotic (4),
show that

(12) J−1/2(T ) ≪ T (logT )1/2.
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Conjecture 3.5 suggests that this overestimates the growth of J−1/2(T ) by a factor

of (log T )1/4.
The hypothesis J−1(T ) ≪ T is used by Ng [27] in applications concerning the

summatory function of the Möbius function, which involves sums of the form

∑

|γ|<T

1

|ρζ′(ρ)| .

With weighted sums of the Liouville function, however, we require estimates on
sums of the form

∑

|γ|<T

|ζ(2ρ)|
|ρ− α||ζ′(ρ)| .

Nevertheless, it is simple to transfer from one bound to the other via the estimate
(6) of Littlewood.

Lemma 3.10 (cf. [27, Lemma 1]). Assume RH and J−1(T ) ≪ T , and let 0 ≤ α ≤
1/2. Then

∑

0<γ<T

|ζ(2ρ)|
|ρ− α||ζ′(ρ)| ≪ (logT )3/2 log logT,(13)

∑

T<γ<2T

|ζ(2ρ)|2
(|ρ− α||ζ′(ρ)|)2 ≪ (log logT )2

T
,(14)

∑

0<γ<T

|ζ(2ρ)|
|ρ− α||ζ′(ρ)| ≫

log T

log logT
,(15)

∑

γ>T

|ζ(2ρ)|2
(|ρ− α||ζ′(ρ)|)2 ≫ 1

T (log logT )2
.(16)

In all cases, we may choose the implicit constant to be independent of α.

Proof. The proof of the first and second estimates are essentially identical to the
proof of [27, Lemma 1]: they follow by partial summation and Littlewood’s estimate
(6), and, for the first estimate, the bound (12). For the third estimate, we use (7),
partial summation, the fact that the zero of ζ(s) with least positive imaginary part
satisfies γ > 14, and (11), so that

∑

0<γ<T

|ζ(2ρ)|
|ρ− α||ζ′(ρ)| ≫

1

log logT

([
J−1/2(t)

t

]T

14

+

∫ T

14

J−1/2(t)

t2
dt

)

≫ logT

log logT
.

Similarly, for the fourth estimate, (7), partial summation, and (10) show that

∑

γ>T

|ζ(2ρ)|2
(|ρ− α||ζ′(ρ)|)2 ≫ 1

(log logT )2

([
J−1(t)

t2

]∞

T

+ 2

∫ ∞

T

J−1(t)

t3
dt

)

≫ 1

T (log logT )2
.

Throughout, the implicit constant may be chosen independently of α, as

γ2 ≤ |ρ− α|2 = (1/2− α)2 + γ2 ≤ 2γ2. �

It may initially seem strange that we assume the conjecture J−1(T ) ≪ T instead
of bounds with |ζ(2ρ)| involved. This is due to a lack of study of asymptotic bounds
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of sums over zeroes relating to the latter; while we have the precise conjecture (9)
of Hughes–Keating–O’Connell, no such conjecture for the sum

Kk(T ) =
∑

0<γ<T

|ζ(2ρ)|2k
|ζ′(ρ)|2k

exists, though we do note that Ng [26, §8.3] suggests that K−1(T ) ∼ T/2π, based
on a heuristic method of Gonek. Thus it seems that the presence of |ζ(2ρ)|−2 leads
only to a change in the constant in the asymptotic for K−1(T ) in comparison to
J−1(T ). This can be explained by noting that ζ(s) has essentially a constant mean
value along the line ℜ(s) = 1, in the sense that for any fixed k > 0,

∫ T

1

|ζ(1 + it)|2k dt ≍ T ;

see [13] for further details.

4. An Explicit Expression for Lα(x)

Our goal in this section is to express Lα(x) in terms of a sum over the nontrivial
zeroes of ζ(s), and use this explicit expression to create a limiting logarithmic
distribution for Lα(x)/x

1/2−α. We must mention that our method is effective only
when limited to the range 0 ≤ α < 1/2; that is, we exclude the case α = 1/2.
Consequently, our results in Sections 4—7 will focus only on the range 0 ≤ α < 1/2.

Theorem 4.1 (Perron’s Formula [24, Theorem 5.1, Corollary 5.3]). Let f(n) be an

arithmetic function whose associated Dirichlet series
∑∞

n=1 f(n)n
−s has abscissa

of absolute convergence σa ∈ R. If σ0 > max{σa, 0}, x ≥ 1, T ≥ 1, then the

summatory function F (x) =
∑

n≤x f(n) is given by

F (x) =
1

2πi

∫ σ0+iT

σ0−iT

∞∑

n=1

f(n)

ns

xs

s
ds+ E(x) +R(x, T ),

where E(x) = f(x)/2 if x ∈ N and 0 otherwise, and

R(x, T ) ≪
∑

x/2<n<2x
n6=x

|f(n)|min

{
1,

x

T |x− n|

}
+
xσ0

T

∞∑

n=1

|f(n)|
nσ0

.

In particular, limT→∞R(x, T ) = 0.

Corollary 4.2. Let 0 ≤ α < 1/2. For x ≥ 1, T ≥ 1, and σ0 = 1−α+ 1/ logx, we

have that

(17) Lα(x) =
1

2πi

∫ σ0+iT

σ0−iT

ζ(2(α+ s))

ζ(α+ s)

xs

s
ds+ Eα(x) +Rα(x, T ),

where

Eα(x) =




λ(x)

2xα
if x ∈ N,

0 otherwise,

and

Rα(x, T ) ≪
1

xα
+
x1−α log x

T
.

Moreover, limT→∞Rα(x, T ) = 0.
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Proof. We take f(n) = λ(n)/nα. To estimate the error term, we note that for
σ0 > 1− α,

Rα(x, T ) ≪
∑

x/2<n<2x
n6=x

1

nα
min

{
1,

x

T |x− n|

}
+
xσ0ζ(σ0 + α)

T
.

For this sum, we replace the minimum by its first member when n is nearest to x,
and by its second member for all other n, and hence

∑

x/2<n<2x
n6=x

1

nα
min

{
1,

x

T |x− n|

}
≪ 1

xα
+
x1−α log x

T
.

We then note that ζ(σ0) ≤ 2/(σ0 − 1) for σ0 > 1, and hence for x ≥ 1, T ≥ 1,

Rα(x, T ) ≪
1

xα
+
x1−α log x

T
+

xσ0

T (σ0 + α− 1)
.

Choosing σ0 = 1− α+ 1/ logx yields the result. �

The importance of this expression is that we can modify this integral by compar-
ing it with integrals over certain closed curves in the complex plane. By Cauchy’s
residue theorem, this will allow us to express Lα(x) in terms of residues of the
integrand in (17). In order to do so, however, we must bound the values of
ζ(2(α+ s))/ζ(α + s) along this curve, for which we require the following results.

Lemma 4.3 ([24, Corollary 10.5, Theorem 13.18, Theorem 13.23]). Assume RH.

Let s = σ + it with |t| ≥ 1. Then for all ε > 0, we have that

(18) ζ(σ + it) ≪
{
t1/2−σ+ε if 0 < σ < 1/2,

tε if σ ≥ 1/2,

where the implied constant is dependent only on ε, and for fixed small δ > 0,

(19)
1

ζ(σ + it)
≪
{
t−1/2+σ+ε if 0 < σ ≤ 1/2− δ,

tε if σ ≥ 1/2 + δ,

where the implied constant is dependent on δ and ε.

Lemma 4.4 ([24, Theorem 13.23]). Assume RH. There exists a sequence T =
{Tv}∞v=1 with v ≤ Tv ≤ v + 1 such that for all ε > 0 and 0 < σ ≤ 2,

(20)
1

ζ(σ + iTv)
≪ T ε

v ,

and the implied constant is dependent only on ε.

