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Abstract. Consider a semiclassical Hamiltonian

HV,h := h2∆ + V − E

where h > 0 is a semiclassical parameter, ∆ is the positive Laplacian on Rd, V is a

smooth, compactly supported central potential function and E > 0 is an energy level. In
this setting the scattering matrix Sh(E) is a unitary operator on L2(Sd−1), hence with

spectrum lying on the unit circle; moreover, the spectrum is discrete except at 1.

We show under certain additional assumptions on the potential that the eigenvalues

of Sh(E) can be divided into two classes: a finite number ∼ cd(R
√
E/h)d−1, as h→ 0,

where B(0, R) is the convex hull of the support of the potential, that equidistribute
around the unit circle, and the remainder that are all very close to 1. Semiclassically,

these are related to the rays that meet the support of, and hence are scattered by, the

potential, and those that do not meet the support of the potential, respectively.
A similar property is shown for the obstacle problem in the case that the obstacle is

the ball of radius R.

1. Introduction

In this paper we consider the scattering matrix for a semiclassical potential scattering
problem with spherical symmetry on Rd, d ≥ 2. Let V be a smooth, compactly supported
potential function which is central, i.e. V (x) depends only on |x|. We consider the Hamil-
tonian

(1.1) HV,h := h2∆ + V − E

where ∆ = −
∑d
i=1 ∂

2
i is the positive Laplacian on Rd, E > 0 is a positive constant (energy)

and h > 0 is a semiclassical parameter. At the end of the introduction we will reduce to the
case E = 1.

The scattering matrix Sh(E) for this Hamiltonian can be defined in terms of the asymp-
totics of generalized eigenfunctions of HV,h as follows. For each function qin ∈ C∞(Sd−1),
there is a unique solution to HV,hu = 0 of the form

(1.2) u = r−(d−1)/2
(
e−i
√
Er/hqin(ω) + e+i

√
Er/hqout(−ω)

)
+O(r−(d+1)/2),

as r → ∞, see e.g. [17]. Here qout ∈ C∞(Sd−1). The map qin 7→ eiπ(d−1)/2qout is by defini-
tion the scattering matrix Sh(E). The factor eiπ(d−1)/2 is chosen so that this ‘stationary’
definition agrees with time-dependent definitions (see e.g. [21] or [25]), and is such that
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the scattering matrix for the potential V ≡ 0 is the identity map. It is standard that the
scattering matrix Sh(E) is a unitary operator on L2(Sd−1) for every h > 0, and that, for
the potentials under consideration, Sh(E)− Id is compact. It follows that the spectrum lies
on the unit circle, consists only of eigenvalues, and is discrete except at 1. It is therefore
possible to count the number of eigenvalues of Sh(E) in any closed interval of the unit circle
not containing 1. In fact, semiclassically (i.e. as h→ 0) we are able to separate the spectrum
of Sh(E) into two parts. One is associated to the rays that meet the support of the poten-

tial; to leading order in h there are cd(R
√
E/h)d−1 of these eigenvalues, cd = 2/(d − 1)!,

and the other part is associated to the rays that do not meet the support of the potential.
Those eigenvalues corresponding to rays that do not meet the support are close to 1, as one
should expect, since the eigenvalues of the zero potential are all 1 — see Proposition 1.5
below. The other eigenvalues are affected by the potential, and we can ask whether these
‘nontrivial’ eigenvalues are asymptotically equidistributed on the unit circle. Indeed Steve
Zelditch posed this question to one of the authors several years ago.

Before stating the main result, we discuss further the scattering matrix in the case of
central potentials. In this case the eigenfunctions of the scattering matrix are spherical
harmonics and the generalized eigenfunctions then take the form u = r−(d−2)/2f(r)Y ml ,
where (

−∂2
r −

1

r
∂r +

(l + (d− 2)/2)
2

r2
+
V (r)− E

h2

)
f = 0.(1.3)

Here

(1.4) f(r) = H
(1)
l+(d−2)/2(r

√
E/h) + c(l)H

(2)
l+(d−2)/2(r

√
E/h) for r > R,

where the H
(i)
ν are the standard Hankel functions, [1]. With our normalization, ShY

m
l =

c(l)Y ml with c(l) from (1.4) In particular, the eigenvalue of Y ml is independent of m. We
write the eigenvalue corresponding to Y ml in the form eiβl,h . The quantities βl,h/2 are called
‘phase shifts.’ See e.g. [21] for a review of these facts.

We now discuss conditions on the potentials in the main theorems. These conditions are
dynamical conditions, i.e. conditions on the Hamiltonian dynamical system determined by
the symbol of HV,h. As usual in microlocal analysis we refer to the classical trajectories of
this system as bicharacteristics. We first define the interaction region

(1.5) R := {x : V (|y|) < E for all |y| > |x|} .
This is the region of x-space accessible by bicharacteristics coming from infinity. Notice that
for central potentials this region takes the form

(1.6) R = {|x| ≥ r0} where r0 = inf
r≥0
{s > r ⇒ V (s) < E}.

The first condition is

(1.7) V is nontrapping at energy E in the interaction region.

That is, x tends to infinity along every bicharacteristic in R both forwards and backwards
in time.

The second condition concerns the scattering angle. Let R be such that B(0, R) is the
smallest ball containing the support of V , i.e.

(1.8) B(0, R) = chsuppV, the convex hull of the support of V.

We recall (see Section 2 for definitions and details) that for a central potential, the scattering
angle Σ(α) is a function only of the angular momentum α and measures the difference
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between the incident and final directions of the trajectory (which are well-defined, since the
motion is free for |x| > R — see [21]. The scattering angle is zero for all trajectories with
α > R. Our second condition is that

(1.9) the number of zeroes of Σ′(α) =
dΣ

dα
(α) in [0, R) is finite.

Then our main results are

Theorem 1.1. Let R be as in (1.8), and assume that V ∈ C∞c (Rd) is central and satisfies
condition (1.7). Define the real-valued function G(α), α ∈ R, by

(1.10)
dG

dα
(α) = Σ(α), G(α) = 0 for α ≥ R,

where Σ is the scattering angle function in (2.5). Then the following approximation on each
eigenvalue eiβl,h of Sh is valid:

(i) If the dimension d is even, then there exists C = C(d) such that, for all l ∈ N satisfying
lh ≤ R, we have an estimate

(1.11)

∣∣∣∣eiβl,h − exp

{
i

h

(
G
(
(l +

d− 2

2
)h
))} ∣∣∣∣ ≤ Ch.

(ii) If the dimension d > 2 is odd, then for any ε > 0 there exists C = C(ε, d) such that
(1.11) holds whenever α = lh ≥ ε is distance at least ε from the set

(1.12)
{
α : Σ(α) ∈ {πk}k∈Z

}
.

Theorem 1.2. Let R be as in (1.8), and assume that V ∈ C∞c (Rd) is central and satisfies
conditions (1.7) and (1.9). Then as h ↓ 0, we consider the eigenvalues eiβl,h for which

l ≤ R
√
E/h, counted with multiplicity pd(l) = dim ker (∆Sd−1 − l(l + d− 2)). There are

2(R
√
E/h)d−1/(d−1)!+O(h−(d−2)) of these, and they equidistribute around the unit circle,

meaning that

(1.13) sup
0≤φ0<φ1≤2π

∣∣∣∣ N(φ0, φ1)

2(R
√
E/h)d−1/(d− 1)!

− φ1 − φ0

2π

∣∣∣∣→ 0 as h ↓ 0,

where N(φ0, φ1) is the number of βl,h with l ≤ R
√
E/h and φ0 ≤ βl,h ≤ φ1 (mod 2π),

counted with multiplicity.

Remark 1.3. The approximation (1.11) for the phase shifts can be found in physics text-
books; see for example [15, Sect. 126] or [19, Equation (18.11), Section 18.2]; it can be
derived readily from the WKB approximation applied to (1.3). However, no error estimate
is claimed in either of these sources. We have not been able to find any rigorous bounds
on the WKB approximation of the phase shifts in any previous literature, so we believe the
bound (1.11) to be new.

Remark 1.4. Many potentials satisfy conditions (1.7) and (1.9) — see Section 5.

We also show

Proposition 1.5. Let V and R be as in Theorem 1.1, and let κ ∈ (0, 1). The eigenvalues

eiβl,h for l ≥ (R
√
E + hκ)/h satisfy∣∣∣eiβl,h − 1

∣∣∣ = O(h∞), h→ 0.
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Here and below, O(h∞) denotes a quantity that is bounded by CNh
N for all N and some

CN > 0.

Remark 1.6. The methods of [20, Section 4] show that for a ‘black box perturbation’ of the
Laplacian on Rd, at most O(h−(d−1)) eigenvalues of the scattering matrix are essentially
different from 1.

Note that the number of eigenvalues not covered by Theorem 1.1 and Proposition 1.5 is
o(h1−d), and hence cannot affect the equidistribution properties. Hence we get the following
equidistribution result for the full sequence of eigenvalues of Sh.

Corollary 1.7. Suppose that V satisfies conditions (1.7) and (1.9). Then for each ε > 0,
we have

(1.14) sup
ε≤φ0<φ1≤2π−ε

∣∣∣∣∣ Ñ(φ0, φ1)

2(R
√
E/h)d−1/(d− 1)!

− φ1 − φ0

2π

∣∣∣∣∣→ 0 as h ↓ 0,

where Ñ(φ0, φ1) is the number of βl,h (with no condition on l), counted with multiplicity,
satisfying φ0 < βl,h < φ1 (mod 2π).

