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Abstract— Photoacoustic tomography is a hybrid imaging
technique that has various applications in biomedicine. In a pho-
toacoustic image reconstruction problem (inverse problem), an
initial pressure distribution is reconstructed from measured ul-
trasound waves which are generated by the photoacoustic effect
induced by an optical excitation. In this work, the image recon-
struction problem is approached in the framework of Bayesian
inversion. The approach is tested with three dimensional nu-
merical simulations. The initial pressure distribution is recon-
structed in full-view and limited-view setups. In addition, the
reliability of the obtained estimates is assessed. The numerical
studies show that accurate estimates of the initial pressure dis-
tribution and uncertainty information can be obtained utilizing
Bayesian approach.
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I. INTRODUCTION

Photoacoustic tomography (PAT), also known as optoa-
coustic tomography, is a hybrid imaging modality that is
characterized by high contrast and resolution [1, 2, 3]. PAT
can provide structural, functional, and molecular information.
Due to its many attractive features, its applications include
e.g. detection of skin and breast cancer, imaging of vascular
system and small animal imaging [1].

In PAT, a short pulse of visible or near-infrared light is
used to irradiate the imaged object. Due to the photoacoustic
effect, ultrasound waves are generated. The waves propagate
to the surface of the object, where they are measured. From
these time-varying measured pressure waves, an initial pres-
sure distribution is reconstructed. This is also known as the
acoustic inverse problem of PAT and it has been widely stud-
ied, see e.g. [4, 5, 6] and the references therein.

The initial pressure distribution can be estimated using va-
riety of reconstruction algorithms. Commonly used recon-
struction algorithms are backprojection [7, 8, 9, 10], time
reversal [11, 12, 13] and model based inversion approaches
[14, 15, 16, 17, 18, 19]. The backprojection algorithms are
based on analytical inversion formulae and are analogues to
the Radon transform. The time reversal algorithms perform
image reconstruction by simulating ultrasound propagation

backwards in time. In the model-based methods, the initial
pressure distribution is obtained by minimizing the error be-
tween the measured signals and the signals computed by the
photoacoustic forward model.

Recently, PAT image reconstruction method utilizing a
Bayesian approach was proposed [20]. The approach pro-
vides the estimates of the initial pressure distribution together
with information about the reliability of these estimates. In
this work, the approach is extended to three dimensions (3D).
A matrix free method utilizing the adjoint of the forward op-
erator is implemented. The approach is investigated using nu-
merical simulations in different sensor geometries.

II. PHOTOACOUSTIC MODEL

Absorption of the energy of a short light pulse into the
object causes thermoelastic expansion of the object. This in
turn leads to a generation of a pressure wave which propa-
gates through the object. Propagation of the pressure waves
in a linear and homogeneous medium can be described by
wave equation(
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where p is the pressure, r is the spatial position, t is the time, c
is the speed of sound and p0 is the initial pressure distribution
[4]. The pressure waves p(r, t) can be measured on the surface
of the object as a function of time.

In practice, the measured pressure waves are polluted with
noise. A common approach is to assume the noise being ad-
ditive. The discrete observation model with an additive noise
model for PAT is

pt = K p0 + e, (2)

where pt is a vector composed of measured acoustic pressure
waves, p0 is the discrete initial pressure distribution, K is the
discretized forward model (1) which maps the initial pressure
distribution to the measurable data, and e denotes the noise.



III. BAYESIAN APPROACH

In the inverse problem of PAT, the initial pressure distribu-
tion p0 is reconstructed from the detected pressure signals pt .
In this work, the image reconstruction is performed utilizing
the Bayesian approach [20, 21]. In the Bayesian approach, all
parameters are treated as random variables. The solution of
the inverse problem, the posterior density, is obtained based
on the model, prior information and measurements.

Let the noise be normally distributed e∼N (ηe,Γe) where
ηe and Γe are the mean and the covariance of the noise. Sim-
ilarly, the initial pressure distribution is assumed to be nor-
mally distributed p0 ∼N (ηp0 ,Γp0) where ηp0 and Γp0 are
the mean and covariance of the prior, and independent of the
noise. With these assumptions, the posterior distribution of
the observation model (2) can be expressed as a Gaussian
distribution p0|pt ∼N (ηp0|pt ,Γp0|pt ) with mean [20]

ηp0|pt = A−1b, (3)

and covariance
Γp0|pt = A−1, (4)

where
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Reconstructed image is obtained by calculating point es-
timates of the posterior density. In this work, maximum a
posteri (MAP) estimate is considered. In a Gaussian case,
the MAP estimate is the mean of the posterior distribution
p0,MAP = ηp0|pt . The reliability of the reconstructed images
can be assessed by computing the credibilities of the esti-
mates. In this work, the marginal densities of the posterior
distribution are determined. These can be obtained from the
diagonal of the posterior covariance matrix Γp0|pt .

Computation of the MAP estimate and posterior covari-
ance in the matrix form can become impractical in three di-
mension, since storage and inversion of very large matrices
are required. Therefore, a matrix free method is used in this
work. The method utilizes the adjoint of the forward operator
implemented with the k-Wave toolbox [22]. Furthermore, the
MAP estimate and the posterior covariance are determined
iteratively using iterative solvers of MATLAB.