By employing these estimates, we are able to determine our explicit expression
for Lα(x) with an adequately small error term.

Theorem 4.5 (cf. [5], [25, Equation (4)], [27, Lemma 4]). Assume RH and that

all of the zeroes of ζ(s) are simple, and let 0 ≤ α < 1/2. Then for Tv ∈ T and

x ≥ 1, we have that

(21) Lα(x) =
x1/2−α

(1− 2α)ζ(1/2)
+
∑

|γ|<Tv

ζ(2ρ)

ζ′(ρ)

xρ−α

ρ− α
+ Eα(x) + Iα(x) +Rα(x, Tv),

where for arbitrary small 0 < ε < 1/2− α,

Iα(x) =
1

2πixα

∫ ε+α+i∞

ε+α−i∞

ζ(2s)

ζ(s)

xs

s− α
ds,
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and

Rα(x, Tv) ≪
1

xα
+
x1−α log x

Tv
+

x1−α

T 1−ε
v log x

with the implied constant dependent on ε and α. Moreover, limv→∞Rα(x, Tv) = 0.

Note that
1

ζ(1/2)
= −0.6847652 . . . .

It is the presence of the negative term x1/2−α/((1 − 2α)ζ(1/2)) in (21) that leads
to the negative bias of Lα(x).

Proof. By Corollary 4.2, we have that

Lα(x) =
1

2πi

∫ σ0+iT

σ0−iT

ζ(2(α+ s))

ζ(α + s)

xs

s
ds+ Eα(x) +O

(
1

xα
+
x1−α log x

T

)

for x ≥ 1 and T ≥ 1, where σ0 = 1− α+ 1/ logx. Now

1

2πi

∫ σ0+iT

σ0−iT

ζ(2(α + s))

ζ(α + s)

xs

s
ds

=
1

2πixα

∮

Cα

ζ(2s)

ζ(s)

xs

s− α
ds− 1

2πixα

∫ σ1+α−iT

σ1+α+iT

ζ(2s)

ζ(s)

xs

s− α
ds

− 1

2πixα

(∫ σ1+α+iT

σ0+α+iT

+

∫ σ0+α−iT

σ1+α−iT

)
ζ(2s)

ζ(s)

xs

s− α
ds,

where 0 < σ1 = ε < 1/2 − α, and Cα denotes the boundary of the rectangle with
vertices σ0 + α− iT, σ0 + α+ iT, σ1 + α+ iT, σ1 + α− iT .

The singularities inside C of this integrand occur at s = 1/2 and at the nontrivial
zeroes of the Riemann zeta function with imaginary part bounded above and below
by T and −T respectively. By Cauchy’s residue theorem, we therefore have that

1

2πixα

∮

C

ζ(2s)

ζ(s)

xs

s− α
ds =

x1/2−α

(1− 2α)ζ(1/2)
+
∑

|γ|<T

ζ(2ρ)

ζ′(ρ)

xρ−α

ρ− α
.

On the other hand,

− 1

2πixα

∫ σ1+α−iT

σ1+α+iT

ζ(2s)

ζ(s)

xs

s− α
ds = Iα(x) −

1

πixα
ℜ
(∫ σ1+α+i∞

σ1+α+iT

ζ(2s)

ζ(s)

xs

s− α
ds

)

and

− 1

2πixα

(∫ σ1+α+iTv

σ0+α+iTv

+

∫ σ0+α−iTv

σ1+α−iTv

)
ζ(2s)

ζ(s)

xs

s− α
ds

=
1

πxα
ℑ
(∫ σ0+α+iTv

σ1+α+iTv

ζ(2s)

ζ(s)

xs

s− α
ds

)
.

For the former, we use (18) and (19) to see that for 0 < σ1 + α < 1/2 and |t| ≥ 1,

ζ(2(σ1 + α+ it)) ≪ t1/2−2(σ1+α)+ε/3,
1

ζ(σ1 + α+ it)
≪ t−1/2+σ1+α+ε/3,

and hence

− 1

πixα
ℜ
(∫ σ1+α+i∞

σ1+α+iT

ζ(2s)

ζ(s)

xs

s− α
ds

)
≪ xσ1

∫ ∞

T

t−1−(σ1+α)+2ε/3 dt

≪ xε

T ε/3+α
.
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For the latter, we have by (18) and (20) that if s = σ + iT with T ∈ T ; that is,
T = Tv for some v, then for σ1 + α < σ < 1/4,

ζ(2(σ + iTv)) ≪ T 1/2−2σ+ε
v ,

1

ζ(σ + iTv)
≪ T ε

v ,

whereas for 1/4 ≤ σ < σ0 + α,

ζ(2(σ + iTv)) ≪ T ε/2
v ,

1

ζ(σ + iTv)
≪ T ε/2

v ,

and hence

1

πxα
ℑ
(∫ σ0+α+iTv

σ1+α+iTv

ζ(2s)

ζ(s)

xs

s− α
ds

)

≪ T
−1/2+2ε
v

xα

∫ 1/4

σ1+α

T−2σ
v xσ dσ +

T−1+ε
v

xα

∫ σ0+α

1/4

xσ dσ

≪ x1/4−α

T
1/2
v

+
x1−α

T 1−ε
v log x

.

Combining all these estimates yields the result. �

Taking the limit as v tends to infinity in (21), so as to eliminate the error term,
we obtain a closed-form expression for Lα(x).

Corollary 4.6. Assume RH and that all of the zeroes of ζ(s) are simple, and let

0 ≤ α < 1/2. For all x ≥ 1, we have that

Lα(x) =
x1/2−α

(1− 2α)ζ(1/2)
+ lim

v→∞
2ℜ


 ∑

0<γ<Tv

ζ(2ρ)

ζ′(ρ)

xρ−α

ρ− α


+ Eα(x) + Iα(x).

Here we have used the fact that
(
ζ(2ρ)

ζ′(ρ)

xρ

ρ

)
=
ζ(2ρ)

ζ′(ρ)

xρ

ρ
,

and that if ρ is a zero of ζ(s), then so is ρ.
Though this expression for Lα(x) is remarkable in its simplicity, the earlier ex-

pression (21) in terms of x and T turns out to be more useful for applications.
Unfortunately, this expression is somewhat restrictive, in the sense that we require
T to be a member of the sequence {Tv}∞v=1. We can remove this restriction by using
the hypothesis J−1(T ) ≪ T . Firstly, however, we determine bounds for Iα(x).

We define the sequence {c(n)}∞n=1 as being the coefficients of the Dirichlet series
for ζ(2s− 1)/ζ(s), and we denote by C(x), S(x) the Fresnel integrals

C(x) =

∫ x

0

cos

(
πt2

2

)
dt, S(x) =

∫ x

0

sin

(
πt2

2

)
dt.

In particular, we have that
∞∑

n=1

|c(n)|
n3/2

<∞, C(x) =
1

2
+O

(
1

x

)
, S(x) =

1

2
+O

(
1

x

)
,

where the first estimate holds from the absolute convergence of the Dirichlet series
for ζ(2s − 1)/ζ(s) for ℜ(s) > 1, while the latter two estimates are proved in [33,
§16.56, Equations (3)–(8)].

Lemma 4.7 (Fawaz [5, Theorem 2]). Assume RH. Let

I(x) = I0(x) =
1

2πi

∫ σ1+i∞

σ1−i∞

ζ(2s)

ζ(s)

xs

s
ds
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for 0 < σ1 < 1/2 with σ1 independent of x. Then

(22) I(x) = 1 + 2

∞∑

n=1

c(n)

n
(C(

√
nx) + S(

√
nx)− 1).

In particular, I(x) is independent of σ1, with the bounds

(23) I(x) = 1 +O

(
1√
x

)
, I

(
1

x

)
= O

(
1

x1/2−ε

)

for any 0 < ε < 1/2 as x tends to infinity.