Results directly analogous to those for semiclassical potentials are also true in the case
of scattering by a disk of radius R centered at the origin. The scattering matrix in this case
can be defined similarly; given any function qin ∈ C∞(Sd−1), there is a unique solution u to
the equation

(
∆− k2

)
u = 0 such that1

u = r−(d−1)/2
(
e−ikrqin(ω) + e+ikrqout(−ω)

)
+O(r−(d+1)/2), r →∞

u||x|=R ≡ 0.
(1.15)

The scattering matrix Sk is again defined qin 7→ eiπ(d−1)/2qout, and the standard facts
about the operator Sh also hold for Sk. As above, the spherical harmonics diagonalize the
scattering matrix. We write SkY

m
l = eixl,kY ml . We will prove

Theorem 1.8. As k →∞, the eigenvalues eixl,k of Sk satisfy

(1.16)

∣∣∣∣eixl,k − ei(kGb((l+(d−2)/2)/k)+π/2
)∣∣∣∣ ≤ Ck−1/2,

l

k
≤ R− k−1/3

for some uniform C = C(d), where Σb(α) := −2 cos−1(α/R) is the scattering angle for the
ball and Gb is defined by

(1.17) Gb(α) = −
∫ R

α

Σb(α
′) dα′ = 2

√
R2 − α2 − 2α cos−1(α/R).

The points eixl,k for which l ≤ Rk, counted with multiplicity

pd(l) = dim ker (∆Sd−1 − l(l + d− 2)) ,

equidistribute around S1 in the sense of Theorem 1.2. In fact, we have the stronger statement

(1.18) sup
0≤φ0<φ1≤2π

∣∣∣∣ N(φ0, φ1)

2(Rk)d−1/(d− 1)!
− φ1 − φ0

2π

∣∣∣∣ = O(k−1/3) as k →∞.

1Here we prefer to use non-semiclassical notation where the energy level is k2, as is traditional in obstacle

scattering literature. The variable k here corresponds to 1/h above, when the energy level E = 1.
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As far as we are aware, the present paper is the first in the mathematical literature to deal
with the question of the equidistribution of phase shifts over the unit circle. However, there
are a number of previous studies of high-energy or semiclassical asymptotics of eigenvalues
of the scattering matrix. The relation between the sojourn time and high-frequency asymp-
totics of the scattering matrix was observed in classical papers by Guillemin [9], Majda [16]
and Robert-Tamura [22]. Melrose and Zworski [18] showed that for fixed h > 0 the abso-
lute scattering matrix for a Schrödinger operator on a scattering, or asymptotically conic,
manifold is an FIO associated to the geodesic flow on the manifold at infinity for time π.
Alexandrova [2] studied the scattering matrix for a nontrapping semiclassical Schrödinger
operator, and showed that localized to finite frequency, it is a semiclassical FIO associated to
the limiting Hamilton flow relation at infinity, which includes the behavior of the Hamilton
flow in compact sets. A more global description was given in Hassell-Wunsch [10] where the
semiclassical asymptotics of the scattering matrix were unified with the singularities of the
scattering matrix at fixed frequency (i.e. the Melrose-Zworski result [18]). These results are
explained in Sections 2 and 3 below.

Asymptotics of phase shifts, i.e. the logarithms of the eigenvalues of the scattering matrix,
were analysed by Birman-Yafaev [3, 4, 5, 6], Sobolev-Yafaev [24], Yafaev [26] and more
recently Bulger-Pushnitski [7]. In [24], an asymptotic form V ∼ cr−α, α > 2 was assumed
and asymptotics of the individual phase shifts as well as the scattering cross section were
obtained. In this paper, the strength of the potential and the energy were allowed to vary
independently, so that the result includes the semiclassical limit as in the present paper. In
the other papers listed above, the context was scattering theory for a fixed potential. In
this setting, the scattering matrix S(λ) tends in operator norm to the identity as λ → ∞
so the phase shifts tend to zero uniformly. The asymptotics of individual phase shifts for a
fixed energy, and also the high-energy asymptotics, were analyzed.

In the 1990s Doron and Smilansky studied the pair correlation for phase shifts, in partic-
ular proposing that the pair correlations should behave statistically similarly to the (con-
jectural) pair correlations for eigenfunctions of a closed quantum system: that is, the pair
correlations for chaotic systems should be the same as for certain ensembles of random
matrices, while for completely integrable systems, they should be Poisson distributed (the
‘Berry-Tabor conjecture’); see for example [8]. In [28], Zelditch and Zworski analyzed the
pair correlation function for eigenvalues of the scattering matrix associated to a rotationally
invariant surface with a conic singularity and a cylindrical end. They showed that a full
measure set of a 2-parameter family of such surfaces obeyed Poisson statistics, agreeing with
Smilansky’s conjecture.

In a different setting Zelditch [27] analyzed quantized contact transformations, which are
families of unitary maps on finite dimensional spaces with dimension N → ∞. He proved
under the assumption that the set of periodic points of the transformation has measure
zero, that the eigenvalues of these unitary operators becomes equidistributed as N → ∞.
After reading a draft of the current paper, Zelditch pointed out to the authors that a
similar strategy could be used in the context of semiclassical potential scattering to prove
equidistribution. In fact, this strategy is likely to be a more direct approach to proving
equidistribution than the one we employ here. On the other hand, our approach has several
advantages: it also gives approximations to the individual phase shifts, up to an O(h) error
(see Theorem 1.1), and in addition appears to be a better method for obtaining a rate of
equidistribution, as in Theorem 1.8 above.

In future work, we plan to treat non-central potentials (or perhaps, following the sugges-
tion of one of the referees, black box perturbations of the free Laplacian — see [23, 20]) as
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well as non-compactly supported potentials. In the latter case, [24] gives some indication
of what to expect; in particular, the scaling with h cannot be the same as in the compactly
supported case.
Reduction to E = 1: In light of (1.3) and (1.4),

(1.19) Sh,V (E) = Sh̃,Ṽ (1),

where h̃ = h/
√
E and Ṽ = V/E. Here Sh,V (E) denotes the scattering matrix of h2∆+V −E,

and Sh̃,Ṽ (1) denotes the scattering matrix of h̃2∆ + Ṽ − 1. For the remainder of the paper,

we assume without loss of generality that E = 1.

2. Dynamics

We now review some standard material on Hamiltonian dynamics for central potentials.
Consider first the case the dimension d = 2.

The classical Hamiltonian corresponding to our quantum system is

|ξ|2 + V (r)− 1

or in polar coordinates, using (r, ϕ) and dual coordinates (ρ, η),

H = ρ2 +
η2

r2
+ V (r)− 1,

and the Hamilton equations of motion are

(2.1)
ṙ = 2ρ

ρ̇ = −V ′(r) + 2r−3η2

ϕ̇ = 2
η

r2

η̇ = 0.

The invariance of the Hamiltonian under rotations is reflected in the conservation of angular
momentum η = 2r2ϕ̇. For a given bicharacteristic, this is the minimum value of r along the
free (V ≡ 0) bicharacteristic that agrees with the given one as t → −∞ (we could just as
well take t→ +∞ since it is a conserved quantity).

Notice that in the case of general dimension d, each bicharacteristic lies entirely in a
two-dimensional subspace, so the above discussion in fact includes the general case.

The scattering matrix is related to the asymptotic properties of the bicharacteristic flow.
Geometrically this information is contained in a submanifold

L ⊂ T ∗Sd−1 × T ∗Sd−1 × R

that we define now. Returning to the case of general dimension d, we identify Sd−1 with the
unit sphere in Rd and identify the cotangent space T ∗ωSd−1 with the orthogonal hyperplane
ω⊥ to ω. Given ω and η ∈ T ∗ωSd−1, take the unique bicharacteristic ray whose projection
xω,η(t) to Rd is given by η + tω for t << 0. Define (ω′, η′) by

ω′(ω, η) = lim
t→∞

x(t)/ |x(t)|

η′(ω, η) = lim
t→∞

x(t)− 〈x(t), ω′〉ω′
(2.2)

and τ(ω, η) to be the sojourn time or time delay for γ; this is by definition the limit

(2.3) lim
a→∞

t1(a)− t2(a)− 2a = τ(ω, η),
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Figure 1. Here xω,η is the classical trajectory equal to η + tω for t << 0.
The scattering angle Σ(η) is the angle between the outgoing direction ω′ and
the incoming direction ω. Note that |η| = |η′| by conservation of angular
momentum since the potential V is central, V = V (r).

where t1(a) is the smallest time, t, for which r(t) = a and t2(a) is the largest. We then
define L to be the submanifold

(2.4) L := {(ω, η, ω′(ω, η),−η′(ω, η), τ).}

As shown in [10], L is a Legendrian submanifold of T ∗Sd−1 × T ∗Sd−1 × R with respect to
the contact form χ + χ′ − dτ , where χ is the standard contact form on T ∗Sd−1, given in
any local coordinates x and dual coordinates ξ by ξ · dx. Note that the projection of L
to T ∗Sd−1 × T ∗Sd−1 is Lagrangian with respect to the standard symplectic form. Indeed
it is the graph of a symplectic transformation (ω, η) 7→ (ω′, η′), and the scattering matrix
is a semiclassical Fourier integral operator associated to this symplectic graph [2], [10].
The sojourn time, however, carries extra information and is directly related to high-energy
scattering asymptotics as observed in [16], [9], [10].
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The previous paragraph applies to any potential, central or not. We return to the case
of a central potential V , for which, as observed above, the dynamics take place in a two-
dimensional subspace, so we can assume d = 2 without loss of generality. In that case
we use the angular variables ϕ,ϕ′ in dimension d = 2 instead of ω, ω′ above. Consider a
bicharacteristic γ with angular momentum η ∈ R, initial direction ϕ ∈ S1 and final direction
ϕ′ ∈ S1. The scattering angle Σ(η) determined by V is, by definition, the angle between the
initial and final directions of γ, normalized so that Σ is continuous and Σ(η) = 0 for η > R,
i.e.