IV. NUMERICAL SIMULATIONS

The approach was investigated with numerical simula-
tions. The simulation domain was a cube with a side length of
10mm and it was discretized by 3063 cubic voxels with the

side length of ∆h = 32.7 µm. The medium was assumed to be
non-attenuating with a constant speed of sound c= 1500m/s.
The simulated initial pressure distribution of the medium
consisted of nine spheres with the radius of 1.43mm and ini-
tial pressure p0 = 5. Eight of these spheres were located in the
corners of the cube and one sphere was located in the middle
of the cube. The ambient initial pressure distribution had a
value of zero.

The data was simulated using the k-space time domain
method implemented with the k-Wave MATLAB toolbox
[23]. The pressure signals were recorded for 14.1 µs at sam-
pling frequency of 60MHz (849 temporal samples) in a full-
view sensor geometry and two limited-view sensor geome-
tries. In many practical applications of PAT such as imaging
of skin, the pressure signals cannot be recorded around the
whole object (full-view sensor geometry) which results in a
limited-view data collection. In the full-view setup (6-side),
62119 acoustic sensors were located at all sides of the cube.
In the first limited-view sensor geometry (L-shape), 20808
sensors were located on two adjacent sides (sides in the di-
rection of the negative y and positive z axes) of the cube. In
the second limited-view setup (1-side), 10404 sensors were
located only on one side (side in the direction of the positive
z axis) of the domain. The uncorrelated Gaussian distributed
noise with a zero mean and a standard deviation proportional
to 1% of the peak amplitude of the simulated pressure signal
noise was added to the simulated pressure signals.

In the image reconstruction, the discretization of the do-
main consisted of 2043 cubic voxels with the width of ∆h =
49.0 µm. As prior information, a white noise prior was used.
White noise prior is described by the mean ηp0 and the co-
variance matrix Γp0 = diag(σ2

p0
). In this work, the mean

ηp0 = 0 and standard deviation σp0 = 2 was utilized. The
measurement noise was considered to be uncorrelated Gaus-
sian distributed noise with zero mean and the standard devia-
tion set to 1% of the peak positive amplitude of the noisy sim-
ulated data. The initial pressure distributions were estimated
by computing the MAP estimate (3), and marginal densities
were determined in selected points inside the domain to as-
sess the reliability of the obtained estimates. All the compu-
tations were performed on a GPU.

A. Results

Fig. 1 shows the simulated and estimated initial pressure
distributions. As it can be seen, the estimated initial pres-
sure distribution looks qualitatively very similar to the orig-
inal distribution in the 6-side setup. Visually the quality of
the estimated initial pressure distribution is reduced when the
limited-view sensor geometries are used. The quality reduc-



Fig. 1: Maximum intensity projections of the initial pressure distribution in
x, y and z directions for the simulated distribution (first row),

reconstructions in the 6-side setup (second row), reconstructions in the
L-shape setup (second row) and reconstruction in the 1-side setup (fourth

row). The asterisks and circles indicate the two locations where the
marginal densities are plotted.

tion is more severe far from the sensor surface, and artefacts
and distortions can be seen in those areas. In the L-shape sen-
sor geometry, this can be observed for example in the left-
lower corner of the maximum intensity projection in x direc-
tion and in the left side of the maximum intensity projection
in y direction. Similarly, in the 1-side sensor geometry, qual-
ity reduction can be seen for example in the left side of the
maximum intensity projections in x and y directions. Compar-
ing the estimates obtained using different limited-view sensor
geometries, it can be seen that the estimated initial pressure
distributions in L-shape sensor geometry looks qualitatively
better than the estimate obtained using the 1-side setup.

Fig. 2 shows the marginal densities at two points inside
the domain indicated in Fig. 1. As it can be seen, the maxi-
mum of the marginal density is not necessarily at the location
of the true value, but the true value seems to be within the
principal support of the distribution in all cases apart from
the marginal density computed in the point indicated with as-

Fig. 2: Marginal densities of the posterior distribution obtained using the
6-side (blue solid line) and the 1-side sensor geometry (dashed red line). In

the top figure, the marginal density is computed in the location which is
indicated in Fig. 1 with an asterisk. In the bottom figure, the marginal
density is computed in the location which is indicated in Fig. 1 with a

circle. In both points, the true initial pressure p0 = 5 (vertical black line).

terisk using the 6-sided sensor geometry. Furthermore, the
marginal density is narrower in the 6-side sensor geometry
than in the 1-side sensor geometry. This demonstrates that
the uncertainty of the estimate obtained using 6-side sensor
geometry is smaller than the uncertainty of the estimate ob-
tained using 1-side sensor geometry, as should be expected
due to the lower quality sensor setting



V. CONCLUSIONS

The Bayesian approach to photoacoustic tomography was
considered and extended to 3D. A matrix free method was
implemented, and image reconstruction and estimating the
reliability of the images was investigated. The numerical sim-
ulations showed that the sensor geometry affected both the
estimates and their uncertainties. The quality of the images
reduced and the uncertainty increased as the sensor geom-
etry turned into limited-view. Overall, the results show that
the Bayesian approach can be used to provide accurate esti-
mates of the initial pressure distribution as well as informa-
tion about the uncertainty of the estimates. However, more
research is required for the interpretation of when uncertainty
estimates can be regarded safe, see e.g. [24].
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