The last estimate holds as∣∣∣∣I
(
1

x

)∣∣∣∣ ≤
1

2πxσ1

∫ σ1+i∞

σ1−i∞

|ζ(2s)|
|sζ(s)| |ds| ≪

1

xσ1

as x tends to infinity, and we may take σ1 = 1/2− ε for any 0 < ε < 1/2.
We must also determine bounds for

Iα(x) =
1

2πixα

∫ σ1+α+i∞

σ1+α−i∞

ζ(2s)

ζ(s)

xs

s− α
ds

where 0 < σ1 < 1/2− α. We note that

1

s− α
=

1

s
+

α

s(s− α)

and hence that

Iα(x) =
I(x)

xα
+

α

2πixα

∫ σ1+α+i∞

σ1+α−i∞

ζ(2s)

ζ(s)

xs

s(s− α)
ds.

On the other hand, we observe that for any u > 0,

I(u)

u1+α
=

1

2πi

∫ σ1+α+i∞

σ1+α−i∞

ζ(2s)

ζ(s)

us−1−α

s
ds,

and so by integrating over u from 0 to x and interchanging the order of integration,
which is justified by the estimates on I(u) in Lemma 4.7,

∫ x

0

I(u)

u1+α
du =

1

2πi

∫ σ1+α+i∞

σ1+α−i∞

ζ(2s)

ζ(s)

xs−α

s(s− α)
ds

for all x > 0. Thus

Iα(x) =
I(x)

xα
+ α

∫ x

0

I(u)

u1+α
du.

In conjunction with the estimates on I(u) in Lemma 4.7, we are therefore able to
bound Iα(x).

Lemma 4.8 (cf. [5, Theorem 6]). Assume RH, and let 0 ≤ α < 1/2. Then

Iα(x) = α

∫ ∞

0

I(u)

u1+α
du+O

(
1

x1/2+α

)

as x tends to infinity.

Corollary 4.9 (cf. [27, Lemma 5]). Assume RH and J−1(T ) ≪ T , and let 0 ≤
α < 1/2. Then for all T ≥ 1 and x ≥ 1, we have that

(24) Lα(x) =
x1/2−α

(1 − 2α)ζ(1/2)
+
∑

|γ|<T

ζ(2ρ)

ζ′(ρ)

xρ−α

ρ− α
+Rα(x, T ),

where for arbitrary small 0 < ε < 1/2− α,

(25) Rα(x, T ) ≪ 1 +
x1−α log x

T
+

x1−α

T 1−ε log x
.
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Proof. By (21), we have that

Lα(x) =
x1/2−α

(1 − 2α)ζ(1/2)
+
∑

|γ|<Tv

ζ(2ρ)

ζ′(ρ)

xρ−α

ρ− α
+ Eα(x) + Iα(x) +Rα(x, Tv),

where {Tv}∞v=1 is a sequence satisfying v ≤ Tv ≤ v + 1. We first deal with Eα(x)
and Iα(x): these are both bounded by a constant. Next, for T ≥ 1 with v ≤ Tv ≤
T ≤ v + 1, we have that

Lα(x) =
x1−α

(1− 2α)ζ(1/2)
+
∑

|γ|<T

ζ(2ρ)

ζ′(ρ)

xρ−α

ρ− α
−

∑

Tv≤|γ|<T

ζ(2ρ)

ζ′(ρ)

xρ−α

ρ− α
+Rα(x, Tv)

with Rα(x, Tv) now as in (25). By the Cauchy–Schwarz inequality, (14), and (5),
we have that
∣∣∣∣∣∣
∑

Tv≤|γ|<T

ζ(2ρ)

ζ′(ρ)

xρ−α

ρ− α

∣∣∣∣∣∣
≤ x1/2−α


 ∑

Tv≤|γ|<T

|ζ(2ρ)|2
(|ρ− α||ζ′(ρ)|)2




1/2
 ∑

Tv≤|γ|<T

1




1/2

≤ x1/2−α


 ∑

T/2≤|γ|<T

|ζ(2ρ)|2
(|ρ− α||ζ′(ρ)|)2




1/2

(N(T )−N(T − 1))1/2

≪ x1/2−α(logT )1/2 log logT√
T

,

and it remains to note that this error term is dominated by the other error terms.
�

5. The Existence of a Limiting Logarithmic Distribution

The goal of the next three sections is to prove the following central theorem
concerning Lα(x)/x

1/2−α, in a similar vein to results of Rubinstein and Sarnak [29]
and Ng [27].

Theorem 5.1. Assume RH, LI, and J−1(T ) ≪ T , and let 0 ≤ α < 1/2. Then the

function Lα(x)/x
1/2−α has a limiting logarithmic distribution. That is, there exists

a probability measure να on R such that

lim
X→∞

1

logX

∫

{x∈[1,X]:Lα(x)/x1/2−α∈B}

dx

x
= να(B)

for every Borel set B ⊂ R whose boundary has Lebesgue measure zero. Furthermore,

the mean and median of να are equal and given by

µα =
1

(1− 2α)ζ(1/2)
,

while the variance of να is

σ2
α = 2

∑

γ>0

|ζ(2ρ)|2
(|ρ− α||ζ′(ρ)|)2 .

Taking B = (−∞, 0] and using the fact that 1/ζ(1/2) < 0 yields the following
corollary, which gives a more quantitative description of the negative bias of Lα(x).

Corollary 5.2. Assume RH, LI, and J−1(T ) ≪ T , and let 0 ≤ α < 1/2. Then

(26)
1

2
≤ δ(Pα) ≤ 1.
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We perhaps ought to justify why we assume the three conjectures in Theorem
5.1. It ought to be clear by now that these three conjectures have significant sway
on the behaviour of Lα(x). Theorem 2.6 shows that, at the very least, violations
of the Riemann hypothesis lead to a somewhat quantitative resolution of Pólya’s
conjecture. As far as the Linear Independence hypothesis goes, Martin and Ng [18],
working with limiting distributions related to prime number races, claim that such
limiting distributions exist under significantly weaker conditions. More precisely,
they require only the existence of some ε > 0 such that for each sufficiently large T ,
there exist at least εT/ logT nontrivial zeroes of ζ(s) with imaginary parts positive
and bounded by T such that these imaginary parts satisfy no linear relation over
the rationals. As asymptotically there are (1/2π)T logT nontrivial zeroes of ζ(s)
with positive imaginary part bounded above by T , this suggests we only require a
comparatively sparse set of zeroes of ζ(s) to have linearly independent imaginary
parts. Finally, as for the assumption that J−1(T ) ≪ T , we shall see in Lemma 5.6 its
key application towards Theorem 5.1. In this case, it certainly seems possible to rely
on slightly weaker assumptions, but it is not immediately clear which assumptions
would suffice; cf. [26, pp.137–138].

Our starting point for proving Theorem 5.1 is the explicit expression (24) for
Lα(x). By this and using the fact that xρ−α = x1/2−α+iγ under the Riemann
hypothesis, we observe that for x ≥ 1 and 1 ≤ T < X we can write

Lα(x)

x1/2−α
= E(T )

α (x) + ε(T )
α (x),

where

E(T )
α (x) =

1

(1− 2α)ζ(1/2)
+
∑

|γ|<T

ζ(2ρ)

ζ′(ρ)

xiγ

ρ− α

and

(27) ε(T )
α (x) =

∑

T≤|γ|<X

ζ(2ρ)

ζ′(ρ)

xiγ

ρ− α
+Rα(x,X)

with

Rα(x,X) ≪ 1

x1/2−α
+

√
x log x

X
+

√
x

X1−ε log x

for arbitrary small ε > 0. This decomposition of Lα(x)/x
1/2−α into two parts,

E
(T )
α (x) and ε

(T )
α (x), is crucial in creating a limiting distribution for Lα(x)/x

1/2−α.