(2.5) Σ(η) = ϕ′(ϕ, η)− ϕ, Σ(η) = 0 for η > R.

See Figure 1. Note that Σ is independent of ϕ by rotational invariance of V . In the central
case, there is a standard expression for Σ(η) in terms of the potential (see for example [19,
Section 5.1]), that we now derive. Indeed, if V is central and non-trapping at energy 1,
then along a bicharacteristic, the functions ρ and ρ̇ do not have simultaneous zeros. For if
there were such a time, and the value of r at this time were r0, then r(t) ≡ r0 would be a
bicharacteristic, contradicting the non-trapping assumption. Hence the zeros of the function
1−η2/r2−V (r) are simple on the region of interaction (1.5). Given a fixed bicharacteristic,
let rm be the minimum value of r; note that rm is a function only of the angular momentum
η. We denote the derivative of rm with respect to η by r′m(η). By symmetry, rm is the
unique value of r along the trajectory at which ρ = 0 and ρ̇ > 0, so we can divide the
bicharacteristic ‘in half,’ and consider only times when r > rm and ρ ≥ 0. For such times r
is a strictly monotone function of t, and we have

dϕ

dr
=
dϕ

dt

dt

dr
=

η

r2

1

ρ
=

η

r2
√

1− η2/r2 − V (r)
.

By the simplicity of the zeros in the denominator, we can integrate to obtain, for η > 0,

Σ(η) = π − 2

∫ ∞
rm

η

r2
√

1− η2/r2 − V (r)
dr.(2.6)

The sojourn time is also independent of ϕ, and we write

(2.7) T (η) = τ(ϕ, η).

Notice that both Σ and T depend only on η in the central case. The fact that L in (2.4) is
Legendrian then implies the following relation between these functions:

(2.8) dτ = η · (dϕ− dϕ′) =⇒ d

dη
T (η) = −η d

dη
Σ(η).

Remark 2.1. Notice that the ambiguity of Σ modulo 2π is eliminated by our convention that
Σ(η) = 0 for η > R. We point out that by reflection symmetry, we have Σ(η) = −Σ(−η)
modulo 2π, but it might not be the case that Σ(η) = −Σ(−η) on the nose: this will happen
if and only if Σ(0) = 0, which will be the case if and only if the interaction region is the
whole of Rd. However, we always have Σ′(η) = Σ′(−η), which shows that T ′(η) is an odd
function, and hence T (η) is even in η.

3. Asymptotic for the eigenvalues of Sh

In this section we prove Theorem 1.1, that is, the error bound (1.11) for the asymptotics
of the eigenvalues eiβl,h of Sh. To do this, we will use a Fourier integral approach. One
could also directly attack (1.3) using ODE methods; see Remark 3.3 for further discussion
on this point.
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We use the fact, proven in [10], [2], that the integral kernel of Sh is an oscillatory integral
associated (in a manner we describe directly) to the Legendre submanifold L in (2.4). To be
precise, the Schwartz kernel of Sh can be decomposed following [10, Prop. 15] (with minor
changes in notation) as

Sh = K1 +K2 +K3,

with the Ki as follows.
Fix R2 > R1 > R. First, K2 is a pseudodifferential operator of order zero (both in the

sense of semiclassical order and differential order), microsupported in {|η| > R1}, hence
taking the form in local coordinates z on Sd−1

(2πh)−(d−1)

∫
ei(z−z

′)·ζ/hb(z, ζ, h) dζ

for some smooth symbol b(z, ζ, h) equal to zero for |ζ|g(z) < R1 where | · |g(z) is the standard

norm on T ∗z Sd−1. This reflects the fact that the Legendrian submanifold L in (2.4) is the
diagonal relation ω = ω′, η = −η′, τ = 0 for |η|, |η′| > R, to which pseudodifferential
operators are associated. Moreover, K2 is microlocally equal to the identity for |η| > R2,
i.e. b = 1 + O(h∞) for |ζ|g > R2. Indeed, the full symbol (up to O(h∞)) of the scattering
matrix is determined by transport equations along the rays with |η| > R. Since these
transport equations are identical to those for the zero potential, the scattering matrix in
this microlocal region is microlocally identical to that for the zero potential, which is the
identity operator.

Next, K1 is a semiclassical Fourier integral operator of semiclassical order 0 with compact
microsupport in {|η| < R2}. That is, K1 is given by a sum of terms taking the form in local
coordinates

(3.1) K1(ω, ω′, h) = h−(d−1)/2−N/2
∫
RN

eiΦ(ω,ω′,v)/ha(ω, ω′, v, h)dv

with respect to a suitable phase function Φ and smooth compactly supported function a.
Here the phase function parametrizes L locally, meaning

(1) On the set Crit Φ := {(ω, ω′, v) : DvΦ(ω, ω′, v) = 0}, Dω,ω′,vΦ has rank N . This
implies that

(3.2) L(Φ) := (ω,DωΦ(ω, ω′, v), ω′, Dω′Φ(ω, ω′, v),Φ(ω, ω′, v))

is a smooth submanifold.
(2) L(Φ) = L at points for which a 6= O(h∞).

By K1 having compact microsupport in the set {|η| < R2}, we mean specifically that if
(ω, η, ω′, η′, τ) ∈ L has |η| = |η|′ > R2 and (ω, ω′, v) ∈ Crit(Φ) with (Dω,ω′Φ(ω, ω′, vi),Φ) =
(η, η′, τ), then a(ω, ω′, v, h) = O(h∞) in a neighbourhood of (ω, ω′, v).

Finally, K3 is a kernel in Ċ∞(Sd−1 × Sd−1 × [0, h0)), i.e. smooth and vanishing to all
orders at h = 0.

For the proof of Theorem 1.1 we need to know the principal symbol ofK1 as a semiclassical
FIO. By (3.2), the canonical relation of K1, C, is the projection of L off the R factor, i.e.
onto T ∗Sd−1 × T ∗Sd−1. Precisely, with notation as in (2.4),

(3.3) C = {(ω, η, ω′,−η′)} .

Lemma 3.1. The Maslov bundle of the canonical relation C of the FIO K1 is canonically
trivial, and with respect to this canonical trivialization, the principal symbol of K1 is equal
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to 1, as a multiple of the Liouville half-density on C coming from either the left or right
projection of C to T ∗Sd−1. That is to say,

(3.4) σ(K1)(ω, η, ω′,−η′) = |dω dη|1/2 = |dω′ dη′|1/2 ,

for (ω, η, ω′,−η′) ∈ C such that |η| ≤ R1. (The two half-densities in (3.4) are equal on C
since C is a Lagrangian submanifold.)

Proof. Consider first the Maslov bundle of C. Notice that C is almost the same as L; in
fact, it is given by

C = {(ω, η, ω′,−η′) | ∃ τ such that (ω, η, ω′, η′, τ) ∈ L}.

Since C is a canonical graph (i.e. the graph of a symplectomorphism), associated to the
scattering relation as in (2.2), it projects diffeomorphically to T ∗Sd−1 via both the left
and right projections, and the lift of Liouville measure on T ∗Sd−1 via the left projection
agrees with the lift via the right projection (since C is a Lagrangian submanifold of T ∗Sd−1×
T ∗Sd−1 and the Liouville measure can be expressed in terms of the symplectic form T ∗Sd−1),
providing a canonical half-density on C. We also note that the scattering relation is the
identity whenever |η| ≥ R since then the corresponding bicharacteristic is not affected by
the potential. Therefore, over this part of C there is a canonical trivialization of the Maslov
bundle. Since the Maslov bundle is flat, we can use parallel transport to extend this to a
global trivialization: in fact, in the case d = 2, the space T ∗S1 retracts to Sd−1 × {η > R},
while for d ≥ 3, T ∗Sd−1 is simply connected, hence in either case parallel transport provides
an unambiguous trivialization.

We now consider the principal symbol of the scattering matrix. The scattering matrix
may be viewed as a ‘boundary value’ (after removing a vanishing factor and an oscillatory
term) of the Poisson operator, as in [10, Section 7.7 and Section 15]. The principal symbol
of the scattering matrix is correspondingly derived from the principal symbol of the Poisson
operator. The principal symbol of the Poisson operator is real: it solves a real transport
equation with initial condition 1. Therefore, the principal symbol of the scattering matrix
is real, up to Maslov factors, i.e. it is a real number times an eighth root of unity. On the
other hand, unitarity of the scattering matrix shows that the principal symbol lies on the
unit circle (as a multiple of the canonical half-density); hence it is an eighth root of unity.
Finally, the principal symbol of the scattering matrix is equal to 1 for |η| ≥ R, since here the
scattering matrix is microlocally equal to the scattering matrix for the zero potential, which
is certainly equal to 1. Since the principal symbol is smooth, is restricted to eighth roots of
unity, and is 1 for |η| ≥ R, it follows that the principal symbol is equal to 1 everywhere. �

Proof of Theorem 1.1: First we reduce the problem to the cases d = 2 and d = 3 as follows.
Writing βl,h,d for the eigenvalue βl,h in dimension d, observe that by (1.3),

(3.5) βl,h,d+2k = βl+k,h,d for d ≥ 2, k ≥ 0.