Our error part ε
(T )
α (x) is chosen such that its logarithmic mean square is suitably

small; that is, the quantity

1

logX

∫ X

1

|ε(T )
α (x)|2 dx

x

is uniformly bounded in X and tends to zero as T tends to infinity, as we shall see
in Lemma 5.6.

Our first step in constructing our limiting distribution is the following more
general result.

Lemma 5.3 (Kronecker–Weyl). Let t1, . . . , tn be arbitrary real numbers. Then the

topological closure H in the n-torus Tn of the set

H̃ =
{(
e2πit1y, . . . , e2πitny

)
∈ Tn : y ∈ R

}

is an r-dimensional subtorus of Tn, where 0 ≤ r ≤ n is the dimension over Q of

the span of t1, . . . , tn. Moreover, for any continuous function g : Tn → C, we have

that

lim
Y→∞

1

Y

∫ Y

0

g
(
e2πit1y, . . . , e2πitny

)
dy =

∫

H

g(z) dµH(z),
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where µH is the normalised Haar measure on H.

Lemma 5.4 (cf. [27, Lemma 8], [29, Lemma 2.3]). Assume RH and J−1(T ) ≪ T ,

and let 0 ≤ α < 1/2. For each T ≥ 1, there exists a probability measure να,T on R

such that

lim
X→∞

1

logX

∫ X

1

f
(
E(T )

α (x)
) dx

x
=

∫

R

f(x) dνα,T (x)

for all continuous functions f on R.

The proof is essentially identical to the proof of [27, Lemma 8]; we include the
details for further calculations.

Proof. We let N = N(T ) be the number of zeroes of ζ(s) with positive imaginary
parts at most T ; we denote these imaginary parts by γ1, . . . , γN . Then by Lemma
5.3 with tl = γl/2π, there exists a subtorus H ⊂ TN satisfying

lim
Y→∞

1

Y

∫ Y

0

g
(
eiγ1y, . . . , eiγNy

)
dy =

∫

H

g(z) dµH(z)

for every continuous function g on TN , where µH is the normalised Haar measure
on H . We now define the probability measure να,T on R by

να,T (B) = µH(B̃)

for each Borel set B ⊂ R, where

B̃ =

{
(z1, . . . , zN ) ∈ H : µα + 2ℜ

(
N∑

l=1

bα,lzl

)
∈ B

}
,

with

(28) µα =
1

(1− 2α)ζ(1/2)
, bα,l =

ζ(1 + 2iγl)

(1/2− α+ iγl)ζ′(1/2 + iγl)
.

The function µα + 2ℜ
(∑N

l=1 bα,lzl

)
is continuous on H , so B̃ is a Borel set in H ,

and να,T is a probability measure as µH is the normalised Haar measure on H . Now
if f is a bounded continuous function on R, we define the function g(z1, . . . , zN ) on
the N -torus TN by

g(z1, . . . , zN ) = f

(
µα + 2ℜ

(
N∑

l=1

bα,lzl

))
,

so that g is continuous on TN with

f
(
E(T )

α (ey)
)
= g

(
eiγ1y, . . . , eiγNy

)
.

Hence by Lemma 5.3,
∫

R

f(x) dνα,T (x) =

∫

H

g(z1, . . . , zN) dµH(z1, . . . , zN)

= lim
Y →∞

1

Y

∫ Y

0

g
(
eiγ1y, . . . , eiγNy

)
dy

= lim
Y →∞

1

Y

∫ Y

0

f
(
E(T )

α (ey)
)
dy

= lim
X→∞

1

logX

∫ X

1

f
(
E(T )

α (x)
) dx

x
,

(29)

as required. �
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Theorem 5.5 (cf. [27, Theorem 2], [29, Theorem 1.1]). Assume RH and J−1(T ) ≪
T , and let 0 ≤ α < 1/2. Then Lα(x)/x

1/2−α has a limiting logarithmic distribution

να on R. That is, there exists a probability measure να on R such that

lim
X→∞

1

logX

∫ X

1

f

(
Lα(x)

x1/2−α

)
dx

x
=

∫

R

f(x) dνα(x)

for all bounded continuous functions f on R.

We omit the details of the proof; it is essentially identical to the proof of [27,
Theorem 2]. The major change from this proof is that we require the following

estimate on ε
(T )
α (x).

Lemma 5.6 (cf. [27, Lemma 10]). Assume RH and J−1(T ) ≪ T , and let 0 ≤ α <
1/2. Then

lim
X→∞

1

logX

∫ X

1

|ε(T )
α (x)|2 dx

x
≪ logT (log logT )2

T 1/4
.

The proof of this estimate follows easily from the following bound.

Lemma 5.7 (cf. [27, Lemma 6]). Assume RH and J−1(T ) ≪ T , and let 0 ≤ α ≤
1/2. Then for Z > 0 and T < X,

∫ eZ

Z

∣∣∣∣∣∣
∑

T≤|γ|<X

ζ(2ρ)

ζ′(ρ)

xiγ

ρ− α

∣∣∣∣∣∣

2

dx

x
≪ logT (log log T )2

T 1/4
.

Proof. The proof is essentially identical to the proof of [27, Lemma 6], where the
estimate

∫ eZ

Z

∣∣∣∣∣∣
∑

T≤|γ|<X

1

ζ′(ρ)

xiγ

ρ

∣∣∣∣∣∣

2

dx

x
≪ logT

T 1/4

is proved. The replacement of ρ by ρ − α in the denominator does not alter the
proof at all, while we may use the estimate (6) to control the ζ(2ρ) term in the
numerator, which upon mimicking Ng’s proof leads to the additional (log logT )2

term on the right-hand side. �

6. An Explicit Formula for ν̂α

In Theorem 5.5, we may use Urysohn’s lemma to show that the same result
holds with f the characteristic function of a Borel set B ⊂ R whose boundary has
να-measure zero. We would like to take B = (−∞, 0] in order to prove the existence
of the logarithmic density of the set Pα = {x ∈ [1,∞) : Lα(x) ≤ 0}. Unfortunately,
we do not know that {0} has να-measure zero; indeed, we know very little about
the properties of να. If να is absolutely continuous with respect to the Lebesgue
measure — that is, if dνα(x) = ψα(x) dx for some nonnegative Lebesgue-integrable
function ψα — then να must be atomless, and the existence of this logarithmic
density will follow. Without additional assumptions, however, it does not seem
possible to prove that this is indeed the case.

Nevertheless, assuming certain additional conjectures allows us to derive an ex-
plicit formula for ν̂α, the Fourier transform of να, and with this we may show that
να is absolutely continuous with respect to the Lebesgue measure. We assume the
Linear Independence hypothesis, namely that the positive imaginary parts of the
nontrivial zeroes of the Riemann zeta function are linearly independent over the ra-
tional numbers; this allows us to calculate ν̂α via the construction of να via Lemma
5.3 and subsequently show that this Fourier transform is reasonably well-behaved.
The ensuing expression for ν̂α involves an infinite product of Bessel functions, and
so we must first recall certain properties of such functions.
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Lemma 6.1. Let

J̃0(x) =
∞∑

j=0

(−1)j

22j(j!)2
x2j

be the Bessel function of the first kind of order zero, and let

Ĩ0(x) = J̃0(ix) =

∞∑

j=0

x2j

22j(j!)2

be the modified Bessel function of the first kind of order zero. Then we have the

identities

J̃0(x) =

∫ 1

0

eix cos(2πθ) dθ,(30)

Ĩ0(x) =

∫ 1

0

ex cos(2πθ) dθ,(31)

and the bounds

|J̃0(x)| ≤ min

{
1,

√
3

4|x|

}
,(32)

|Ĩ0(x)| ≤ ex
2/4(33)

for all x ∈ R.

We note that one would usually write J0(x) to denote the Bessel function of the

first kind of order zero; we instead use the notation J̃0(x) so as to avoid confusion
with the discrete moments Jk(T ) =

∑
0<γ<T |ζ′(ρ)|2k of the Riemann zeta function.

Similarly, it is more customary to write I0(x) to denote the modified Bessel function
of order zero, but this coincides with our notation for the integral (22).

Proof. The identity (30) is, after an appropriate change of variables, [33, §3.3 Equa-
tion (6)], and then replacing ix by x and using the periodicity of the integrand yields

the identity (31). The triangle inequality thereby implies the bound |J̃0(x)| ≤ 1.

We therefore need only prove the second bound on |J̃0(x)| for |x| ≥ 3/4. By [33,
§7.3 Equation (1), §7.31 Equations (1)–(2)], we have that for x > 0,

J̃0(x) =

√
2

πx

(
P (x) cos

(
x− π

4

)
+Q(x) sin

(
x− π

4

))

with

0 < P (x) < 1, 0 < Q(x) <
1

8x
.

Noting that | cos(x− π/4)| ≤ 1 and | sin(x− π/4)| ≤ x/2 for x ≥ 3/4, we obtain

|J̃0(x)| ≤
√

2

πx

(
1 +

1

16

)
<

√
3

4x

for x ≥ 3/4, and the bound (32) follows by noting that J̃0(x) is an even function.
Finally, the bound (33) is [23, §3 Equation (2)]. �

The following result is akin to the results in [29, §3.1] and [27, Corollary 1].

Theorem 6.2. Assume RH, LI, and J−1(T ) ≪ T , and let 0 ≤ α < 1/2. Then the

Fourier transform ν̂α(ξ) =
∫
R
e−iξx dνα(x) of να is given by

(34) ν̂α(ξ) = exp

(
− iξ

(1− 2α)ζ(1/2)

)∏

γ>0

J̃0

(
2|ζ(2ρ)|ξ

|ρ− α||ζ′(ρ)|

)
,

where J̃0(x) is the Bessel function of the first kind of order zero.
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Proof. If the positive imaginary parts of the Riemann zeta function are linearly
independent over the rational numbers, then by Lemma 5.3, for any N = N(T )
the topological closure H of the set

{(
eiγ1y, . . . , eiγNy

)
∈ TN : y ∈ R

}
is all of TN .

Thus the normalised Haar measure µH on H is the normalised Lebesgue measure
dz1 · · · dzN , and so by (29) with µα, bα,l, 1 ≤ l ≤ N as in (28),

∫

R

f(x) dνα,T (x) =

∫

TN

f

(
µα + 2ℜ

(
N∑

l=1

bα,lzl

))
dz1 · · · dzN

for all bounded continuous functions f : R → R. Taking f(x) = e−iξx, we see that

ν̂α,T (ξ) =

∫

TN

exp

(
−iµαξ − 2iξℜ

(
N∑

l=1

bα,lzl

))
dz1 · · · dzN

= e−iµαξ
N∏

l=1

∫ 1

0

exp
(
−2iξℜ

(
bα,le

2πiθl
))

dθl

= e−iµαξ
N∏

l=1

∫ 1

0

exp (−2|bα,l|iξ cos(2π(θl + βα,l))) dθl

= e−iµαξ
N∏

l=1

∫ 1

0

exp (2|bα,l|iξ cos(2πθl)) dθl

= e−iµαξ
N∏

l=1

J̃0(2|bα,l|ξ).

Here we have set βα,l = arg(bα,l)/2π and used the periodicity of the integrand and
the identity (30). It then follows by the weak convergence of να,T to να that for
each ξ ∈ R,

ν̂α(ξ) = lim
T→∞

ν̂α,T (ξ)

= lim
T→∞

exp

(
− iξ

(1− 2α)ζ(1/2)

)N(T )∏

l=1

J̃0

(
2|ζ(1 + 2iγl)|ξ

|1/2− α+ iγl||ζ′(1/2 + iγl)|

)

= exp

(
− iξ

(1− 2α)ζ(1/2)

)∏

γ>0

J̃0

(
2|ζ(2ρ)|ξ

|ρ− α||ζ′(ρ)|

)
. �

Corollary 6.3. Assume RH, LI, and J−1(T ) ≪ T , and let 0 ≤ α < 1/2. The

mean µα and variance σ2
α of να are given by

µα =
1

(1− 2α)ζ(1/2)
,

σ2
α = 2

∑

γ>0

|ζ(2ρ)|2
(|ρ− α||ζ′(ρ)|)2 .

Proof. As J̃0(0) = 1 and liml→∞ bα,l = 0, we have that

log J̃0(2|bα,l|ξ) = −|bα,l|2ξ2 +O
(
|bα,l|2ξ4

)

for all sufficiently small ξ, uniformly in l. Here we have used the Taylor series for

J̃0(x) and the fact that |bα,l|2j ≪ |bα,l|2 for any j ≥ 1. Consequently,

log ν̂α(ξ) = iµαξ −
∞∑

l=1

|bα,l|2ξ2 +O(ξ4)
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in a sufficiently small neighbourhood of the origin; we note that J−1(T ) ≪ T ensures
that the coefficient of ξ2 is finite. We recall that log ν̂α(ξ) is the cumulant-generating
function of να with cumulants κj given by

log ν̂α(ξ) =

∞∑

j=1

κj
j!
(iξ)j .

As κ1 is the mean of να and κ2 is the variance, we obtain the result. �

The bound (32) on J̃0(x) allows us to prove that ν̂α(ξ) decays rapidly.

Lemma 6.4 (cf. [6, Lemma 2.1]). For all ε > 0, there exist positive constants

β1, β2 such that for all ξ ∈ R,

(35) |ν̂α(ξ)| ≤ β1e
−β2|ξ|

1
1+ε

.

Proof. By (34) and (32), we have that

|ν̂α(ξ)| ≤
∏

γ>0

min

{
1,

√
3|ρ− α||ζ′(ρ)|
8|ζ(2ρ)||ξ|

}
≤

N(T )∏

l=1

√
3|ρ− α||ζ′(ρ)|
8|ζ(2ρ)||ξ| .

for any T ≥ 1. Now by (7) and (8) and the fact that |ρ− α| ≪ γ,

N(T )∏

l=1

|ρ− α||ζ′(ρ)|
|ζ(2ρ)| ≪

∏

0<γ<T

exp

(
log γ + c

log γ

log log γ
+ log log log γ

)

≤ exp

(
N(T )

(
logT + c̃

logT

log logT

))

for c̃ = c+ ε for any ε > 0, while

N(T )∏

l=1

3

8|ξ| = exp

(
N(T ) log

(
3

8|ξ|

))
,

and hence

|ν̂α(ξ)| ≪ exp

(
N(T )

2
log

(
3

8|ξ|T exp

(
c̃

log T

log logT

)))
.

Taking T 1+ε = |ξ| and recalling by (4) that N(T ) ≪ T logT yields the result. �

We are now in a position to prove Theorem 5.1.

Proof of Theorem 5.1. The bound (35) implies that ν̂α is a Lebesgue-integrable
function, and hence that the inverse Fourier transform

ψα(x) =
1

2π

∫

R

ν̂α(ξ)e
ixξ dξ

exists and satisfies ψ̂α = ν̂α; here ψα is a continuous Lebesgue-integrable function
vanishing at infinity. So ν̂α is the Fourier transform of the measure ψα(x) dx, and
hence by the uniqueness of the Fourier transform, να(B) =

∫
B ψα(x) dx for every

Borel set B ⊂ R. In particular, να is absolutely continuous with respect to the
Lebesgue measure on R, and so by Theorem 5.5,

lim
X→∞

1

logX

∫

{x∈[1,X]:Lα(x)/x1/2−α∈B}

dx

x
= να(B)

for every Borel set B ⊂ R whose boundary has Lebesgue measure zero.
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Moreover, via Fourier inversion we have that

ψα

(
1

(1− 2α)ζ(1/2)
+ x

)
=

1

2π

∫

R

ν̂(ξ) exp

(
i

(
1

(1 − 2α)ζ(1/2)
+ x

)
ξ

)
dξ

=
1

2π

∫

R

∏

γ>0

J̃0

(
2|ζ(2ρ)|ξ

|ρ− α||ζ′(ρ)|

)
eixξ dξ.