It follows that for d ≥ 4 even, we have βl,h,d = βl+(d−2)/2,h,2 and for d ≥ 5 odd, we have
βl,h,d = βl+(d−3)/2,h,3.

Consider the case dimension d = 2. For any smooth function G : R −→ R, the function

(3.6) Φ(ϕ,ϕ′, v) = (ϕ− ϕ′)v +G(v),

parametrizes the Legendrian (see (3.2))

(3.7) L(Φ) :=
{

(ϕ, η, ϕ′, η′, τ) | η = v = −η′, ϕ′ − ϕ =
dG

dv
(v), τ = −v dG

dv
(v) +G(v)

}
.
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With G as in (1.10), this gives an explicit global parametrization of the Legendrian
submanifold L in (2.4) if we take ϕ ∈ [0, 2π], ϕ′ ∈ R. In this case the relation between τ
and Σ given by the last equation in (3.7) is

τ = −ηΣ(η) +G(η) =⇒ d

dη
τ = −η d

dη
Σ(η),

in agreement with (2.8). Therefore, plugging (3.6) into (3.1), the operator K1 takes the
form

K1(ϕ,ϕ′, h) = (2πh)−1

∫
R
ei((ϕ−ϕ′)v+G(v))/ha(ϕ− ϕ′, v, h) dv, ϕ ∈ [0, 2π], ϕ′ ∈ R,

where a is smooth and supported in |v| ≤ R2. Notice that we may assume that a depends
only on (ϕ − ϕ′, v, h) since the scattering matrix and the phase function both have this
property.

Now we obtain an expression for the eigenvalue eiβl,h of the scattering matrix Sh on
Yl = (2π)−1/2eilϕ using

(3.8) eiβl,h = 〈ShYl, Yl〉 = 〈K1Yl, Yl〉+ 〈K2Yl, Yl〉+ 〈K3Yl, Yl〉.

Clearly 〈K3Yl, Yl〉 = O(h∞). Consider the K1 term. Writing l = α/h gives

〈K1Yl, Yl〉 = (2πh)−1(2π)−1

∫
R

∫ 2π

0

∫
R
ei((ϕ−ϕ′)v+G(v)−α(ϕ−ϕ′))/ha(ϕ− ϕ′, v, h) dv dϕ dϕ′.

Changing integration variables to (ϕ, ϕ̃ = ϕ − ϕ′), the kernel is independent of the first of
these variables, so that integrating in it simply removes the factor 2π. We are left with

〈K1Yl, Yl〉 = (2πh)−1

∫
R

∫
R
ei(ϕ̃v+G(v)−αϕ̃)/ha(ϕ̃, v, h) dv dϕ̃.

The phase is stationary at the point v = α, −ϕ̃ = G′(v) = Σ(v) and the stationary phase
lemma shows that the integral is equal to

(3.9) 〈K1Yl, Yl〉 = eiG(α)/ha(−Σ(α), α, 0) +O(h)

(noting that the Hessian of the phase function has determinant 1 and signature 0).
Next we write

〈K2Yl, Yl〉 = (2πh)−1(2π)−1

∫
ei(ϕ−ϕ

′)v/hb(ϕ, v, h)e−iα(ϕ−ϕ′)/h dv dϕ dϕ′.

Here, the phase is stationary when α = v. However, b is supported where |v| ≥ R1 > R while
α ≤ R by hypothesis, so there are no stationary points on the support of the integrand. It
follows that 〈K2Yl, Yl〉 = O(h∞). Thus by (3.8)

(3.10) eiβl,h = eiG(α)/ha(−Σ(α), α, 0) +O(h).

The principal symbol of K1 as an FIO is given as a multiple of the Liouville half-density
on T ∗S1, |dϕ dη|1/2, by [11, Section 3]

(3.11) σ(K1)(ϕ, η, ϕ+ Σ(η),−η) = a(−Σ(η), η, 0)|dϕ dη|1/2.

Indeed, the density dC defined on page 143 of that paper equals |dϕ dη|, where we used
coordinates (x, θ) = (ϕ,ϕ′, v). The principal symbol is the image of the map from C to Λ
defined immediately following the definition of dC , in the notation of that paper. In the
notation of the current paper, C = Crit(Φ) and Λ is the projection of the Legendrian L
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onto the first four coordinates, i.e. it is C from (3.3). It follows from equation (3.11) and
equation (3.4) that

(3.12) a(−Σ(η), η, 0) = 1.

Combining (3.12) and (3.9), we see that

(3.13) eiβl,h = eiG(α)/h +O(h),

establishing (1.11).
We proceed to the case d = 3. In this case, we will obtain the eigenvalue eiβl,h by

pairing the scattering matrix Sh with the highest weight spherical harmonics Y ll . These
concentrate along a great circle γ, which we parametrize by arclength, ϕ ∈ [0, 2π]. Choose
Euclidean coordinates in R3 so that the two-plane spanned by γ is the plane x3 = 0. Then
Y ll = cl(x1 + ix2)l where cl is a normalization factor, equal to (2π)−1/2(πl)1/4(1 +O(l−1)).
Let θ be the spherical coordinate equal to the angle with the positive x3 axis. Then we can
write

(3.14) Y ll (ϕ, θ) = cle
ilϕ(sin θ)l = cle

ilϕe−lg(θ)

where g(θ) = − log sin θ = (θ − π/2)2/2 +O((θ − π/2)4).
In particular, expression (3.14) shows (and it is in any case well known) that the Y ll

concentrate semiclassically at the set {θ = π/2, ζ = 0, σ = α} where l = α/h + O(1). Here
we use coordinates (σ, ζ) dual to (ϕ, θ). To compute the pairing (3.8) with Y ll replacing
Yl, we first need to determine an oscillatory integral expression for K1 that is valid in this
microlocal region. (Note that the K2 and K3 terms give an O(h∞) contribution as before.)
So choose α0 distance ≥ ε from the set (1.12). As we will see, it suffices to find a local
parametrization of L in a neighbourhood of

{θ = θ′ = π/2, ζ = ζ ′ = 0, σ = −σ′ = α0, ϕ− ϕ′ = Σ(α0)};
this is the set of incoming and outgoing data of bicharacteristics with angular momentum
α0 (see Section 2) which remain in the x3 = 0 plane. To define this parametrization,
we consider first a parametrization in two dimensions locally near a bicharacteristic with
angular momentum η = α. As we have seen such a two dimensional parametrization is
(ϕ − ϕ′)v + G(v), for v close to α. We note that when v = α, ϕ′ − ϕ = Σ(α), and we can
write it in the form

(3.15) ϕ′ − ϕ = ±dist(ϕ,ϕ′) + 2πk

for some integer k (recalling that the distance dist(ϕ,ϕ′) lies strictly between 0 and π). We
now claim that a suitable phase function is

(3.16) Φ(ω, ω′, v) = (∓dist(ω, ω′)− 2πk)v +G(v),

where v ∈ R is localized near α0, G(v) is as in (1.10), and the sign ∓ and the value of
k agree with the two-dimensional case. Indeed, on each two-plane, if we use spherical
coordinates (ϕ, θ) adapted to that 2-plane then the form of the phase function agrees by
construction with the two-dimensional phase function and therefore parametrizes that part
of L associated to that 2-plane (since the dynamics on each 2-plane is identical to the d = 2
dynamics), that is, the subset (in the coordinates adapted to that 2-plane, indicated by a
bar)

(3.17) {θ = θ
′

= π/2, ζ = ζ
′

= 0, ϕ′ − ϕ = Σ(α), σ = −σ′ = α, τ = T (α)}.
We now observe that we can eliminate k by redefining G(v) locally to be G(v) + 2πkv,

which only has the irrelevant effect of changing Σ by 2πk (notice also that this does not
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affect the eigenvalue formula involving eiG(lh)/h in the statement of Theorem 1.1). From
here on we only work with the + sign in (3.15), i.e. the − sign in (3.16), and k = 0. Notice
that this means that 0 < ϕ′ − ϕ < π and 0 < Σ(α) < π, i.e. sin Σ(α) > 0. Returning to
our spherical coordinates associated to the 2-plane x3 = 0, we can use the spherical cosine
law applied to the spherical triangle with vertices (ϕ, θ), (ϕ′, θ′), and the pole x3 = 1:

cos dist((ϕ, θ), (ϕ′, θ′)) = cos(ϕ− ϕ′) sin θ sin θ′ + cos θ cos θ′

to write

(3.18) Φ(ϕ, y, ϕ′, y, v) = − cos−1 (cos(ϕ− ϕ′) sin θ sin θ′ + cos θ cos θ′) v +G(v).

We can then write in these coordinates

(3.19)

L =
{

(ϕ, θ, ϕ′, θ′, σ, ζ, σ′, ζ ′, τ) |

σ = ∂ϕΦ = − v

sin dist(ω, ω′)
(sin(ϕ− ϕ′) sin θ sin θ′)

ζ = ∂θΦ =
v

sin dist(ω, ω′)
(cos(ϕ− ϕ′) cos θ sin θ′ − sin θ cos θ′)

σ′ = ∂ϕ′Φ =
v

sin dist(ω, ω′)
(sin(ϕ− ϕ′) sin θ sin θ′)

ζ ′ = ∂θ′Φ =
v

sin dist(ω, ω′)
(cos(ϕ− ϕ′) cos θ′ sin θ − sin θ′ cos θ)

τ = dist(ω, ω′)v +G(v)
}

where dist(ω, ω′) = G′(v).

(Notice that by direct inspection we see that this agrees with (3.17) when θ = θ′ = π/2,
since then cos θ = cos θ′ = 0 and dist(ω, ω′) = ϕ′ − ϕ = Σ(α) and so σ = v = α.)

The scattering matrix, microlocalized to this region of phase space, will then take the
form

(3.20) (2πh)−3/2

∫
eiΦ(ω,ω′,v)/ha(ω, ω′, v, h) dv.

In terms of this parametrization the principal symbol of (3.20), say where both ω and ω′

lie near the great circle γ and hence where we can use coordinates (ϕ, θ, ϕ′, θ′;σ, ζ, σ′, ζ ′, τ),
is given at the point (ϕ, π/2, ϕ+ Σ(α)h, π/2, α, 0,−α, 0, τ(α)) by [11]

(3.21) a(ϕ, π/2, ϕ+ Σ(α), π/2, α, 0)e−iπ/4
∣∣ds dθ dσ dζ∣∣1/2∣∣∣det

∂(ϕ, θ, σ, ζ, dvΦ)

∂(ϕ, θ, ϕ′, θ′, v)

∣∣∣−1/2

where the e−iπ/4 is a Maslov factor; see Remark 3.2 for more discussion about this. We
need to compute the determinant above. We can disregard the repeated coordinates (ϕ, θ)
and compute, using (3.19),
(3.22)

det
∂(σ, ζ, dvΦ)

∂(ϕ′, θ′, v)
= det

 0 0 −1
0 −v

sin(ϕ′−ϕ) 0

−1 0 G′′(v)

 =
v

sin(ϕ′ − ϕ)
=

α

sin Σ(α)
at θ = θ′ =

π

2
.

It follows that the principal symbol is

(3.23) a(ϕ, π/2, ϕ+ Σ(α), π/2, α, 0)e−iπ/4
( α

sin Σ(α)

)−1/2∣∣ds dθ dσ dζ∣∣1/2.
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Then by equation (3.4)

(3.24) a(ϕ, π/2, ϕ+ Σ(α), π/2, α, 0)e−iπ/4 =
( α

sin Σ(α)

)1/2

.

We next write the contribution of K1 to the expression (3.8) for the eigenvalue eiβl,h .
Writing l = α/h and using (3.14) we get

〈K1Y
l
l , Y

l
l 〉 = (2πh)−3/2

∫
eiΦ(ϕ,θ,ϕ′,θ′,v)/he−iα(ϕ−ϕ′)/h

( α
πh

)1/2

(2π)−1

× e−αg(θ)/he−αg(θ
′)/ha(ϕ, θ, ϕ′, θ′, v, h) ds dϕ′ dθ dθ′ dv (1 +O(h))

(3.25)

Here the factors (α/πh)1/2(2π)−1 are to normalize the functions Y ll in L2. We will analyze
this using the stationary phase lemma with complex phase function, see e.g. [12, thm. 7.7.5].
Here the phase is

(3.26) Ψ(ϕ, θ, ϕ′, θ′, v) = Φ− α(ϕ− ϕ′) + iα(g(θ) + g(θ′)).

Notice that the integrand as a function of (ϕ,ϕ′) depends only on ϕ− ϕ′ by the rotational
invariance of the scattering matrix, and the form of the Y ll which take the form eilϕ times
a function of θ. We change variable to (ϕ, ϕ̃), ϕ̃ = ϕ − ϕ′ and integrate out the variable
ϕ, giving us a factor of 2π. Then Ψ has nondegenerate stationary points in the remaining
variables (ϕ̃, θ, θ′, v). The imaginary part of the phase is stationary only at θ = θ′ = π/2,
while stationarity of the real part requires that v = α and −ϕ̃ = G′(v) = Σ(α). The
stationary phase lemma then gives us that (3.25) is equal to

2π

(
(2πh)−3/2

( α
πh

)1/2

(2π)−1

)
(2πh)2

×
(
eiG(α)/h 1

det(−iD2Ψ)1/2
a(ϕ, π/2, ϕ+ Σ(α), π/2, α, 0) +O(h)

)
.

(3.27)

Here, to keep track of constants, we have written out all constants in (3.25); the first 2π
comes from the integral in ϕ and the (2πh)2 comes from the leading term in stationary
phase in the four variables (ϕ̃, θ, θ′, v). Simplifying the constants and using (3.24) this is
equal to

(3.28)

(
2α2

sin Σ(α)

)1/2
(

eiG(α)/h

(det−iD2Ψ)1/2
+O(h)

)
.

We will show that, in the above expression

(3.29) det−iD2Ψ(ϕ, 0, ϕ+ Σ(α), 0, α) =
2iα2

sin Σ(α)
e−iΣ(α).

Accepting this for the moment, we obtain from (3.27)

eiβl,h = eiG(α)/heiΣ(α)/2 +O(h).

Since Σ(α) = G′(α) and α = lh, this can be written

(3.30) eiβl,h = eiG((l+1/2)h)/h +O(h)

completing the proof of Theorem 1.1.
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It remains to prove the formula for the Hessian in (3.29). First we notice that when
θ = θ′ = π/2 we have, using the formula in (3.18) for the distance function, in the coordinates
(ϕ̃, θ, θ′),

(3.31) D2 dist(ϕ, π/2, ϕ+ Σ(α), π/2) =

 0 0 0
0 cot Σ(α) − csc Σ(α)
0 − csc Σ(α) cot Σ(α)


From this (3.16) and (3.26), we conclude that in the (v, ϕ̃, y, y′) coordinates

(3.32) D2Ψ =


G′′(v) 1 0 0

1 0 0 0
0 0 −α cot Σ(α) + iα α csc Σ(α)
0 0 α csc Σ(α) −α cot Σ(α) + iα

 .

Thus

det−iD2Ψ = −α2
(

cot2 Σ(α)− 2i cot Σ(α)− 1− csc2 Σ(α)
)

=
2iα2

sin Σ(α)
e−iΣ(α)

and (3.29) holds. �

Remark 3.2. The Maslov factor in (3.21) and (3.24) arises as follows. First, Lemma 3.1
shows that the Maslov bundle over L is canonically trivial. However, unlike in the case
d = 2, there is a nontrivial Maslov factor from comparing our phase function Φ above to one
— let us call it Φ̃ — that agrees with the canonical phase function, i.e. the pseudodifferential
phase function, for |η| ≥ R. By [11, Theorem 3.2.1], the principal symbol written relative
to Φ contains the Maslov factor eiπσ/4 where σ is the difference of signatures,

σ = sgnD2
vvΦ− sgnD2

w̃w̃Φ̃

where w̃ = (w̃1, w̃2) are the phase variables for Φ̃. A tedious computation shows that
σ = −1, leading to the Maslov factor in (3.21) and (3.24). (We remark that since Φ depends

on one phase variable and Φ̃ on two phase variables, by [11, Equation (3.2.12)] σ is odd, so
the Maslov factor cannot vanish in this case.) Of course, the Maslov factors are irrelevant
to the question of equidistribution, but they are relevant to the question of determining the
eigenvalues modulo O(h).

Proof of Proposition 1.5. In view of the remarks in the proof of Theorem 1.1, specifically
equation (3.5), it is only necessary to do this in the cases d = 2 and d = 3. For definiteness,
we write down the proof for d = 3; it is similar, and in fact simpler, for d = 2. Consider
a spherical harmonic Y ll with hl ≥ R + hκ, where κ < 1. The eigenvalue eiβl,h is given by
(3.8) with Y ll replacing Yl.

First assume that hl ≥ R′ > R. Then the K1 term in (3.8) will be O(h∞) (for a suitable
decomposition of Sh = K1 +K2 +K3 as above, with R2 < R′), so we only have to consider
the K2 term. This is given by a pseudodifferential operator with symbol equal to 1+O(h∞),
so the 〈Y ll ,K2Y

l
l 〉 term is equal to 1 +O(h∞), proving the Proposition in this case.

Next assume that R + hκ ≤ hl ≤ R′1. For R′ < R1, the K2 term in (3.8) will be O(h∞)
(for some other decomposition of Sh, with R1 > R′), so we only need to consider the K1

term. That is, it remains to show that

〈(K1 − Id)Y ll , Y
l
l 〉 = O(h∞) for R+ hκ ≤ hl
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Using as above polar coordinates (ϕ, θ) on S2 with dual coordinate (σ, ζ), we find a phase
function Ψ for K1 that parametrizes L microlocally in the region

{|(σ, ζ)|g ≥ R− δ}

for fixed small δ > 0. Indeed, since L is given by the diagonal relation

(3.33) {ϕ = ϕ′, θ = θ′, σ = −σ′, ζ = −ζ ′, τ = 0} for {|(σ, ζ)|g ≥ R} ,

it follows that the functions (ϕ, θ, σ′, ζ ′) furnish local coordinates on the Legendrian L for
{|(σ, ζ)|g ≥ R} and therefore, by continuity, for {|(σ, ζ)|g ≥ R− δ} for some small δ > 0. It
then follows from [13, Theorem 21.2.18] that L can be parametrized by a phase function of
the form

−ϕ′v − θ′w +H(ϕ, θ, v, w).