Now J̃0(x), and hence
∏

γ>0 J̃0 (2|ζ(2ρ)|ξ/|ρ− α||ζ′(ρ)|), is an even function, and

so ψα(x) must be symmetric about x = 1/((1− 2α)ζ(1/2)). That is,

µα =
1

(1 − 2α)ζ(1/2)

is the median of να. �

It is worth noting that we may view the limiting logarithmic distribution να of
Lα(x)/x

1/2−α from a probabilistic point of view, namely that να is the distribution
of a certain random variable Xα on R. More precisely, for each positive integer
k, let Xk be a random variable distributed on the interval [0, 1] with the sine
distribution, and suppose that the collection {Xk} is independent. Let µ be a
constant random variable, and let {rk} be a sequence of positive real numbers
satisfying

∑∞
k=1 r

2
k < ∞. For each positive integer n, we then define the random

variable

Xn = µ+

n∑

k=1

rkXk.

Then Xn converges in distribution to a random variable

X = µ+

∞∑

k=1

rkXk;

in fact, Xn converges almost surely and in mean square to X . The fact that each
Xk has the sine distribution on [0, 1] implies that the characteristic function ϕXk

(t)
of Xk is

ϕXk
(t) = E

(
eitXk

)
= J̃0(t),

and hence that

ϕX(t) = E
(
eitX

)
= eiµt

∞∏

k=1

J̃0(rkt).

Equivalently, the Fourier transform ν̂X(ξ) =
∫
R
e−iξx dνX(x) of the probability

measure νX on R given by νX(B) = P(X ∈ B) for each Borel set B ⊂ R, where P

is the uniform measure on [0, 1]N, is given by

ν̂X(ξ) = e−iµξ
∞∏

k=1

J̃0(rkξ).

So for 0 ≤ α < 1/2, we may take

µ = µα =
1

(1 − 2α)ζ(1/2)
,

rk = rα,γ =
2|ζ(2ρ)|

|ρ− α||ζ′(ρ)| ,(36)

for ρ = 1/2 + iγ with γ = γk > 0, where we put the positive imaginary parts γk of
the zeroes of ζ(s) in increasing order. The assumption J−1(T ) ≪ T ensures that
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∑
γ>0 rα,γ

2 < ∞. By the uniqueness of the Fourier transform of a measure, we
conclude that να is equal to the distribution νXα of the random variable

(37) Xα =
1

(1− 2α)ζ(1/2)
+ 2

∑

γ>0

|ζ(2ρ)|
|ρ− α||ζ′(ρ)|Xγ ,

where each Xγ is a random variable distributed in [0, 1] with the sine distribution,
and the collection {Xγ} is independent.

7. Bounds on δ(Pα)

Ultimately, one would aim to compute the logarithmic density δ(Pα) of Pα =
{x ∈ [1,∞) : Lα(x) ≤ 0} to some adequate precision; that is, to obtain a precise
numerical value of να((−∞, 0]) with rigorous error bounds under the hypotheses of
Theorem 5.1. This has been achieved for measures relating to prime number races
by Rubinstein and Sarnak in [29, §4], though adapting their methods for our case
would require knowing the exact value of the variance

(38) σ2
α = 2

∑

γ>0

|ζ(2ρ)|2
(|ρ− α||ζ′(ρ)|)2 .

Unfortunately, this does not seem possible; unconditionally it is not even known if
this infinite sum converges, though numerical evidence certainly seems to suggest
that this is the case (see (42)).

A simpler aspiration than computing δ(Pα) explicitly is to find tighter bounds
on δ(Pα) than those in (26). In particular, we would like to prove that strict
inequality occurs — that is, that 1/2 < δ(Pα) < 1 — so that we may say that
Lα(x) is indeed negative more frequently than it is positive, but nevertheless it is
positive a significant portion of the time (in the sense of logarithmic density). One
method of proving these estimates would be to show that

(39) 0 < να ((µα, 0)) <
1

2
.

Following the methods of Feuerverger and Martin [6, Lemma 2.1], if we were able
to show that |ν̂α(ξ)| ≤ β1e

−β2|ξ| for some β1, β2 > 0 and for all ξ ∈ R, then a
Paley–Wiener-type theorem would allow us to conclude that the probability density
function ψα of να extends to a holomorphic function in the strip {z ∈ C : |ℑ(z)| <
β2}. As the zeroes of nonzero holomorphic functions cannot have an accumulation
point, ψ must be nonvanishing on open sets of R, which would yield the desired
estimates. Unfortunately, the bound on ν̂α(ξ) obtained in Lemma 6.4 is insufficient
to conclude this, and the methods used for proving this lemma do not seem to be
able to yield the required sharper estimate.

Another approach towards yielding information about δ(Pα) is via bounds for
the tails of να. In [27, Corollary 12], Ng proves bounds of the form

exp(− exp(c1V
4/5)) ≪ ν([V,∞)) ≪ exp(− exp(c2V

4/5))

for some absolute constants c1, c2 > 0. Here ν is the limiting logarithmic distri-
bution of M(x) =

∑
n≤x µ(n), the summatory function of the Möbius function,

and the proof is conditional on the Riemann hypothesis, the Linear Independence
hypothesis, and that

∑

0<γ<T

1

|ρζ′(ρ)| ≍ (logT )5/4 and
∑

γ>T

1

|ρζ′(ρ)|2 ≍ 1

T
.

A similar, albeit somewhat weaker, result holds with regards to the limiting loga-
rithmic distribution of Lα(x)/x

1/2−α. This relies on the following result of Mont-
gomery.



26 PETER HUMPHRIES

Proposition 7.1 (Montgomery [23]). Let {Xk} be an independent collection of

random variables with the sine distribution on [0, 1]. Let µ be a constant random

variable, and let {rk} be a sequence of positive real numbers satisfying
∑∞

k=1 r
2
k <

∞. Then the random variable

X = µ+

∞∑

k=1

rkXk

has moment-generating function

MX(t) = E
(
etX
)
= eiµt

∞∏

k=1

Ĩ0(rkt),

where Ĩ0(x) is the modified Bessel function of the first kind of order zero. Further-

more, we have the following bound on the tail of the distribution of X:

P

(
X ≥ µ+ 2

n∑

k=1

rk

)
≥ 2−40 exp


−100

(
n∑

k=1

rk

)2( ∞∑

k=n+1

r2k

)−1

 .

Corollary 7.2 (cf. [27, §4.2]). Assume RH, LI, and J−1(T ) ≪ T , and let 0 ≤ α <
1/2. Then for every ε > 0, there exists an absolute constant c > 0 independent of

α such that all V ≥ µα,

(40) να([V,∞)) ≥ exp
(
− exp

(
c(V − µα)

1+ε
))
.

Proof. From Proposition 7.1, we have that for any T ≥ 1,

P


Xα ≥ µα + 2

∑

0<γ<T

rα,γ


 ≥ 2−40 exp


−100


 ∑

0<γ<T

rα,γ




2
∑

γ>T

rα,γ
2




−1

 ,

with Xα as in (37) and rα,γ as in (36). Equivalently,

να




µα +

∑

0<γ<T

|ζ(2ρ)|
|ρ− α||ζ′(ρ)| ,∞






≥ 2−40 exp


−50


2

∑

0<γ<T

|ζ(2ρ)|
|ρ− α||ζ′(ρ)|




2
2

∑

γ>T

|ζ(2ρ)|2
(|ρ− α||ζ′(ρ)|)2




−1

 .

Now by (13) and (16),

2

∑

0<γ<T

|ζ(2ρ)|
|ρ− α||ζ′(ρ)|




2
2

∑

γ>T

|ζ(2ρ)|2
(|ρ− α||ζ′(ρ)|)2




−1

≪ T (logT )3(log logT )4,

with the implied constant independent of α. On the other hand, (15) implies that
there exists some absolute constant c > 0 independent of α such that for sufficiently
large T ,

∑

0<γ<T

|ζ(2ρ)|
|ρ− α||ζ′(ρ)| ≥ c

logT

log logT
.

We let V = c logT/ log logT , so that for any ε > 0 there exists an absolute constant
c̃ > 0 independent of α such that

50


2

∑

0<γ<T

|ζ(2ρ)|
|ρ− α||ζ′(ρ)|




2
2

∑

γ>T

|ζ(2ρ)|2
(|ρ− α||ζ′(ρ)|)2




−1

≤ exp
(
c̃V 1+ε

)
.
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Choosing c̃ sufficiently large, we conclude that for any V ≥ 0,

να ([V + µα,∞)) ≥ exp
(
− exp

(
c̃V 1+ε

))
. �

Remark 7.3. Montgomery’s theorem [23, §3 Theorem 1] as stated in Proposition
7.1 actually requires that the sequence {rk} be monotonically nonincreasing with
k and tending to zero; with rk = rα,γ , the latter is certainly true, but the former
is not. Nevertheless, this can be corrected by reordering these terms accordingly.
Indeed, the crucial point is having the correct order of magnitude in the bounds for∑

0<γ<T rα,γ and
∑

0<γ<T rα,γ
2, and reordering the terms by size certainly ensures

this is the case.

As the absolute constant c in (40) is not given explicitly, this bound fails to
clarify whether να has any mass near its median. On the other hand, this lower
bound on the tails of να ensure that να is not supported on some bounded interval,
and hence that strict inequality holds on at least one side of (39). In particular, we
have proved the first half of Theorem 1.5.

Next, we study lower bounds for δ(Pα). This involves determining upper bounds
on the tails of να. Our approach uses the two-sided Laplace transform method of
Lamzouri [16], which is a simplification of a method of Montgomery [23, §3].

Proposition 7.4 (cf. [16, Proposition 4.1]). For any V ≥ µα, we have the bound

(41) να([V,∞)) ≤ exp

(
− (V − µα)

2

2σ2
α

)
.

Proof. The two-sided Laplace transform of να,

Lα(s) =

∫

R

e−sx dνα(x),

is equal to MXα(−s), the moment-generating function of the random variable Xα,

withXα as in (37). So by Proposition 7.1 and the fact that Ĩ0(x) is an even function,

Lα(s) = exp

(
− s

(1− 2α)ζ(1/2)

)∏

γ>0

Ĩ0

(
2|ζ(2ρ)|s

|ρ− α||ζ′(ρ)|

)
;

we note that the inequality (33) on Ĩ0(x) and the fact that σ2
α is finite ensures that

Lα(s) is finite for all s ∈ R. By Chernoff’s inequality, we therefore have that for
V ≥ µα,

να([V,∞)) ≤ esV
∫

R

e−sx dνα(x)

= exp

(
s

(
V − 1

(1− 2α)ζ(1/2)

))∏

γ>0

Ĩ0

(
2|ζ(2ρ)|s

|ρ− α||ζ′(ρ)|

)
.

Applying the inequality (33),

να([V,∞)) ≤ exp

(
s

(
V − 1

(1− 2α)ζ(1/2)

)
+ s2

∑

γ>0

|ζ(2ρ)|2
(|ρ− α||ζ′(ρ)|)2

)
.

This inequality is minimised by choosing

s = −
(
V − 1

(1− 2α)ζ(1/2)

)(
2
∑

γ>0

|ζ(2ρ)|2
(|ρ− α||ζ′(ρ)|)2

)−1

,

which yields the result. �

By taking V = 0 in (41), we obtain the following precise lower bound on δ(Pα).
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Corollary 7.5. For each 0 ≤ α < 1/2,

δ(Pα) ≥ 1− exp

(
− µ2

α

2σ2
α

)
.

This does not quite prove that δ(Pα) > 1/2; as we discussed earlier, the infinite
sums defining the variances σ2

α are not even known to converge unconditionally,
let alone have bounds, so we cannot convert the above bound into something more
concrete. We must mention, however, that Richard Brent (personal communica-
tion) has used the first 65 536 zeroes of ζ(s) to obtain a conjectured value of σ2

α

when α = 0, namely

(42) σ2
0 ≈ 0.073219.

Together with Corollary 7.5, this suggests that

δ(P0) ≥ 0.959321,

so it seems likely that the set of counterexamples to Pólya’s conjecture has small, al-
beit strictly positive, logarithmic density. Indeed, Brent (personal communication)
has performed calculations based on a certain probabilistic heuristic that suggest
that

δ(P0) ≈ 0.99988.

The bound in Corollary 7.5 is easily understood in the limit as α tends to 1/2
from below. Indeed,

lim
α→1/2−

σ2
α = 2

∑

γ>0

|ζ(2ρ)|2
(γ|ζ′(ρ)|)2 ,

which is finite and positive under the assumption of J−1(T ) ≪ T , while

lim
α→1/2−

µ2
α = ∞,

and hence we may prove the second half of Theorem 1.5.

Corollary 7.6. Assume RH, LI, and J−1(T ) ≪ T . Then

lim
α→1/2−

δ(Pα) = 1.

We observe that this result could be proved by using Chebyshev’s inequality in
place of (41), but the latter gives stronger bounds. On the other hand, using [23,
§3 Theorem 1] we may show that for every ε > 0, there exists an absolute constant
c > 0 independent of α such that for every V ≫ µα,

(43) να([V,∞)) ≤ exp
(
− exp

(
c(V − µα)

2/3−ε
))

,

but unlike (41), the constant c is not explicitly defined. Finally, if we combine (43)
with (40), we see that we have the bounds

exp
(
− exp

(
c1(V − µα)

1+ε
))

≤ να([V,∞)) ≤ exp
(
− exp

(
c2(V − µα)

2/3−ε
))

for absolute constants c1, c2 > 0. If in place of the bound J−1(T ) ≪ T we assume
the stronger bounds

∑

0<γ<T

|ζ(2ρ)|
|ρ− α||ζ′(ρ)| ≍ (logT )5/4 and

∑

γ>T

|ζ(2ρ)|
(|ρ− α||ζ′(ρ)|)2 ≍ 1

T
,

then these bounds can be improved to

exp
(
− exp

(
c1(V − µα)

4/5
))

≤ να([V,∞)) ≤ exp
(
− exp

(
c2(V − µα)

4/5
))

for some absolute constants c1, c2 > 0; cf. [27, Corollary 12]. Based on bounds of
this form, Ng gives a heuristic argument in [27, §4.3] suggesting that the correct
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maximal order of growth of M(x) is
√
x(log log log x)5/4 (a conjecture originally put

forth by Gonek), and a similar argument suggests that the correct maximal order
of growth of Lα(x) is x1/2−α(log log log x)5/4.

8. The α = 1/2 Conjecture

In this section, we prove Theorem 1.6, namely that the logarithmic density of
{x ∈ [1,∞) : L1/2(x) ≤ 0} is equal to 1 assuming the Riemann hypothesis and
J−1(T ) ≪ T . We begin by determining an explicit expression for L1/2(x) in terms
of a sum over the zeroes of ζ(s). In the range 0 ≤ α < 1/2, an explicit expression
for Lα(x) was found in Theorem 4.5. A simple modification of the proof of this
theorem shows that a similar result holds for α = 1/2.