Since K1 is pseudodifferential for |(σ′, ζ ′)|2g = ζ ′
2
+(sin θ′)−2σ′

2 ≥ R2 (i.e. L satisfies (3.33)),
we have

v ≥ R sin θ′ =⇒ H = ϕv + θw and b = 1 +O(h∞)

Thus

〈(K1 − Id)Y ll , Y
l
l 〉 =

∫ (
ei
(
−ϕ′v−θ′w+H(ϕ,θ,v,w)

)
/hb(ϕ′, θ′, v, w, h)− ei

(
(ϕ−ϕ′)v+(θ−θ′)w

)
/h

)

× cleiα(g(θ)+g(θ′))/h dϕ dθ dϕ
′ dθ′ dv dw

(2πh)3
+O(h∞),

(3.34)

As above we have written l = α/h; hence α > R+ hκ.
We insert cutoff functions by writing

1 = χ

(
v −R sin θ′

hκ

)
+ (1− χ)

(
v −R sin θ′

hκ

)
where χ(t) is supported in t ≤ 1/2, equal to 1 for t ≤ 1/4. With the cutoff χ inserted, the
phase function is nonstationary on the support of the integrand, since stationarity requires
that v = α. It follows that we can integrate by parts arbitrarily many times, using the fact
that the differential operator

1

v − α
h

i

∂

∂ϕ′

leaves both exponential factors invariant; doing this gains a factor of h1−κ each time since
α− v ≥ hκ/2 on the support of the integrand. Thus the χ term is O(h∞).

With the cutoff 1− χ inserted, we write the integral in (3.34) in the form∫
ei
(

(ϕ−ϕ′)v+(θ−θ′)w
)
/h

(
ei
(
H(ϕ,θ,v,w)−ϕv−θw

)
/hb(ϕ′, θ′, v, w, h)− 1

)

× cl(1− χ)

(
v −R sin θ′

hκ

)
eiα(g(θ)+g(θ′))/h dϕ dθ dϕ

′ dθ′ dv dw

(2πh)3
.

(3.35)

We claim that the factor(
ei
(
H(ϕ,θ,v,w)−ϕv−θw

)
/hb(ϕ′, θ′, v, w, h)− 1

)
× (1− χ)

(
v −R sin θ′

hκ

)
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is O(h∞). In fact, the term in the large brackets is O(h∞) for v ≥ R sin θ′, while if v ≤
R sin θ′, then the 1 − χ term vanishes identically. It follows that the 1 − χ term is also
O(h∞), completing the proof of Proposition 1.5. �

Remark 3.3. The reader may wonder whether a direct ODE attack on (1.3) might be simpler
and more straightforward than our FIO approach to this problem, given that our approach
relies on [10, Theorem 15.6], which in turn rests on a significant amount of machinery. By
contrast the WKB expansion for the solution yields the approximation for the eigenvalues
in Theorem 1.1 in a straightforward fashion. However, although it is not hard to write down
a WKB approximation to the solutions of (1.3), it seems (to the authors) that proving
rigorous error bounds for such WKB expansions is rather subtle. The problem is that to
prove such bounds, one must solve away the error term, that is, get good estimates on
the solution to the imhomogeneous ODE where the inhomogeneous term (the error term
when the WKB approximation is substituted into (1.3)) is O(hN ) for some sufficiently large
N . Notice that the ODE (1.3) might have several turning points, and the desired solution
is governed by a boundary condition f ′(0) = 0 at the origin, so one needs to understand
the behaviour of the solution passing through possibly several turning points. Since the
solutions may grow exponentially in the non-interaction region, this does not seem to be
easy or straightforward, and we are not aware of anywhere in the literature where this has
been written down. Carrying out this procedure would certainly be a worthwhile enterprise,
but we have chosen instead to build on the above-mentioned theorem about the semiclassical
scattering matrix which is already available in the literature.

Other features recommend the FIO approach in this context. First, the relationship
between the scattering angle and the phase-shifts is made transparent here, or at least it is
‘reduced’ to the fact that the integral kernel of Sh is a semi-classical FIO whose canonical
relation ‘contains’ the scattering angle, while on the other hand from the formula produced
by the WKB this relationship is not immediately apparent. More importantly, FIO methods
will be essential in treating the noncentral case, which we intend to do in future work, and
the symmetric case under consideration is a situation in which Sh can be understood almost
explicitly.

4. Equidistribution

If ω =
{
e2πix1 , . . . , e2πixK

}
is any set of K points on S1, then the discrepancy D(ω) is

defined by

(4.1) D(ω) := sup
0≤φ0<φ1≤2π

∣∣∣∣N(φ0, φ1;ω)

K
− φ1 − φ0

2π

∣∣∣∣ ,
where N(φ0, φ1;ω) is the number of points in ω with argument in [φ0, φ1] (modulo 2π),
counted with multiplicity. We state the following lemma in slightly more generality then is
necessary for semiclassical potentials so that we may apply it without significant modification
to the case of scattering by the disk.

Lemma 4.1. Let G : [0, R) −→ R be smooth and assume that

(4.2) {α : G′′(α) = 0} is finite in [0, R).

Consider the points xlk on the unit circle

(4.3) Eh = {xlk := exp (iG(lh)/h) : 0 ≤ lh < R, k = 1, . . . , pd(l)} ,

included according to multiplicity. Here pd(l) = dim ker (∆Sd−1 − l(l + d− 2)).
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Then the sets Eh equidistribute as h→ 0. That is, the discrepancy satisfies

(4.4) lim
h→0

D(Eh) = 0.

To apply the lemma to the eigenvalues of the scattering matrix Sh, we must show that
they still equidistribute despite satisfying only the weaker asymptotic condition in Theorem
1.1.

Proposition 4.2. Let S ⊂ [0, R] be a finite set and let

(4.5) Ẽh = {x̃lk : 0 ≤ lh ≤ R, k = 1, . . . , pd(l)}

be a collection of points on S1 (included according to multiplicity), such that for any ε > 0,
if l satisfies dist(lh, S) ≥ ε then

x̃lk = exp i(G(lh)/h) + E(l, h))

where |E(l, h)| < C(ε)h. Then, if G satisfies condition (4.2) in Lemma 4.1,

lim
h→0

D(Ẽh) = 0.

We will use the following notation. With any set S as above, let

Eh(ε) := Eh ∩ {xlk : dist(lh, S) ≥ ε} and Ẽh(ε) := Ẽh ∩ {x̃lk : dist(lh, S) ≥ ε},(4.6)

always understood to include points according to multiplicity.

Proof of Proposition 4.2 assuming Lemma 4.1: The error bound |E(l, h)| < C(ε)h shows
that, for every ε > 0, there is a constant C = C(ε, S) > 0 so that

N(φ0+Ch, φ1−Ch; Eh(ε)) ≤ N(φ0, φ1; Ẽh(ε)) ≤ N
(

max(φ0−Ch, 0),min(φ1+Ch, 2π); Eh(ε)
)
.

Dividing through by 2(R/h)d−1/(d−1)!, subtracting (φ1−φ0)/2π, and taking h small gives∣∣∣∣∣ N(φ0, φ1; Ẽh(ε))

2(R/h)d−1/(d− 1)!
− φ1 − φ0

2π

∣∣∣∣∣ ≤ max

{∣∣∣∣N(φ0 + Ch, φ1 − Ch; Eh(ε))

2(R/h)d−1/(d− 1)!
− φ1 − φ0

2π

∣∣∣∣ ,∣∣∣∣N(φ0 − Ch, φ1 + Ch; Eh(ε))

2(R/h)d−1/(d− 1)!
− φ1 − φ0

2π

∣∣∣∣}
≤ D(Eh(ε)) + (1 + C(ε))O(h) +O(ε),

uniformly in h and ε, where for the second inequality we used

(4.7) |Eh(ε)| = 2Rd−1

hd−1(d− 1)!
(1 +O(h) +O(ε)) ,

where |Eh(ε)| is the number of points in Eh(ε). Similarly, D(Eh) = D(Eh(ε)) + O(h) + O(ε)

for h, ε small, and the same is true for Ẽh. Thus∣∣∣∣∣ N(φ0, φ1; Ẽh)

2(R/h)d−1/(d− 1)!
− φ1 − φ0

2π

∣∣∣∣∣ ≤ D(Eh) + (1 + C(ε))O(h) +O(ε).(4.8)

Thus

lim sup
h→0

D(Ẽh) = O(ε),

and as ε > 0 was arbitrary, we obtain the result. �
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Remark 4.3. Note that the proof gives no information about the exact vanishing rate of

D(Ẽh) as h→ 0. For this, one must have information on the dependence of C(ε) on ε, and
then optimize in ε in (4.8) as h → 0. This is what we do in Section 6 to obtain improved
remainders in the case of scattering by the disk.

To prove Lemma 4.1, we use theorems from [14]. The following theorem follows from [14,
ch. 2, eq. 2.42]:

Theorem 4.4 (Erdös-Turán). There is a constant c > 0 such that if

ω =
{
e2πix1 , . . . , e2πixN

}
is a finite sequence of N points on S1 and m is any positive integer, then

(4.9) D(ω) ≤ c

 1

m
+

m∑
j=1

1

j

∣∣∣∣∣ 1

N

N∑
l=1

e2πijxl

∣∣∣∣∣
 .

To bound the exponential sums that appear on the right hand side of (4.9), we use [14,
ch. 1, thm. 2.7], namely

Theorem 4.5. Let a and b be integers with a < b, and let f be twice differentiable on [a, b]
with |f ′′(x)| ≥ ρ > 0 for x ∈ [a, b]. Then

(4.10)

∣∣∣∣∣
b∑
l=a

e2πif(l)

∣∣∣∣∣ ≤ (|f ′(b)− f ′(a)|+ 2)

(
4
√
ρ

+ 3

)
.

We also need [14, thm. 2.6] (with minor modifications in notation):

Theorem 4.6. For 1 ≤ i ≤ k, let ωi be a set of |ωi| points on S1 with discrepancy D(ωi).
Let ω be a concatenation of ω1, . . . , ωk, that is, a set obtained by listing in some order the
terms of the ωi. Then

(4.11) D(ω) ≤
k∑
i=1

|ωi|
|ω|

D(ωi),

where |ω| is the number of points in ω.

Proof of Lemma 4.1. We begin by assuming that G′′ has no zeroes in the open interval
(0, R).

We first analyze the subset Eh(ε) ⊂ Eh defined in (4.6). Define

ρ̃ = ρ̃(ε) = min
ε≤α≤R−ε

|G′′(α)|

κ̃ = κ̃(ε) = 2 max
ε≤α≤R−ε

|G′(α)| .
(4.12)

We will show that for each γ ∈ (0, 1) there is a constant c = c(γ) > 0 so that for each ε > 0,

D(Eh(ε)) < c
(
hγ + κ̃ρ̃−1/2h1/2−γ/2 + ρ̃−1/2h1/2 + κ̃h1−γ

)
.(4.13)

Since Eh(ε)− Eh = h−d+1(O(ε) +O(h)), for some c = c(γ) > 0 independent of ε we have

D(Eh) = sup
0≤φ0<φ1≤2π

∣∣∣∣N(φ0, φ1; Eh)

|Eh|
− φ1 − φ0

2π

∣∣∣∣
≤ c(ε+ h) +D(Eh(ε)),

(4.14)
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showing that

lim sup
h→0

D(Eh) ≤ cε.

Since ε > 0 is arbitrary, this gives (4.4). Thus it remains to prove (4.13).

Case 1: dimension d = 2. Note that when d = 2 the multiplicity of the eigenspaces is
p2(l) = 1 if l = 0 and 2 otherwise, so that

|Eh(ε)| = 2 (b(R− ε)/hc − dε/he+ 1) .

We apply Theorem 4.4 with ω = Eh(ε), so that, in the notation of Theorem 4.4, xl =
G(lh)/(2πh). Thus

D(Eh(ε)) ≤ c

 1

m
+

m∑
j=1

1

j

∣∣∣∣∣∣ 1

b(R− ε)/hc − dε/he+ 1

b(R−ε)/hc∑
l=dε/he

eijG(lh)/h

∣∣∣∣∣∣


Then we apply Theorem 4.5 with f(x) = (j/2π)G(xh)/h, a = dε/he, and b = b(R − ε)/hc.
Thus, if xh ≤ R−ε then |f ′′(x)| = hj |G′′(xh)| /2π ≥ hjρ̃/2π, which equals ρ in the notation
of Theorem 4.5. It follows that

(4.15) D(Eh(ε)) ≤ c

 1

m
+

h

R− 2ε− h

m∑
j=1

1

j

(
jκ̃

π
+ 2

)((
32π

hjρ̃

)1/2

+ 3

) .

By letting m = bh−γc for any γ > 0, we obtain (4.13).
Finally, suppose there are a finite number of points 0 < a1 < . . . < an−1 < R with

G′′(αi) = 0, and let a0 = 0, an = R. Note that, if we define Eh(a, b) to be the set of
xl,k with a ≤ lh ≤ b, counted with multiplicity, then the above arguments show that
limh→0D(Eh(a, b)) = 0; in fact if ρ̃(ε, h) (resp. κ̃) is defined to be mina+ε≤α≤b−ε |G′′(α)|
(resp. max |G′(α)|), then the proof is the same. The lemma in the d = 2 case now follows
from Theorem 4.6 since by (4.11)

D(Eh) ≤
n∑
i=1

D(Eh(ai−1, ai)).

The proof is now complete in the case d = 2.

Case 2: dimension d > 2. As in the d = 2 case, we begin by assuming that G′′(α) has
zeroes only at 0 and R. We now have to deal with the increasing multiplicities pd(l).

We will apply Theorem 4.6 to D(Eh(ε)) decomposed as a superposition in the following
way. It will be convenient to set

(4.16) N := b(R− ε)/hc.

Define,

ω(n) :=
{
eiG(lh)/h : n ≤ l ≤ Nc

}
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with unit multiplicity. Note that ω(n) has N − n+ 1 elements. Setting

ω1 = ω(0)

ω2 = · · · = ωpd(1) = ω(1)

ωpd(1)+1 = · · · = ωpd(2) = ω(2)

...

ωpd(N−1)+1 = · · · = ωpd(N) = ω(N).

we see that the set Eh(ε) is the superposition of the sets ω1, . . . ωpd(N).
The discrepancy D(ω(n)) can be estimated using the method from the d = 2 case. In

particular, as in (4.15) we see that for any positive integer m,

(4.17) D(ω(n)) ≤ c

 1

m
+

m∑
j=1

1

(N − n+ 1)j

∣∣∣∣∣(κ̃j + 2)

((
32

jcρ̃h

)1/2

+ 3

)∣∣∣∣∣


By Theorem 4.6, we have

D(Eh(ε)) ≤
pd(N)∑
i=0

|ωi|
|Eh(ε)|

D(ωi)

≤ 1

|Eh(ε)|

N∑
n=0

|ω(n)| (pd(n)− pd(n− 1))D(ω(n))

≤ chd−1
N∑
n=1

(N − n+ 1)(n+ 1)d−3D(ω(n)),

(4.18)

Substituting the estimate (4.17) into (4.18), again with m = bh−γc for some fixed γ ∈ (0, 1),
we end up with five terms to deal with corresponding to the five terms in the right hand side
of (4.17). For all of these we use standard bounds for sums of polynomials and N ∼ c/h.
The easiest is the 1/m term, since

(4.19) hd−1
N∑
n=1

(N − n+ 1)(n+ 1)d−3hγ ≤ chγ .

Next we do the terms involving ρ̃. There is

hd−1
N∑
n=1

(N − n+ 1)(n+ 1)d−3

bh−γc∑
j=1

1

(N − n+ 1)j
(κ̃j)

(
32

jcρ̃h

)1/2

≤ chd−1κ̃

N∑
n=1

(n+ 1)d−3

bh−γc∑
j=1

(
32

jρ̃h

)1/2

≤ chd−1κ̃

(
1

ρ̃h

)1/2 N∑
n=1

(n+ 1)d−3

bh−γc∑
j=1

j−1/2

≤ c
(

1

ρ̃

)1/2

κ̃h1/2−γ/2,

(4.20)
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and

hd−1
N∑
n=1

(N − n+ 1)(n+ 1)d−3

bh−γc∑
j=1

2

(N − n+ 1)j

(
32

jcρ̃h

)1/2

≤ hd−1c

(
1

ρ̃h

)1/2 N∑
n=1

(n+ 1)d−3

bh−γc∑
j=1

j−3/2

≤ c
(

1

ρ̃

)1/2

h−1/2.

(4.21)

The other terms are

hd−1
N∑
n=1

(N − n+ 1)(n+ 1)d−3

bh−γc∑
j=1

1

(N − n+ 1)j
(κ̃j)× 3

≤ cκ̃h1−γ ≤ cκ̃h1/2−γ/2,

(4.22)

and

hd−1
N∑
n=1

(N − n+ 1)(n+ 1)d−3

bh−γc∑
j=1

6

(N − n+ 1)j
≤ ch log(1/h).(4.23)

Combining (4.19)– (4.23) with (4.18) gives (4.13).
We take care of the case of a non-trivial number of zeroes of G′′ on [0, R] exactly as in

the d = 2 case. This completes the proof of Lemma 4.1.
�

We can now prove Theorem 1.2.

Proof of Theorem 1.2. By Theorem 1.1, the eigenvalues of the scattering matrix for 0 ≤ l ≤
R/h are given by

exp

{
i

h

(
G
(
(l +

d− 2

2
)h
))}

+O(h)

in the case of even dimension d, and the same in odd dimensions away from any ε neigh-
bourhood of the set S = {α | G′(α)/π ∈ Z}, where α = l/h. Since by assumption Σ = G′

satisfies (1.9), G satisfies (4.2), so the conclusion of Lemma 4.1 holds for G. Finally, (4.2)
implies that S is a finite set, so we can apply Proposition 4.2, proving (1.13) and hence
Theorem 1.2. �

5. Examples of potentials that satisfy Assumption 1.9

We use expression (2.6) for the scattering angle to prove

Proposition 5.1. Suppose that on the region of interaction R the potential V satisfies

(5.1) V ′(r) ≤ 0 and (V ′)2 + (1− V )(V ′ + rV ′′) > 0 for r < R.

Then Σ′(α) < 0 for for α ∈ [0, R).
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The conditions in (5.1) hold in particular for V = cW , where c is sufficiently large and
where W (r) = 0 for r ≥ R, W (r) > 0 for 0 ≤ r < R and W ′′(r) is positive and monotone
decreasing in some nonempty interval [R− ε, R). An explicit example is

W (r) =

{
e1/(r2−R2), r < R

0, r ≥ R.

Proof. In (2.6), set s = r/rm, so

Σ(α) = π − 2

∫ ∞
rm

α

(srm)2
√

1− α2/((srm)2 − V (srm)
d(srm)

= π − 2

∫ ∞
1

α

s2
√
r2
m − α2/s2 − r2

mV (srm)
ds.