Theorem 8.1 (cf. [25, Equation (7)]). Assume RH and that all of the zeroes of

ζ(s) are simple. Then for Tv ∈ T and x ≥ 1, we have that

L1/2(x) =
log x

2ζ(1/2)
+

γ0
ζ(1/2)

− ζ′(1/2)

ζ(1/2)2
+
∑

|γ|<Tv

ζ(2ρ)

ζ′(ρ)

xiγ

iγ

+ E1/2(x) + I1/2(x) +R1/2(x, Tv),

(44)

where E1/2(x) = λ(x)/(2
√
x) if x ∈ N and 0 otherwise, and for arbitrary small

0 < ε < 1/2,

I1/2(x) =
1

2πi
√
x

∫ ε+i∞

ε−i∞

ζ(2s)

ζ(s)

xs

s− 1/2
ds,

and

R1/2(x, Tv) ≪
1√
x
+

√
x log x

Tv
+

√
x

T 1−ε
v log x

with the implied constant dependent on ε. Moreover, limv→∞R1/2(x, Tv) = 0.

The key difference is that we have a double pole at s = 1/2 with

Res
s=1/2

ζ(2s)

ζ(s)

xs−1/2

s− 1/2
=

log x

2ζ(1/2)
+

γ0
ζ(1/2)

− ζ′(1/2)

ζ(1/2)2
,

which is easily verified by the fact that

ζ(s) =
1

s− 1
+ γ0 +O(s− 1)

as s tends to 1 [24, Corollary 1.16].
Next, we must show that I1/2(x) = O(1). This is slightly different to Lemma

4.8, as the bound (23) is inadequate to show the convergence of
∫ x

0

I(u)

u3/2
du.

However, the bound (23) does suffice to show that
∫ x

1

I(u)

u3/2
du =

1

2πi

∫ ε+i∞

ε−i∞

ζ(2s)

ζ(s)

xs−1/2

s(s− 1/2)
ds− 1

2πi

∫ ε+i∞

ε−i∞

ζ(2s)

ζ(s)

1

s(s− 1/2)
ds,

for all x ≥ 1, and hence that for x ≥ 1,

I1/2(x) =
I(x)√
x

+
1

2

∫ x

1

I(u)

u3/2
du+

1

4πi

∫ ε+i∞

ε−i∞

ζ(2s)

ζ(s)

1

s(s− 1/2)
ds,

and this is ≪ 1 as x tends to infinity. This allows us to mimic the proof of Corollary
4.9 in order to obtain the following analogous result.
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Corollary 8.2. Assume RH and J−1(T ) ≪ T . Then for all T ≥ 1 and x ≥ 1, we

have that

L1/2(x) =
log x

2ζ(1/2)
+
∑

|γ|<T

ζ(2ρ)

ζ′(ρ)

xiγ

iγ
+R1/2(x, T ),

where for arbitrary small 0 < ε < 1/2,

R1/2(x, T ) ≪ 1 +

√
x log x

T
+

√
x

T 1−ε log x
.

Note that the constant terms in (44) have now been absorbed by the error term
R1/2(x, T ).

Finally, we are able to prove Theorem 1.6. It suffices to prove the following
proposition; Theorem 1.6 then follows as log x/(2ζ(1/2)) is negative and grows
faster than (log log x)3/2 log log log x.

Proposition 8.3 (cf. [27, Theorem 1 (ii)]). Assume RH and J−1(T ) ≪ T . Then

for some sufficiently large β > 0, the set

S1/2 =

{
x ∈ [e9,∞) :

∣∣∣∣L1/2(x)−
log x

2ζ(1/2)

∣∣∣∣ ≥ β(log log x)3/2 log log log x

}

has logarithmic density zero.

Proof. By Corollary 8.2, for x ≥ 1 and T ≥ 1,

L1/2(x) =
log x

2ζ(1/2)
+

∑

|γ|<(logT )4

ζ(2ρ)

ζ′(ρ)

xiγ

iγ
+

∑

(log T )4≤|γ|<T

ζ(2ρ)

ζ′(ρ)

xiγ

iγ

+O

(
1 +

√
x log x

T
+

√
x

T 1−ε log x

)

for arbitrary small ε > 0. By (13),

∑

|γ|<(logT )4

ζ(2ρ)

ζ′(ρ)

xiγ

iγ
≪

∑

0<γ<(log T )4

|ζ(2ρ)|
γ|ζ′(ρ)| ≪ (log logT )3/2 log log logT.

Thus if we restrict ourselves to the range T ≤ x ≤ eT ,

L1/2(x) =
log x

2ζ(1/2)
+

∑

(log T )4≤|γ|<T

ζ(2ρ)

ζ′(ρ)

xiγ

iγ
+O

(
(log log x)3/2 log log log x

)
.

Let C > 0 be the implicit constant in the error term above. Then if x ∈ S1/2 ∩
[T, eT ],
∣∣∣∣∣∣

∑

(log T )4≤|γ|<T

ζ(2ρ)

ζ′(ρ)

xiγ

iγ

∣∣∣∣∣∣
≥
∣∣∣∣L1/2(x)−

log x

2ζ(1/2)

∣∣∣∣− C(log log x)3/2 log log log x

≥ (β − C)(log log x)3/2 log log log x

and hence if β > C − 1, then∣∣∣∣∣∣
∑

(log T )4≤|γ|<T

ζ(2ρ)

ζ′(ρ)

xiγ

iγ

∣∣∣∣∣∣
≥ (log log x)3/2 log log log x

for x ∈ S1/2 ∩ [T, eT ]. By taking T = ek for any k ≥ 9, we see that if x ∈
S1/2 ∩ [ek, ek+1], then

1

(log k)3(log log k)2

∣∣∣∣∣∣
∑

k4≤|γ|<ek

ζ(2ρ)

ζ′(ρ)

xiγ

iγ

∣∣∣∣∣∣

2

≥ 1.
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Thus for any X ≥ e9,

∫

S1/2∩[1,X]

dx

x
≤

⌊logX⌋∑

k=9

∫

S1/2∩[ek,ek+1]

dx

x

≤
⌊logX⌋∑

k=9

1

(log k)3(log log k)2

∫ ek+1

ek

∣∣∣∣∣∣
∑

k4≤|γ|<ek

ζ(2ρ)

ζ′(ρ)

xiγ

iγ

∣∣∣∣∣∣

2

dx

x
.

We may bound these integrals via Lemma 5.7 with T = k4, X = Z = ek. Thus

∫

S1/2∩[1,X]

dx

x
≪

⌊logX⌋∑

k=9

1

k(log k)2
≪ 1,

and hence

δ(S1/2) = lim
X→∞

1

logX

∫

S1/2∩[1,X]

dx

x
= 0. �

Finally, we mention that a modification of the heuristic argument of Ng that
suggests that the correct order of growth of M(x) is

√
x(log log log x)5/4 yields a

similar heuristic for the order of growth of

L1/2(x)−
log x

2ζ(1/2)
.

This leads us to suggest the following refinement of the α = 1/2 conjecture.

Conjecture 8.4. As x tends to infinity,

L1/2(x) ∼
log x

2ζ(1/2)
.

This conjectural asymptotic was first put forth by Wintner [34, Equation (2)],
who observed that the hypothesis L(x) = O (

√
x) implies Conjecture 8.4; in light

of Theorem 2.8, however, this hypothesis seems most likely false. The remarkable
observation is that Ng’s heuristic argument on the correct order of growth of M(x)
suggests that Conjecture 8.4 is nevertheless true.
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