Differentiating under the integral sign gives

−1

2
Σ′(α) =

∫ ∞
1

(
1

s2
√
r2
m − α2/s2 − r2

mV (srm)

−α
2

2rmr
′
m − 2α/s2 − 2rmV (srm)r′m − r2

msV
′(srm)r′m

s2 (r2
m − α2/s2 − r2

mV (srm))
3/2

)
ds

=

∫ ∞
1

(
r2
m(1− V (srm)

)
− αrmr′m(1− V (srm)− 1

2rmsV
′(srm))

s2 (r2
m − α2/s2 − r2

mV (srm))
3/2

ds

Differentiating

(5.2) 1− α2/r2
m − V (rm) = 0

shows αrmr
′
m = α2

(
1− V (rm)− 1

2rmV
′(rm)

)−1
. Plugging this in gives

−1

2
Σ′(α) =

∫ ∞
1

(
r2
m(1− V (srm))− α2 1− V (srm)− 1

2rmsV
′(srm)

1− V (rm)− 1
2rmV

′(rm)

)
× 1

s2 (r2
m − α2/s2 − r2

mV (srm))
3/2

ds

and using (5.2) again shows that (1/2)Σ′(α) is equal to∫ ∞
1

1− V (srm)− 1
2rmsV

′(srm)

s2 (r2
m − α2/s2 − r2

mV (srm))
3/2

×
(

1− V (srm)

1− V (srm)− 1
2rmsV

′(srm)
− 1− V (rm)

1− V (rm)− 1
2rmV

′(rm)

)
r2
mds

=

∫ ∞
rm

1− V (r)− 1
2rV

′(r)

r2 (1− α2/r2 − V (r))
3/2

(
1− V (r)

1− V (r)− 1
2rV

′(r)
− 1− V (rm)

1− V (rm)− 1
2rmV

′(rm)

)
dr.

Differentiating the expression (1− V (r))/(1− V (r)− 1
2rV

′(r)) with respect to r and using
V ′ ≤ 0, we see that the integrand is positive if for rm < r < R if

(5.3) r(V ′)2 + (1− V )(V ′ + rV ′′) > 0.

These conditions are implied by (5.1) in the first paragraph of the proposition.
To check that the condition in the second paragraph is sufficient, observe the following.

If V (r) ≥ 0, V ′(r) < 0 and V ′′(r) > 0 on some open interval (R − ε, R), it follows that for
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r sufficiently close to R, that V ′ + rV ′′ > 0. By picking large enough c > 0, (5.3) will hold
on the region of interaction R. �

Remark 5.2. One can ask whether there exist potentials for which equidistribution fails. It
is clear from Theorem 1.1 that the scattering matrix for V will fail to be equidistributed if
the scattering angle Σ(α) associated to V is equal to a constant rational multiple of 2π on
some interval with α < R. So we can ask whether there exists such a potential. Let S be the
map (2.6) taking V to its scattering angle Σ. Linearizing S at the zero potential gives an
integral operator which is an elliptic pseudodifferential operator of order 1/2 (apart from an
extra singularity at r = α = 0). This makes it seem likely to the authors that the range of
S is quite large, very likely including scattering angles such as described above that would
imply non-equidistribution.

6. Scattering by the disk

In this section we will prove Theorem 1.8 from the introduction. We restrict our attention
to the ball of radius 1, since the phase shifts for the ball of radius R can be obtained from
those for R = 1 by a scaling argument.

Here we use an ODE analogous to that in (1.3) to give a formula for the eigenvalues. In
fact, for any smooth solution fl to ∆Sd−1fl = l(l + d− 2)fl, a straightforward computation
shows that

(6.1) Sk(fl) = −
H

(1)
l+(d−2)/2(k)

H
(2)
l+(d−2)/2(k)

fl,

where the H
(i)
ν are Hankel functions of order ν [1]. It follows that

(6.2) Sk(fl) = eixk,lfl, xk,l = 2 argH
(1)
l+(d−2)/2(k) + π.

We now prove the first part of Theorem 1.8, which amounts to determining the asymp-
totics of the argument of the Hankel function when l/k ≤ 1 − k−1/3. Let us define in this
section ν = l + (d− 2)/2 and α = ν/k, and study the range α ≤ 1− k−1/3.

We first consider the range where α is small, say α ≤ 3/4. Then we use the expressions
[1, 9.1.22] for Jν and Yν to derive

H
(1)
αk (k) =

1

π

∫ π

0

eik(sin θ−αθ) dθ −
(

integrals from 0 to ∞
)
.

It is easy to bound the integrals from 0 to ∞ by O(k−1) uniformly for α ≤ 3/4. On the
other hand, stationary phase applied to the θ integral gives

H
(1)
αk (k) =

√
2

πk
(1− α2)−1/4eik(

√
1−α2−α cos−1 α)e−iπ/4 +O(k−1),

from which it follows that

(6.3) 2 argH
(1)
αk (k) = 2k(

√
1− α2 − α cos−1 α)− π/2 +O(k−1/2)

in this range. In view of (6.2) and (1.17) this proves (1.16) in the range α ≤ 3/4.
In the range 1/2 ≤ α ≤ 1 − k−1/3, we use the asymptotic formulae [1, 9.3.35, 9.3.36]

which shows that

(6.4) H
(1)
αk (k) =

( −4ζ

α−2 − 1

)1/4

ν−1/3
(

(Ai−iBi)(ν2/3ζ)
)

(1+O(k−2))+O(k−3/2), ν = αk,
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where ζ = ζ(α) is defined by

(6.5)
2

3
(−ζ)

3/2
=

∫ α−1

1

√
t2 − 1

t
dt =

√
α−2 − 1− cos−1(α);

notice that ζ is real and negative for α < 1, and −ζ ∼ c(1 − α) for some positive c as
α→ 1. To derive (6.4) from [1, 9.3.35, 9.3.36] we used the fact that ζ lies in a compact set
in this range of α, that the ak and bk are therefore uniformly bounded, that ν and k are
comparable when α ∈ [1/2, 1] and finally that we have bounds

|Ai′(ν2/3ζ)|+ |Bi′(ν2/3ζ)| ≤ Cν1/6

uniformly for ζ in this range — see [1, 10.4.62, 10.4.67]. It follows that

2 argH
(1)
αk (k) = 2

(
(Ai−iBi)(α2/3k2/3ζ)

)
+O(k−7/6).

Finally using the asymptotics [1, 10.4.60, 10.4.64], we get

(Ai−iBi)(α2/3k2/3ζ) =
(αk(−ζ)3/2)−1/6

π1/2

(
(−i)ei

(
2
3αk(−ζ)3/2+π/4

)
+O(k−1(−ζ)−3/2)

)
.

It follows, using the explicit expression for ζ(α) in (6.5), that

2 argH
(1)
αk (k) = 2k

(√
1− α2 − α cos−1(α)

)
− π/2 +O(k−1(1− α)−3/2).

Since we have taken 1 − α ≥ k−1/3, that gives us (1.16). (Pleasingly, we get the same
expression as in (6.3), a useful check on the computations.)

We now turn to the proof of equidistribution. We first note that, as in the proof of
Proposition 4.2 (with S = {1} and ε = k−1/3) the discrepancy of the exact eigenvalues eixk,l

is equal to that of the approximate eigenvalues eikGb(α)−π/2 up to an error O(k−1/3) which
is acceptable. So it suffices to prove (1.18) for the approximations eikGb(α)−π/2. We apply
(4.13), using

κ̃ ≤ max
0≤α≤1

|G′| ≤ π,

ρ̃ ≥ min
0≤α≤1

G′′(α) ≥ c > 0.
(6.6)

This means that in (4.13), ρ̃(ε, 1/k) ≥ c > 0 and κ̃(ε, 1/k) ≤ π for all ε, and thus for any
0 < γ < 1,

D(E1/k(ε)) ≤ C
(
k−γ + k−1/2+γ/2

)
.(6.7)

Choosing γ = 1/3 completes the proof.
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[12] L. Hörmander. The analysis of linear partial differential operators. I. Classics in Mathematics. Springer-

Verlag, Berlin, 1983.

[13] L. Hörmander. The analysis of linear partial differential operators. III. Classics in Mathematics.
Springer-Verlag, Berlin, 2007. Pseudo-differential Operators, Reprint of the 1994 edition.

[14] L. Kuipers and H. Niederreiter. Uniform distribution of sequences. Wiley-Interscience [John Wiley &

Sons], New York, 1974. Pure and Applied Mathematics.
[15] L. D. Landau and E. M. Lifshitz. Quantum mechanics: nonrelativistic theory. Pergamon Press, Oxford,

1965. Second revised edition.

[16] A. Majda. High frequency asymptotics for the scattering matrix and the inverse problem of acoustical
scattering. Comm. Pure Appl. Math., 29(3):261–291, 1976.

[17] R. Melrose. Geometric Scattering Theory. Cambridge University Press, Cambridge, 1995.
[18] R. Melrose and M. Zworski. Scattering metrics and geodesic flow at infinity. Invent. Math., 124(1-

3):389–436, 1996.

[19] R. Newton. Scattering Theory of Waves and Particles. McGraw-Hill, New York, 1965.
[20] V. Petkov and M. Zworski. Semi-classical estimates on the scattering determinant. Ann. Henri Poincaré,

2(4):675–711, 2001.

[21] M. Reed and B. Simon. Methods of modern mathematical physics. III. Academic Press [Harcourt Brace
Jovanovich Publishers], New York, 1979.

[22] D. Robert and H. Tamura. Asymptotic behavior of scattering amplitudes in semi-classical and low

energy limits. Ann. Inst. Fourier (Grenoble), 39(1):155–192, 1989.
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